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Abstract

This research focuses on the automatic provisioning of cloud resources by an intermediary enterprise. This enterprise
provides a virtual private cloud for a single client enterprise by using resources from a public cloud. The intermediary
cloud provider is controlled by a broker that uses techniques to dynamically control the number of resources used by
the client enterprise. The research presents a hybrid auto-scaling technique based on a combination of a reactive
approach and a proactive approach to scale resources based on user demand. The primary goal of this auto-scaling
technique is to achieve a profit for the intermediary enterprise while maintaining a desired grade of service for the
client enterprise. The second goal of the technique is to reduce costs for the single client enterprise. The technique

Resource management on clouds, Machine learning

supports both on-demand requests and requests with service level agreements (SLAs). This paper describes the
auto-scaling algorithms associated with the hybrid technique and includes a discussion of system design and
implementation experience for a prototype system. A detailed performance analysis based on simulations and
measurements made based on the prototype is presented.

Keywords: Hybrid auto-scaling on clouds, Resource allocation, Dynamic resource provisioning, Scheduling with SLASs,

Introduction

The cloud environment offers an organization the ability
to shift its IT operations from a traditional capital
expenditure (CAPEX) model [1], in which an
organization procures dedicated hardware that depreci-
ates over a period of time to an operational expenditure
(OPEX) model, which allows the use of a shared cloud
infrastructure with facilities that allow paying for only
the amount of resources used by an organization with-
out needing to procure dedicated hardware ahead of
time. This is an important feature of cloud computing,
which offers users the ability to acquire resources by
paying a fixed price per unit time for a cloud resource.
This pricing model is also known as an on-demand or a
pay-as-you-go pricing model [2]. The practice is similar
to that of utility bills, where payment is made only for
the resources that have been used. Public cloud
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providers such as Amazon with its S3 and EC2 services
use the on-demand pricing model [3] when charging for
various cloud resources. In a typical cloud environment,
an organization acquires its IT infrastructure from a
cloud provider for a period and then runs their applica-
tions inside that infrastructure. This type of service
offered by cloud providers is known as Infrastructure as
a Service (IaaS).

Another important characteristic of cloud computing
is elasticity. Elasticity allows an organization to scale
rapidly to meet customer demands. Elasticity is formally
defined as the degree to which an application or system
deployed inside a cloud infrastructure, autonomously
adapts its capacity to workload demands over time [4].

The ability to provide on-demand computational
resources appears to be unlimited from the perspective
of an organization using a cloud provider’s services. This
offers the organization the ability to potentially purchase
any number of resources at any time. Each organization
that rents out resources from a cloud provider is known
as a tenant of the cloud provider. Additionally, cloud
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providers support multitenancy by allowing multiple
organizations to rent their cloud resources. The cloud
provider enables sharing of resources due to its ability to
virtualize physical resources, which helps increase its
revenue. Multitenancy also enables an increase in
utilization and efficiency for cloud resources that other-
wise may not be utilized to their maximum capacity.
The challenge for a cloud provider offering its infra-
structure to its customers is to maintain a quality of
service (QoS) that guarantees metrics such as a low
response time, high throughput and high service
availability. Typically, to provide such a QoS guarantee,
the cloud provider needs to maintain a service level
agreement (SLA). Failure to comply with the metrics will
violate the terms agreed upon in the SLA and potentially
cause the cloud provider to lose business [1].
Additionally, the organization may be interested in
ensuring that its requests, specific to the applications
deployed on the infrastructure, are completed in a timely
manner. One way to accomplish this is to introduce
SLAs for the workload provided by cloud users to allow
user requests to specify an earliest start time and dead-
line for the requests. These types of requests are also
referred to as advance reservation (AR) requests in the
literature [5]. AR requests are important features of
clouds and distributed systems [6]. The different proper-
ties of an AR request are described in more detail in
“Performance evaluation” section. Associating a deadline
with requests processed by a cloud has been considered
in several works (see [7] and [6] for example) and is re-
ceiving a great deal of attention from researchers. The
authors of [8] and [9] evaluate auto-scaling mechanisms
which consider both user performance requirements and
pricing for a workload characterized by jobs with dead-
lines. Note that in addition to jobs with deadlines, the
technique discussed in this paper can handle jobs with-
out deadlines referred to as On Demand (OD) request
by associating an arbitrarily large deadline with the
respective requests that is larger than the deadline of
any AR. An OD request is executed on a best effort basis
[10]. Moreover, the matchmaking and scheduling
algorithms used in this paper handles requests for which
the arrival time and the earliest start time coincide by
setting the earliest start time to be equal to the time of
arrival of the request. Whether or not a request is an
OD and irrespective of the earliest start times of re-
quests the system can be profitable. A discussion of
profitability and the conditions that need to be satisfied
for achieving a profit are discussed in “Profitability and
cost analysis” section. As indicated earlier, the proposed
system is designed to work with both advanced reserva-
tion AR and OD requests. In the experiments evaluating
the auto-scaling techniques discussed in this paper, a
workload comprising 80% AR and 20% OD requests has
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been used. The auto-scaling techniques described in the
paper work with any given mix of ARs and ODs includ-
ing a workload with 100% OD requests. Without dead-
lines, the proposed system will accept all the requests
and schedule them on a best effort basis.

This approach works even when the start time and the
request arrival time coincide by either locating a
resource that can accommodate the new request imme-
diately. If no suitable resources are found, the system
either rejects the request, or if the request is deemed
profitable by the broker, a new resource is acquired. If a
new resource is acquired, there is an overhead to start
the resource. In such a case, if the deadline cannot be
met after delaying the start time of the execution of the
request, the request is rejected.

Auto-scaling helps prevent over-provisioning which
leads to higher cost savings and higher resource
utilization. Instead of forcing an organization to acquire
resources before deploying an application, resources may
be incrementally added or removed as the demand for
the application fluctuates over time. Moreover, instead
of overprovisioning an application infrastructure to meet
peak workload demands, an organization may employ
auto-scaling to control expenditure during low usage
periods while still being able to satisfy peak demands
during high usage periods. Auto-scaling also increases
resource utilization and decreases the idle time of re-
sources compared with an overprovisioned infrastruc-
ture, in which the system resources remain idle and
power is unnecessarily consumed [11].

In cloud auto-scaling mechanisms, metrics that are
monitored to decide when to perform auto-scaling oper-
ations include CPU utilization, memory utilization, and
bandwidth usage. Such infrastructure-level performance
metrics are good indicators for conveying the load on a
resource. Based on certain predefined thresholds for
these metrics, a resource may be acquired or released.
Determination of this threshold requires extensive
experimentation with the system. Moreover, as noted in
[12], basing an auto-scaling decision on a single per-
formance metric may not be adequate, as choosing an
auto-scaling metric incorrectly may cause a system to
operate with more or less resources than desired. Choos-
ing appropriate performance metrics and determining
precise threshold values for these metrics is not a trivial
task and becomes more challenging if the workload
pattern is continuously changing [13]. Currently, auto-
scaling mechanisms that use thresholds do not take
application performance into consideration when adding
a fixed number of resources. This problem of choosing
the appropriate threshold becomes more challenging
when the application model used in the cloud environ-
ment is complex and the metrics are limited to the
utilization of computational elements. Although the
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system introduced in this paper auto-scales computa-
tional resources, the techniques described do not use
traditional metrics such as CPU utilization to perform
the auto-scaling operations. It relies on two approaches
when deciding to auto-scale resources. The first ap-
proach is reactive in the sense that it reacts to changes
in the system state. It utilizes a threshold-based mechan-
ism using grade of service (GoS) criteria. These GoS
criteria help in ascertaining whether the QoS guarantee,
set forth by the entity using this system, is being com-
plied with. The second approach is to utilize a prediction
mechanism that relies on performing an analysis of past
workload to determine the future resource demands and
the necessity of scaling resources based on the predicted
future workload.

Another factor that other auto-scaling mechanisms
described in the literature often overlook is the time re-
quired to boot a VM instance. Though instance acquisi-
tion requests can be made at any time, instances are not
available to users immediately. Such instance start-up
lag is typically due to the time required to, for e.g., find
the right spot for the requested instances in a cloud data
centre, download the specified OS image, boot the
virtual machine, and finish network setup [14]. Based on
our previous experiences [15] and that of other re-
searchers [14], it could take as long as 5 min to start a
t1 micro instance in an Amazon cloud, and such startup
lag can vary dynamically over time. Clients must take
into account this instance startup time factor when
procuring instances from a cloud provider, especially if
their workload comprises of AR requests.

This paper focuses on employing a broker that runs
within an organization known as the Intermediary
Enterprise (IE) and auto-scales the number of resources
acquired from a public cloud provider. The resources
are required to execute AR and OD requests sent by
another organization known as a Single Client Enterprise
(SCE) or the User. SCE is an entity comprising of multiple
users that generate requests that need to be serviced. SCE
sends all these requests to IE on behalf of these users. IE
is charged by the public cloud provider to rent resources,
and IE, in turn, charges SCE to execute requests to
recover its operational expenditure. The broker auto-
scales the resources to increase the profit earned from its
operation while attempting to reduce the cost incurred by
SCE (explained in more detail in “Pricing” section). The
reduction in cost is justified by comparing with a system
where the requests would be scheduled by SCE without
broker intervention. This type of a system is defined in
“Alternative systems” section.

A system in which IE buys resources by the hour from
a public cloud provider and sells it to the user by
seconds can be attractive to both users as well as IE. It is
attractive to the users when the user requests do not
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utilize the full hour of a resource offered by a cloud pro-
vider and therefore the user incurs a lower cost when
charged by seconds in comparison to buying the re-
source from the public cloud that charges the user by
the hour. The profit for IE results from re-using the
newly idled resource for running another user request
that has arrived on the system that will lead to a higher
earning than the hourly charge it pays to the public
cloud service provider. Note that such a sharing of
resources among requests does not give rise to any re-
source contention because each resource is used by one
request at a given point in time. The scheduler allocates
a resource to a request for a given interval of time. Only
when the user request finishes execution, the resource is
allocated to another request that is scheduled to execute
on this resource next. This system is applicable in all
such environments where multiple user requests need to
be serviced.

In addition to an independent IE providing service to
its SCE client, such a system may also be adopted by an
IT department of an organization that accepts user
requests from other departments. The IT department
would act as a broker while each department would
function as an SCE. The IT department would procure
resources from a public cloud provider and pay by the
hour while charging the users by the second. The profits
earned by the IT department could be utilized to keep it
self-sufficient and operational. Two performance metrics
have been used in this paper. They are Broker profit and
User cost, that form an important basis to measure the
efficacy of the system, which strives to achieve a high
broker profit as well as a reasonable user cost.

To investigate the behaviour of the system, an event-
driven simulation that tests the validity of the proposed
algorithm was initially developed. Once the simulator
led to encouraging results, a prototype of the system that
utilizes resources from the Amazon public cloud was
developed. This paper focuses on presenting the results
obtained from the simulator and the prototype of the
proposed system that implements a novel hybrid auto-
scaling technique. The key contributions of this paper
are summarized.

e A novel hybrid auto-scaling algorithm that uses a
price model that can lead to an increase in profit for
a broker (intermediary enterprise) and a reduction
in user cost at the same time.

e A framework using the hybrid auto-scaling algorithm,
with the ability to address SLA-driven AR requests as
well as OD requests.

o A detailed performance analysis based on both
simulation and measurements made on a proof-of-
concept prototype of the framework, focusing on
broker profit and user cost for a system subjected to
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various combinations of system and workload
parameters.
° Key insights into system behaviour and
performance are presented.
° The performance analysis demonstrates how an
intermediary enterprise hosting a broker can earn
profit while decreasing the user cost in
comparison to a system in which users directly
acquire their resources from the public cloud.

e Comparison of the proposed hybrid framework for
auto-scaling with frameworks that only scale purely
proactively [16] or reactively [17].

° To showcase the advantages of using a hybrid
approach, the paper compares such traditional
auto-scaling mechanisms (proactive and reactive)
with the proposed hybrid algorithm.

The rest of the paper is organized as follows. Related
work is discussed in “Related work” section whereas
“System overview” section provides a system overview
for the proposed hybrid system. “Broker architecture”
section describes the broker architecture while “Reactive
and proactive auto-scaling” section describes the auto-
scaling algorithms. “Experimental prototype” section dis-
cusses the experimental platform while “Performance
evaluation” section presents the performance evaluation
and observations from the experiments conducted. The
concluding remarks are presented in “Conclusions” section.

Related work

This section discusses a representative set of existing
work on auto-scaling systems in cloud environments.
“General auto-scaling approaches” section discusses
general auto-scaling approaches, whereas “Resource
management frameworks” section discusses resource
management frameworks. “Hybrid auto-scaling ap-
proaches” section addresses work that highlights auto-
scaling performed via hybrid approaches.

General auto-scaling approaches

Traditional techniques for auto-scaling are easy to
deploy and use a mechanism to manage the number of
resources assigned to an application hosted on a cloud
platform (e.g., [18]). The ease-of-use of these rules make
them appealing to cloud users. However, creating the
rules for auto-scaling requires an effort from the applica-
tion manager, who needs to select a suitable perform-
ance metric or logical combination of metrics and the
values of several additional parameters, mainly thresh-
olds that are used for scaling resources. Thresholds are
the key to ensuring that the rules implemented are
correct. In particular, as described in [19]. The ease-of-
use of these rules make them appealing to cloud users.
However, creating the rules for auto-scaling requires an
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effort from the application manager, who needs to select
a suitable performance metric or logical combination of
metrics and the values of several additional parameters,
mainly thresholds that are used for scaling resources.
Thresholds are the key to ensuring that the rules imple-
mented are correct. In particular, as described in [20]
thresholds need to be carefully tuned in order to avoid
oscillations in the system. Oscillations occur if the auto-
scaling system keeps changing the number of resources
in order to satisfy the threshold rules. To prevent this
problem, [20] introduces a cool-down or calm period, a
time during which no further scaling decisions can be
committed, which is implemented once a scaling action
has been carried out. Conditions in the rules are usually
based on a single or at most two performance metrics,
such as the average CPU load of the VMs, the response
time, or the input request rate. The research presented
in this work performs auto-scaling based on the ex-
pected profit for an entity known as a broker. Since a
broker controls the resources and acquires them only
when they are deemed profitable, our work also makes
use of a threshold for the blocking ratio as another
criterion to ensure that the client enterprises have a
guarantee regarding the minimum proportion of re-
quests scheduled. A system known as SCAling, which
uses an analytic model that monitors a global metric
when auto-scaling, is described in [21]. SCAling is an
approach for auto-scaling driven by SLAs. The global
metric is used to manage cloud elasticity, i.e., to ensure
that the number of used instances increases seamlessly
during demand spikes to maintain performance and
decreases automatically during demand lows to
minimize costs. Our work also uses the grade of service
as an SLA, acting as a global objective based on which a
user can drive resource acquisition.

Resource management frameworks

The authors of [22] present a resource management
framework called Anchor where resource management
policies are separated from the management mechanism.
The highlight of Anchor is a new many-to-one stable
matching theory that efficiently matches VMs with het-
erogeneous resource needs to servers. Amazon offers a
service known as CloudWatch [23] for monitoring appli-
cations running on their instances. CloudWatch allows a
system-wide visibility of resource utilization, application
performance and operational health which enables users
to spot trends and make automated decisions based on
the user’s cloud environment. Haizea [12] is a resource a
lease manager with a scheduler module that offers dy-
namic resource allocation features via the lease sched-
uler. However, [22] and [23] do not address the
scheduling of ARs. Additionally, none of the works dis-
cuss proactive resource management.
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Aneka [6] is a framework for developing distributed
applications on the cloud. It provides developers with an
API for managing resources and expressing the business
logic of applications by using programming abstractions.
Aneka provides tools monitoring a deployed infrastruc-
ture, scaling resources based on the completion times of
requests. If the current set of resources is unable to
complete a newly arriving request before its deadline,
additional resources may be acquired. Resources are
released when certain threshold conditions are met. The
authors of [24] propose a system that employs a cloud
brokerage service to reserve resources from a public
cloud provider instead of acquiring them on-demand.
Their broker reserves resources at a bulk price that is
lower than the on-demand price. The broker shares the
resources with multiple users while offering them per-
second billing. The goal of this paper is to reduce user
cost. The approach discussed in [24] does not ARs when
provisioning resources. In addition, the approaches in
both [6] and do not consider broker profit as a factor
when deciding whether to acquire or release resources.
Finally, these approaches do not employ proactive auto-
scaling via the technique introduced in this paper.
Amazon’s CloudWatch also utilizes target metrics speci-
fied by its users to trigger actions upon reaching their
thresholds. Proactive resource management may attempt
to predict the future workload when making scaling
decisions [25]. Moore et al. [25] uses a similar technique
for resource provisioning. However, resource provision-
ing may also be achieved without predicting the future
workload as discussed in [26], where the authors
propose a technique for dynamically adapting thresholds
to meet QoS targets.

Hybrid auto-scaling approaches

The authors of [25] propose a real-time cloud capacity
framework, offering a hybrid elasticity controller
employing both reactive rule-based and proactive
model-based elasticity mechanisms in a coordinated
manner. The hybrid controller examines the scale-up
condition which, in a purely reactive auto-scaling envir-
onment, is used to acquire new resources, and builds
incrementally updateable predictive models to enable a
system to proactively scale up before this condition is
met. The research presented in [25] demonstrates that,
compared to a purely reactive controller, or a purely
proactive controller, the hybrid controller can make
better provisioning decisions. The authors of [27]
propose an alternate hybrid control mechanism that
maintains the history of the session arrival rate seen.
The authors assume a multitiered web application with a
web server and a database server that needs to be auto-
scaled. Provisioning is done prior to each hour based on
the worst load seen in the past. Their workload predictor
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is based on a technique that uses past observations of a
workload to predict the peak demand that will be seen
over a period of T time units. The proactive provisioning
technique allocates capacity to address the worst-case
load by using the tail of the arrival rate distribution to
predict peak demand. The reactive controller acts on
short time scales to increase the resources allocated to a
service in case the predicted value is less than the actual
load that arrives. The authors of [28] propose a hybrid
scaling technique that utilizes reactive rules for scaling
up (based on CPU usage) and a regression-based
approach for scaling down. After a fixed number of in-
tervals in which the response time is satisfied, they cal-
culate the required number of application-tier and
database-tier instances using a polynomial regression.
The authors propose a reactive system for scale-up oper-
ations and a proactive system for scale-down operations.

This paper presents a hybrid approach that also im-
proves performance compared to a purely proactive or
reactive approach. However, the scaling decisions are
based primarily on profit for the auto-scaling controller
whereas the authors of [25], [27] and [28] do not incorp-
orate cost-awareness in their scaling decisions. More-
over, this paper addresses AR requests that allow users
to specify an SLA individually for each request.
Researchers include scaling metrics monitor workload
arrival rate and a QoS condition for auto-scaling, both
of which are also considered in this work. To the best of
our knowledge, none of the existing papers have dis-
cussed auto-scaling based on broker profit. A broker-
based approach is used by other researchers, some of
whom refer to the broker as a resource manager. This
research proposal makes use of a novel differential pri-
cing mechanism for end users to achieve a profit for the
intermediary enterprise (using a broker).

System overview

This section presents an overview of the system and of
the different components of the broker and how the
broker interacts with the SCE and the public cloud pro-
vider. The section is divided into two subsections. The
first subsection (Auto-scaling techniques) explains the
different auto-scaling techniques, while the second
(Pricing) presents a cost model to explain different pri-
cing mechanisms used in this paper.

An overview of the system is presented in Fig. 1. As
explained in “Introduction” section, IE is responsible for
handing requests from SCE. IE uses the broker which
controls resources acquired from the public cloud to
form a “private” cloud which is also referred to as a
Virtual Private Cloud (VPC) [29]. Ideally, the broker
runs in one of the instances of the public cloud acquired
by the intermediary enterprise or in an external location
controlled by the intermediary enterprise. The broker
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Fig. 1 System Overview [17]

may run in an alternate location as well but must pos-
sess the ability to communicate with the resources of the
VPC. To keep the resources private, they are connected
to a private subnet while the broker executes on the
public subnet (accessible via an external network such as
the Internet). This allows the VPC to remain secure in
case an intruder tries to access the private resources.
The users inside SCE send requests to the broker over
the Internet. The broker allows the users to execute
their jobs on instances acquired by the broker. The bro-
ker charges the users of the private cloud a higher price
per unit time than that for the cloud providers to earn a
profit. However, the broker charges users per second
rather than on an hourly basis. This ensures that users
pay only for the time during which their request is
executed. The goal for this broker is to maximize profit
for the private cloud provider (IE) while attempting to
reduce the cost for the client enterprise (SCE) that com-
prises the users for the private cloud. This reduction in
cost is determined by comparing with a system in which,
instead of renting instances from the intermediary cloud
provider, the user rents resources directly from a public
cloud provider. This system is discussed in more detail
in “Alternative systems” section and its performance is
compared with the performance of the proposed system.

A broker-based approach allows an abstraction to be
provided to users by removing the necessity to manage
resources in a cloud infrastructure. It allows users to
submit requests to an application and retrieve the results
later. This approach also allows a broker to share re-
sources between different user requests. A broker has
two responsibilities: handling the matchmaking and
scheduling of requests and managing the auto-scaling of
resources. A broker dynamically controls the number of
resources using a threshold-based mechanism and
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utilizes a prediction system based on a machine learning
approach to predict future workloads. The primary
criterion used in this paper is to auto-scale resources
based on profit accrued by an IE. In addition, the paper
uses another criterion for acquiring resources based on a
GosS specified by the client enterprise. Although the sys-
tem described in this paper uses the blocking ratio to
describe the GoS, the framework can be adapted to
other metrics as well. The blocking ratio (B) is the pro-
portion of requests that cannot be completed before the
expiry of their deadlines and are therefore rejected by
the system. The specified value of B, referred to as Bgpec,
which is provided by the user, is the desired value of B
maintained by the broker and is stored in the GoS com-
ponent. Similar GoS criteria have been used by other
researchers [30]. A previous work [31] by the authors
also dealt with auto-scaling resources in a cloud environ-
ment while monitoring the value of B. However, this
paper utilizes the concept of auto-scaling based on bro-
ker profit. Resources are acquired when either a profit is
earned by the broker after acquiring the additional
resource necessary for satisfying the user request or
when rejecting the request would violate the GoS criteria
with B exceeding Bjpe.. Auto-scaling with profit and GoS
was first introduced in a previous work [17] by authors
addressing reactive auto-scaling.

Auto-scaling techniques

Auto-scaling techniques can be classified into two cat-
egories. Reactive rule-based methods define scaling con-
ditions based on a target metric reaching some
threshold and are offered by several cloud providers
such as Amazon. Proactive auto-scaling approaches tend
to be based on time series analysis, control theory,
reinforcement learning, or queuing theory [25]. One
strategy for achieving proactive auto-scaling is to use a
workload predictor to determine the required number of
resources to satisfy the predicted demand and acquire
those resources when needed, based on the prediction.
A third hybrid technique, proposed in this paper, com-
bines the reactive and the proactive controllers.
Proposals for this technique include using a proactive
method and a reactive method to determine when to
provision resources over a long time-scale (hours and
days) and a short time-scale respectively. This paper
combines both the reactive technique and proactive
technique by invoking the reactive algorithm upon each
request arrival and the proactive technique after a prede-
termined set of request arrivals.

Pricing

Cost is an important issue worth considering when using
a cloud environment. The pricing of cloud services
allows users to choose a cloud service provider that suits
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their requirements, either reserving cloud resources in
advance or buying those resources on-demand. A cloud
provider is equipped with a price-setting mechanism
which sets the current price for a resource based on
market conditions, user demand, and the current level
of utilization of the resource. Pricing can either be fixed
or variable depending on the market conditions [32].
For fixed pricing, instances are charged by the hour. A
fraction of an hour is counted as a whole hour. There-
fore, part of the resource time remains unutilized if ma-
chines are shut down before a whole hour of operation.
In addition to the full hour principal, clouds now usually
offer various instance types, such as high-CPU and high
I/O instances [2]. This research tackles the problem of
addressing this unutilized time due to idling resources
by allowing users to rent out resources by paying per
second rather than per hour. This allows users to pay
for only the time that the resource is utilized to satisfy
their request. The broker earns a profit by allowing mul-
tiple requests to share the same resource, thereby min-
imizing the amount of idle time for each resource.

The public cloud provider charges the broker ¢_pub dol-
lars an hour per resource. However, the broker charges
the user ¢_pvt dollars per second. The first is referred to
as the broker cost rate while the second as the user cost
rate. These amounts need to be appropriately chosen such
that the user is charged considerably more per hour than
c_pub. If the value of c_pvt is too low, the broker may find
situations where it runs into a loss. Since the total user
cost incurred by the client enterprise is also the earnings
for the intermediary enterprise provider (broker), the bro-
ker profit is calculated using the following equation:

Broker profit(BP) = Total User Cost(UC)-
Broker Cost(BC)

(1)

Here, BC is the cost incurred by the broker when ac-
quiring resources from the public cloud provider. BP
may be calculated for any period and is denoted as BP*
and BPP, signifying the actual (Experimental parameters)
and predicted values (Proactive auto-scaling) respect-
ively. The reason for having two values for broker profit
is that the proposed system has a prediction stage in
which resources are auto-scaled based on the predicted
profit from a future workload. Hence, this predicted
profit is referred to using the subscript ‘p, whereas the
actual profit accrued by the broker during its operation
is referred to using the subscript ‘@’. As indicated earlier,
in addition to broker profit, this paper also considers the
cost savings for users. The total cost saving for all re-
quests sent by SCE is computed as the sum of savings
achieved with all the requests that were processed by the
system. The cost saving for a single request, with a
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service time of ¢ seconds is the difference between the
cost that would be incurred if the resource were pro-
cured directly from the public cloud provider and that
incurred when it is acquired from IE:

c

Cost Savings for onerequest = [ 3600

X c_pub—c
Xc_pvt

(2)

Consequently, for a given set of k requests with service
times {cy, Cy, ..., i} seconds, the total cost savings is cal-
culated as:

Total Cost Saving(CS) = Zk <|' i

i 36001 xc_pub—c; X cpvt)

(3)

Broker architecture

This section describes the broker architecture along with
its internal components. The section is divided into two
sub-sections. The first sub-section, “Auto-scaling cri-
teria” section explains the different auto-scaling criteria
used when making auto-scaling decisions, while the
second section, “Matchmaking and scheduling” section
presents the techniques for matchmaking and schedul-
ing a request based on the available resources.

As explained in “System overview” section, the broker
is primarily responsible for the match-making and
scheduling operations for an incoming request as well as
auto-scaling a pool of resources. The following subsec-
tions describe the components of the broker system
which is shown in Fig. 2. The system is divided into five
distinct components. The first component is the Request
Handler (RH) which accepts requests from SCE. The
primary responsibility of RH is to receive requests from
users and forward the requests to MMS which decides
whether to accept or reject the request. Once the broker
decides on a request, RH informs SCE of this decision.
RH also triggers a chain of operations that may lead to
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the broker performing an auto-scaling operation (de-
scribed in “Auto-scaling criteria” section). The second
component known as MatchMakeSched (MMS) makes
the decision to accept or reject a request and is dis-
cussed in more detail in “Matchmaking and scheduling”
section. The third component is Decision Maker (DM)
which manages resource provisioning. DM (described in
“Reactive auto-scaling” section), which manages auto-
scaling. DM wuses the fourth component known as
Machine Learning Engine (MLE), to predict future re-
quests based on past workloads. Operation of MLE is
further explained in “Proactive auto-scaling” section.
The final component is the GoS module, which stores
the grade of service set by SCE, which is responsible for
maintaining the desired GoS level. This component is
also described in “Reactive auto-scaling” section.

At any time, the broker controls a set of N resources
in the VPC: Res = {Res;, Res,, ... Resy}, where N changes
dynamically with user demand. The broker is run in two
separate threads and each thread runs independently of
the other thread. The two threads decide on when auto-
scaling operations are required without being influenced
by the functions of the other thread. RH runs in Thread
1, listening for incoming requests from the User module
is activated upon every request arrival. Thread 1 also runs
a reactive auto-scaling component. This component de-
cides to scale up an additional resource when the current
resources controlled by the broker are not adequate to
meet request deadlines. However, the new request must
either accrue a profit for the broker or the GoS criteria
must be unfulfilled by rejecting the request and allowing
the value of B to cross Bgpe.. Thread 2 performs the pro-
active auto—scaling operations which are run after a pre-
determined interval. Both proactive and reactive auto-
scalers are discussed in greater detail in “Reactive and
proactive auto-scaling” section.

Each thread can trigger a change in the number of
resources and thus facilitate the auto-scaling operations.
Once requests have been scheduled, they cannot be
cancelled by the scheduler. The decision to accept or
reject the request is sent back to the user. Thus, the bro-
ker guarantees execution of a request that has been
accepted by the system, by the specified deadline.

As explained in “System overview” section, the user is
part of SCE, which comprises multiple users. The users
are employees working for SCE. User requests are char-
acterized by the following:

e Arrival Time (AT) — The time at which the request
arrives at the system.

o Earliest Start Time (EST) — The earliest time at
which the request can begin execution.

e Service Time (ST) — The time taken by the request
to execute.
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o Deadline (DL) — The time by which the request
must complete its execution.
e Type (T) — The type of request: AR or OD.

Similar request characteristics for clouds have been
used by other researchers [33].

An important component of the broker is the
Dynamic Resource Pool Manager (DRPM). DRPM han-
dles the task of communicating with the public cloud
provider and acquiring or releasing resources. DRPM is
devised to be interoperable with any number of cloud
providers. In this paper, only one public cloud provider,
i.e., Amazon Web Services (AWYS) is used. DRPM offers
a single Application programming interface (API) to the
broker via which additional resources can be requested.
Once a request is received, DRPM uses the API exposed
by the required cloud provider to acquire the resources
and transfer the details of the newly acquired resources
to the broker. Hence, resources may be acquired from
any public or private cloud provider, as long as this com-
ponent can communicate with the cloud and has proper
authorization to acquire resources from the cloud pro-
vider. In this paper, we assume that cloud providers can
provide as many resources as requested by the broker.

Additional considerations may be required when
public cloud providers limit the maximum number of
resources that can be acquired by the broker on-
demand. In such situations, DRPM may be configured
to impose a limit on the number of resources that may
be acquired. In this research, the limit is kept at a higher
threshold than the number of resources desired by the
system to avoid a circumstance in which the public
cloud provider may refuse additional resources to be
provided within a reasonable amount of time. If the
number of resources acquired by DRPM reaches the
limit imposed by a cloud service provider, resources will
no longer be available to the broker. This may lead to re-
quests being rejected and consequently a violation of the
GoS set by SCE.

Auto-scaling criteria

Upon request arrival, the hybrid algorithm determines
whether the incoming request is to be accepted (deter-
mined by MMS) and if accepted, whether additional re-
sources need to be acquired to satisfy the request. Upon
acceptance of an AR request, this request must be com-
pleted by a deadline included in the SLA. Upon request
arrival, a resource is acquired if the following occurs:

(i) No available resource satisfies the request SLA
AND
The acquisition of the resource will lead to a profit
OR
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(ii)Rejecting the request will lead to a B that is higher
than the specified GoS.

Note: A resource is released after the timer set for that
resource expires and if no further requests on that re-
source are scheduled. Further details on the resource
timer are given in “Reactive and proactive auto-scaling”
section.

After every k requests, the broker also runs the pro-
active algorithm to calculate the appropriate number of
resources needed in the future to satisfy the workload
demands. The proactive auto-scaling approach used in
the proposed technique is based on a time series analysis
[34] that uses different machine learning algorithms.
MLE utilizes the functions of a software library called
Weka [35]. The algorithm accomplishes the prediction
by looking at past workload trends and predicts the
workload in the future, thereby extrapolating the appro-
priate number of resources required to satisfy the de-
mand while maintaining the GoS as well as accruing a
profit for the broker. A set of resources is acquired if the
following occurs:

(iiiNo available resources satisfy one or more of the
upcoming requests
AND
The upcoming predicted set of requests incurs a
profit for the broker.
OR

(iv)Rejecting some of the upcoming predicted requests
leads to a B that is higher than the specified GoS.

Matchmaking and scheduling

As explained in “System overview” section, when a re-
quest arrives at RH, the MMS component is invoked.
Once a request enters MMS, a matchmaking algorithm
determines a resource on which the request can be exe-
cuted. A scheduling algorithm determines the order in
which the requests allocated on a given resource are
executed. The component uses a first fit (FF) strategy for
matchmaking and an Earliest Deadline First (EDF) strat-
egy for scheduling [36]. The architecture for MMS
allows any other algorithm for matchmaking and sched-
uling to be used as an alternative. The first fit algorithm
works by scanning resources acquired by the system se-
quentially and allocates the request to the first resource
capable of handling the request. Each time a resource is
considered by the matchmaker, the system runs the
scheduling algorithm. With EDE, the requests allocated
on a given resource are scheduled in accordance with
their deadlines. A request with the shortest deadline is
executed first followed by the one with the next shortest
deadline and so on. If the newly arrived request can be
allocated and scheduled on an existing resource such
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that its deadline can be met, the request is accepted. If
the request cannot be scheduled, then the reactive auto-
scaler is invoked.

Both the matchmaking and scheduling algorithms de-
scribed are based on user estimates of job execution times.
Such estimates are often error prone [7]. Handling these
inaccuracies is a responsibility of the matchmaking and
scheduling algorithm used by the system and not auto-
scaling algorithm that this paper focuses on. Farooq et al.
[37] have described methods for handling such inaccur-
acies by using a pre-scheduling mechanism based on
overbooking and a run time exception handler. Such
mechanisms can be incorporated in the matchmaker and
scheduler deployed by MMS that is not the subject of
attention of this paper. Using the auto-scaling techniques
in conjunction with additional matchmaking techniques
available in the literature, such as [37] forms an interesting
direction for future research.

The operations of the reactive auto-scaler are de-
scribed in “Reactive auto-scaling” section. OD requests
are treated as a special case of AR requests in the system
where the deadlines are set to a time that is the sum of
the current time and a large interval such that there is
sufficient time to guarantee the completion of the re-
quest before its (artificial) deadline. OD requests do not
have SLA deadline requirements and hence may be
scheduled after all AR requests have been executed. As a
result, OD requests are scheduled similar to AR requests
but may be moved around to allow AR requests to be
executed prior to their execution. For space limitations,
further details of these algorithms are not discussed but
interested readers are referred to [10], which describes
similar scheduling and matchmaking algorithms.

After a request is scheduled, MMS computes two
additional characteristics for the request:

e Scheduled Start Time (SST) — The time at which
the request is scheduled to begin execution.

e Scheduled Finish Time (SFT) — The time at which
the request is scheduled to complete execution.

This component is also used by DM to simulate the
operations for predicting upcoming requests and is dis-
cussed further in “Proactive auto-scaling” section. After
every k requests, the next set of k future requests is pre-
dicted. These predicted requests are also submitted to
MMS directly, instead of going through RH. However,
MMS does not distinguish between actual requests and
predicted requests and addresses both types of requests
in the same manner.

Reactive and proactive auto-scaling
This section describes the reactive and proactive auto-
scaling algorithms that are used by the hybrid broker.
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The section is divided into two sub-sections. The first
sub-section, “Reactive auto-scaling” section explains the
inner workings of the reactive auto-scaler, while the next
section, “Proactive auto-scaling” section presents the
techniques used by the proactive auto-scaler.

As discussed in “Broker architecture” section, the
system has two threads which execute simultaneously.
The auto-scaling operation of resources is handled by
both threads and is triggered separately. This section
describes the approach taken by each thread in auto-
scaling the resources controlled by the broker.

Reactive auto-scaling

Further details of the operations performed by thread 1
are herein discussed. The RH module is handled by
thread 1, which handles a new request arrival, as ex-
plained before in “Broker architecture” section. This
thread also uses MMS, DM as well as the GoS module.
MMS, running inside thread 1 must determine whether
a new request arrival may be satisfied by the set of exist-
ing resources already acquired by the broker. If no exist-
ing resource can satisfy the SLA requirements of the
request, criteria (i) and (ii) described in “Auto-scaling
criteria” section is used to determine whether an
additional resource is to be acquired so that the request
can be accepted. If no additional resource can be ac-
quired, the request is rejected. For calculating the broker
profit, the Eq. (1) provided in “Pricing” section is uti-
lized. However, the equation is modified in Eq. (5) to
accommodate the characteristics of a request i. Regard-
ing this i™ request with a service time of ¢; seconds, the
Reactive Auto-scaler (RA) checks it against the following
condition:

BP; > 0 (4)
Where,

BP; = G x (¢; X c_pvt)—([ ci

3600 | C"’"”) (5)

Here, G is a constant greater than 1. G is introduced
to account for the possibility of a resource generating a
higher profit from future requests in the time remaining
rather than considering only the i™ request when com-
puting broker profit. In the system, multiple requests
can share a resource. Sharing of a resource increases the
utilization of the resource, thus allowing the broker to
accrue a higher profit for the same resource. When
acquiring a resource, the broker not only considers the
amount earned by executing the newly arrived request
but also accounts for the possibility of a future request
accruing a higher profit that the profits earned by only
the current request.

G allows the system to account for this ability of the
broker to earn more by sharing the resources among
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various requests. For example, considering a hypothet-
ical scenario, assume that the i™ request has a service
time of 1800 s. However, the broker needs the request to
be executed for 2500 s to accrue a profit. Using a service
time of 1800 s may lead to rejection of the request.
However, using a value of G of 14 increases the
assumed user cost to 2520 times the rate per second and
may allow the request to be accepted. The value of G
may lead the broker to incur a loss if the estimate made
by G cannot be fulfilled by future requests.

This method for calculating the broker profit deter-
mines whether the cost of acquiring the resources from
the public cloud by the broker is lower than the fees
earned from the SCE. When the criterion is met and BP;
is greater than 0, the DM issues a command to the
DRPM to acquire a new resource. However, the resource
must be acquired only for the time interval required by
the request. This is to ensure that the broker does not
have idle resources, which cost the IE money. Hence, to
achieve this, each new resource acquired by the system
has the following characteristics:

Start time for the " resource (start;) —
° Start; = (EST of the request expected to execute
earliest for the j resource) - E
Note that E is the additional time taken to
accommodate the start time of a resource. Our
observation of Amazon’s EC2 was that a resource
required 120 to 240 s to start.

Stop time for the j"resource (stop;) —

° stop; = start; +- [ 2Seconds

Here, numSeconds is the difference in seconds between
the expected completion time of the last request on re-
source j and start; A ceiling function converts a real num-
ber to the closest integer value that is greater than or
equal to the number. Since a typical public cloud provider
charges by the hour, the resource is held until the end of
this “paid hour” period, by using the ceiling function. Each
resource j has an internal timer that is set to expire at the
time stop;. Hence, even though the resource must be
switched off after the request finishes execution, any
remaining time might be used by another request.

Grade of service

If BP; is less than 0, RA must check with another com-
ponent that it makes use of in thread 1. This component
is known as the GoS component. Even though the
broker does not accrue a profit from the request, RA
needs to check whether the GoS criteria are satisfied.
RA consults with the GoS component that contains con-
figuration details set by the SCE and agreed upon by the
IE. Failing to meet the specified GoS value may result in
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a violation of the service level agreement guaranteed by
the IE. The GoS criteria used in this paper is the block-
ing ratio (B). B is the ratio of the number of requests
rejected by the system to the total number of systems
sent by the SCE. The blocking ratio B of the system is
continuously monitored. Irrespective of whether a profit
will be accrued, a resource is acquired if the following is
true:

B > Bgpec (6)

Hence, if none of the available resources can satisfy
the SLA for request i, the broker uses the following rules
to decide whether to acquire a resource from the public
cloud.

e Rule I: When BP; > 0, acquire the j™ resource
e Rule II: When B > By, acquire the jth resource
o To release a resource, By, acquire the jth resource

To release a resource, the following rule is followed:

e Rule III: When (stop;) = current time, release jth
resource

Rule I states that the j™ resource is acquired if a profit
is generated for the broker. Rule II states that the re-
quest must be accepted if the system fails to meet the
specified grade of service guaranteed by IE. Rule III spe-
cifies that the release of the j"™ resource occurs when the
current system time is equal to the stop time of the
resource.

Rule II may force the broker to accrue a loss for a re-
quest, that needs to be accepted to keep Bgpe. at the de-
sired level and maintain the GoS criteria. This may
occur when the arrival rate of user requests as well as

Table 1 Reactive Auto-Scaling Algorithm
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the service time of the user requests is low. Additionally,
a value of Bg,e. close to 0 may force the broker to
acquire new resources for every request and that may
lead to a loss for accepting requests with low job execu-
tion times.

Next, the reactive auto-scaling algorithm given in
Table 1 is described next. For each incoming request
Req;, the algorithm is executed. Acquisition of resources
by RA follows criterion (i) or (ii). However, before a
resource can be acquired, MMS must determine
whether the existing set of resources can accommodate
the request. This is shown in lines 1-7. DM sends each
request to MMS which decides whether one of the
resources in the current set of resources can be allocated
to meet the request deadline as explained in “Auto-scal-
ing criteria” section.

If the request cannot be accommodated in the existing
set of resources, the auto-scaling algorithm inside RA
must be executed to determine whether a profit may be
accrued from the request based on Rule I, after acquir-
ing a new resource from the public cloud provider and
scheduling the new request on that resource. An excep-
tion to this case is when the value of B exceeds the
specified GoS condition (Bgpec). This follows from the
scaling up rule specified in Rule II. In this case, the
resource is acquired, irrespective of whether a profit is
generated by scheduling the new request on a newly
acquired resource to meet the GoS criteria guaranteed
by IE to SCE. The process of resource acquisition is
shown in lines 8—14. The start and stop times of the
resource to be acquired are set in line 12 and line 13
respectively. Line 14 performs the action of acquiring
the new resource by communicating the request to
DRPM. Resources are released when the current time
reaches the stop times computed in line 13 and stored
in their respective timers.

for each resource Res;, from j=1to N do
if Reqican be scheduled on Res;
Schedule Req;// Schedule using MMS
if Res;.stopTime < Req;.endTime

break
end for
if Req; not scheduled
UCi— G X (ci X c_pvt)
10.  BC;« [3;301 x c_pub
11.  if (UC-BC) > 0or B > Bgec
12. startj < (EST of earliest Regj) - 300

1
2
3
4
5. Res;.stopTime < Reqi.endTime
6.
7
8
9

13. stopj «<—startj + [numSeconds/3600]

14. acquireResource(start,stop)




Biswas et al. Journal of Cloud Computing: Advances, Systems and Applications (2017) 6:29

The algorithm describes only the scale-up operation.
Resources are scaled down automatically when the
current time becomes greater than the stop time shown
in Rule III. The stop times are set in two cases, when a
new resource is started or when an existing resource is
determined to be profitable for a new request and the
stop time is extended.

Proactive auto-scaling

Upon request arrival, the hybrid algorithm determines
whether the incoming request is to be accepted (deter-
mined by MMS) and if accepted, whether.

Thread 2 is responsible for proactive auto-scaling after
a predetermined time based on the predicted user de-
mand. DM implements a proactive auto-scaler (PA) for
auto-scaling resources. The hybrid auto-scaler auto-
scales proactively by using two helper modules, GoS and
MLE. When auto-scaling proactively, DM uses MLE to
predict user demand. MLE uses a machine learning algo-
rithm to predict the future workload. Initially, MLE re-
quires a training period to operate accurately. In this
paper, the training period is chosen as 10% of the total
experimental run time. During this phase, no requests
are accepted by the system. However, a modification of
the system can still accept requests and schedule them
in a reactive fashion. Once the training phase is com-
pleted, the system can start normal operations of reject-
ing requests if not deemed profitable for the broker and
auto-scaling after a fixed time interval. DM invokes the
operation of MLE after every k requests. MLE predicts
the characteristics of the upcoming k requests, Req
= {Reqy, Reqy, ..., Reqy}.

In this paper, most experiments are conducted using
Linear Regression (LR) as the machine learning algo-
rithm. Each request characteristic is predicted separately
using a time series analysis. MLE allows other machine
learning algorithms to work, in place of LR. In addition
to LR, another machine learning algorithm known as
Support Vector Machines (SVM) has been discussed.

Next, the operations of thread 2 are discussed. At the
beginning of each prediction operation, DM asks for the
next k requests to arrive from MLE, denoted by R.
MLE provides all five characteristics, i.e., AT, EST, ST,
DL and T, described earlier in “Broker architecture” sec-
tion, for each of the k predicted requests. After getting a
response, DM simulates the resource management oper-
ations for these predicted future requests using MMS.
This invokes a mock scheduling and matchmaking oper-
ation. However, MMS operates in the same way and
does not differentiate between a real request sent by
SCE and the predicted request sent by the DM.

Based on the output of MMS, DM decides whether to
acquire new resources or change the stop time for exist-
ing resources to schedule the requests on the existing
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resource (discussed later in “Matchmaking and schedul-
ing” section). After receiving the characteristics of the k
predicted requests from MLE, DM invokes MMS and
gets back a true or false response. If MMS can success-
fully schedule the request on one of the existing re-
sources, it returns a true value, and DM takes no further
action (except for adjusting the stop time of the re-
source, if required). However, if MMS is unable to
schedule the predicted request, the DM has to decide
whether a resource will need to be procured in the fu-
ture using the auto-scaling criteria (iii) and (iv) described
in “Auto-scaling criteria” section. It should be noted that
even though the requests are only predicted, DM needs
to ensure that it consults the GoS component if there is
a likelihood of the request causing the GoS criteria to
fall below the agreed threshold.

Each new resource, predicted to be acquired by the
system has the same start and end time characteristics
as described when a new request arrival triggers a re-
source acquisition. In addition, as mentioned earlier in
“Pricing” section, ¢_pub and c_pvt are the broker cost
rate and user cost rate respectively. Hence, the following
factors must be taken into consideration when determin-
ing the predicted profit for the broker, finally leading to
a predicted profit function:

° Predicted Broker Cost (BC¥) — The predicted cost for
running the i resource is given by: [(stop;— start;)] x
c_pub
° Predicted service time (s;) — The predicted total service
time for ¢ requests on the i resource is given by:
> ist) in seconds
° Predicted Total User Cost (UC%) — The predicted cost
required for users to execute requests on the i™
resource is given by: [s;] x c_pvt
° Predicted Broker Profit (BPY) —The predicted profit
earned by servicing user requests on the i resource is
given by:

BP; = (UC}- BCY)

If BPY is greater than 0, then the request is accepted.
Note that the superscript p denotes predicted values.
The actual values of these parameters are denoted by
superscript ¢ and used in “Experimental parameters”
section. The predicted broker profit is used in the
following way by DRPM that handles the task of com-
municating with the public cloud provider and acquiring
or releasing resources.

GoS is used when a newly arrived request is about to
be rejected. If the GoS criteria are unsatisfied, then the
request is accepted regardless of broker profit. The GoS
criterion, as explained earlier in “Reactive auto-scaling”
section is Bg,... However, since the value of B which is
monitored does not actually change with the number of
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requests that have been predicted by MLE, we use
another metric called BP which stores the predicted
value of B. The predicted value of the blocking ratio BP
for the system is continuously monitored. Irrespective of
whether a profit will be accrued, a resource is acquired if
the following is true:

B? > Bgpec (7)

Once the resource p to be acquired has been identi-
fied, rules similar to those mentioned in “Reactive auto-
scaling” section are followed for the acquisition and
release:

To acquire resources,
followed:

the two rules below are

e Rule IV: When BPP > 0, acquire the j"™ resource
e Rule V: When BP > By, acquire the j™ resource

To release resources, the following rule is followed:

¢ Rule VI: When (stop;) = current time, release the it
resource

Next, the predictive auto-scaling algorithm (Table 2) is
described next. The algorithm determines whether new
resources need to be acquired or not, based on predicted
workload. The stop times are set in two cases, when a
new resource is started or when an existing resource is
determined to be profitable in the future and the stop
time is extended. Acquisition of resources suggested by
MMS follows Rule I. DM invokes MLE to predict the
next set of k requests before starting this algorithm. The
system state is characterized by the list of resources
acquired by the system and the list of requests for each
resource. Lines 1-13 describe how DM sends each

Table 2 Proactive Auto-Scaling Algorithm (Part A)

Page 13 of 22

request to MMS which decides whether the current set
of resources may meet the request deadline. If not, a
new resource to be acquired is suggested. Each predicted
request is sent to MMS to predict whether the request
may be scheduled on an already running request. If the
request cannot be scheduled using the existing set of
resources, DM uses the algorithm (shown in Table 3)
which helps in selecting a new resource. Profit calcula-
tion is performed by comparing UCP for using the i
resource with BCP for that resource. Only if there is a
profit (using Rule I) is a new resource acquired (line 5)
by setting a start time and a stop time for the resource.

Experimental prototype

This section describes the experimental setup. “Pro-
gramming language/framework” section describes the
programming language and framework used in the im-
plementation of the prototype. “Implementation” section
describes the details about the implementation and chal-
lenges faced while deploying the broker on a real cloud
environment.

Programming language/framework

The experimental platform is implemented using the
Java programming language. Representational State
Transfer (ReST) is chosen as the architectural pattern
for designing the distributed framework. The system
needs two different communication operations:

e Communication between the client enterprise and
the broker.

e Communication between the broker and the
resources in the private cloud.

The messages transferred using the REST architecture
are in the form of the JavaScript Object Notation (JSON)

1. for each pred. request Req;, from i=1 to k do

2 for each resource Res;, from j=1to N do
3 if Req; can be scheduled on Res;
4. Schedule Req;

5. if Res;.stopTime < Regi.endTime
6. Res;.stopTime < Reqi.endTime
7. break

8 end for

9. if Req; not scheduled

10. Schedule Req; on ResN+count;

11. nRes « ResN+count.

12. Increment count by 1.

13. End for
14. Call selectResource ()
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Table 3 Proactive Auto-Scaling Algorithm (Part B)
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1. for all nRes;, fromj = I to count, do

2 UG/ « [s] * [c_pvi]

3. BCy « [(stop;— start;)] % [c_pub]
4.  updateB()

5. if BC/ > 0 or B? >Bjpec

6. acquire(start, stop;)

7. end for

[38]. JSON is a syntax for storing and exchanging data
that is an easier to use alternative to the Extensible
Markup Language (XML). In comparison to XML, JSON
is much easier for humans to read or write. JSON can
also be parsed faster by machines.

The platform is compatible with different cloud plat-
forms such as Amazon Web Services and OpenStack.
DRPM, one of the components of the broker, uses a soft-
ware development kit (SDK) to communicate with each
of the two cloud providers. Other cloud providers can
also work with this system, provided that DRPM has the
correct SDK to invoke resource creation operations as
well as the correct API keys that allow DRPM access to
the cloud provider resources. More details regarding
DRPM are given in “Broker architecture” section.

The platform uses Spring as the underlying framework
to achieve loose coupling between different components.
The Spring context is used to provide the dependency
injection design pattern, which removes hard-coded
dependencies and makes the system loosely coupled,
extendable and maintainable. The application also uses
the Spring web module to create web components. The
application employs the REST end points as web ser-
vices to facilitate communication among the internal
components of the broker, between the broker and SCE,
and between the broker and the VPC. Gradle is used to
build and deploy the application. It is written as a
Groovy script. Gradle also helps to support external
dependencies using Maven. The external projects used
by this application are listed below:

e WEKA — A machine learning software used by the
prediction operations.

e Log4] — A Java-based logging utility.

e Dated] — A Java-based date library utilized to achieve
nanosecond time precision, used in all modules that
depend on measuring time.

e SSJ — A Java-based stochastic simulation library for
generating random numbers and distributions.

e AWS — An SDK produced by Amazon for
controlling resources in the Amazon cloud.

e OpenStack4j — An SDK produced by OpenStack for
controlling resources in the OpenStack cloud.

Initially, a simulator that allows rapid prototyping was
created to test the behaviour of the system by imple-
menting an event-driven simulation. This version is the
prototype of the system defined in “Pricing” section.
One of the main benefits of the simulation framework is
that experiments may be completed in less time com-
pared to the experiments for the prototype implementa-
tion. This is due to the simulator being able to
“simulate” a request execution and not having to wait
for requests to use CPU cycles to finish execution. The
simulator possesses the ability to skip to a point where a
request has finished its execution. This is an event-
driven simulation that simulates the resources of a pub-
lic cloud by building an interface similar to the cloud
API used by OpenStack and Amazon Web Services.
More details about the simulation platform are given in
“Pricing” section.

Implementation

This paper is based on dual implementation: i) a proto-
type implementation that uses resources from a real
cloud provider and ii) a simulation, as explained in
“Auto-scaling techniques” section. For the prototype,
synthetic requests with a desired set of request attributes
were generated on a desktop computer outside the cloud
environment. This computer acted as the source of all
requests, i.e., as the client enterprise and was equipped
with an Intel Core i7, 4 CPUs (2.8 GHz) and a 12 GB of
RAM. The request was sent to a broker running on the
public cloud provider using REST. After generating a
single request, this user module waited for the given
inter-arrival time duration before generating a successive
request. The request characteristics such as earliest start
time, service time and deadline were generated using the
respective distribution discussed in “Broker architecture”
section. For the simulation, instead of sending the
requests to a broker running on the cloud, they were
sent to a broker running on the same computer as the
one from which the requests were being generated. The
resources were simulated inside the same computer, and
the simulation was carried out in an event-driven
fashion.
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The resources in the prototype were acquired from the
Amazon’s EC2 cloud service. The broker ran inside the
EC2 cloud on a t2.small instance. This instance was kept
in a public subnet accessible to the Internet. The ration-
ale behind this is to allow clients to communicate with
the broker without any restrictions. All ports except
8080 were closed to allow only RH, running as a web
service, to be available to SCE. The resource pool, con-
trolled by the broker using DRPM, was placed in a pri-
vate subnet without Internet access. Each resource was
running on an Amazon t2.micro instance.

When the broker received a new request via RH, it
used MMS to determine whether the request could be
scheduled on one of the resources available to the bro-
ker. Scheduling of the request was performed as ex-
plained in “Matchmaking and scheduling” section. The
decision to accept or reject a request was sent back to
the user using the REST framework. If MMS allowed the
request to be scheduled, the broker sent the request to
the chosen resource via REST, where it was queued. The
matchmaker would select the first resource in its queue
and start executing a request after its earliest start time.
The execution of a request was emulated by running a
for-loop to keep the CPU busy for the predetermined
service time duration of the request. Once the request
finished execution on the resource, the resource in-
formed the broker of the request completion.

For the simulator, the properties of the resources were
stored as static properties in a Java class file, and any
request submitted to the resource would be queued until
the start time of the request. At the start time of a re-
quest, the events that needed to occur to start the re-
quest were triggered by a local scheduler in the resource
object where the request was to be executed. This
models the prototype implementation, where the local
scheduler on each resource handles a set of requests
scheduled by MMS on the specific resource. Both the
simulator and the prototype were tested using various
combinations of system and workload parameters.
Comparing the simulator and prototype results, a close
match between the measurement results obtained using
the scaled prototype and the simulation results was
observed. In most cases, a difference of 2 to 7% was
observed, with the largest difference being 9%. Further
discussion is provided in “Experimental results” section.

Performance evaluation

This section provides an analysis of the performance of
the hybrid broker and compares its performance with
that of another system from the literature. The section
also compares the proactive broker with previous works
by the author, who discussed purely proactive [16] or
reactive [17] approaches. Evaluation of the system
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performance takes both broker profit and user cost into
account.

Experimental parameters

This section focuses on how changing parameter values
affects the performance of the system. Each experiment
is performed by changing one parameter at a time while
holding the other parameters at their default values (see
Tables 4 and 5). The default values are shown in italics.
Column 2 specifies the set of all values used for the re-
spective parameter.

Workload Parameters:

The values for each parameter used are given in
Table 4. Similar parameter values have been used by
other researchers [10, 39]. In these experiments, 20% of
the requests sent by the user were OD requests, while
the remaining were AR requests. Workloads comprising
a higher and lower proportion of OD requests are
observed to lead to similar sets of conclusions. Details of
the experiments have not been included due to scope
limitations. While systems with a single mean arrival
rate have typically been studied in the literature, in some
systems, A can vary based on the time of day or day of
the week. In addition to a system subjected to a single
arrival rate, a system subjected to two arrival rates (Ao,
=0.0027 requests/s and Apgn = 0.0053 requests/s) was
also experimented with. Other values of arrival rates
may also be used but the aforementioned rates are
deemed adequate for performing the comparative ana-
lysis presented in this paper.

Load Factor (f) — is the ratio of the number of re-
quests generated with an arrival rate of Ay, to the total
number of requests generated during the experiment.
Thus, if the number of total requests is k, then the num-
ber of requests with an arrival rate Ay, is: fx k and the
number of requests with arrival rate Apgy, is: (1-f) x k.

Mean Service Time (S) — characterizes the execution
times of the requests that are uniformly distributed [39].

Earliest Start Time (EST) — The earliest start time
for the request is computed by adding a value V, which
is uniformly distributed between 0 and 12 h, to the ar-
rival time of the request. The deadline for the request is
computed as:

Deadline forarequest(DL) = Earliest Start Time of request
+ Request Service Time
+ Laxity,

Table 4 Summary of Workload Parameters
0,02,04,06,08,1

Load Factor: f
Mean Service Time (in mins): S 50
Laxity Factor: Lf 1

Mean Arrival Rate (in reqs/s): A 0.0083, 0.0067, 0.0053, 0.0037, 0.0027
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Table 5 Summary of System Parameters
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Machine Learning Algorithm: MLA
Number of predictions: P
User cost rate (in $ per sec): c_pvt

Broker cost rate (in $ per hour) for a micro instance: c_pub

Linear Regression, Support Vector Machine

10, 20, 30, 40, 50, 100

0.00000694, 0.00000833, 0.00000972, 0.0000111, 0.0000125, 0.0000139
0.02,0.025, 0.03

where Laxity is defined as the slack time a request has
in addition to its service time before it reaches its
deadline.

Laxity Factor (Lf) — is an integer characterizing the
slack time of requests.

Laxity = Request Service Time X Laxity Factor

Mean Arrival Rate (A) — is the rate at which requests
arrive on the system. A Poisson distribution is used to
model the request arrivals [39].

System Parameters:

Linear regression (LR) is used as the default machine
learning algorithm (MLA) with one experiment compar-
ing the broker profit of a System using LR with one
using Support Vector Machines (SVM).

The number of prediction for requests (P) is varied
during the experiments.

The default public cloud provider cost is based on
current Amazon charges; 2 cents [40] for every hour a
micro instance is used. The system parameters are given
in Table 5.

It was observed that increasing G from 1 to 1.2
resulted in a 5% increase in BP. However, increasing G
beyond 1.2 did not result in any significant increase in
BP. This indicates a 20% probability of a new request
arriving and using the remaining time for the resource
(refer to “Reactive auto-scaling” section). Bgp,e. is main-
tained at 20 to 40%, which guarantees that 60 to 80% of
the user requests will be executed.

Performance Metrics:

Broker profit (BP?) — is the actual profit a broker earns
per second in dollars, which is a performance metric of
interest. A difference between the predicted and actual
broker profit may be found in “Pricing” section. “Pro-
active auto-scaling” section also discusses the predicted
metrics denoted by a superscript p which are calculated
using the proposed algorithm during run-time.

Total User cost (UC") — is the amount charged to the
user per second in dollars. A higher BP” and a lower
UC” indicate good system performance.

Alternative systems

The hybrid system also referred to as System I in this
paper, is compared with other alternative systems such
as a system described in [41]. The authors of [41]
describe a greedy approach that acquires resources as

and when required. This system is modified by incorpor-
ating a mechanism to remove idling resources to im-
prove its performance. This modified system uses a
broker that scales up when it needs an additional
resource and scales down if no more requests are pend-
ing on a particular resource. This enables the broker to
increase its profits by ensuring idling resources are
returned to the service provider. This system is called
the non-proactive system or System II. A hybrid system
that functions as System II during the training period
(accepting all client requests) and switches to the pro-
active system (System I) at the end of the training period
is an interesting topic for future research. In System III,
users obtain the resources directly from the public cloud
provider without broker (in the intermediary enterprise)
intervention. With this system, users incur the additional
overhead of starting and stopping resources as well as
handling the matchmaking and scheduling operations.
Thus, for System III, only total user cost is compared to
that of System I and System II, as there is no broker
involved and thus no broker profit is accrued.

The hybrid system introduced in this paper is also
compared to a purely proactive system discussed by the
same authors [15, 16] and a purely reactive system [17].
The proactive system mentioned in those papers uses a
similar algorithm to the one used in this paper for the
comparison. However, while performing the prediction,
the system used in this paper introduces the GoS, as it is
used in both the hybrid and reactive systems. The pro-
active system is referred to as System I-P, and the react-
ive system is referred to as System I-R. Both user cost
and broker profit are compared for all three systems.

Experimental results

Each experiment was run long enough such that the sys-
tem operated in a steady state. Each experiment was re-
peated a sufficient number of times such that an interval
less than or equal to +5% was achieved at a confidence
level of 95% for each performance metric. All the experi-
ments were performed using the prototype. However, a
comparison of the measurement results with those of a
simulated system showed close agreement. As explained
in “Programming language/framework” section, a simu-
lator is often preferred for running experiments because
the results are obtained in a shorter period and the cost
of resources acquired from an Amazon cloud for run-
ning experiments using the prototype system is avoided.
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Figure 3, for example, presents a comparison between
the broker’s profits determined via measurements of
the prototype system with that observed for a simu-
lated system. The greatest difference between the two
systems is 9% at f=0.8. At lower values of f, the dif-
ference between the BP® values determined for both
systems is much smaller: for example, a difference of
3% is observed at f=0.0.

Impact of arrival rate

A performance analysis of a system subjected to a single
arrival rate is performed to investigate the impact of A
on profit. Figure 4, presents the effect of A on the profit
generated by System I and System II. BP of both systems
is directly proportional to the arrival rate. This is be-
cause, at higher arrival rates, the system receives a larger
number of requests per unit time, thus increasing the
potential for a earning a higher profit/h. System I earns
in between 2 and 6 times the profit earned by System II.

Impact of load factor

Figure 5, compares the profit that accrued by System I
and System II for different values of f. In all cases, Sys-
tem [ is able to generate more profit than System II. The
profit is inversely proportional to f: as f increases, profit
increases. For example, when f is 0, BP is the highest.
Note that at f=0, the system is subjected to only the
higher arrival rate. As f increases, the proportion of time
for which the system is subjected to the lower arrival
rate increases. At f=1 the system is subjected to only
the lower arrival rate and the profits earned are lower.
Opverall, for any given f, BP for System I is 3—4 times
higher than System II (see Fig. 5). Figure 6 presents a
comparison of the total user cost incurred in all the
three systems. As shown in the figure, System I leads to
a lower total user cost in comparison to that of the other
two systems. The experiments show that an increase in
arrival rate implies a higher cost per hour for the user.

8 Simulation
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Fig. 3 Comparison of BP® for two systems
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This is because an increase in arrival rate implies that
the broker is forced to address a larger number of re-
quest arrivals per unit time and thus has a greater op-
portunity to accrue a profit by executing a larger
number of requests.

Impact of laxity factor

In Fig. 7, Systems I and II are subjected to different
values of Lf. A Lf value of 0 implies that there is no
additional slack time for the requests. This renders the
auto-scaling ineffective because the system cannot
schedule multiple requests without missing some of the
deadlines. Consequently, the profit accrued is almost 0.
However, as the laxity in the system increases, BP also
increases. A 150% improvement in BP is observed as the
Lf is increased from 1 to 4. Overall, System I performs 3
to 6 times better than System II. Laxity is a function of
the workload (and set by users) and cannot be adjusted
by the system.

Impact of service time

Figure 8 captures the impact of S on the performances
of System I and System II. The figure shows that the
profit increases as S increases. This is because the larger
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the service time of a request, the higher the utilization
of the resources. This enables the broker to exploit the
pricing difference and earn a greater profit at a higher
value of S. For a mean service time of 12.5 min, however,
the system accrues almost no profit. Note that for the
parameters used in this experiment it would take at least
40 min of requests running on a resource per hour for
the system to break even and lead to a broker profit.

Additionally, when the service time increases, the user
ends up paying more per request. This is a consequence
of the pricing model, where the user is charged per
second and the user cost increases as the service time
increases. However, when using the default price of
$0.02/h paid by the broker to the cloud provider and
$0.00000833/s paid by SCE to the broker used in the
experiment, there is an optimal period of cost savings
that is applicable. Based on those prices, if the service
time of the request is between 1 and 2399 s and between
3601 and 4799 s, the user will end up paying less for the
request than when the resource is directly acquired from
the public cloud.

System 1I follows a similar trend to that displayed by
System L. For any given mean service time between 25
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Fig. 7 Impact of Lf on BP®
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and 75 min, the broker profit for System I is 1.5 to 4
times that for System IL

Other parameters
Impact of Number of Predictions: Profit is observed to
increase initially with an increase in the number of
predictions used by MLE increases. However, it reaches
a peak at 50 and then decreases as the number of
predictions is increased further. Small values of P do not
allow MLE to properly learn the request behaviour.
Additionally, when P is too large, outdated information
may get included in the prediction process, thus redu-
cing the accuracy of predictions.

Impact of Machine Learning Algorithm: The improve-
ment in BP, achieved by SVM over LR is marginal, i.e., 2
to 4%.

Comparison with reactive and proactive approaches

This section compares the performance of the proposed
system with that of the purely proactive and reactive
systems discussed in “Alternative systems” section. The
goal of this section is to analyse the impact of the hybrid
auto-scaling framework on the performance metrics UC*
and BP® and to compare the performance of this frame-
work to that of other reactive/proactive frameworks
described in previous papers by the authors of this
paper. In Fig. 9, the BP® values of System I, System I-R
and System [-P are compared for different values of f.
As in Fig. 5, as the load factor increases, the broker
profit decreases. The graph shows that in almost all
cases, the hybrid system performs better than the two
other systems. The hybrid system accrues 11 and 46%
more profit than System I-R and System I-P, respect-
ively, in the best case.

In Fig. 10, the UC" values for System I, System I-R
and System I-P are compared for different values of f.
As observed in Fig. 6, as the load factor increases, the
user cost decreases. Additionally, the graph shows that
in most cases, the hybrid system leads to a higher user
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cost in comparison to that of the two other systems. The
reason for the hybrid auto-scaler performing worse than
System I-R and System I-P is that in the other cases for
the reactive/proactive systems, the brokers accepted fewer
requests, leading to the lower profit shown in Fig. 9.
However, since the hybrid broker for System I accepted a
higher number of requests per hour, the users had to pay
more to the broker. Thus, the higher profit earned by the
hybrid system leads to an increase in cost to the users by
7 and 122% in comparison to System I-R and System I-P,
respectively. These numbers reflect the maximum per-
centage difference between System I and Systems I-R and
I-P for all values of f. Note that for all values of f consid-
ered, the UC® value observed for the hybrid auto-scaler is
lower than that observed for System II and System III.
Figure 11 compares BP* for System I, System I-R and
System IP for different values of A. As in Fig. 4, as the
arrival rate increases, the broker profit increases. The
graph shows that in all cases, the hybrid system per-
forms better than System I-R and System I-P. The
hybrid system accrues 5 and 37% more profit than
System I-R and System I-P respectively in the best case.
Figure 12 presents a comparison of BP? values for
System I, System I-R and System IP for different values
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of S. As in Fig. 8, as the mean service time increases, the
broker profit increases. Figure 12 shows that in almost
all cases, the hybrid system performs better than the
other two systems. The hybrid system accrues 10 and
73% more profit than System I-R and System I-P
respectively in the best case.

Figure 13 presents BP® values for System I, System I-R
and System IP for different values of Lf. As shown in
Fig. 7, as the arrival rate increases, the broker profit
increases Fig. 13 shows that in all cases, the hybrid sys-
tem performs better than the other two systems. The
hybrid system accrues 13 and 49% more profit than
System I-R and System I-P respectively in the best case.
An interesting observation is that in some cases, System
I-R performs better than System I-P and worse in other
cases. However, the hybrid system, System I, always
achieves a better performance compared to that of the
other systems or close to the best performance achieved
for a given case.

Profitability and cost analysis

Two important questions in the context of the proposed
IE-based system concern the relationship between the
workload, system and price parameter values that lead
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to (i) a broker profit and (ii) a lower cost to the user in
comparison to the situation in which the user acquires a
resource directly from the public cloud provider.
Analyses of broker profitability and user cost are
presented in this section.

Profitability (for the broker/IE) analysis
Let, t, be the time in seconds that a given resource r is used
during the period of T, hours, the time for which the re-
source was “rented” by IE from the cloud service provider).

IE (broker) earning during this period = t, x c_pvt.

Cost incurred by IE for paying the public cloud service
provider during this period = T, x c_pub.

For IE to remain profitable, broker earning must
exceed the cost incurred by broker:

te X c_pvt > T, x c_pub

t Cpub
DL > PO
T, Cpvt

Dividing both sides by 3600 yields:
Cpub

ot~ Cub
T, %3600 ~ Cput x3600

cpub
Uy > cpvtx3600
Where U, is the utilization of the given resource r. Thus,

cpub .
G 3600" IE is guaranteed

to remain profitable. But this bound is conservative (i.e. IE
may remain profitable even if U, for some resources do
not satisfy the inequality). Hence, to determine the condi-
tions under which the overall profit is greater than zero, a
new inequality that leads to a tighter bound is formulated:

if U, for every resource exceeds

R R
Zrzl(tr X c_pvt) > Zr:1(T‘ X c_pub)
5 Zkle(trxcpvt) o1
ErZI(Trchub)

Note that the broker will not remain profitable if this
inequality is not satisfied.
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Analysis of user cost
Let, s, be the time in seconds that a given resource r is
used by request s during the period of T, hours.

For the price model to be attractive to the user: User
cost (with IE) must be lower that the User Cost (direct)
(the cost incurred when the resource is acquired directly
from a public cloud provider)

Sr

36001 X c_pub)

S X c_pvt > (r
The user can use this inequality to determine which
system is better for executing the request: the IE based
system or the public cloud provider. For example, the
defaults values of ¢_pvt ($0.00000833/s) and c_pub are
($0.02/h) used by the IE based system remains more at-
tractive as long as s, < 2400 s. For a higher ratio of ¢_pub
and ¢ pvt, with ¢ _pvt=$0.00000694444/s and c_pub
=$0.02/h for example, the IE based system will be more
attractive to the user if s, < 2880 s.

Conclusions

This paper describes a technique and the associated
algorithms and framework for performing hybrid auto-
scaling of resources in a cloud. A prototype implementa-
tion of the system is also discussed. The auto-scaling
technique introduced in the paper combines a machine
learning-based proactive approach with a reactive
approach for scaling resources to adapt to changes in
workload demands. As demonstrated via simulation
experiments and measurements of the prototype, the
proposed technique can generate a profit for the inter-
mediary cloud provider hosting the broker while redu-
cing the cost incurred by users. The key features of the
technique are as follows:

e The number of resources in the pool used for the
user requests does not need to be determined a
priori and is controlled dynamically thereby
eliminating the need for capacity planning.

e The framework allows users in an enterprise, for
example, to submit AR as well as OD requests to a
private cloud provided by the intermediary cloud
provider where resources from a public cloud are
used to handle the workload.

° The benefit of using the proposed system is that

even though the public cloud may not have AR

support, the broker at the intermediary cloud
provider performs the necessary operations to
enable the handling of AR requests.

e The novel auto-scaling technique introduced in
the paper combines a proactive approach by
utilizing machine learning algorithms and a
reactive approach that scales resources based
on a Grade of Service criterion.
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Both simulations and measurements based on a
proof of concept prototype implementation using a
real cloud demonstrate the effectiveness of the
proposed technique. A number of insights were
gained by performing simulation experiments. Some
of the important observations are presented

e The experimental results demonstrate that using the
proposed hybrid broker can lead to a higher profit
as compared to other proactive/reactive systems.
The broker profit is observed to depend on
parameters, such as load factor, arrival rate, mean
service time, laxity factor.

e A higher mean arrival rate enables the broker to
earn a higher profit. As a result, lower the load
factor, higher is the difference between the profit
generated by the hybrid system and that generated
by System IL

e The broker profit is observed to be directly
promotional to mean service time

e The broker profit seems to increase as the laxity
factor increases. Most laxity factors considered in
the experiments led to a broker profit. However, for
a laxity factor of 1, the requests have no additional
slack time to meet their deadlines. In such a
situation, the profit earning mechanism fails.

e Changing the machine-learning algorithm has a small
impact on the broker profit with a more advanced
algorithm like SVM performing better than linear
regression. However, the overhead incurred by using
an algorithm with a larger time complexity increases
the time taken by the broker to make auto-scaling
decisions.

e The Hybrid system performs better than a purely
proactive or reactive system in most cases when
comparing BP*

A performance analysis of the proposed system using
real workload traces is an interesting direction for future
research. Extending the auto-scaling technique to storage
and network resources warrants investigation. A hybrid
system that functions as System II during the training
period (accepting all client requests) and switches to the
proactive system (System I) at the end of the training
period is another interesting topic for future research.
Such a system will allow the elimination of the training
period required to use the proactive component.
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