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Abstract

Application deployment is a crucial operation for modern cloud providers. The ability to dynamically allocate
resources and deploy a new application instance based on a user-provided description in a fully automated manner is
of greatimportance for the cloud users as it facilitates the generation of fully reproducible application environments
with minimum effort. However, most modern deployment solutions do not consider the error-prone nature of the
cloud: Network glitches, bad synchronization between different services and other software or infrastructure related
failures with transient characteristics are frequently encountered. Even if these failures may be tolerable during an
application’s lifetime, during the deployment phase they can cause severe errors and lead it to failure. In order to
tackle this challenge, in this work we propose AURA, an open source system that enables cloud application
deployment with transient failure recovery capabilities. AURA formulates the application deployment as a Directed
Acyclic Graph. Whenever a transient failure occurs, it traverses the graph, identifies the parts of it that failed and
re-executes the respective scripts, based on the fact that when the transient failure disappears the script execution
will succeed. Moreover, in order to guarantee that each script execution is idempotent, AURA adopts a lightweight
filesystem snapshot mechanism that aims at canceling the side effects of the failed scripts. Our thorough evaluation
indicated that AURA is capable of deploying diverse real-world applications to environments exhibiting high error
probabilities, introducing a minimal time overhead, proportional to the failure probability of the deployment scripts.
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Introduction

The advent of the Cloud computing [1] era has been a key
enabler for the migration of many applications from tra-
ditional, on-premise servers to public clouds, in order to
fully exploit the advantages of the latter: Seemingly infi-
nite resources, billed in a pay-as-you-go manner allow the
cloud users to not only scale their applications, but also
do so in a cost-effective way. The ability to dynamically
allocate and utilize new virtualized resources has liber-
ated the cloud users from the burden of administering the
physical infrastructure, since the cloud provider itself is
responsible for maintenance and any administrative tasks.
The dynamic nature of the resources, though, gave birth
to new requirements: Applications need to be deployed
and utilize the resources in an automated manner, without
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requiring human intervention. This concept is the corner-
stone behind automation, i.e., the ability to run complex
tasks that entail resource provisioning and software con-
figuration in a fully automated manner. Automation is an
integral part of the Cloud, that helped traditional system
administration principles to evolve in order to consider
dynamic infrastructures and virtualized resources [2, 3].
Especially during the application deployment phase,
automation is essential in order to guarantee that different
software components such as the cloud’s software stack,
the Virtual Machines (VMs), external services, etc., will
cooperate in a synchronous manner so as to successfully
deploy a given application to the cloud. This challeng-
ing task has been both an active research field [4-11]
and the objective of many production systems, operated
by modern cloud providers [12-15]. These approaches
differ in various aspects: Some of them specialize to spe-
cific applications (e.g., Openstack Sahara [13] focuses on
deploying data processing systems to Openstack) whereas
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others [7, 16] support an application description language
and allow the user to define the application structure.
Moreover, some tools operate on specific providers (e.g.,
[14]), whereas other retain a cloud-agnostic profile and
abstract the provider specific details from the applica-
tion description (e.g., [17]). In spite of their differences,
these systems share the same objective: They expect an
application description along with any other runtime con-
figuration option and they are responsible to allocate new
resources, provision them and configure a new application
instance in a fully automated manner.

However, achieving a fully automated application
deployment assumes that all the components partici-
pating to it (e.g., cloud compute, storage and metadata
services, Virtual Machines (VMs), external services, etc.)
function in a coordinated and failure-free manner. Even
if coordination between different modules is achievable,
failures are not rare: Network glitches, request timeouts
due to delays in VM bootstrapping, etc., are commonly
encountered. Moreover, even the most popular cloud
providers, often encounter severe infrastructure failures
[18, 19] that, according to their severity, may lead to ser-
vice failures for considerable amount of time (spanning
from seconds up to several minutes). A key characteris-
tic of this type of errors is their transient nature: They
appear for a short time period and vanish without any
obvious, from the application’s viewpoint, reason. In most
cases, the appearance of such errors may be tolerable.
For example, during a network glitch, the application may
lose some requests, but after the glitch disappears the
requests can be easily repeated and the application will be
completely functional again. However, during the sensitive
application deployment phase, such glitches may lead an
entire deployment to failure, requiring human interven-
tion either to terminate the allocated VM instances or to
manually fix the failed deployment parts.

To tackle this challenge, a crucial observation can be
made: When such a transient failure occurs during the
deployment phase, in many cases, one only needs to
repeat the deployment scripts that failed in order to over-
come it. For example, take the case of installing new
software packages to a newly allocated VM: If one wants
to download a software package (e.g., through apt) and a
network glitch occurs, all one has to do in order to over-
come this error is to repeat the download command until
the glitch vanishes. Evidently, the transient nature implies
that the cloud user does not have control over it. Hence, an
optimistic error-recovery policy would aim at repeating
the script execution until the error disappears.

Given this crucial observation, in this work we pro-
pose a cloud application deployment methodology that
aims at identifying the parts of an application deploy-
ment that failed due to a transient failure and repeat
them until the deployment is successfully accomplished.
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Specifically, building upon previous work [20, 21], we pro-
pose a deployment model, perfectly suited for distributed
applications with multiple software components deployed
to different VMs. The application description is serial-
ized to a Directed Acyclic Graph (DAG) that describes the
dependencies between different application modules. The
application deployment effectively leads to the traversal of
the dependency DAG in a specific order, in order to satisfy
the module dependencies. In case of transient errors, our
methodology first examines the DAG and isolates the part
of it that failed and, then, executes the failed scripts until
the transient errors vanish. In order to ensure that the
re-executed deployment parts (i.e., deployment scripts)
always have the same effects (i.e., they are idempotent), we
adopt a lightweight filesystem snapshot mechanism that
ensures that each configuration script can be re-executed
as many times as required, until the error vanishes.

The contributions of this work can be, thus, summa-
rized as follows:

e We propose a powerful deployment model, which is
capable of efficiently expressing the configuration
actions that need to take place between different
application modules, in the form of a Directed
Acyclic Graph.

e Using this model, we formulate the application
deployment problem as a DAG traversal problem and
suggest an efficient algorithm for identifying the
scripts that failed, along with their respective
dependencies.

® We suggest a lightweight filesystem snapshot
mechanism in order to ensure that the configuration
scripts are idempotent and, hence, can be
re-executed as many times as needed.

e We offer AURA, an open-source Python prototype of
the proposed methodology [22], which is capable of
issuing application deployments to Openstack
instances.

e Finally, we provide illustrative examples of our
deployment model for various popular real-world
applications and thoroughly evaluate the
performance of our prototype through deploying
them in a private Openstack cluster.

Our evaluation demonstrated that the proposed approach
is capable of deploying diverse applications with different
structures in cloud environments that exhibit high error
probabilities (reaching up to 0.8), while inserting mini-
mal performance overhead for ensuring the deployment
script idempotency. Moreover, the efficiency of the pro-
posed approach is showcased to be increasing with the
application structure complexity, as more complex appli-
cations are more susceptible to transient failures since
they occupy more resources.
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Related work

Since the emergence of the cloud computing era, the
challenge of fully automated software configuration and
resource provisioning has attracted a lot of interest, both
by the academia and the industry. The importance of
automation was diagnosed early and, thus, many solutions
have been proposed and are currently offered to the cloud
users. We now briefly discuss the distinct approaches and
outline their properties.

Industrial systems: There exist several tools and systems
offered by modern cloud providers to their users that aim
at providing fully automated application deployment. In
the Openstack ecosystem, Heat [12] is an orchestration
system which aims at managing an application through-
out its lifecycle. The users submit application descriptions
(named HOT, i.e., Heat Orchestration Template), where
they define: The application modules, the resources each
module will occupy, the dependencies between different
modules (if any) and any other runtime parameter (e.g.,
name of the SSH key to use, flavor id, etc.). In order
to maximize reusability, Heat templates can be parame-
terized, abstracting the installation-specific details (e.g.,
image/flavor IDs, key names, etc.) from the application
description. Sahara [13] is a different deployment tool for
Openstack that specializes in provisioning Data Process-
ing clusters, i.e., Hadoop and Spark clusters. Sahara uses
Heat as the deployment engine and differs from it as it
enables the users to provide Hadoop-specific deployment
parameters (e.g., HDFS replication size, number of slaves,
etc.) and applies them to the cluster. The AWS coun-
terpart of Openstack Heat is the AWS CloudFormation
[15]. Similar to Heat, CloudFormation receives templates
that describe what resources will be utilized and by which
components. The cloud user can then define a set of
parameters (keys, image ids, etc.) and launch the deploy-
ment. AWS Elastic Beanstalk [23] specializes in deploying
web applications to the AWS cloud, hiding the infrastruc-
ture internals and automating the provisioning of load
balancers, application-level monitoring, etc.

The aforementioned systems are implemented and
offered as components of the cloud software stacks they
operate on. However, there exist many systems that oper-
ate outside the target cloud and are capable of deploying
to different providers. Vagrant [17] is an open source
tool for building and maintaining portable virtual soft-
ware development environments. It is mainly used dur-
ing the development phase of a system which will be
deployed to a cloud provider and its main objective is
to simplify the software configuration process. Juju [14]
is another open source system, developed and main-
tained by Canonical that works on top of Ubuntu images.
According to Juju, each application comprise of building
blocks named Charms. When deploying an application,
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each Charm is deployed independently and, finally, the
different Charms are unified through passing parameters
to each other. Finally, CloudFoundry [24] and Heroku [25]
are two systems that focus on providing a more platform-
oriented view of the cloud, i.e., Platform-as-a-Service
(PaaS) semantics on top of Infrastructure-as-a-Service
(IaaS) clouds. The difference between them and the pre-
vious solutions is that both CloudFoundry and Heroku
deploy applications to different providers but their objec-
tive is to provide access to the platform level, rather
than the VM level, decoupling this way the underlying
virtualized hardware from the deployed application.

All the aforementioned systems generate a dynamic
landscape of deployment tools, with diverse characteris-
tics and different strengths. Nevertheless, none of these
tools considers the dynamic and, frequently, error-prone
nature of the cloud, as none of them provides a mech-
anism of overcoming transient errors in a fully auto-
mated manner, as they require human intervention either
to resume the deployment or trigger a new one. For
example, CloudFormation’s official documentation sug-
gests to manually continue rolling back an update when
a Resource is not stabilized due to an exceeded time-
out period [26]. A similar suggestion is also made for the
Elastic Load Balancing component, extensively utilized
both by CloudFormation and Beanstalk instances: In case
where a delay in certificate propagation is encountered,
the users are advised to wait for some minutes and retry
to setup a new load balancer [27].

Research approaches: The complexity on the structure
of modern applications comprising different software
modules has, inevitably, complicated their deployment to
cloud infrastructures and has been the center of research
from different works. NPACI Rocks [8] attempts to auto-
mate the provisioning of high-performance computing
clusters in order to simplify software installation and ver-
sion tracking. Although this approach was suggested prior
to the wide adoption of the cloud and focuses on the HPC
world, it is one of the first works that discusses the prob-
lem of resource provisioning and software configuration
at a big scale and proposes a tool set in order to automate
common tasks. Wrangler [7] is a generic deployment sys-
tem that receives application descriptions in XML format
and deploys them to different cloud providers (Ama-
zon EC2, OpenNebula and Eucalyptus). Each description
comprises different plugins, i.e., deployment scripts, exe-
cuted on different VMs in order to install a particular
software component, e.g., a monitoring plugin, a database
plugin, etc. Antonescu et al. in [11] propose a novel
specification language and architecture for dynamically
managing distributed software and cloud infrastructure.
The application is now expressed as a set of services each
of which is adjusted (dynamically started and stopped)
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according to the achieved SLAs and the user-defined
constraints. Katsuno et al. in [6] study the problem of
deployment parallelization in multi-module applications.
Specifically, the authors attempt to detect the dependen-
cies between different modules through the extension of
the Chef [28] configuration tool and execute the deploy-
ment scripts in a parallel fashion. Finally, Pegasus [9] is
another deployment system that specializes to deploying
scientific workloads. All the discussed systems, attempt to
either achieve complete automation or speedup applica-
tion deployment, ignoring the frequently unstable nature
of the cloud resources, in contrast to our work that aims
both at accelerating deployment and overcoming transient
cloud failures.

Interestingly, the problem of failure overcoming has
been the center of interest for many research works lately.
Liu et al. in [29] provide an interesting formulation where
an application deployment is viewed as a database trans-
action and the target is to implement the necessary mech-
anisms to achieve the ACID properties of the latter. To this
end, the authors assume that each deployment script must
be accompanied by an undo script that reverts the changes
of the former. This way, in case of errors, any unwanted
side effects are nullified. Note that, although this is an
interesting formulation, the hypothesis that each script is
accompanied by another script that executes undo actions
is rather strong and, in many cases, impossible. Yamato
et al in [10] diagnosed some insufficiencies of the state
of the art Heat and CloudFormation deployment tools
and proposed a methodology through which Heat Tem-
plates can be shared among users, extracted from existing
deployments and trigger resource updates. The authors of
this work also diagnosed the problem of partial deploy-
ments due to transient errors and describe a rollback
mechanism in order to delete resource generated due to
failed deployments. Although deletion of stale resources
is a positive step, there exists much room for an auto-
mated failure overcoming mechanism. Hummer et al. in
[5] highlight the necessity of achieving idempotency in
production systems, for cases where a new software ver-
sion is released. In cases where one needs to return to a
previous, stable version it is crucial for the deployment
system to rapidly do the rollback and converge to a healthy
system state. To this end, this paper focuses on the theo-
retical model that guarantees theoretical convergence to a
healthy deployment state. Rather than wandering to the —
possibly enormous — state space, our approach adopts a
lightweight filesystem snapshot mechanism that guaran-
tees fast convergence. Finally, the work in [4] shares a
similar solution and extends the previous work using a
different configuration management language.

Generic deployment systems: Although the prevalence
of the Cloud paradigm accentuated the importance of
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fully automated software configuration, the problem is
long discussed prior to the wide adoption of the Cloud
and many solutions that operate on the resources per
se (either virtualized or not) have been proposed. These
solutions do not consider resource allocation. Neverthe-
less, the problems of synchronization and dependency
resolution are also addressed by them and resemble the
problem addressed by our work.

CFEngine [30] is one of the first systems that was pro-
posed to deal with automated software configuration. It
introduced the idea of convergent operators: Each opera-
tion should have a fixed-point nature: Instead of explain-
ing what needs to be done, a user explains the desired
state. CFEngine is, then, responsible to perform the nec-
essary actions to reach it. Chef [28] is a popular soft-
ware configuration system, adopted by Facebook. The
deployment scripts (recipes) are written in a Ruby-based
domain-specific language. Multiple recipes are organized
in cookbooks which describe the desired state of a set of
resources. Puppet [31] is another widely used software
configuration system used by Twitter and Mozilla. Simi-
larly to CFEngine, Puppet adopts a declarative syntax and
users describe the resources and the state that should be
reached when the deployment is over. It is released in
two flavors: Enterprise Puppet, that supports coordina-
tion between different hosts and Open Source Puppet that
comes with a limited number of features.

Unlike the rest of the systems proposed so far, Ansible
[32] follows an agentless architecture. Instead of running
daemon services inside the machines, Ansible utilizes
plain SSH connections in order to run the deployment
scripts, configure software, run services, etc. Although
its architecture supports coordination between differ-
ent machines, Ansible users need to carefully design the
deployment scripts (i.e., playbooks) in order to achieve
idempotency. Finally, Salt [33] (or SaltStack Platform) is
a software configuration and remote execution platform
written in Python. Similar to Ansible, Salt also uses an
agentless architecture; recent Salt versions also support
daemon processes inside the target machines in order
to accelerate deployment. It is highly modular as a user
can customize the behavior of a deployment workflow
through extending the default functionality using Python.

Although these tools are extensively utilized in mod-
ern data centers and cloud infrastructures, none of them
offers a built-in support of coordination between soft-
ware modules that span to multiple hosts, as our work.
This is supported either on premium versions of them or
through adopting community-based plugins. Moreover,
although these tools attempt to repeat the execution of
configuration scripts in order to reach convergence, none
of them guarantees idempotence to the extent our work
does, i.e., full idempotence to file system related resources.
As all of these tools do support the execution of possibly
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non-idempotent calls (e.g., through the execute- calls
in Chef) that cannot be undone or leave the burden of
writing idempotent scripts to the users (Ansible), our
work decouples idempotency from the ability of undoing
actions and achieves a greater level of decoupling scripts
from their side effects. Finally, since our work is based
on executing simple bash scripts in the correct order to
different machines, it is much easier to exploit existing
deployment scripts written in bash in order to compile
new application descriptions and eschew the learning
curve of a new language that reflects the target deploy-
ment states.

Application deployment

In this section, a thorough description of the proposed
methodology is provided. We, first, provide the archi-
tecture of the system we implemented. Next, we discuss
an efficient deployment model, through which one can
describe the deployment of any arbitrary application. We,
then, examine how this model is utilized for the identifica-
tion and recovery from transient cloud failures and, finally,
we examine the mechanism through which our prototype
guarantees the idempotency of each deployment part.

Architecture

We begin our discussion through introducing the archi-
tecture of the system that implements the deployment
methodology this work proposes. Our prototype is named
AURA! and Fig. 1 depicts its architecture. AURA com-
prises two components: The AURA Master and the AURA
Executor(s). AURA Master is deployed to a dedicated host
(VM or physical host) and consists of a set of submod-
ules that coordinate the deployment process and orches-
trate error recovery. Specifically, the Web Ul and REST
API submodules export AURA’s functionality to its users.
Through them, an authenticated AURA user can submit
new application descriptions, launch new deployments,
query a deployment’s state, obtain monitoring metrics and
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terminate a deployment. The Provisioner is responsible to
contact the underlying Openstack cluster in order to allo-
cate the necessary resources. The Scheduler is the core
component that coordinates the deployment process and
orchestrates failure overcoming. The application descrip-
tions, the deployment instances, the user configuration
options and any other relative information is persisted to a
database inside the AURA Master host and it is accessible
by the Scheduler.

AURA Executors are lightweight processes, deployed
inside the VMs which are allocated to host the appli-
cation and they are responsible to execute the deploy-
ment scripts of the respective modules they are deployed
to. The Executors communicate with the AURA Mas-
ter through a Queue that acts as the communication
channel between the different components. In case of
a transient error, the Scheduler identifies which deploy-
ment parts need to be replayed and transmits messages
to the Executors that, in turn, cancel any unwanted
side effect a previous script execution left. Note that,
although the Queue is depicted as an external module in
order to increase the figure’s legibility, it also belongs to
AURA Master, in the sense that it is statically deployed
in the same AURA Master host and Executors from dif-
ferent deployments utilize the same queue to exchange
messages.

Before analyzing AURA’s functionality is detail, let us
provide the key assumptions that drove AURA’s design.
First of all, the errors that emerge have a transient nature.
This means that they are only present for a short period of
time and vanish without requiring any manual interven-
tion. Second, we assume that the communication channel
between the Executors and the Master is reliable, i.e., in
case where an Executor sends a message to the Queue, this
message always reaches its destination. Third, we assume
that the AURA Master is always available, i.e., it may
not fail. Given the above, we now proceed with describ-
ing AURA’s deployment model and mechanisms through
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AURA Execuytar
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Scheduler AURA Executor
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Fig. 1 AURA Architecture
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which it achieves error recovery and deployment script
idempotence.

Deployment model

Assume a typical three-tier application consisting of the
following modules: A Web Server (rendering and serv-
ing Web Pages), an Application Server (implementing the
business logic) and a Database Server (that persists the
application’s data). For simplicity’s sake, we assume that
each module runs in a dedicated server and the applica-
tion will be deployed in a cloud provider. If the application
deployment occurred manually, one should create three
VMs and connect (e.g., via SSH) to them in order to exe-
cute scripts that take care of the configuration of the soft-
ware modules. In many cases, the scripts need input that
is not available prior to the resource allocation. For exam-
ple, the Application Server needs to know the IP address
and the credentials of the Database Server in order to be
able to establish a connection to it and function properly.
In such cases, the administrator should manually provide
this dynamic information.

The automation of the deployment and configuration
process requires the transmission of such dynamic infor-
mation in a fully automated manner. For example, upon
the completion of the configuration of the Database
Server, a message can be sent to the Application Server
containing the IP address and the credentials of the for-
mer, through a communication channel. Such a channel
can be implemented via a simple queueing mechanism.
Each module publishes information needed by the rest
of the modules and subscribes to queues, consuming
messages produced by other modules. The deployment
scripts are executed up to a point where they expect
input from another module. At these points, they block
until the expected input is received, i.e., a message is
sent from another module and it is successfully trans-
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mitted to the blocked module. The message transmission
is equivalent to posting a new message into the queue
(from the sender’s perspective) and consuming this mes-
sage from the queue (from the receiver’s perspective). In
cases that no input is received (after the expiration of a
fixed time threshold), the error recovery mechanism is
triggered.

Albeit the content of the messages exchanged between
two modules depends on the executed deployment scripts
and the type of the modules (e.g., passwords, SSH keys,
static information regarding the environment a module
is deployed to, etc.), each message belongs to one of
the following three categories: Static, Dynamic and ACK
messages. Static messages are considered the ones that
contain information that does not change when a deploy-
ment script is re-executed (e.g., VM’s IP address, amount
of memory, number of cores, etc.). Dynamic messages
contain information that change any time a deployment
script is re-executed. For example, if a script running on a
Database Server generates a random password and trans-
mits it to the Web Server, in case of a script re-execution a
new password will be generated and a new message will be
sent (containing a different password). Finally, ACK mes-
sages assist synchronization of the deployment between
different software modules and are used to enforce a script
execution in a particular order as they do not contain any
useful information.

To provide a better illustration of the deployment
process, consider Fig. 2. In this Figure, a deployment
process between two software modules named (1) and
(2) is depicted. The vertical direction represents the
elapsed time and the horizontal arrows represent message
exchange?. At first, both (1) and (2) begin the deployment
process until points A and A’ are reached respectively.
When (1) reaches A, it sends a message to (2) and pro-
ceeds. On the other side, (2) blocks at point A’ until the

v

A G —p. A
[0 . .
£ . .

B : B

Fig. 2 Message exchange between different software modules and circular dependencies
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message sent from (1) arrives and, upon arrival, consumes
it and continues with the rest of the script. If the message
does not arrive, then the recovery procedure is triggered,
as described in the next section.

The functionality of the above message exchange mech-
anism resembles the functionality of a UNIX pipe: Mes-
sage receiving is blocking for the receiver end, whereas
the sender module posts something to the channel and
proceeds instantly. In some cases, though, blocking mes-
sage transmissions may be desired. For example, take the
case of two modules negotiating about a value, e.g., a ran-
domly generated password assigned to the root account
of the Database Server. Assume that module (1) (the
Application Server) decides on the value and sends it
to module (2) (the Database Server). Module (1) must
ensure that the password is set, prior to trying to connect
to the database. To this end, (2) can send an acknowl-
edgment as depicted between points B and B'. In this
context, the message exchange protocol can also func-
tion as a synchronization mechanism. This scheme rep-
resents a dependency graph between the application’s
modules, since each incoming horizontal edge (e.g., the
one entering at point A’) declares that the execution of a
configuration script depends on the correct execution of
another.

Note that, schemes like the one depicted in Fig. 2
present a circular dependency, since both modules (1) and
(2) depend on each other, but on different time steps.
This feature enhances the expressiveness of the proposed
deployment model, as one can easily describe extremely
complex operations between different modules, which
depend on each other in a circular manner. Various state-
of-the-art deployment mechanisms do not handle this cir-
cularity (e.g., Heat [12], CloudFormation [15]) since they
lack the concept of time during the configuration pro-
cess and, hence, forbid their users to declare dependencies
that create loops. In our view, this circularity naturally
occurs to a wealth of modern cloud applications, that
comprise many modules deployed to different VMs and,
hence, the prohibition of such loops leads to application
descriptions that rely on “hacks” to work. On the other
side, the allowance of circular dependencies leaves room
for application descriptions that contain deadlocks, i.e.,
pathological cases where each module waits for another
and the deployment blocks forever. This problem is out-
side the scope of our work; it is the user’s responsibility to
generate correct, deadlock-free application descriptions
that, if no failures occur, reach to termination.

Error recovery

We now describe the mechanism through which the
deployment errors are identified. During the deployment
process, a module instance may send a message to another
module. This message may contain information needed
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by the latter module in order to proceed with its deploy-
ment, or it could just be a synchronization point. In any
case, the second module blocks the deployment execu-
tion until the message arrives, whereas the first module
sends its message and proceeds with the execution of
its deployment script. In the case of an error, a mod-
ule will not be able to send a message and the receiver
will remain blocked. To this end, we set a timeout period
that, if exceeded, the waiting module sends a message to
the AURA Master informing it that a message has been
missed and a possible error might have occurred. From
that point on, the error recovery mechanism takes con-
trol, evaluates whether an error has, indeed, occurred or
the running scripts need more time to finish. In the former
case, the error is evaluated, as we will shortly describe,
and the necessary actions are performed in order for the
deployment to be restored. The selection of an appropri-
ate timeout period is not trivial. While smaller thresholds
may trigger an unnecessary large number of health checks
in cases where the deployment scripts need much time to
complete, larger ones make our approach reacting slower
to errors. The default timeout period used by AURA
equals to 1 min. Nevertheless, if the users are knowledge-
able about the real deployment time of their application,
they can further optimize it. In the experimental eval-
uation, we provide a rule of thumb that facilitates with
this choice. Finally, when a module’s configuration suc-
cessfully terminates, it reports its terminal state to AURA
Master; the entire deployment is considered successfully
finished when all software modules have successfully been
deployed.

Upon the identification of a (possible) failure, the error
recovery mechanism is triggered. The error recovery
process aims at overcoming the transient cloud failure
encountered during the deployment and is based on the
repetition of the execution of scripts/actions which led
the system to failure. In order to identify the parts of the
deployment that need to be re-executed, AURA needs to
be aware of the dependencies that exist between differ-
ent deployment scripts. These dependencies can be easily
resolved, when considering that the executions of the
scripts and the message exchange between different mod-
ules (as presented in Fig. 2) constitute a graph (referred
as the deployment graph henceforth) that express the
order with which different actions must take place. For
example, consider the graph presented in Fig. 3, that
presents the deployment graph of a Wordpress applica-
tion comprising a Web Server and a Database Server.
The graph nodes represent the states of the deploy-
ment, the solid edges represent a script execution and the
dotted edges represent a message exchange. The exam-
ination of the deployment graph indicates that the exe-
cution of, e.g., the web-server/3 script depends on
the execution of two other scripts: web-server/2 and
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Fig. 3 Wordpress deployment graph with 2 Web Servers and 1 Database Server

db-server/3 (that sends an ACK message). In the gen-
eral case, if one wants to identify the dependencies of any
script, one needs to traverse the graph in reverse edge
direction.

Having defined the methodology used to identify the
dependencies between different deployment scripts, we
can now formally describe the Error Recovery procedure,
as presented in Algorithm 1. The algorithm accepts two
parameters: A deployment graph T (as the one depicted
in Fig. 3) and the id of a failed node n. The algorithm
traverses T in a Breadth-First order beginning from the
failed node and traversing the graph in opposite edge
direction. The goal of the algorithm is to identify a list of
nodes that have been successfully reached by the deploy-
ment. Starting from the node that triggered the Error
Recovery, the algorithm retrieves all the node’s depen-
dencies (depends function). For example, if the failed
node is C’, the depends function returns the nodes
B’ and D. The failed function checks the respective
Executor’s state and returns frue if the Executor reports
that the intermediate state has not been reached. For
example, if D has not been reached then failed (D)
returns true and D is placed to the failed list in order
to be later examined. If B’ is successfully reached, then
B’ is placed in the healthy list and its dependen-
cies are not examined. This procedure is iterated until
all failed nodes are identified. Using this healthy list,
the AURA Master contacts the respective Executor for

Algorithm 1 Error Recovery Algorithm

Require: deployment graph T, failed node n
Ensure: list of healthy nodes healthy
1: failed < {n}
2 healthy <
3: while failed # ¢ do
4 v = pop(failed)
5. for ¢t edepends(7,v) do
6 if failed(¢) then
7: failed < failed U {t}
8 else
9 healthy < healthy U {t}
10: end if
11:  end for
12: end while
13: return healthy

each node and instructs them to resume their execu-
tion from their last successfully reached healthy state. In
the previous example, if we assume that C was success-
ful, then the db-server Executor is instructed to repeat
db-server/3.

It should not be overlooked, that when certain parts
of the deployment graph are re-executed, the replayed
scripts may produce new or require to consume older
messages previously transmitted by other modules. In
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case where a replayed script needs to consume older mes-
sages previously sent by other modules, AURA keeps track
of all the messages and forwards the ones required by a
replayed script. What happens, though, when a replayed
script produces new messages? In these cases, AURA’s
behavior is affected by the type of the message: If the new
message is of type Static or ACK, the message is sent by
the replayed script and ignored by AURA’s Queue mod-
ule. Since both message types are not affected by a script
re-execution, there is no need to propagate the new mes-
sages to other, healthy deployment parts. However, when
a Dynamic message is sent, the recipient module need
to repeat the configuration since the receiving informa-
tion changed. For example, if a Database Server script
re-generated a new password and sent it to a Web Server,
the latter needs to be reconfigured in order to reflect the
updates. It is, now, evident, why AURA implements dif-
ferent message types and how these affect error-recovery.
Through this mechanism, AURA’s user has the liberty to
define the message types of the deployment scripts and
affect the algorithm’s behavior.

Finally, before proceeding to the examination of the
idempotency enforcement mechanism, we should not
overlook that since different deployment parts run in
parallel, race conditions between different modules may
be encountered. For example, take the case where one
module broadcasts a health-check request, and while
the master runs Algorithm 1, another module broad-
casts a new request. Since parallel algorithm executions
may lead to contradicting actions (i.e., different healthy
sets), we need to ensure that the algorithm executions
are properly synchronized. To this end, each health-check
request is placed to a FIFO queue and examined one at
a time: The first health-check request is examined by the
master, which runs Algorithm 1 and informs the failed
modules about the necessary actions. Subsequently, the
next health-check request is examined, Algorithm 1 runs
again, but now the previously failed modules are in an
“Executing” state. If the new health-check request was
issued for another module (i.e., not one of the mod-
ules that failed in the previous Algorithm execution),
then this module is resumed. In any other case, the
failing module is already in an “Executing” state and,
hence, the health-check request is ignored. In essence,
the serialization of both the health-check requests and
the algorithm’s executions, ensure that the actions tak-
ing place for resuming the failed deployment parts leave
the deployment in consistent states and eschew race
conditions.

Idempotency

The idea of script re-execution when a deployment fail-
ure occurs, is only effective when two important pre-
conditions are met: (a) the failures are transient and
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(b) if a script is executed multiple times it always
leads the deployment into the same state, ie., it is
idempotent. In this, section we discuss these precondi-
tions and describe how are these enforced through our
approach.

First, a failure is called “transient” when caused by a
cloud service and was encountered for a short period
of time. Network glitches, routers unavailability due to
a host reboot and network packet loss are typical exam-
ples of such failures caused by the cloud platform but, in
most cases, they are only observed for a short period of
time (seconds or a few minutes) and when disappeared
the infrastructure is completely functional. Various works
study those types of failures (e.g., [34]) and attribute them
to the complexity of the cloud software and hardware
stacks which presents strong correlations between seem-
ingly independent cloud components [35]. Although most
cloud providers protect their customers from such fail-
ures through their SLAs [36], they openly discuss them
and provide instruction for failures caused by sporadic
host maintenance tasks [37] and various other reasons
[38]. Since the cloud environment is so dynamic and the
automation demanded by the cloud orchestration tools
requires the coordination of different parties, script re-
execution is suggested on the basis that such transient fail-
ures will eventually disappear and the script will become
effective.

However, in the general case, if a script is executed mul-
tiple times it will not always have the same effect. For
example, take the case of a simple script that reads a spe-
cific file from the filesystem and deletes it. The script can
only be executed exactly once: The second time it will
be executed it will fail, since the file is no longer avail-
able. This failure is caused by the side effects (the file
deletion) of the script execution, which lead the deploy-
ment to a state in which the same execution cannot be
repeated.

In order to overcome this challenge, we employ a
lightweight filesystem snapshot mechanism, that aims at
persisting the filesystem state prior to each script execu-
tion and, in case of failure, revert to it, in order to cancel
any changes committed by the failed script. Filesystem
snapshotting is a widely researched topic in the Operat-
ing Systems field [39, 40], and it is commonly used for
backups, versioning, etc. The mechanics behind the snap-
shot implementation differs among various filesystems:
A straightforward implementation requires exhaustively
copying the entire VM filesystem to a secure place (and
copying it back during the revert action), whereas more
sufficient approaches rely on layering or copy-on-write
techniques. The huge overhead of copying the entire
filesystem lead us to favor the latter techniques. To this
end, we implemented two different snapshot mechanisms,
using two different widely popular filesystems: AUFS [41],
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that relies on layering and BTRFS [39] that relies on
copy-on-write.

AUFS is one of the most popular layered filesystems
that rely on union mounting. The main idea behind union
mount is that a set of directories are mounted with a spe-
cific order and the final filesystem is the union of the
files contained to each distinct directory. Whenever one
wants to read a file, the uppermost layers are scanned
first and, if the file is not found, the search is contin-
ued to the bottom layers. Each layer may be mounted
with different permissions; usually, the topmost layer is
mounted with read-write access and the rest of the lay-
ers are mounted with read-only access. When a write
operation takes place, the updates are only written to
the topmost, read-write layer, keeping the rest of the
layers intact. The same happens when deleting a file:
Instead of physically removing the file from its layer,
a new special file is generated, demonstrating that the
target file is not available. This mechanism inherently
supports filesystem snapshots: Prior to each script exe-
cution, a new layer is mounted on top of the others. If
the script fails, then the newly allocated layer is removed
and, hence, all the scripts’ side-effects are canceled. In
different case, new layers are appended on top of the
existing ones.

BTRFS, on the other hand, is a much newer and promis-
ing filesystem that relies on copy-on-write for snapshot-
ting. It supports the concept of volume, which acts as an
endpoint used by the OS to mount it to the root filesys-
tem. Snapshotting occurs on a per-volume basis: One can
create a snapshot, which represents a state of a volume.
When something changes (e.g., new files are created/up-
dated/deleted), BTRFS only creates the inodes that are
updated, minimizing the number of filesystem structures
which are updated. The main difference between BTRFS
and AUFS is that the latter works on a file level, i.e., when
a file is updated, the entire file is replicated to the top-
most layer, whereas the former works on a block level,
i.e., only the filesystem blocks which are affected are repli-
cated. On the other side, AUFS is more generic, since it
can be implemented on top of other filesystems, whereas
BTRES is more restrictive since the application data must
be persisted to a BTRFS partition. In the experimental
evaluation, we continue the discussion for their differ-
ences and evaluate their impact to the efficiency of our
approach.

Finally, we should note that the discussion around idem-
potency, is only limited to filesystem related resources
because the configuration process of most applications
usually relates to modifying configuration files. We shall
not overlook, though, that modern applications may
demand idempotency to other resources, as well: The
memory state of a module, for example, cannot be reset
when a script need to be re-executed. This is an interesting
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extension of our approach which will be addressed in the
future.

Implementation aspects

Upon presenting AURA’s architecture and describ-
ing its main functionality, we now wish to extend
the discussion to specific implementation aspects of
the proposed system. Our analysis comprises two
dimensions. We first introduce two optimizations that
boost AURA’s applicability and, subsequently, discuss
the technical means through which the proposed
system approaches the concepts of Portability and
Reusability.

Optimizations

We now provide some optimizations that were imple-
mented to enhance AURA's applicability. So far, we have
made the assumption that there exists a one-to-one map-
ping between application modules and VMs, i.e., each
module (e.g., (1) of Fig. 2) is deployed to a dedicated
VM. Bearing in mind, though, that modern distributed
applications, inherently deployed to cloud environments,
rely on deploying the same software modules to more
than one VMs (e.g., HDFS clusters [42] comprise many
datanodes), this assumption is rather restrictive. To this
end, AURA’s implementation supports augmenting appli-
cation description with an extra deployment parameter
that refers to each module’smultiplicity. This means
that prior to deploying, a user can define a (strictly pos-
itive) module multiplicity and this, practically, leads to
replicating the same module description as many times as
required. In this case, the Queue module modifies mes-
sage exchange accordingly: During message transmission,
messages from VMs that host the same software mod-
ules are merged in a predefined order (ascending Executor
UUID) and offered to the recipient(s), whereas during
message reception, the Queue replicates the message as
many times as needed. Fig. 4 graphically represents this
process, being a variation of Fig. 2, where (2) is deployed
to two VMs. Note that, the fact that the Queue replicates
and merges messages, abstracts the concept of multi-
plicity from application descriptions and maximize their
reusability.

Furthermore, apart from the initial deployment phase,
the suggested workflow can be extremely helpful dur-
ing an application’s lifetime, for different occasions. For
example, take a two-tier application comprising a Web
and a Database Server and assume that an administrator
wants to run a maintenance task, e.g., update the Database
Server software. This task can easily be described in the
form of a DAG, where one would, first, gracefully shut-
down the Web Server (closing any stale DB connections),
then shutdown the DBMS, update it and, finally, start the
services in reverse order. Note that, this chain of events
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can be much more complex and may span to more than
two modules (e.g., assume that there exist more than one
Web Servers). In order to support these actions, AURA
supports the definition of a second deployment param-
eter which defines the address of a VM: If set, the
Provisioner submodule is short-circuited and no resource
allocation takes place. In this case, the (already deployed)
AURA Executor, receives a new set of scripts that need
to be executed according to the proposed methodology.
It must be emphasized that this is a first step towards
dynamic application scaling, i.e., resource allocation and
software configuration in order for an application to uti-
lize the new resources, and it is a very interesting future
direction that will be explored.

Portability and reusability
Two dimensions that highly affected AURA’s design
choices and have not been examined this far, are Porta-
bility and Reusability. Portability is related to AURA’s
ability to be able to deploy new application instances in
different environments. Reusability is the ability to uti-
lize existing deployment scripts in order to compose new
application descriptions compliant with AURA. Although
these aspects are not considered Functional Requirements
in the narrow sense, they are both highly desirable and, if
achieved, they can drastically increase AURA’s utility.
AURA’s modular architecture, as depicted in Fig. 1,
allows different modules (e.g., Provisioner, Scheduler, etc.)
to communicate in a transparent way, without relying on
the design of each other. For example, when the Scheduler
module issues a new request to the Provisioner module to
allocate new VMs, the latter communicates with Open-
stack without exposing Openstack-specific semantics to
the former. This means that if one wants to utilize AURA
in a different cloud environment that adheres to a differ-
ent API (e.g., AWS, CloudStack [43]) or utilizes a different
virtualization technology (e.g., Kubernetes [44] utilizing
Linux Containers), one could provide a custom Provi-
sioner module that contacts the respective cloud platform
without altering anything else to AURA’s functionality.
The only requirement for a custom Provisioner module is
to respect the CloudOrchestrator API, as seen from
AURA’s source code [22], and implement the create vm
and delete_vms functions. In a similar manner, the user

may also override AURA’s default behavior regarding VM
creation that in case where a VM allocation request fails,
the whole deployment is aborted. One could easily change
this behavior through adding a loop that eagerly spawns
new VM allocation requests in case where the underlying
Openstack calls fail.

Finally, we should note that the design choice of sup-
porting DAGs for AURA’s application descriptions was
favored against other options (e.g., describing the state of
the different VMs) for the following reason: The users can
easily utilize existing deployment scripts, written in bash
or any other language, in order to compose more complex
application descriptions. One can easily transform a set of
existing deployment scripts to a DAG-based description,
as the one depicted in Fig. 5, following two steps:

1. “Break” a larger deployment script in smaller parts,
identifying which ones should be executed on which
VMs and what input is anticipated for each module,

2. Generate adescription. json file that encodes
the order of execution inside a module and the
input/output messages each script anticipates.

The syntax of the description file is simple, and contains
the bare minimum information required to generate the
deployment graph. Listing 1 provides an example descrip-
tion file for the Wordpress application. Initially, the users
define the application modules of their application (e.g.,
db-server and web-server). For each module, the
user provides a list of scripts that contain its sequence
number (seq parameter) that indicates its order of execu-
tion, the path of the deployment script (£ile parameter)
that may be any executable file, and (if applicable) a list of
script names in which the current script depends to or the
scripts to which the current script will send messages to
(i.e., input and output parameters respectively).

Listing 1 Wordpress description file
{

"name": "Wordpress",

"description": "Simple Wordpress installation",
"modules": [{

"name": "db-server",

"scripts": [{

"seq": 1,

"file": "db server/install.sh"

3o g

"seq": 2,

"file": "db server/configure.sh"
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"seq": 3,
"file": "db server/create user.sh",
"input" : ["web-server/1"],
"output": ["web-server/3"]

1

Hod

"name": "web-server",

"scripts": [{

"seq": 1,

"file": "web_ server/send ip.sh",
"output": ["db-server/3"]

neq': 2,

"file": "web server/install.sh"

Hod

"seq": 3,

"file": "web server/configure.sh",
"input": ["db-server/3"]

11
1
!

Note that the actual deployment scripts (e.g.,
web_server/send ip.sh) need not be modified in
order to publish messages to the AURA Queue. Instead,
the AURA Executors that run the deployment scripts,
collect their output (everything a script has produced
in its standard output) and send it through the AURA
Queue to their recipients. On the other end, the Execu-
tor that runs a script awaiting for a message, serializes
this output and stores it to a temporary file. The path
of this temporary file is, then, given as the first argu-
ment to the deployment script that opens it, parses it
and utilizes its content as it wishes. For example, the
script web_server/send ip.sh echoes the VM’s IP
address. The Web Server Executor collects it and sends it
to the Database Server Executor through the Queue mod-
ule. When the script db_server/create user.sh
need to be executed, the Database Server Executor
collects the IP address and places it to a file; the script

is then launched with this path as the first argument.
Subsequently, the script reads the IP address and utilizes
it to grant access to Wordpress’ database so that the Web
Server can access it.

It should be stressed that the choice of not exporting
the Queue’s semantics to the deployment scripts, liber-
ate the users from writing “AURA-compliant” application
descriptions and allow them to write simple scripts that
produce and consume information in a traditional way,
i.e., through files. In our view, this option greatly simplifies
the application description generation process and makes
AURA more user-friendly and maximize the reusability of
existing deployment scripts.

Experimental evaluation

We now provide a thorough experimental evaluation of
the proposed approach that attempts to quantify AURA’s
efficiency and suitability for deploying real-world applica-
tion in unstable environments.

Experimental setup: All experiments were conducted
on a private Openstack cluster installation, that comprises
8 nodes, each of which has 2 x Intel Xeon E5-2630 v4
(2.20GHz) and 256G RAM (totaling 320 HW threads and
2TB of RAM). The nodes are connected with 10G net-
work interfaces and the VM block devices are stored over
a CEPH cluster that consists of 8 OSDs (4 x 3TB 3.5”
HDDs on RAID-5 setup each) and 98TB storage. The clus-
ter runs the latest stable Openstack version (Pike) and the
hosts run Ubuntu 16.04 with Linux kernel 4.4.0-97.

Applications: In order to evaluate the efficiency of our
approach, we opted for popular, real-world applications,
commonly encountered to cloud environments:
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e Wordpress is a popular Content Management
System, used to run and manage Web Applications
for different purposes. It requires two components: A
Web Server, which renders the user interface and a
Database Server, which persists the application’s data.
Therefore, the application description comprise these
modules: One module that installs the Apache Web
Server along with any other dependency and one
module that hosts MariaDB, i.e., the application’s
database backend. Each module is installed to a
dedicated VM and the Web Server may be replicated
to more than one VMs, i.e., the Web Server’s
multiplicity may be greater than one.

® Hadoop [45] is a popular data processing system,
commonly deployed to cloud infrastructures in order
to persist and process Big Data. It also comprises two
modules: A Master node that acts as the coordinator
of the cluster and the Slave node(s) that are
responsible both to persist the cluster’s data and to
run tasks from MapReduce jobs. In each deployment,
there only exists one Hadoop Master node and a set
of Slave nodes, determined by the module’s
multiplicity. We should emphasize that Hadoop is a
typical application deployed to the Cloud; for this
reason, the most popular cloud providers offer tools
to their users that automates the provisioning of
Hadoop clusters and also consider their elastic
scaling (e.g., Amazon EMR3).

Both application descriptions contain: (a) the appro-
priate scripts in order to install the necessary soft-
ware components (e.g., Web/Database servers, Hadoop
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daemons, etc.) along with any other software (e.g., Java,
PHP, etc.) or other requirements (e.g., SSH keys, set-
ting up the hosts file, etc.) and (b) the deployment
DAG that describes the order of the script execution.
For brevity, we omit a detailed description of each con-
figuration script®; Figs. 3 and 6 depict the structure
of the deployment graphs for Wordpress (that consists
of 1 Web Server and 1 Database Server) and Hadoop
(that consists of 1 Hadoop Master and 2 Hadoop Slaves)
respectively.

The graph nodes represent the states of the modules,
the solid edges represent script executions and the dot-
ted edges represent message exchanges between differ-
ent modules/VMs. Each script execution is labeled in
the form <module>/<sequence>. When the module
multiplicity is greater than 1, the module name in the
label also contains the VM’s serial number as a suffix,
e.g., hadoop-slave2/3 denotes the third configuration
script for the second hadoop slave node.

Methodology: In order to quantify AURA’s efficiency,
we deployed the previously described applications, using
different deployment parameters (e.g., different module
multiplicity, filesystem snapshot methodology, etc.) and
studied the deployments’ behavior. In order to eliminate
the unavoidable noise attributed to the randomness of our
setup, we executed each deployment 10 times and provide
the mean of our results. Our evaluation unfolds in four
dimensions. First, we test the deployment behavior for
varying module multiplicity, measuring the scalability of
the proposed deployment scheme, i.e., the ability to deploy

doop-slavel
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Fig. 6 Hadoop deployment graph with 1 master and 2 slave nodes
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an application comprising more nodes with minimal exe-
cution overhead. Second, we study the deployment behav-
ior when transient errors appear with varying frequency,
measuring not only the total execution time but also
the overhead introduced due to our filesystem snapshot
mechanism. Third, we outline the differences between
the implemented snapshot mechanisms, i.e., AUFS and
BTRFS. Finally, we compare AURA to Openstack Heat, a
popular, state-of-the-art deployment system.

Deployment model scalability

We begin our discussion through evaluating our scheme’s
scalability when an increasing number of modules/VMs is
deployed to an error-free environment, i.e., no transient
failures occur. We deploy the two considered applications
and increase the multiplicity parameter for one of
their modules, i.e., the Web Server and Hadoop Slave mod-
ules for Wordpress and Hadoop respectively and measure
the time needed to complete each deployment phase. We
consider three deployment phases: (a) The resource allo-
cation (Alloc) phase, in which Openstack allocates the
necessary resources, (b) the VM booting phase (Boot),
in which the guest OS boots and (c) the software con-
figuration phase (Conf), where the deployment scripts
are executed. Note that, when multiple VMs/modules are
considered, each phase is concurrently executed on each
one separately. The presented time equals the real exe-
cution time, i.e., the time between the first VM entering
a phase until the last VM leaving this phase. Figure 7
presents our results (mean times of 10 runs).

Figure 7 demonstrates that both applications present
similar behavior. The resource allocation time presents
a marginally increasing trend when more VMs are
deployed, whereas the boot time remains constant. In
both cases, the configuration phase presents the largest
increase, which is, in fact, linear to the number of
deployed VMs. The reason behind this rapid increase,
though, is not attributed to the deployment model, but to
the resource contention introduced when multiple VMs
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compete for the same resources. Specifically, the con-
figuration scripts for both toy applications assume that
they operate on a vanilla VM image and try to config-
ure the entire environment from the beginning, download
many software packages from the Web and increasing the
deployment’s network requirements. This means that an
increase in module multiplicity results in a linear increase
to the size of files needed to be downloaded and, hence,
linear increase in the configuration time. In order to
eschew this misleading behavior and avoid the network
bottleneck, we repeat the same experiment, but this time
we utilize a prebaked image that contains the raw software
packages (though unconfigured). Figure 8 demonstrates
our findings.

Figure 8 depicts that now that the network bottleneck
is removed, our deployment scheme achieves to exe-
cute the configuration phase in practically constant time,
regardless of the number of deployed VMs. This behav-
ior drastically changes the relationships between the times
of the deployment phases, making the resource allocation
phase dominant of the entire deployment, whereas, again,
the booting time is constant and the configuration phase
presents marginal increase with the number of deployed
VMs. Moreover, note that the absolute times remain
extremely low: AURA achieved to deploy a Hadoop clus-
ter of 1 Master and 8 Slaves in less that 200 s, a time that
can be further decreased if AURA operates on an enter-
prise cluster with a faster storage medium that accelerates
resource allocation.

Transient error frequency

We now evaluate our deployment model’s behavior when
transient errors appear. In order to produce such tran-
sient errors in a controllable and reproducible way, we
inserted code snippets inside all application configuration
scripts that lead them to failure with a given probability.
Specifically, every time a deployment script is executed,
a random number is drawn from a uniform distribution
between [0, 1] and if it is lower than p, where 0 < p < 1,
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Fig. 7 Execution times of different deployment phases for varying module multiplicity using vanilla images. a Wordpress. b Hadoop
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Fig. 8 Execution times of different deployment phases for varying module multiplicity using prebaked images. a Wordpress. b Hadoop

the script is terminated with a non-zero exit code, lead-
ing AURA to interpret this as a failure. The code snippet
that generates this behavior is introduced in the beginning
of each deployment script, hence, each failing script has
minimal running time.

One option that highly impacts AURA’s behavior for
error identification is the timeout period used for detect-
ing errors. As described previously, the default value
equals 1 min. However, when comparing this interval
with the actual configuration time for both applications
depicted in Fig. 7, one can notice that 60 s is a sizeable
portion of the entire configuration time. Hence, it can
produce slow reactions to errors. To this end, and after
experimenting with different values, we concluded that a

good approximation of the best timeout interval equals
0 real deployment time
25% x max no. scripts/module”’

represents the “mean deployment time per script’, as if the
deployment time was uniformly distributed to all scripts
of the module with the most scripts. The percentage indi-
cates the portion of this “mean deployment time” that
AURA should wait before checking for errors. In our case,
25% indicates that AURA will approximately do 3 — —4
health-checks before the script terminates (in an error-
free case). This allows both fast reactions and a minimal
number of unnecessary health-checks. With this rule of
thumb in mind, we calculate the timeout interval for both

Intuitively, the fractional part

applications as follows: typrdpress = 25% X % ~ 10 sec
and fpudoop = 25% x % ~ 10 sec. The real deploy-
ment time for each application is obtained by Fig. 7 for
the 1 Slave/Web Server case and the maximum num-
ber of scripts/module is obtained by Figs. 3 and 6: 3 (for
db-server) and 6 (for hadoop-master) respectively.

Given this, we deploy Wordpress (2 Web Servers and
1 Database Server) and Hadoop (1 Master and 2 Slaves)
10 times for varying p values from 0.05 to 0.8, measuring
the total number of script executions and the real time of
the configuration deployment phase. In Fig. 9 we provide
the mean values and the respective deviation. We utilized
AUES as the filesystem snapshot mechanism.

Both Fig. 9a and b present very similar patterns: When
the error probability is low (e.g., 0.05 — 0.20), a minimal
number of script executions occur and the configura-
tion time remains very close to the configuration time
witnessed to the error-free (i.e., p = 0) case. However,
when p increases one can observe that both the mean
and the standard deviation values rapidly increase. This is
attributed to the fact that achieving error-free execution
becomes exponentially more difficult, since the execution
of a deployment script requires the successful execution of
all the scripts it depends on and, hence, much more script
executions and time is needed in order to achieve this.
Moreover, the two plots also showcase that an increase
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Fig. 9 Number of script executions and configuration times for varying error probability. a Script Executions. b Configuration Time
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in p has a greater impact on more complex deployment
graphs: Indeed, Hadoop presents a faster increase both
in terms of the number of Script Executions and the
respective configuration time it requires to be deployed,
since it presents more dependencies (Fig. 6) than Word-
press (Fig. 3) and, hence, is more susceptible to script
re-executions when errors appear more frequently.

A subtle point of the above discussion, is that this
experiment implies that transient failures are indepen-
dent of each other, in the sense that the emergence of a
transient failure in a certain deployment script does not
affect another, concurrently executed deployment script.
In reality, different transient errors may be strongly corre-
lated: If a network glitch occurred due to a failed switch,
chances are that VMs belonging to the same host or
rack will equally be affected, hence, their error proba-
bilities are not independent. Although we do recognize
that such correlated failures may prolong deployment
times, we opted for a simpler transient failure generator
in order to simplify the evaluation and obtain a better
understanding of AURA’s ability to overcome random fail-
ures. Furthermore, we should note that the p values used
for this discussion are extremely large and only used in
order to investigate what happens even in the most unsta-
ble cloud environments. It is interesting, though, that
even when p = 0.2, AURA achieves to overcome any
transient error and lead the deployment to successful ter-
mination with marginal delays, i.e., less than 10% when
compared to the error-free case, both for Wordpress and
Hadoop.

Snapshot implementation overhead

We now evaluate the performance of the two snap-
shot mechanisms we implemented in order to guarantee
the idempotent script execution. Specifically, we want to
evaluate the overhead that AUFS and BTREFS introduce
to the configuration time, i.e., how much time is spent
to snapshots and rollbacks against the “useful” deploy-
ment time, i.e., the time spent executing the configuration
scripts. To this end, we deploy Wordpress and Hadoop
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using the same multiplicities as before, but now repeat
each deployment twice: Once using AUFS for snapshots
and once using BTRFS. We launch deployments for vary-
ing error frequencies, i.e., different error probabilities, and
repeat each deployment 10 times. In Figs. 10 and 11 we
provide the mean values of those runs for Wordpress and
Hadoop respectively. The left figures depict the total snap-
shot time (including both snapshots and rollbacks) for
all application scripts and the right figures express this
time as a percentage of the total execution time. Observe
the difference between this time expression and the time
expression used so far: The total snapshot time represents
the sum of time periods that the snapshot mechanism
is triggered for each module without taking into consid-
eration that different modules may run in parallel. For
example, if module (1) and (2) required times £; and £,
for snapshotting, the Total Snapshot time equals ¢; + £,
whereas the real snapshot time (if running in parallel)
would be max(¢, £)°. Finally, the Relative Time equals the
Total Snapshot Time divided by the Total Running Time,
i.e., the sum of execution time for each script of each
module.

Both Figures demonstrate that BTRES outperforms
AUFS measured both in terms of Total Snapshot Time and
in terms of relative time. In fact, the difference between
the two mechanisms is increasing for larger p values,
i.e., more snapshots and rollbacks are essential. Interest-
ingly, one can also observe that AUFS achieves similar
to BTRES snapshot times for lower p values for Word-
press but, in the Hadoop case, AUFS requires much more
time that BTRFS to snapshot and restore the filesystem
layers. This interesting finding can be explained when
examining the content that is snapshot: In both cases,
AURA snapshots the /opt directory which is used as the
root directory for all application modules. In the Word-
press case, /opt contains fewer files (Wordpress files)
that aggregate 30MB, whereas in the Hadoop case /opt
contains much more files that aggregate 500MB (Hadoop
bin and configuration files). This is indicative of BTRFS’
ability to handle massive storage in a more efficient way:
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Due to the powerful copy-on-write mechanism that oper-
ates on the inode level, BTRES is able to create snap-
shots and revert to existing snapshots much faster than
AUFS that needs to re-assemble the chain of layers from
scratch any time a new layer is added/removed. On the
contrary, when fewer data are persisted (as in the Word-
press case), both mechanisms can produce equivalent
results.

Despite presenting superior performance, BTRFS has
more runtime requirements than AUFS. To begin with,
both mechanisms require kernel support. However, AUFS
can operate on top of other filesystems and require
no special devices (e.g., a dedicated block device) since
it only requires a set of directories in order to work,
which are located in the VM’s filesystem. On the con-
trary, BTRFS requires a dedicated block device to be
formatted and mounted in order to work. Although this
does not limit its applicability, it reduces AURA’s trans-
parency towards the application to-be-deployed, as the
user needs to take into consideration BTRFS’ require-
ments in order to utilize it. In Table 1 we summarize
AUFS and BTREFS’ requirements. Given the above, we
can conclude that when one wants to snapshot a filesys-
tem containing massive amounts of data, BTRFS must
be preferred, despite its higher requirements; in cases
where one needs to snapshot filesystems with fewer data,
AUFS presents a decent behavior and has much fewer
requirements.

End-to-end performance comparison
We now wish to evaluate AURA’s end-to-end performance

Table 1 Requirements of AUFS and BTRFS

Requirement AUFS BTRFS
Kernel support Yes Yes
Block device No Yes
Cooperates with other FS Yes No

in comparison to Openstack Heat, i.e., a state-of-the-
art deployment system that is frequently used in the
Openstack ecosystem in order to orchestrate application
deployments. Our evaluation’s objective is to compare the
deployment times of Hadoop and Wordpress for different
multiplicities, when these are deployed through AURA
and Heat. Since Heat does not support recovery from
transient failures, only the error-free cases are considered.
Furthermore, since Heat does not support circular depen-
dencies between different software modules, we re-wrote
the application descriptions of both applications, con-
structing two Heat Orchestration Templates (HOTs) that
avoid such loops. Specifically, we conducted the following
modifications:

e In the Hadoop case, we used predefined SSH keys
(hence no negotiation is required between the master
and the slaves) and only kept the dependencies from
the slaves to the master (sending their IPs and
informing the latter that the former ones are ready).
Schematically, only the dotted edges beginning from
Hadoop slaves towards the Hadoop master are kept,
as seen in Fig. 6.

e In the Wordpress case, the Database Server does not
wait for obtaining the IP address(es) of the Web
Server(s), as it is configured to listen to any
connection. Schematically, we removed the dotted
edges from the output states of web-serverl/1,
web-server2/2 scripts to the input of
db-server/3 of Fig. 3.

Finally, since Heat does not support an information
exchange mechanism as the one supported by AURA [46],
messages are exchanged inside the deployment scripts
that securely transfer (through scp) any piece of informa-
tion is anticipated by a consumer script. Given the above,
Table 2 provides the relative deployment times for each
application when a varying number of modules (i.e., slaves
for Hadoop and Web Servers for Wordpress) is utilized.
The relative deployment time is expressed as the ratio
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Table 2 Relative Deployment Time for Openstack Heat vs AURA
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Number of modules

Application Deployment phase
1 2 4 8
Hadoop Allocation 1.0010 0.9991 1.0001 1.0020
Booting 1.0001 0.9999 0.9991 0.9997
Configuration 1.0000 0.9964 0.9951 0.9889
Wordpress Allocation 1.0005 1.0030 0.9997 0.9995
Booting 1.0001 0.9999 1.0003 1.0020
Configuration 0.9991 0.9965 0.9903 0.9862

between the deployment time in Heat divided by AURA’s
time, i.e., Tyelative = TT:{;’;; . Each deployment was repeated
10 times and the mean values are presented.

A closer examination of Table 2 presents some inter-
esting findings. First of all, both Heat and AURA present
similar times during the Allocation and Booting phases
of the deployment and this is not affected by the num-
ber of employed modules. This is a reasonable finding,
since both tools use the same mechanism to instantiate
the VMs, i.e., they both contact the nova component in
order to issue requests for new VMs. Furthermore, the
VM boot time is independent of the employed deploy-
ment tool, hence no differences in the VM booting time
is observed. This is the reason behind obtaining Tye/zive
values close to 1 for both applications during these first
deployment phases.

Investigating the respective times during the Configu-
ration phase, nevertheless, showcases that Heat requires
slightly less time when deploying applications of higher
multiplicity (i.e., for 8 modules) than AURA; a differ-
ence that does not surpass 2% in the worst case. This
marginal difference is ascribed to two factors. First, and as
described previously, before the execution of any config-
uration script, AURA keeps a snapshot of the underlying
filesystem in order to achieve idempotency. Although this
extra time is negligible, it is an extra step that is avoided
by Heat. Second, in this experiment Heat deploys slightly
modified deployment graphs that present fewer depen-
dencies between different modules. Consequently, the
synchronization points for Heat are fewer and the deploy-
ment scripts are allowed to be executed without waiting
for other scripts to finish.

It should be stressed, though, that Heat’s lack of sup-
port for dynamic information exchange between different
modules leads to slightly reduced deployment times in
comparison to AURA, but also limits its expressiveness
for describing complex applications. On the other hand,
AURAs ability to execute complex deployment graphs and
support recovery from transient failures, add a negligi-
ble time overhead that is instantly counterbalanced in the
emergence of transient errors.

Conclusions and future work

In this work, we revisited the problem of application
deployment to cloud infrastructures that present tran-
sient failures. The complexity of the architecture of mod-
ern data centers makes them susceptible to errors that
hinder automation and jeopardize the execution of appli-
cation deployment, a complex task that requires coordina-
tion between multiple different components. To address
this challenge, we introduced AURA, a cloud deploy-
ment system that attempts to fix transient errors through
re-executing the part of the deployment that failed. In
order to enforce script idempotency, AURA implements a
lightweight filesystem snapshot mechanism and, in case of
script failure, cancels any unwanted side effects through
reverting the filesystem to a previous, healthy state. Our
evaluation, conducted for popular, real-world applica-
tions, frequently deployed to cloud environments, indi-
cated that AURA manages to deploy applications even
in infrastructures presenting high error probabilities and
only introduces a minimal overhead to the deployment
time that does not surpass 10% of the total deployment
time in the worst case.

Let us, now, summarize the takeaways of our work. The
suggested deployment model that formulates an appli-
cation deployment as a DAG of dependencies, provides
the necessary building blocks for expressing extremely
complex tasks in an efficient way. The introduction of
synchronization through message exchange between dif-
ferent modules (or VMs), in particular, increases our
model’s expressiveness and efficiently addresses the lim-
itation of many real-world deployment systems that
assume that two software modules will not depend on
each other on the same time, i.e., they only support
unidirectional dependencies. Furthermore, in this work
we attempted to utilize the well-known technique of
filesystem snapshot, in order to give a solution to the
problem of idempotent script execution, which is a key
requirement for re-executing failed scripts. In our best
knowledge, our work is the first that tries to achieve
idempotency through it and, according to our evalua-
tion, this technique achieves to nullify any unwanted
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script side effects to filesystem related resources in an
efficient manner and only introduces marginal over-
head. As the existing filesystems improve and new
ones emerge, this technique can produce even better
results.

Finally, the contributions of this work provide a strong
foundation for future work. First, the expressiveness of
the suggested deployment model renders it as a suit-
able candidate for expressing complex tasks not only in
the initial application deployment phase, but also during
the runtime of an application. Elastic scaling, which is
a key concept to the cloud industry [47], requires auto-
mated resource provisioning and software configuration,
so that resources are utilized appropriately. The adop-
tion of a deployment model as the one suggested in our
work would facilitate enforcing complex application resiz-
ing actions and increase resource reliability. Second, in
this work we studied script idempotency in the light
of resources that reside in the filesystem. Even if this
hypothesis seems realistic for the deployment phase, as
a typical software configuration script handles and mod-
ifies files (configuration files, binaries, libraries, etc.), in
the general case, idempotency is not achieved to other
resources, e.g., the memory state of a process. This is
an interesting future direction of investigation that would
maximize our work’s applicability and allow for consider-
ing alternative tasks that exceed the scope of this work.
Third, although AURA is capable of addressing concur-
rent errors in different software modules, it assumes that
these errors are independent of each other, as each part
of the deployment graph is treated independently. How-
ever, as previously discussed, in practice errors can be
strongly correlated. This observation provides an inter-
esting foundation for future research as studying the
nature of this correlation can contribute to taking smarter
decisions during recovery actions and further accelerate
deployments.

Endnotes

! According to Greek mythology, Aura was the goddess
of breeze, commonly encountered to cloudy environ-
ments.

2Note that message transmission might not be instant
(as implied by the Figure) since consumption of a specific
message might occur much later than the message post,
but the arrows are depicted perpendicular to the time axis
for simplicity.

3 https://aws.amazon.com/emr/

4 More details, though, can be found online at [48] for
Hadoop and [49] for Wordpress.

*In the Operating Systems realm, the running time of
a process is distinguished to real, user and sys, where the
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first denotes the actual clock time, the second equals the
total time spent at user space for all threads and the last
equals the time spent at kernel for all threads. So far, we
have used the real time; in this experiment we prefer to
demonstrate the user time in order to better isolate the
snapshot behavior.
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DAG: Directed acyclic graph; VM: Virtual machine
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