
Journal of Cloud Computing:
Advances, Systems and Applications

Abusitta et al. Journal of Cloud Computing: Advances, Systems
and Applications (2018) 7:9
https://doi.org/10.1186/s13677-018-0109-4

RESEARCH Open Access

An SVM-based framework for detecting
DoS attacks in virtualized clouds under
changing environment
Adel Abusitta, Martine Bellaiche* and Michel Dagenais

Abstract

Cloud Computing enables providers to rent out space on their virtual and physical infrastructures. Denial of Service
(DoS) attacks threaten the ability of the cloud to respond to clients requests, which results in considerable economic
losses. The existing detection approaches are still not mature enough to satisfy a cloud-based detection systems
requirements since they overlook the changing/dynamic environment, that characterises the cloud as a result of its
inherent characteristics. Indeed, the patterns extracted and used by the existing detection models to identify attacks,
are limited to the current VMs infrastructure but do not necessarily hold after performing new adjustments according
to the pay-as-you-go business model. Therefore, the accuracy of detection will be negatively affected. Motivated by
this fact, we present a new approach for detecting DoS attacks in a virtualized cloud under changing environment.
The proposed model enables monitoring and quantifying the effect of resources adjustments on the collected data.
This helps filter out the effect of adjustments from the collected data and thus enhance the detection accuracy in
dynamic environments. Our solution correlates as well VMs application metrics with the actual resources load, which
enables the hypervisor to distinguish between benignant high load and DoS attacks. It helps also the hypervisor
identify the compromised VMs that try to needlessly consume more resources. Experimental results show that our
model is able to enhance the detection accuracy under changing environments.

Keywords: Cloud computing, DoS attacks detection, Support vector machine, Changing environment, Virtual machines

Introduction
Several major Information and Communications Tech-
nology (ICT) companies are competing for creating
advanced cloud computing services that are able to
deal with small, medium-sized and large-scale enter-
prise demands. Many companies, organizations and
governments are expected to transfer, if not already
done, all or parts of their IT solutions to the cloud
[1, 2]. This transfer is profitable from an economic point
of view since it allows them to streamline the spending
on technology infrastructure and capital cost. How-
ever, the security threat in terms of Denial of Service
(DoS) attacks constitutes a major obstacle against the
achievement of this transfer. A DoS attack can be of
many types and may be seen in different contexts (e.g.,

*Correspondence: martine.bellaiche@polymtl.ca
Department of Computer and Software Engineering, Polytechnique Montreal,
2900 Boulevard Edouard-Montpetit, Montreal, QC H3T 1J4 Canada

application, web services, network) [3]. However, in
this paper, we consider Virtual Machine (VM)-based
DoS attacks in a virtualized cloud and define a DoS
attack as follows. A DoS attack occurs when one or
more VMs drain all the available physical resources such
that the hypervisor would not be able to support more
VMs [4]. This attack is mainly caused by virtualization
[4, 5], which is the backbone of the recent cloud
computing architecture, where virtualization allows
emulating a particular computer system and sharing
physical resources (e.g., CPU and network bandwidth).
In this paper, we shed light on the problem of detecting
cloud-based DoS attacks under a changing environment.
Although several advanced approaches have been pro-
posed to detect DoS attacks in virtualized cloud (e.g.,
[6–9]), these approaches still causes a significant
decrease in the detection accuracy when used in a
cloud environment. The reason is that the current
approaches do not consider the changing environment,

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-018-0109-4&domain=pdf
http://orcid.org/0000-0001-9530-7643
mailto: martine.bellaiche@polymtl.ca
http://creativecommons.org/licenses/by/4.0/

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 2 of 18

that characterises the cloud as a result of its inher-
ent characteristics (resources restriction and scaling).
Such characteristics are essential for the VM to
meet the requirements of the pay-as-you-go business
model [1].

Motivating example
Assume that a cloud provider trained an Support Vector
Machine (SVM) classifier on some of the features of
the VMs under a certain infrastructure. These features
include CPU, network, memory and I/O load. Assume
now that the cloud provider, due to some business fac-
tors, decides to adjust some of the resources of the VMs.
This adjustment includes revoking 45% from some of the
resources of the VMs. Such an adjustment will result in
a significant decrease in the DoS detection accuracy rate.
The reason is that the features used to train the SVM
classifier were extracted under the original infrastruc-
ture (before revoking 45% fromVMs resources). However,
these features become unsuitable in the light of the new
adjustment in the VMs resources. In other words, the
collected data will be affected by the new adjustment,
which will lead to an inaccurate classification of the col-
lected data. Tables 1 and 2 show our results of testing
the impact of applying resources adjustments on the basic
resources of the VMs (CPU, Memory, I/O and Network).
We used the API of libvirt that employs cgroups [10] to
adjust and limit the resources of the VMs. Using cgroups
allows us to exploit Linux Kernel features which limit
and allocate resources to VMs—such as CPU time, sys-
tem memory, network bandwidth, or combinations of
these resources [11]. The results show that the detection
rate has been decreased as a result of revoking/granting
resources from/to the VMs. The details of this experi-
ment are described in “Experimental results and analysis”
section.
Indeed, the continuous requests to make adjustments

on the infrastructure are necessary as long as the cloud
client (e.g., VM) wants to meet the Quality of Service
(QoS) requirements. The reason is that the ability of
performing new adjustments, to cope with the real-time
economic factors, affects the decision of the industries,

Table 1 Attack detection rates when revoking resources (CPU,
Memory, I/O and Network) from VMs

Resources revoked from VMs Attack detection rate

0% (baseline) 95.02%

10% 95.79%

20% 90.28%

40% 89.08%

60% 85.18%

80% 83.67%

Table 2 Attack detection rates when granting resources (CPU,
Memory, I/O and Network) to VMs

Resources granted to VMs Attack detection rate

0% (baseline) 95.02%

10% 95.79%

20% 85.28%

40% 84.08%

60% 75.18%

80% 74.67%

organizations and governments on whether to adopt or
not cloud computing. In other words, the continuous
adjustments are necessary for the continuous use of the
cloud to meet the variations in the demands and the
cost-efficiency, which are considered as the main cloud
features.

Our proposed solution
To address the aforementioned problems, we propose a
flexible detection framework based on the SVM learning
technique. SVM is a classification technique that employs
a nonlinear mapping to convert the original data into
higher-dimensional of data, in order to find a hyperplane
that optimally separates the training tuples based on their
classes [12]. Our framework can be summarized as fol-
lows. The hypervisor collects some features to train the
SVM classifier to be able to distinguish between the nor-
mal activity and DoS attack on the VM. The hypervisor
then monitors and quantifies the effect of performing
resources adjustments (i.e., granting/revoking resources
to/from the VMs) on the collected VMs performance
data. This information (i.e, effect of performing resources
adjustments) is used thereafter to maintain a filter of
resources adjustments effect. The filter is used as a pre-
processing step, prior to classification, to get rid of the
“noise” that may show up on the collected data (due to
the new adjustments) and that may considerably decrease
the accuracy of the detection.
Moreover, the proposed framework enables VMs to reg-

ularly declare their current application metrics, such as
number of clients, requests and sales. This is then used
by the hypervisor to correlate these metrics with the
actual resources load. This correlation enables the hyper-
visor to distinguish between benignant high load and DoS
attacks. In addition, it enables the hypervisor to iden-
tify the compromised VMs that may try to claim and
consume more resources. We propose a correlation tech-
nique that the hypervisor uses to calculate the expected
resources load of the current compromised VMs based
on the declared metrics. The calculated resources load
is then compared with the actual resources load. If the

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 3 of 18

calculated resources load is not within a certain range
of the actual resources load, the belief that the VM has
been compromised increases. In summary, we propose a
comprehensive framework that consists of the following
contributions:

• Proposing a detection approach to identify DoS
attacks in a virtualized cloud under changing
environment. To the best of our knowledge, our work
is unique in considering the detection problem under
changing environment in virtualized clouds.

• Proposing the monitoring and quantification of the
effect of performing resources adjustments, which
enhances the accuracy of identifying DoS attacks
under changing environments.

• Proposing a model to correlate VMs metrics with the
actual resources load by the host, which enables the
hypervisor to identify compromised VMs.

• Modeling an incentive technique that enables the
hypervisor to give incentives in the form of resources
to the VMs that have truthfully declared their metrics
and punish these VMs that lied about their actual
metrics.

Paper outline
The rest of the paper is organized as follows. In
“Related work” section, we discuss the related work. In
“The proposed framework” section, we present the pro-
posed framework. “Security analysis of the proposed
framework” section presents security analysis of the pro-
posed framework. In “Experimental results and analy-
sis” section, we present our empirical results. Finally,
“Conclusion” section concludes the paper.

Related work
Machine learning for detecting DoS attacks in the cloud
was used by several researchers. This work benefits from
many advanced machine learning and and artificial intel-
ligence techniques to predict the status of VMs (i.e, mali-
cious or normal). Lonea et al. [13] uses the normal traffic
pattern received from the Virtual Bridge (VB) of the VM
to validate for consistency against behavioral patterns of
attacks. They use a network intrusion detection system,
that analyzes the normal traffic flow obtained from the
VB, to check and test for consistency against the attack
behavioral patterns. Thus, if abnormal traffic has been
detected, the anomaly information will be reported and an
alarm generated.
Similarly, Gupta et al. [6] propose a profile based net-

work intrusion detection system. They combine both fine
grained data analysis and Bayesian techniques in order
to detect TCP SYN flooding. The main advantage of
these approaches is the ability to identify DoS symptoms
at an early stage, because their approaches are able to

collect information at the networking level, before the
DoS causes a significant performance degradation. How-
ever, the lack of application performance information can
result in wrongly identifying high traffic during the peak
time as a DoS attack.
Ficco et al. [14] propose a strategy for generating

stealthy DoS attacks in the cloud, which uses low overhead
attacks to inflict the maximum financial cost to the cloud
clients [14]. Masood et al. [7] propose a web-behavior-
based detection, where they identify two client’s profiles.
The first one is for good clients while the second one is
for bad clients. A good client will follow a pattern that
reflects normal activity on the web, while a bad client will
show some abnormal activities. Similarly, Anusha et al. [8]
study the behavior of normal users of Web applications.
They assume that an attacker spends a very short time
(almost zero) over a Web page. They use for that a met-
ric called Time Spent on a Page (TSP). They assume that
the attackers TSP is very close to zero. In contrast, the
TSP of a normal client should be high enough to inter-
act with the Web page. The work of Kwon et al. [9] also
uses a behavioral approach for detection. They start from
a tested assumption saying that the behavioral patterns of
normal traffic are similar, while the behavior patterns of
malicious traffic are not. The cosine similarity is used to
check the similarity of the traffic. If such a similarity does
not exist, an alarm is generated. A main advantage of this
approach that it is able to determine the similarity during
run-time. However, there is no guarantee that the normal
traffic will always be similar in a dynamic environment
(i.e. cloud). In fact, in some applications, we could have
many forms of normal traffic that are fairly dissimilar.
Palmieri et al. [15] use a two-phase ML-based detection

technique. The first phase is called Blind Source Separa-
tion (BSS), while the second phase is called Rule-based
Classifier to detect zero-day attacks that change or alter
the traffic volume rate. BSS extracts the features of the
cloud nodes traffic in order to be used by a decision tree
classifier to create a normal traffic profile (baseline). Most
recently, Choi et al. [16] propose a data-mining-based
approach to detect application layer HTTP GET DoS
attacks. They use a normal behavior pattern to detect DoS
attacks on VMs. The parameters used for analyzing and
creating attack patterns are: CPU usage, packet size and
packet header information. They evaluate their approach
by comparing it with a signature-based approach. The
result showed that their proposedmethod performs better
than SNORT in terms of identifying new attack profiles.
Similar to this work, Jeyanthi and Mogankumar [17] and
Jeyanthi et al. [18] propose a mechanism to detect DDoS
attacks based on clients request rate. Clients requests will
be put in a black list or white list based on a certain
threshold rate. The threshold is determined by calculating
the maximum number of legitimate client requests. The

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 4 of 18

authors have shown experimentally that the legitimate
clients could continue being served during an attack using
their method. However, the main disadvantage of this
method is that it is threshold based, where setting the
optimal threshold is always difficult and infeasible in a
production cloud environment.
Chonka and Abawajy [19] and Chonka et al. [20] pro-

pose a decision tree classification technique. The method
operates in two phases: training phase (first phase) and
testing phase (second phase). In the training phase, a rule
set that has been generated over time by the decision
tree classifier is used to define both known and unknown
attributes. In the testing phase, a decision making module
is used to decide the likelihood of a previously classified
packet. This helps decide whether to let a packet enter or
not. Similar to that, Lonea et al. [13] also proposed a clas-
sification technique based on Intrusion detection system
(IDS). The detection module analyse the alerts generated
by each VM using the Dempster-Shaferther theory (quan-
titative solution classifier) in 3-valued logic and fault tree
analysis (FTA). Although Dempster-Shaferther is able to
produce powerful results when observations about attacks
come from different sources, it becomes unsuitable when
one source produces multiple observations [21].
Among other approaches, the work of Iyengare et al.

[22] proposes a Multilevel Thrust Filtration (MTF) that
contains four detection and prevention modules, which
are traffic analysis, anomaly detection, anomaly classifica-
tion, and attack prevention. The proposed method filters
the incoming packets and detects four types of traffic
congestion, which are spoofing, ash crowd, DDoS, and
aggressive legitimate traffic. A similar approach has been
proposed by Jeyanthi and Iyengar [18]. The main feature
of this approach is the ability to increase the attack detec-
tion accuracy because multiple stages of detection are
used. However, it is associated with a significant overhead
since multiple algorithms and techniques should be used.
Cooperative IDSs in cloud have been proposed in sev-

eral works. For example, Teng et al. [23] propose an
approach that aggregates two different detectors: fea-
ture and statistical detectors. The feature detector adopts
SNORT to separate events based on Transmission Control
Protocol (TCP). The statistical detector cooperates with
SNORT by using data packets from it to find whether an
event is an attack or not. If the rate of packets obtained
exceeds the predefined threshold, this means that there is
an actual attack. Similarly, Man and Huh [24] and Singh
et al. [25] propose a cooperative IDS between different
cloud regions. Their approach enables exchanging alerts
from multiple places (detectors). The proposed approach
allows the exchange of security information between
interconnected clouds. Ghribi [26] proposes a middle-
ware IDS. The approach allows a cooperation between
three layers: Hypervisor-based, Network-based, and VM-

based IDS. If an attack was found in a layer, it cannot be
executed in the other layers. Chiba et al. [27] also pro-
pose a network-based cooperative IDS to identify network
attacks in the cloud environment, which is performed
by monitoring traffic while maintaining performance and
service quality. Recently, Wahab et al. [28, 29] propose a
game theoretic-based IDS. The approach that they used
enables a CP to optimally distribute its resources among
VMs in such away to maximize the detection of dis-
tributed attacks. The main limitation of the cooperative
IDS is that they work in the assumption that all nodes are
trustable, which makes it vulnerable to malicious insiders.
Cloud-based DoS attacksmitigation approaches are also

proposed in several works. For example, Yu et al. [30]
propose a dynamic resource allocation feature for VMs.
This allows attacked VMs to acquire extra resources dur-
ing DoS attacks. When a DDoS attack occurs, the cloud
hires the idle resources to clone sufficient attack preven-
tion servers for the attacked VMs in order to guarantee
the quality of service for the users by filtering out attack
packets. This approach is beneficial in an environment
where DoS attacks are frequently generated. However, it
can be exploited by selfish VMs to acquire and use much
resources even though there is no attack. Also, Somani
et al. [31] propose auto-scaling decisions by differentiat-
ing between legitimate and attack traffic. Attack traffic is
detected based on the workload of human behavior. The
advantage of this approach is that it gives more attention
to serve legitimate clients by making accurate and proper
autoscaling decisions. However, a workload of human
behavior can be emulated. This makes an attacker able to
deplete cloud resources.
The summary of the existing works is given in Table 3.

The aforementioned works paved the way to understand
the issues behind improving the detection accuracy in
cloud environments. Our proposed model offers two
major features. The first is the aspect of detection under
changing environment. To the best of our knowledge, our
work is the first to consider the detection problem under
changing environment in virtualized clouds. The second
is allowing VMs to share information about their current
application metrics (e.g, number of clients, requests and
sales) to the hypervisor, which in turn allows distinguish-
ing between legitimate high load and DoS attacks. It also
enables the hypervisor to identify the compromised VMs
that try to claim and consume more resources.

The proposed framework
In this section, we describe the key constituents of our
framework. The framework contains a set of compo-
nents, each of which exhibits a set of modules. Figure 1
illustrates the framework structure and describes the
modules of each component. These components include:
data gathering, data and load analysis, and detection.

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 5 of 18

Table 3 Cloud-based detection approaches

Researchers Approach

Lonea et al. [13] Profile-based detection

Gupta et al. [6] Profile-based network detection

Masood et al. [7] Web-behavior-based detection

Anusha et al. [8] Web-behavior-based detection

Kwon et al. [9] Web-behavior-based detection

Palmieri et al. [15] Machine learning-based detection

Choi et al. [16] Data mining-based detection

Jeyanthi and Mogankumar [17] Data mining-based detection

Jeyanthi et al. [18] Data mining-based detection

Iyengare et al. [22] Multiple stage detection

Jeyanthi and Iyengar [18] Multiple stage detection

Teng et al. [23] Cooperative-based detection

Man and Huh [24] Cooperative-based detection

Singh et al. [25] Cooperative-based detection

Chribi et al. [26] Cooperative-based detection

Wahab et al. [28, 29] Game theocratic-based detection

Weuse the Linux Trace Toolkit next generation (LTTng)
[32] to gather the VMs performance metrics. LTTng
is a powerful, low impact and lightweight [33] open
source Linux tracing tool. It provides precise and detailed
information on the underlying kernel and user-space exe-
cutions. LTTng contains different trace points in various

modules of the operating system kernel. Once a prede-
fined trace point is reached, it generates an event con-
taining a time-stamp, CPU number and other run-time
information related to the running processes.

Data analysis
This component is responsible for analysing data obtained
from the data gathering component. We divide this com-
ponent into the four modules: Trace abstractor, preparing
dataset for normal and anomaly activities, training and
create SVM classifier, and resources adjustment analysis.

Trace abstractor
The trace file size is usually so large that it is difficult to
analyze and understand the system execution. Most of the
time, another analysis tool is required to abstract the low-
level events and represent them as higher-level events,
thus reducing the data to be analyzed. Trace abstrac-
tion is typically required to compute statistics of complex
system metrics that are not directly computable from
the low-level trace events [34]. For instance, to compute
synthetic metrics such as “number of HTTP connec-
tions”, “CPU usage”, and “number of different types of
system and network attacks”, raw events must be aggre-
gated to generate high-level events. Then, the desired
metrics must be extracted and computed. Table 4 gives
examples of a higher-level event generated from low-
level events. The details of the trace abstraction tool used

Fig. 1 Architecture of the Proposed Framework

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 6 of 18

Table 4 Abstracting example

Low-level events Higher-level event

Socket create HTTP connection

Socket call

Socket send

Socket receive

Socket close

to generate such high-level meaningful events can be
found in [33].

Preprocessing and trainingmodules
In this phase, the SVM [35] classification technique is
used to analyse the collected data and classify the VMs
load. SVM is a classification technique that employs
a nonlinear mapping to convert the original data into
higher-dimensional data in order to find a hyperplane that
best separates the training tuples based on their classes.
The hyperplane is determined using support vectors and
margins in such a way that maximizes the hyperplane’s
margins with the aim of delivering more accurate results
when classifying future data tuples [12]. We use SVM
thanks to its ability to generate very accurate classifiers
(especially in binary classifications) [35] and its effective-
ness in high dimensional datasets consisting of a large
number of attributes [36]. Moreover, it is robust against
outliers and overfitting [37, 38].
The training dataset is generated during the monitor-

ing of the host to determine which metrics reflect the
malicious behavior and which ones reflect the normal
behavior. As shown in the proposed architecture (Fig. 1),
VMs are allowed to share their application/business met-
rics to be considered among the features used to train the
SVM. The VM application/business metrics are discussed
later in the previous section.
Each VM can be either under DoS attack or normal.

Thus, class label yi ∈ {attack, normal}. Given the training
datasets (xi, yi)...(xn, yn), xi is the VM metrics values used
for the training. n is the number of metrics values, the
objective is to find the hyperline that offers a maximum
margin (Fig. 2) such that:

w ∗ x + b = 0 (1)

Where w is a weight vector (Eq. 6) and b is a threshold.
Thus, the training data should satisfy:

w ∗ xi + b ≥ −1 for all attack data xi (2)

w ∗ xi + b ≤ +1 for all normal data xi (3)

Fig. 2 The value of w affects the position of the hyperplane

The problem is converted to finding the optimal hyper-
plane (Eq. 1), which can be turned into a convex optimiza-
tion problem [12]:

⎧
⎨

⎩

min τ(w) = ‖w‖
2

Subject to yi(〈w, xi〉 + b) for all i = 1, ..., n

⎫
⎬

⎭
(4)

The convex optimization can be solved using Lagrange
multipliers [12]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maximize L(α) =
n∑

i=1
αi − 1

2

n∑

j=1

n∑

i=1
αiαjyiyjK

(
xi, xj

)

Subject to
n∑

i=1
yiαi = 0and0 ≤ αi ≤ C∀1 ≤ i ≤ n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5)

where αi is the Lagrange multipliers [12], K(xi, xj) repre-
sents the kernel function (e.g., linear, polynomial, etc.) and
C is a constant for determining the trade-off betweenmar-
gin maximization and training error minimization [12].
By solving Eq. 5 we get [12]:

w =
n∑

i=1
αiyixi (6)

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 7 of 18

Finally, the decision attack function is given by:

f (x,α, b) = {±1} = sgn
(n∑

i=1
yiαiK(x, xi) + b

)

(7)

Resources adjustment analysis
The impact of resources adjustment appears on the col-
lected data, which makes the SVM classifier unsuitable in
the light of the new adjustment in the VMs resources. In
other words, the collected data will be affected by the new
adjustments, which leads to an inaccurate classification of
that data. To address this issue, we should determine the
effect of resources adjustment on the collected data (we
will discuss later in this section how to calculate the effect
of resources adjustments). The effect of resources adjust-
ment reflects to what extent the modified data (after new
resources adjustment) deviates from the original data (the
data that meets the basic infrastructure).
Having the effect of resources adjustment, two

approaches to solve the detection problem under chang-
ing environment can be considered. The first approach
is to consider this effect during the training of the SVM
classifier. This can be done by generating new sub fea-
tures for every feature (features represent system metrics
in this context) used in the training. In fact, the new sub
features are the result of applying the effect of resources
adjustment on the basic feature. For example, if the
original feature used to train the SVM classifier is 10, 20,
30, 40 for CPU, memory, I/O, and network, respectively,
then the SVM classifier is also trained to classify in the
presence of 50% adjustment on the VM resources by
adding to the training set the following new sub feature:

(10 + 10 * 50%), (20 + 20 * 50%), (30 + 30 * 50%) and
(40 + 40 * 50%) for CPU, memory, I/O, and network
respectively. This makes the SVM classifier be trained not
only on the original infrastructure but also on the new
infrastructure after resources adjustment.
The second approach is to account for the resources

adjustments effect by a separate filter. The filter is used as
a preprocessing step, prior to classification, to get rid of
the effect of resources adjustment on the collected data,
in order to normalise the data with respect to the origi-
nal infrastructure on which the training was performed,
before passing it to the SVM classifier. We adopt the sec-
ond approach in the proposed framework for the two
following reasons. On the one hand, the first approach
requires generating a huge training dataset, since we have
to generate many sub-features for each single feature.
This results in more overhead during the SVM training.
The second approach does not require any change in the
dataset. On the other hand, training an SVM with all pos-
sible adjustments (as is the case for the first approach)
may lead to an overfitting. Specifically, the classifier might
work correctly in the presence of the trained adjust-
ment; However, the classifier accuracy will go down in the
absence of such adjustments.

The effect of resources adjustment. The effect of
resources adjustment on VMs is studied during the run-
ning of the VMs to find out to what extent their system
metrics are affected by the adjustments. Although such a
process requires changing the resources of the VMs which
in turn may affect the performance of the application run-
ning inside these VMs, the impact of an adjusting and

Fig. 3 Table used for filtering out the effect of resources adjustments on a VM system metrics

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 8 of 18

monitoring the effect is acceptable since it is done during
a short time period (≈ the time needed to capture VMs
system metrics). Note that resources adjustment process
can be done by exploring and monitoring the effect of all
possible resources adjustments performed on the system
metrics of the VMs. More specifically, we maintain a filter
of resources adjustments effect (as in Fig. 3), which is used
as a preprocessing step prior to classification (i.e., SVM),
to filter out the effect of resources adjustments from the
collected data. In other words, this helps to get rid of
the noise that may show up on the collected data (due to
the new adjustments) and may considerably decrease the
accuracy of the detection. Algorithm 1 is used to deter-
mine the effect of all possible resources adjustments on
the system metrics of the VMs.

Algorithm 1: Determining the effect resources
adjustments on VMs system metrics.
Input : List of VMs’ possible resources adjustments

adj[]
Output: The effect of resources adjustment on VMs

system metrics {eff1[] [] , eff2[] [] , ... , effn[] []}
1 repeat
2 foreach Running VM j do
3 Monitor and store j’ system metrics in array

U1 (before adjustments)
4 foreach Adjustment adj ∈ adj [] do
5 Apply an adjustment of amount adj on j’s

resources
6 Monitor and store j’ system metrics in

array U2
7 Remove the adjustment of amount adj

and restore j’s default resources
8 foreach index i of U1 do
9 BeforeAdj = U1[i]

10 AfterAdj = U2[i]
11 if |BeforeAdj − AfterAdj| < ε then
12 effj[adj][i] = 0
13 else if BeforeAdj < AfterAdj then
14 effj[adj][i] = adj∗100

AfterAdj ∗ BeforeAdj
15 else
16 effj[adj][i] = - adj∗100

AfterAdj ∗ BeforeAdj
17 end
18 end
19 end
20 end
21 until ε elapses;

In Algorithm 1, for each VMj (j ∈ VMs) in a cer-
tain host, the algorithm monitors and determines the
current system metrics of j to be stored in array U1 []

(line 3). Then, for each possible resources adjustment
adj, the algorithm applies resources adjustment of value
adj, to see the effect of adj on j’s system metrics. The
list of all possible resources adjustments, which is given
as an input in Algorithm 1, can be selected manually
by the cloud administrator. The administrator can con-
sider these adjustments that have significant impacts on
VMs’ system metrics and also had been requested in the
past by the client according to the pay-as-you go busi-
ness model. This, in turn reduces unnecessary study of
unneeded adjustments and thus decreases the process-
ing time of Algorithm 1. Note that we apply adjustments
on VMs resources using control groups (cgroups) [11],
which is a Linux Kernel feature that limits and allocates
resources to VMs — such as CPU time, system memory,
network bandwidth, or combinations of these resources.
The system metrics are re-computed after each adjust-
ment process (line 6). Then, the algorithm computes the
effect of an adjustment adj on VM j’s system metrics by
finding the percentage of change on the j’s system metrics
(line 8 - 16). If the new calculated metric U2 [i]’s value is
within a small range of the old value U1[i], the effect will
be considered as 0. This is described in the Algorithm 1
as effj[adj][i] = 0 (line 12), which means that the effect
of an adjustment adj on that i-th metric of VM j is equal
to 0. This indicates that the resources adjustment had no
effect on that given metric. However, if the new calcu-
latedmetric’s value considerably differs from the old one, the
algorithm computes the percentage of change on the old
value such that: effj[adj][i] = adj∗100

AfterAdj ∗ BeforeAdj (line 14)
for a positive change (i.e., new-value > old-value) and -
adj∗100
AfterAdj ∗ BeforeAdj (line 16) for a negative change (i.e.,
new-value < old-value). The algorithm is used for each
possible adjustment in order to have a filter of resources
adjustments effect for each VM. The filter is then used
during the detection step (Detection component Section)
to filter out the collected data from the effect of resources
adjustment. This adapts the environment of the detec-
tion to the original environment (i.e., the environment
in which the SVM classifier was created). Note that the
whole process is repeated periodically after a certain fixed
period of time ε (line 17) to capture the new effect of the
given resources adjustment on VMs system metrics.
It should also be noticed that some resources adjust-

ment may have no impact on the system metrics of the
VMs. In fact, it can depend on resources and the under-
lying usage model. For example, for a given load, if we
consume 60% of the CPU (100% available with no restric-
tion), when a restriction of 70% is imposed, we will
consume 60% / 70% = 85% of the available CPU. The
number of CPU seconds will remain the same though. For
this purpose, we have considered in the resource adjust-
ment algorithm the following condition: If (|BeforeAdj −

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 9 of 18

AfterAdj| < ε) (line 11), which means that the collected
data are the same before and after adjustments. The effect
of resources adjustment in this case is equals to 0, as given
in Algorithm 1 (effj[adj][i] = 0).

Detection component
This component is used for identifying DoS attacks. It
monitors the system and performs tracing abstraction,
similar to the steps used in “Data analysis” section and
“Preprocessing and training modules” section. Along with
these steps, the module performs the detection algorithm
described in Algorithm 2. The following section presents
the details of this component.

Detection algorithm
Algorithm 2 that is used for detecting DoS attacks works
as follows. For each VMj (j ∈ VMs) in a certain host,
the algorithm uses the model obtained from the previous
section to calculate the VMs resources load (calculated
load) with respect to the declared metrics of the VMs
(line 4). This step is important to minimise unnecessary
false positive alarms during flash events. The calculated
resources load is compared with the actual resources load
to determine if the calculated resources load is within a
small range of the actual resources load (line 5). If this is
not the case, the detection process starts by filtering out
the effect of resources adjustment on j’s system metrics
using the resources adjustment effect of j(given as input in
Algorithm 2) (i.e., newU[i] =U[i]± (U[i] * effj[VMAj][i])
(line 6-10) from the collected data. The objective is to
adjust the data for the original infrastructure on which the
training was performed before passing it to the SVM clas-
sifier. The Algorithm passes then the modified collected
data to SVM to predict the result (line 11). If the result r =
“attack”, the algorithm identifies a DoS attack (line 12-13).
If the calculated resources load is within a short distance
of the actual load, the algorithm identifies the resources
load as normal (line 16-17).
The main complexity of the proposed approach lies in

the SVM training, which is commonly known to beO
(
n3

)

[38], where n represents the training set size. Although
this might be infeasible for very large datasets, the training
process is performed only once, and its overhead can then
be neglected [39, 40]. Moreover, recently, more and more
techniques are being proposed for efficient SVM training
[41–43]. As for the prediction process in Algorithm 2, the
complexity lies in three parts. In the first part, the algo-
rithm filters out the effect of resources adjustment from
the collected data (line 6-10). The computation complex-
ity for this part isO(n), where n is the number of the input
metrics of SVM. The second part is to find if the predicted
and calculated VM resources load are similar (line 5),
which is of constant time complexity O(1). The last part
of the algorithm is to predict the modified collected data

Algorithm 2: Detection Algorithm
Input : VMs’ alpha values {α1,α2, ...,αn}
Input : VMs’ beta values {β1,β2, ...,βn}
Input : VMs’ declared application metrics

VMTj ∀ j ∈ VMs
Input : VMs’ effect of resources adjustment on their

system metrics {eff1[] [] , eff2[] [] , ... , effn[] [] }
Input : Amount of adjustment applied to VMs

resources VMAj ∀ j ∈ VMs
Output: Attack Boolean Dec

1 foreach VM j do
2 Determine j’s current resources load crt_load.
3 Monitor and store j’s system metrics in array U.
4 calc_load= αj + βj * VMTj.
5 if |calc_load − crt_load| > ε then
6 foreach index i of U do
7 if effj[VMAj][i] ≥0 then
8 newU[i] = U[i] - (U[i] * effj[VMAj][i])
9 else

10 newU[i] =U[i] + (U[i] * effj[VMAj][i])
11 end
12 end

/* classifying data (i.e., newU
using the SVM */

13 r = predict(newU , SVM)
14 if r=="attack" then
15 Dec = True
16 end
17 else
18 Dec = False
19 end
20 end
21 end
22 else
23 Dec = False
24 end

using SVM (line 11). The computational complexity of
SVM-based prediction isO(n), where n is also the number
of the input metrics of SVM. Therefore, the overall com-
putation complexity of the proposed detection Algorithm
is O(n) + O(n) + O(1) ≈ O(n).

Verification and resources allocation
The proposed detection framework allows a VM to regu-
larly declare its current applicationmetrics, which enables
the hypervisor to correlate these metrics with the actual
resources load and decide if it is coherent or not (compro-
mised VM trying to claim and consume more resources).
In fact, the VM may have no incentive to declare its
metrics. Moreover, the VM may lie about its current
metrics either because of its selfish strategy (in order
to obtain more resources) or because the VM has been
compromised.

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 10 of 18

Algorithm 3: Verification and Resources Allocation
Algorithm
Initialisation:
Input : VMs’ alpha values {α1,α2, ... ,αn}
Input : VMs’ beta values {β1,β2, ... ,βn}
Input : VMs’ declared application metrics

VMTj ∀ j ∈ VMs
Output: Amount of resources granted/revoked

to/from each VM
1 foreach VM j do
2 Determine j’s current resources load crt_load
3 calc_load= αj + βj * VMTj

4 if |calc_load − crt_load| < ε then
5 Grant resources to j
6 end
7 else
8 Revoke resources from j
9 end

10 end

To address the aforementioned problems, we propose a
verification algorithm (Algorithm 3). Our solution moti-
vates the VM to declare its current application metrics by
granting resources to the VM whose calculated resources
load (obtained from the VM’s declared metrics) falls
within a close range of the VM’s actual resources load (line
4-5). On the other hand, the hypervisor revokes resources
from the VM whose calculated resources load and actual
resources load do not match (line 6-7). This dissimilarity,
in most cases, is either because the VM has lied about its
declared metrics, or because the VM has been compro-
mised. The amount of resources revoked from the VM can
be decided by the system administrator, who clearly knows
the real impact of adjusting the VM’s resources on their
performance. However, we suggest that the amount be
proportional to the magnitude of the difference between
the calculated resources load and the current resources
load. In other words, the larger the difference between the
calculated resources load and current resources load is,
the more resources should be revoked from the VM. This
encourages VMs to truthfully declare their metrics used
to calculate the resources load.

Security analysis of the proposed framework
The main objective of the proposed framework is to
enhance the detection of DoS attacks under changing
environment. In this section, we analyse the effectiveness
of our framework in the presence of flash events, DoS
attacks and compromised VMs.

Flash events
A flash event occurs when there is an unusual surge
of legitimate traffic. Our model is able to distinguish

between a flash event and DoS attacks since our
framework allows VMs to declare their current applica-
tion metrics (e.g., number of clients) and motivates them
to do that by granting them extra resources (Algorithm 3).
The declared metrics can represent flash events. The
declared metrics are then used to calculate the resources
load according to the model in the previous section. The
calculated and actual resources load are then compared to
see if they approximately match. If so, the hypervisor will
know and understand that the VM is under an unusual
surge of legitimate requests and will grant the VM more
resources to serve better during this period. Otherwise,
if the calculated and actual resources load are largely dif-
ferent, the hypervisor revokes some resources from the
VM. This strategy motivates the VM to truthfully declare
its peak load and limit the illegal use of resources by the
attacker, in case the VM has been compromised.

DoS attacks
The main purpose of the proposed framework is to detect
DoS attacks. Our model achieves this by using SVM. The
framework trains SVM classifiers on the normal and mali-
cious features to achieve the learning of the classifier. Our
framework then monitors the incoming features and pre-
dicts the system status. Moreover, the proposed detection
algorithm supports the detection under a changing infras-
tructure. The algorithm checks if no modification in the
VM’s resources (i.e., granting or revoking resources) has
occurred. If so, the algorithm passes the collected data
directly to the SVM classifier, without applying any filter-
ing strategy. Otherwise, the algorithm filters the effect of
resources adjustments in order to adjust the collected data
to the original infrastructure (on which the training was
performed), before passing it to the SVM classifier. This is
done by removing the effect of noise caused by resources
adjustments.
Proposition: The accuracy of the detection will not be

affected after filtering out the effect of resources adjust-
ment.
Proof Consider that the collected data U has been

affected by resources adjustment in such a way that makes
U change by percentage %eff . The %eff can be a positive
(e.g., +5%), negative (e.g., -5%) or 0 (as the example given
in Resources adjustment analysis section, where some
adjustments (e.g., CPU) do not result in any change in the
collected data) . If %eff is positive, the value of U changes
to U + (%eff ∗ U). In this case, our detection algorithm
removes the adjustment (Algorithm 2 line 5-9) as follows:

U + (%eff ∗ U) − (%eff ∗ U) = U (8)

On the other hand, if %eff is negative, the value of
U changes to U - (%eff*U). In this case, the detection

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 11 of 18

algorithm removes the adjustment (As in Algorithm 2) as
follows:

U − (%eff ∗ U) + (%eff ∗ U) = U (9)

Also, if %eff = 0, the value ofU changes toU - (0 *U)=U.
In this case, the detection algorithm removes the adjust-
ment as follows:

U − (0 ∗ U) + (0 ∗ U) = U (10)

In the aforementioned three situations, the collected data
U can be recovered, which means that the detection will
be performed as if no adjustment had been applied.

Robustness against compromised VMs
The proposed framework is able to detect the compro-
mised VMs that try to claim receiving an unusual load of
client requests, to be allowed to consume more resources.
The compromised VM can hide that its compromised
by mimicking normal load and/or flash crowds [44]. The
hypervisor calculates the VM load (resources load) based
on the compromised VM’s current declared application
metrics and compares it with the actual resources load. If
the calculated resources load is not within a short range
of the actual resources load, there will be a high prob-
ability that the VM has been compromised. A possible
strategy that a compromised VMmay use, is trying to find
α and β in order to obtain the model for calculating the
resources load load = α + β ∗ VM_par. This can be done
by using different values of α and β . For every α and β ,
the compromised VM sees the response from the hyper-
visor (the response is the resources given for the unusual
declared metrics). If the compromised VM did not receive
a response, the compromised VM tries other values of
α and β , until the correct α and β values are obtained
(receiving a response from the hypervisor). Although this
can be possible, the number of trials will be very high,
which makes it infeasible for the attacker, since α and β

can be any real number from a large interval. In addition,
the attacker will typically not have the opportunity to do
a large number of attempts in trying to guess α and β .
After several wrong guesses (e.g., 10 wrong attempts), the
hypervisor would consider the VM as a compromised and
prevent it from using resources.

Experimental results and analysis
In this section, we first explain the experimental setup
used to perform our experimentation and then study the
performance of the proposed detection approach.

Experimental setup
To evaluate our model, we chose to create our custom
test environment. We prefered to use our own materials
(e.g., resources) instead of using rented resources from
existing CPs (e.g., Amazon EC2) for the following three

reasons: 1) Most of the CPs including Amazon EC2 have
restriction rules regarding any security testing and eval-
uating on their resources and systems [5]. 2) All large
CPs list DoS attacks’ testing and evaluating as a non-
permissible action [5]. 3) No CP allows its users with
direct access to the host. Therefore, gathering informa-
tion (i.e. performance information) is a quite difficult task.
Our testbed consists of three machines. One machine is
used as a virtual machine host and the other machines
are used as client and attack emulator. All machines are
attached directly to a Linksys 1000 Mb/s SOHO switch.
Our test network is completely disconnected from the
network of our institution as well as from the Internet
to avoid the leakage of the DoS attacks. The detection
algorithm (Algorithm 2) is implemented in Python and
the BoNeSi program is used [45] to generate attack-level
and normal traffic. We used BoNeSi as a traffic gener-
ation tool because it allows us to simulate floods from
large-scale bot networks. Moreover, BoNeSi tries to avoid
the generation of packets with easily identifiable patterns,
which can be quickly filtered out [45]. The virtual machine
host used in the experiment is an Intel Core i7-4790 CPU
3.60 GHz Processor with 16 GB RAM. We installed the
Apache 2.2 Web Server on the targeted VMs. The net-
work interface is at 1000 Mb/s. We chose KVM [46] as
our hypervisor-based virtualization. Indeed, KVM runs
on the unmodified Linux kernel and is thus compatible
with the standard performance tracing tools (e.g., LTTng),
unlike Xen.
In order to simulate a real-world DoS attack, the

CAIDA “DDoS Attack 2007” dataset [47] has been used
as a baseline for extracting the features required to sim-
ulate attack traffic. Since it is not possible to mine
normal traffic data from CAIDA’s dataset because it
is collected at Darknet and has no normal traffic, we
used another dataset to capture normal traffic. For this
purpose, we used a traffic trace of a 5-minute non-
flash-event activity before the first semi-final match
of the 1998 FIFA World Cup’ dataset [48]. Table 5
shows the traffic features and characteristics extracted
from the CAIDA and 1998 FIFAWorld Cup’ datasets (the
same features used in [49]). We used then BoNeSi as a
traffic generator to be run based on information given
in Table 5.

Table 5 Attack and normal traffic features extracted from CAIDA
and FIFA World Cup’ datasets

Characteristic DoS attacks Normal traffic

Packet size 64k 64k

No. of sources 859 73

Packet rate 125,705 385

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 12 of 18

Training phase
During the generation of the attack and normal traffic
using BoNeSi, we monitored the following metrics: CPU,
memory, I/O and network load at different time inter-
vals. We can also monitor and use high-level metrics,
as illustrated in the trace abstractor section (“Detection
algorithm” section). However, we prefer to use these rel-
atively basic metrics as they are widely used to describe
the anomaly caused by a DoS attack [3]. The length of
each interval is 30 s. For each interval, we used LTTng
to generate the trace data. To extract CPU, memory,
I/O and network loads from the trace data, we used the
LTTng-analyses packages [50], which are a set of exe-
cutable analyses to extract and visualise monitoring data
andmetrics from LTTng kernel traces.We created a train-
ing dataset that contains these performance metrics. The
dataset is used then to train the SVM classifier to be able
to distinguish between normal behavior and DoS attacks
of the VM. We train an SVM classifier on our dataset
using the 10-fold cross-validation model. We used a lin-
ear kernel function as it is considered more efficient for
real-time applications [51]. It enjoys as well faster train-
ing and classification. Moreover, with the linear function,
less memory is required as compared to the non-linear
kernels [51].

Testing phase
In order to test the proposed model in the presence
of resources adjustments, we created a testing dataset
that is suitable for each type of adjustments. To do this,
we monitored the metrics (CPU, memory, I/O and net-
work load) in the same way used to generate the train-
ing dataset. However, in this phase, we performed some
resources adjustments on the VMs during data collection,

in order to study the effectiveness of our proposed model
in such a case. We used the API of libvirt that employs
cgroups [10] to adjust and limit VMs resources. Using
cgroups allows exploiting Linux Kernel features that limit
and allocate resources to VMs — such as CPU time,
system memory, network bandwidth, or combinations
of these resources [11]. This is performed on the two
types of traffic datasets: attack and normal traffic. Our
detection algorithm (Algorithm 2) is then executed on
these datasets. The detection algorithm applies the filter
of resources adjustment effect (obtained from executing
Algorithm 1) on the testing dataset before passing it to
the SVM classifier. The length of time used to determine
the effect of resources adjustment in Algorithm 1 is 30
seconds.
We used to evaluate the accuracy of the proposedmodel

the false positive, false negative, attack detection and
accuracy rate.
Accuracy Rate =

100% × Total of correctly classified tuples
Total of tuples

(11)

Attack Detection Rate =

100% × Total of attacks
Total of detected attacks

(12)

False Positive Rate=

100% × Total of misclassified tuples
Total of normal tuples

(13)

False Negative Rate =

100% × Total of misclassified tuples
Total of attack tuples

(14)

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Our Model
SVM
Decision-Tree

Fig. 4 Accuracy with respect to (w.r.t.) amount of revoked resources

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 13 of 18

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

70

75

80

85

90

95

100

A
tta

ck
 D

et
ec

tio
n

R
at

e
(%

)

Our Model
SVM
Decision-Tree

Fig. 5 Attack detection rate w.r.t. amount of revoked resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

0

5

10

15

20

25

30

F
al

se
 P

os
iti

ve
s

(%
)

Our Model
SVM
Decision-Tree

Fig. 6 False positive percentage w.r.t. amount of revoked resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Revoked from VMs (%)

0

5

10

15

20

25

30

35

40

F
al

se
 N

eg
at

iv
es

 (
%

)

Our Model
SVM
Decision-Tree

Fig. 7 False negative percentage w.r.t. amount of revoked resources

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 14 of 18

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Our Model
SVM
Decision-Tree

Fig. 8 Accuracy w.r.t. amount of granted resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

60

65

70

75

80

85

90

95

100

A
tta

ck
 D

et
ec

tio
n

R
at

e
(%

)

Our Model
SVM
Decision-Tree

Fig. 9 Attack detection rate w.r.t. amount of granted resources

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

0

5

10

15

20

25

30

35

40

F
al

se
 P

os
iti

ve
s

(%
)

Our Model
SVM
Decision-Tree

Fig. 10 False positive percentage w.r.t. amount of granted resources

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 15 of 18

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Amount of Resources Granted to VMs (%)

0

5

10

15

20

25

30

35

40

F
al

se
 N

eg
at

iv
es

 (
%

)
Our Model
SVM
Decision-Tree

Fig. 11 False negative percentage w.r.t. amount of granted resources

The next section contains the results, compared to the
traditional SVM and Decision-Tree detection [52] tech-
niques. The traditional-SVM uses the SVM classifier
directly, without applying any filtering strategy that can
cope with the effect of the resources adjustment on
the detection performance. Similarly, the Decision-Tree
detection technique employs the Decision-Tree classifica-
tion technique, without applying any filtering process. We
train the traditional-SVM and Decision-Tree classifier on
our dataset using the 10 fold cross-validation model.

Experimental results
We study in Figs. 4, 5, 6, and 7 the performance of
our framework with respect to the amount of resources
revoked from VMs. The results reveal that our frame-
work is resilient to the decrease in the VMs resources.
More specifically, Figs. 4 and 5 show respectively that the
average accuracy and attack detection rates obtained by
the proposed model at different percentages of revoked
resources (from 10 to 80%) are 97.02 and 97.4%. These
results are better than the results obtained using the
traditional-SVM (87.14% for accuracy and 89.54% for
attack detection rate) and Decision-Tree (75.44% for the

Table 6 Amount of accuracy preserved by our model when
revoking resources from VMs

Resources revoked from VMs Accuracy preserved

10% 98.79%

20% 98.28%

40% 98.08%

60% 97.18%

80% 95.67%

Average 97.60%

accuracy and 79.04% for attack detection rate). As for the
false alarms, Figs. 6 and 7 show respectively that the false
positive and false negative rates obtained using our model
at different percentages of revoked resources (from 10
to 80%) are 2.6 and 2.34%. These results are also better
than the results obtained using traditional-SVM (10.46%
for the false positive and 23.5% for the false negative) and
Decision-Tree (17.28% for the false positive and 26.68%
for the false negative).
Moreover, Figs. 8, 9, 10, and 11 study the performance

of our framework with respect to the amount of resources
granted to VMs. These results reveal that our frame-
work is also resilient to the increase in VMs resources.
Figures 8 and 9 show respectively that the average accu-
racy and attack detection rate obtained by the proposed
model at different percentages of granted resources (from
10 to 80%) are 97.36 and 97.62%. These results are bet-
ter than the results obtained using the traditional-SVM
(80.66% for accuracy and 82.36% for attack detection rate)
and Decision-Tree (75.84% for the accuracy and 77.56%
for attack detection rate). As for the false alarms, Figs. 10
and 11 show respectively that the false positive and false
negative rates achieved by the proposedmodel at different

Table 7 Amount of accuracy preserved by our model when
granting resources to VMs

Resources granted to VMs Accuracy preserved

10% 99.69%

20% 99.29%

40% 98.08%

60% 96.98%

80% 95.77%

Average 97.96%

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 16 of 18

Table 8 Kernel functions comparison using the proposed detection approach

Kernel function Performance metric

Accuracy (%) Attack detection rate (%) False positive rate (%) False negative rate (%)

Linear kernel 97.19 97.51 2.49 2.50

Multilayer percepton kernel 97.03 97.09 2.90 2.92

Quadratic kernel 97.54 97.30 2.69 2.71

Polynomial kernel 97.51 98.23 1.99 2.11

Gaussian kernel 96.98 98.05 1.94 2.09

percentages of revoked resources (from 10 to 80%) are
2.38 and 2.66%. These results are also better than the
results obtained using the traditional-SVM (17.64% for
the false positive and 11.68% for the false negative) and
Decision-Tree (22.44% for the false positive and 28.26%
for the false negative).
The reason why our model performs better than the

traditional-SVM and Decision-Tree approaches is that the
proposed model takes into account the resources adjust-
ments that occur in the VMs infrastructure. The detection
algorithm (Algorithm 2) filters (using the filter obtained
from Algorithm 1) the effect of resources adjustments in
order to make the collected data (testing dataset) cope
with the original infrastructure (on which the training was
performed) before passing it to the SVM classifier. This
is done by removing the effect of resources adjustments
(Algorithm 2, line 5-9). This is unlike the traditional-SVM
and Decision-Tree techniques, where the effect of the
resources adjustments is totally ignored. Therefore, their
accuracy for detecting DoS attacks is affected.
We calculate the percentage of accuracy that can be pre-

served using our model under changing infrastructure.
To do so, we run our model without adjustments applied
to the VMs resources. The accuracy of the detection
obtained without adjustment was 99.40%. This result is
used as a baseline to calculate the percentage of accuracy
that our model can preserve under adjustments. For this
purpose, we determine the amount of accuracy preserved
under different amounts of adjustments and calculate the
average, as in Table 6 for revoking-based adjustments
and Table 7 for granting-based adjustments. The results
show that the percentage of accuracy that can be pre-
served is 97.60% for the revoking adjustments and 97.96%
for the granting adjustments. This means that, by using
our model, the accuracy got decreased under the effect
of resources adjustments by only 1.79% for the revok-
ing adjustments and 1.43% for the granting adjustments,
which has no significant impact and can be neglected.
It should be noticed also that the SVM kernel used

in the experiments is the linear kernel. However, our
results will not significantly change if we use another
non-linear kernel (e.g., Quadratic kernel). In fact, we
tested our detection model using different kernels and

by considering different values of resources adjustment
(granting and revoking adjustments from 10 to 80%).
Table 8 shows the performance metrics obtained (the
average result has been selected) for the different non-
linear kernels. It presents the comparisons between dif-
ferent non-linear kernels using the proposed detection
model. The results show that there is no significant dif-
ference in the false positive, false negative, attack detec-
tion and accuracy rates between the different kernel
functions.

Conclusion
We present an SVM-based framework for detecting DoS
attacks in a virtualized cloud under changing infrastruc-
ture. Our solution collects some system metrics to train
the SVM classifier to be able to distinguish between
normal and malicious (i.e., a DoS attack) activities of
the VM. The hypervisor then monitors and quantifies
the effect of performing resources adjustments on the
collected data. This information is then used to main-
tain a filter of resources adjustments effect. The filter
is used as a preprocessing step prior to classification to
get rid of the noise that may show up on the collected
data, and that may considerably decrease the accuracy
of the detection. Moreover, our solution motivates VMs
to declare their current business metrics to the hypervi-
sor, to enable the hypervisor to correlate these metrics
with the actual resources load and decide if it is coher-
ent or not. This increases the possibility of identifying
compromised VMs, trying to claim and consume more
resources. Experimental results show that our model per-
forms better than the traditional-SVM and Decision-Tree
approaches in the presence of infrastructure adjustments,
in terms of false positive, false negative, attack detection
and accuracy rate. The results also show that the percent-
age of accuracy that can be preserved under resources
adjustments using our model is 97.60% for the revoking
adjustments and 97.96% for the granting adjustments. Our
results also show that the accuracy got decreased under
the effect of resources adjustments by only 1.79% for the
revoking adjustments and 1.43% for the granting adjust-
ments, which has no significant impact and can then be
neglected.

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 17 of 18

Acknowledgements
The financial support of the Natural Sciences and Engineering Research
Council of Canada is gratefully acknowledged.

Authors’ contributions
AB built the state of the art of the field, defined the objectives of this research,
did the analysis of the current cloud-based detection approaches and their
limitations. He implemented the approach presented in this paper, as well as
the experiments. MB and MD initiated and supervised this research, lead and
approved its scientific contribution, provided general input, reviewed the
article and issued his approval for the final version. All authors read and
approved the final manuscript.

Authors’ information
Adel Abusitta is a Ph.D. student in Computer Engineering at Ecole
Polytechnique de Montreal, Canada. He holds a M.Sc. degree in computer
science from the University of Jordan, Jordan. The main topics of his current
research activities are security in Cloud Computing, network security, and
authorship analysis.
Martine Bellaiche is Assistant Professor in Department of Computer and
Software engineering of Ecole Polytechnique of Montreal. She received a MSc
in Computer Science from University of Montreal in 1985 and the Ph.D in
Telecommunications from INRS in 2007. His research interests are in Network
Security with special focus on attack, in Network Sensor Security and cloud
computing security.
Michel Dagenais is professor at Ecole Polytechnique de Montreal in the
department of Computer and Software Engineering. He authored or
co-authored over one hundred scientific publications, as well as numerous
free documents and free software packages in the fields of operating systems,
distributed systems and multicore systems, in particular in the area of tracing
and monitoring Linux systems for performance analysis. Most of his research
projects are in collaboration with industry and generate free software tools
among the outcomes. The Linux Trace Toolkit next generation, developed
under his supervision, is now used throughout the world and is part of several
specialized and general purpose Linux distributions.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 10 July 2017 Accepted: 19 March 2018

References
1. Wong Q (1998) Salesforce Pushed Silicon Valley Into the Cloud.

http://www.newsfactor.com. Accessed 11 July 2016
2. Gonzales D, Kaplan JM, Saltzman E, Winkelman Z, Woods D (2017)

Cloud-trust–A security assessment model for infrastructure as a service
(IaaS) clouds. IEEE Trans Cloud Comput 5(3):523–536

3. Modi C, Patel D, Borisaniya B, Patel H, Patel A, Rajarajan M (2013) A survey
of intrusion detection techniques in cloud. J Netw Comput Appl
36(1):42–57

4. Tsai H-Y, Siebenhaar M, Miede A, Huang Y, Steinmetz R (2012) Threat as a
service? Virtualization’s impact on cloud security. IT Prof Ma 14(1):32

5. Shea R, Liu J (2012) Understanding the impact of denial of service attacks
on virtual machines. In: Proceedings of the 2012 IEEE 20th International
Workshop on Quality of Service. IEEE Press. p 27

6. Gupta S, Kumar P (2013) Vm profile based optimized network attack
pattern detection scheme for ddos attacks in cloud. In: International
Symposium on Security in Computing and Communication. Springer.
pp 255–261

7. Masood M, Anwar Z, Raza SA, Hur MA (2013) Edos armor: a cost effective
economic denial of sustainability attack mitigation framework for
e-commerce applications in cloud environments. In: Multi Topic
Conference (INMIC), 2013 16th International. IEEE. pp 37–42

8. Koduru A, Neelakantam T, et al (2013) Detection of economic denial of
sustainability using time spent on a web page in cloud. In: Cloud
Computing in Emerging Markets (CCEM), 2013 IEEE International
Conference On. IEEE. pp 1–4

9. Kwon H, Kim T, Yu SJ, Kim HK (2011) Self-similarity based lightweight
intrusion detection method for cloud computing. In: Asian Conference
on Intelligent Information and Database Systems. Springer. pp 353–362

10. (2016) Control Groups Resource Management. https://libvirt.org/cgroups.
html. Accessed 6 July 2016

11. Navratil M, Dolezelova M, Ondrejka P, Majorainova E, Prpic M,
Landmann R, Silas D (2016) Managing System Resources on Red Hat
Enterprise Linux 6. https://access.redhat.com/documentation/en-US/
Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/.
Accessed 6 July 2016

12. Meyer D, Leisch F, Hornik K (2003) The support vector machine under
test. Neurocomputing 55(1):169–186

13. Lonea AM, Popescu DE, Tianfield H (2013) Detecting ddos attacks in cloud
computing environment. Int J Comput Commun Control 8(1):70–78

14. Ficco M, Rak M (2015) Stealthy denial of service strategy in cloud
computing. IEEE Trans Cloud Comput 3(1):80–94

15. Palmieri F, Fiore U, Castiglione A (2014) A distributed approach to
network anomaly detection based on independent component analysis.
Concurrency Comput Pract Experience 26(5):1113–1129

16. Choi J, Choi C, Ko B, Kim P (2014) A method of ddos attack detection
using http packet pattern and rule engine in cloud computing
environment. Soft Comput 18(9):1697–1703

17. Jeyanthi N, Mogankumar P (2014) A virtual firewall mechanism using
army nodes to protect cloud infrastructure from ddos attacks. Cybernet
Inform Technol 14(3):71–85

18. Jeyanthi N, Iyengar N (2013) Escape-on-sight: an efficient and scalable
mechanism for escaping ddos attacks in cloud computing environment.
Cybernet Inform Technol 13(1):46–60

19. Chonka A, Abawajy J (2012) Detecting and mitigating HX-DoS attacks
against cloud web services. In: Network-Based Information Systems
(NBiS), 2012 15th International Conference on. IEEE. pp 429–434

20. Chonka A, Xiang Y, Zhou W, Bonti A (2011) Cloud security defence to
protect cloud computing against http-dos and xml-dos attacks. J Netw
Comput Appl 34(4):1097–1107

21. Wahab OA, Otrok H, Mourad A (2014) A dempster–shafer based tit-for-tat
strategy to regulate the cooperation in vanet using qos-olsr protocol.
Wirel Pers Commun 75(3):1635–1667

22. Iyengar NCSN, Ganapathy G, Mogan Kumar P, Abraham A (2014) A
multilevel thrust filtration defending mechanism against ddos attacks in
cloud computing environment. Int J Grid Utility Comput 5(4):236–248

23. Teng S, Zheng C, Zhu H, Liu D, Zhang W (2014) A cooperative intrusion
detection model for cloud computing networks. Int J Secur Appl
8(3):107–118

24. Man ND, Huh E-N (2012) A collaborative intrusion detection system
framework for cloud computing. In: Proceedings of the International
Conference on IT Convergence and Security 2011. Springer. pp 91–109

25. Singh D, Patel D, Borisaniya B, Modi C (2016) Collaborative ids framework
for cloud. Int J Netw Secur 18(4):699–709

26. Ghribi S (2016) Distributed and cooperative intrusion detection in cloud
networks. In: Proceedings of the Doctoral Symposium of the 17th
International Middleware Conference. ACM. p 7. https://doi.org/10.1145/
3009925.3009932

27. Chiba Z, Abghour N, Moussaid K, Rida M, et al (2016) A cooperative and
hybrid network intrusion detection framework in cloud computing based
on snort and optimized back propagation neural network. Procedia
Comput Sci 83:1200–1206

28. Wahab OA, Bentahar J, Otrok H, Mourad A (2017) I know you are watching
me: Stackelberg-based adaptive intrusion detection strategy for insider
attacks in the cloud. In: IEEE International Conference on Web Services
(ICWS). IEEE. pp 728–735

29. Wahab OA, Bentahar J, Otrok H, Mourad A (2017) Optimal load
distribution for the detection of vm-based ddos attacks in the cloud.
IEEE Trans Serv Comput

30. Yu S, Tian Y, Guo S, Wu DO (2014) Can we beat ddos attacks in clouds?
IEEE Trans Parallel Distributed Syst 25(9):2245–2254

31. Somani G, Johri A, Taneja M, Pyne U, Gaur M. S, Sanghi D (2015) Darac:
Ddos mitigation using ddos aware resource allocation in cloud.
In: International Conference on Information Systems Security. Springer.
pp 263–282

http://www.newsfactor.com
https://libvirt.org/cgroups.html
https://libvirt.org/cgroups.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/
https://doi.org/10.1145/3009925.3009932
https://doi.org/10.1145/3009925.3009932

Abusitta et al. Journal of Cloud Computing: Advances, Systems and Applications (2018) 7:9 Page 18 of 18

32. Desnoyers M, Dagenais MR (2006) The lttng tracer: A low impact
performance and behavior monitor for gnu/linux. In: OLS (Ottawa Linux
Symposium). Citeseer Vol. 2006. pp 209–224

33. Ezzati-Jivan N, Dagenais MR (2012) A stateful approach to generate
synthetic events from kernel traces. Adv Softw Eng 2012:6

34. Ezzati-Jivan N, Dagenais M. R (2013) A framework to compute statistics of
system parameters from very large trace files. ACM SIGOPS Oper Syst Rev
47(1):43–54

35. Heller KA, Svore KM, Keromytis AD, Stolfo SJ (2003) One class support
vector machines for detecting anomalous windows registry accesses.
In: Proc. of the Workshop on Data Mining for Computer Security. vol. 9

36. Shon T, Moon J (2007) A hybrid machine learning approach to network
anomaly detection. Inf Sci 177(18):3799–3821

37. Wahab OA, Bentahar J, Otrok H, Mourad A (2015) Misbehavior detection
framework for community-based cloud computing. In: Future Internet of
Things and Cloud (FiCloud), 2015 3rd International Conference On. IEEE.
pp 181–188

38. Wahab OA, Mourad A, Otrok H, Bentahar J (2016) Ceap: Svm-based
intelligent detection model for clustered vehicular ad hoc networks.
Expert Syst Appl 50:40–54

39. Auria L, Moro RA (2008) Support vector machines (svm) as a technique for
solvency analysis

40. Konar A, Chakraborty UK, Wang PP (2005) Supervised learning on a fuzzy
petri net. Inf Sci 172(3):397–416

41. Fine S, Scheinberg K (2001) Efficient svm training using low-rank kernel
representations. J Mach Learn Res 2:243–264

42. Tsang IW, Kwok JT, Cheung P-M (2005) Core vector machines: Fast svm
training on very large data sets. J Mach Learn Res 6:363–392

43. Dong J-X, Krzyzak A, Suen CY (2005) Fast svm training algorithm with
decomposition on very large data sets. IEEE Trans Pattern Anal Mach Intell
27(4):603–618

44. Kandula S, Katabi D, Jacob M, Berger A (2005) Botz-4-sale: Surviving
organized ddos attacks that mimic flash crowds. In: Proceedings of the
2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association. pp 287–300

45. Markus-Go (2015) BoNeSi - the DDoS Botnet Simulator. https://github.
com/Markus-Go/bonesi. Accessed 6 July 2016

46. (2016) Kernel Virtual Machine. http://www.linux-kvm.org/page/
Main_Page. Accessed 6 July 2016

47. (2007) The CAIDA DDoS Attack 2007 Dataset. http://www.caida.org/data/
passive/ddos-20070804_dataset.xml. Accessed 10 July 2016

48. Arlitt M, Jin T (1998) 1998 World Cup Web Site Access Logs. http://ita.ee.
lbl.gov/html/contrib/WorldCup.html. Accessed 10 July 2016

49. Bhatia S, Schmidt D, Mohay G, Tickle A (2014) A framework for generating
realistic traffic for distributed denial-of-service attacks and flash events.
Comput Secur 40:95–107

50. (2016) LTTng Analyses. https://github.com/lttng/lttng-analyses. Accessed
6 July 2016

51. Maji S, Berg AC, Malik J (2013) Efficient classification for additive kernel
svms. IEEE Trans Pattern Anal Mach Intell 35(1):66–77

52. Kohavi R, Quinlan JR (2002) Data mining tasks and methods: Classification:
decision-tree discovery. In: Handbook of Data Mining and Knowledge
Discovery. Oxford University Press, Inc. pp 267–276

https://github.com/Markus-Go/bonesi
https://github.com/Markus-Go/bonesi
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://www.caida.org/data/passive/ddos-20070804_dataset.xml
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://github.com/lttng/lttng-analyses

	Abstract
	Keywords

	Introduction
	Motivating example
	Our proposed solution
	Paper outline

	Related work
	The proposed framework
	Data analysis
	Trace abstractor
	Preprocessing and training modules
	Resources adjustment analysis
	The effect of resources adjustment.

	Detection component
	Detection algorithm
	Verification and resources allocation

	Security analysis of the proposed framework
	Flash events
	DoS attacks
	Robustness against compromised VMs

	Experimental results and analysis
	Experimental setup
	Training phase
	Testing phase
	Experimental results

	Conclusion
	Acknowledgements
	Authors' contributions
	Authors' information
	Competing interests
	Publisher's Note
	References

