TYJ and G Journal of Cloud Computing: Advances, Systems and Applications JOU rnal of Cloud Computing:

(2019) 8:3 . .
https://doi.org/10.1186/513677-019-0125-z Advances, SyStemS and App|IC3tIOI’IS

RESEARCH Open Access

Adaptive deduplication of virtual machine ® e
images using AKKA stream to accelerate

live migration process in cloud

environment

Naga Malleswari TYJ'® and Vadivu G*

Abstract

Cloud Computing is a paradigm which provides resources to users from its pool based on demand to satisfy their
requirements. During this process, many servers are overloaded and underloaded in the cloud environment. Thus,
power consumption and load balancing are the major problems and are resolved by live virtual machine (VM)
migration. Load balancing is addressed by moving virtual machines from overloaded host to under loaded host
and from under loaded host to any other host which is not overloaded called VM migration. If this process is done
without power off (Live) the virtual machines then it is called live VM migration. By this process, the issue of power
consumption by physical hosts is also resolved. Migrating virtual machines involves virtualized components like
storage disks, memory, CPU and networking, the entire state of VM is captured as a collection of data files. These
data files are virtual disk files, configuration files, and log files. The virtual disk files take larger memory and take
more migration time and hence the downtime. These disk files include many zero pages, similar and redundant
pages. Many techniques such as compression, deduplication is used reduce the size of VM disk image file.
Compression techniques are not widely used, due to the disadvantage of compression ratio and decompression
time. Many researchers hence used deduplication techniques for reducing the VM disk image file in the live
migration process. The significance of the research work is to design an adaptive deduplication mechanism for
reducing VM disk image file size by performing fixed length and variable length block-level deduplication
processes. The Rabin-Karp rolling hash algorithm is used in variable length block-level deduplication. Akka stream is
used for streaming the VM disk image files as it is the bulk volume of live data transfer. To reduce the time of the
deduplication process, many researchers used multithreading and multi-core technologies. We use multithreading
in Akka framework to run the deduplication process concurrently without OutofMemory errors. The experiment
results show that we achieved a maximum of 83% overall reduction in image storage space and 89.76% reduction
in total migration time are achieved by adaptive deduplication method. 3% improvement in deduplication rate
when compared with the existing image management system. The results are significant because when we apply
this in the storage of data centres, there are much space savings. The reduction in size is dependent on the dataset
was taken and the applications running on the VM.

Keywords: Virtualization, Cloud computing, Pre-copy technique, Virtual machine migration, Post copy technique,
Chunking strategies, Streaming analytics, Akka stream

* Correspondence: vadivu.g@ktr.srmuniv.ac.in
“Department of Information Technology, SRMIST, Chennai 603203, India
Full list of author information is available at the end of the article

. © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
@ SPrlnger Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0125-z&domain=pdf
http://orcid.org/0000-0001-8279-8703
mailto:vadivu.g@ktr.srmuniv.ac.in
http://creativecommons.org/licenses/by/4.0/

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

Introduction

Cloud computing [1] evolved with the advancement of
several technologies such as virtualization (hardware),
service-oriented architecture (internet), grid computing
(grids), utility computing, (business model) and
autonomic computing (systems management). It allows
us to access huge amounts of computing power by
aggregating resources in a fully virtualized manner. By
virtualization technology, all the computer system’s re-
sources (Memory, CPUs, I/O devices) are virtualized to
improve usage and sharing of computer systems and
overcome the issues of organizational infrastructure
maintenance. Hypervisor or virtual machine monitor
(VMM) is a software which creates, manages virtual
machines (guest) on a physical computer (or host).
Several operating systems run on different guests as
shown in Fig. 1(a).

Figure 1(b) shows different types of hardware
virtualization. In hardware-assisted virtualization the
hypervisor is supported by the hardware without modify-
ing the guest software. In full virtualization, all guest

(2019) 8:3 Page 2 of 12

operating systems are abstracted from the hardware
and are communicated with VMM using binary trans-
lation. Paravirtualization [2] is where the guest OS is
modified, and hyper calls are issued to the host OS
instead of issuing to hardware.

Virtualization provides and manages the data cen-
tre’s infrastructure dynamically. By multiplexing many
virtual machines (VMs) on a single physical host, the
utilization of resources is improved. Based on de-
mand, these VMs scale up and down. Hence some
hosts are heavily loaded, and some are under-utilized.
So, effective virtual machine management is critical.
A strong tool for managing virtual machines is VM
Migration. Load balancing, power management, fault
tolerance, and system maintenance are the goals of
VM migration.

Virtual Machine Migration
The process by which a virtual machine is moved from
one storage location or physical host to another physical

Virtual Machinel

Guest 08
(Windows)

Virtual MachineN

Guest 08
(Linux)

Hypervisor (Virtual Machine Monitor) J

Hardware]
b
Hardware Para
Assisted virtualization Full
Virtualization virtualization
User Apps
User w User Apps
I
o) Modified Guest g
Guest 08 - 08 & Guest 08 =
. g I g ol
ﬁ /' -\ a e - 2 El
Hypervisor g Virtualization = Hypervisor EE
- z Layer g
N~ =
Hardware Hardware Hardware
.~/ .

Fig. 1 a Virtual machines with different operating system hosted on hardware virtualized serve. b Types of hardware virtualization

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

host is called VM migration [3]. There are mainly two
types of VM migration [4]. They are:

a. Non-live migration or cold migration

In this process, VM is switched off, and the entire
VM state is transferred to the target host. There are
more downtime and service interruption in this
method. VM status lost is the major drawback of this
technique.

b. Live migration or hot migration

The process of moving the VM from one physical
machine to another without switching off the VM is
called live migration. There are two methods to live
migration.

i) Post copy approach

Post copy approach consists of stop and copy phase
where VM is stopped, and the processor state is trans-
ferred. Further, based on demand, memory pages are
moved to the destination which is called the pull phase
as in Fig. 2(a).

ii) Pre-copy approach

In Fig. 2(b) pre-copy approach [5], the minimal
state of the processor is transferred to the target and
followed by iterative push phase where the dirty
(modified) pages are pushed to destination iteratively
until the dirty page rate is less than the pages trans-
ferred rate. Then a small stop and copy phase is
followed. In pre-copy approach, during iterative push
phase, many zero pages which contains all zeros,
identical pages (80% above similar) and similar pages
(60% to 80% similar) are transferred to the target
host. These pages are not required for VM to resume
[6] at the destination machine.

In the process of VM migration, the entire virtual
machine state is to be transferred. It contains con-
nected device states which are of less size and sent
to target host easily. Disk state information is not
required to transfer as it is provided by network at-
tached storage (NAS), memory state information of
size gigabytes need to be transferred. VM’s CPU
state information is the small amount and not hav-
ing much effect in live migration time and down-
time [7]. Memory state contains guest OS memory
state and all information about processes running
within the VM. This is the vast amount of informa-
tion which badly effects migration time and
downtime.

(2019) 8:3 Page 3 of 12

Memory state content contains:
i) Dirtied memory

These memory pages are resident in VM memory as
they are actively modified through writing to in-memory
pages by the applications while running.

ii) VM configured memory

The amount of memory given by the hypervisor to the
VM. This is the physical memory to the guest in VM
perspective.

iii) Requested memory

The memory requested to the VM’s operating sys-
tem by the applications to run inside VM. These
memory pages may not be resident in memory and
not currently in use. When VM configured memory
is all used, these memory pages may be swapped out
to the disk by swapping.

iv) VM used memory

From the perspective of guest VM, these are the
memory pages currently used by the guest operating
system actively. These pages are resident in VM
memory.

v) Allocated Memory

The physical memory of the underlying hardware
that is allocated to the guest VM. This is the memory
that is actively used by the VM from the hypervisor
perspective.

The relationship between these memories according to
their sizes is given as in Fig. 2(c).

The configured memory is a considerable size and
contains VM image files. VM images consist more
than 80% of zero pages and duplicate contents which,
not only occupies more storage but also increases
pressure on network transmission [8] especially in the
live migration process. These pages are not required
by the VM to resume at the target host. We can re-
duce the size of this memory by compression or
deduplication techniques. As decompression time is
the drawback of many compression algorithms, dedu-
plication is preferable.

Deduplication
Deduplication is the process, which reduces the re-
quired storage by determining the redundant chunks

YJ and G Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:3 Page 4 of 12
p
a — d Data Deduplication
VM processor state is l l
captured
Capture Stop and Copy Data Implementation
phase
VM s transferred
to target host .
File Level Block Level
Location Hash Content
VM is resumed at the ‘
target host .
— Fixed Variable l L
Length Length Client Target
Pages are fetched from source
VM to target VM based on o
demand
Inline Post-process
@ Pull phase
b e pr— ra—
Chunk 2 (128KB) 2 25
[Ty w———vpa—" Chunk Q56K)
7
i 7
i i
Check avaiailty i i
af esomees o the ‘
destination host
Chunk n-1 (128KB)Y
Goonien (128D
pre——
[e e et s e s | _
x Fixed Size Varible Size
: Push Phase

Page transfer
rate >=Dirty
page rate

Stopand

copy phase \[

‘Acknowledgment sent after OS instance
and consistent copy of source VM received

l Source VM stopped and destination VM resumed

-

Dirtied Very Small size
Memory
Requested Memory Small size
Medium size

Used Memory

Large size
Allocated Memory

Configured Memory Very Large size

based Deduplication

Fig. 2 a Post-copy approach with stop, copy and pull phases. b Pre-copy approach with iterative push, stop and copy phases. ¢ VM Memory
content categories. d Classification of Data deduplication techniques. e Block-Level Deduplication. f Client based Deduplication. g Target

“ Network

Backup Client

Yoy
N
el

Backup Client

Backup Device

Backup Device

of data in a set of files and storing only one copy of
chunk. For the duplicate chunk, it stores the refer-
ence of the chunk without storing the entire chunk,
the second time. The classification of deduplication
techniques [9] is shown in Fig. 2 (d).

a) Data based deduplication

The unit of data compared in this process is at the file
level or sub-file level.

i) File-level deduplication

In file-level deduplication, similar files are identified
and are not stored in the file store again. Only the refer-
ence to the original file is stored.

ii) Block-level deduplication

This is sub-file level deduplication where the file is
divided into chunks called blocks. Based on the size
of blocks in the chunking process, block-level dedu-
plication is divided into fixed length block-level
deduplication and variable length block-level
deduplication.

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

Fixed length block-level deduplication

In this deduplication, the file is divided into fixed-
length blocks. Identical blocks are identified and are
removed to minimize the size of the file. It is simple
and fast.

Variable length block-level deduplication

In variable-length deduplication, the chunk boundaries
are calculated based on the content of the block, and
then the similar blocks are identified and removed. It re-
quires more CPU cycles for the identification of block
boundaries, but it has the advantage of saving more stor-
age space. Figure 2(e) explains fixed length and variable
length block-level deduplication techniques.

b) Location-based Deduplication

Based on where the deduplication process is done,
there are two types of deduplication techniques.

o Client-based deduplication where redundant data is
removed and unique data is transferred to the
backup device at the client as in Fig. 2(f).

o Target-based deduplication: After receiving all the
redundant data at the target, the deduplication
process is carried out, and unique data is transferred
to the backup device as in Fig. 2(g). If the
deduplication is done immediately while receiving,
then it is called in-line deduplication. After writing
to the disk, if deduplication is done, then it is called
post-process deduplication.

The objective of the work is to reduce the total migra-
tion time and downtime in live VM migration process
by reducing the amount of VM memory transferred
from the source host to destination host during the
process of migration.

The significant contributions of the research are as
follows:

1) Adaptive deduplication to reduce the VM disk
image file size by detecting, and removing the zero,
similar and redundant memory copies. Adaptive
deduplication uses both fixed and variable size
chunking (content defined chunking) strategies.

2) Analysis of deduplication effects on different
formats of virtual machine disk images, as these
files take more memory in VM and time in the
migration process.

3) Akka framework is introduced, by which a high volume
of reactive streams (live data) and back pressure
mechanism are handled. As the variable length block-
level deduplication process takes much time, multi-
threading concept is used to accelerate the process.

(2019) 8:3 Page 5 of 12

The remaining paper organized as, the work related
to the research discussed in section "Related work".
Section 3 explains our motivation for the proposed
algorithm. Section "Motivation" explains the research
work experimental setup. Results are discussed in sec-
tion "Experimental setup”. The paper is concluded in
section "Results and Discussion".

Related work

In the characteristic-based compression (CBC) algo-
rithm [10, 11], where different compression tech-
niques used before the transfer of VM memory pages.
Based on the type of pages, different techniques such
as Wkdm for high similarity ratio pages, LZO for
pages with low similarity were used to reduce their
size. An improved algorithm was presented in [12]
where memory-to-disk mappings were sent to the tar-
get instead of memory pages. From NAS the target
host fetches the memory pages after deduplication
with the help of NFS fetch queue. MDD (Migration
with Data Deduplication) [6] was introduced in live
migration for data deduplication of run-time memory
image. Zero pages, similar pages were identified using
hash-based fingerprints and were eliminated using
RLE (Run Length Encode). To cut down the dedupli-
cation time multithreading was used by MDD. Ex-
treme binning [13] in which Rabin fingerprints were
used to identify the duplicated blocks. MD5 and SHA
collision resistant algorithms were used to find the
fingerprints. VM scheduling strategies [14] combined
with VM replication strategies were introduced to re-
duce migration latencies associated with live
migration of VMs across WAN. Scalability and stor-
age issues of VM images and were resolved by using
a liquid distributed file system [15]. Gang Migration
using global deduplication (GMGD) [16] was used to
detect duplicates in VM memory pages and avoids
their retransmission to target host in a cluster.
Thus, reducing network overhead while running
on several hosts. 42% reduction [17] in migration
time was achieved. An optimized Incremental
Modulo-K(INC-K) algorithm [18], modulo arithmetic
in nature was used for deduplication and achieved
66% better deduplication ratio. In [19], Inner VM and
cross-VM duplicates were removed by using a
multi-level selective deduplication method. Parallelism
was also increased by using local and global dedupli-
cation and a high deduplication ratio achieved. Differ-
ent chunking strategies [20] were applied on various
VM disk image dataset and proved that compression
rate varied for different operating system versions,
software configuration and achieved more savings in
storage by identifying zero-filled blocks. In [21] heur-
istic prediction was used to determine non-duplicates

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

by using adaptive block skipping, implemented on
disk images of size 1TB which leads to maximum
40% of space savings. Rapid Asymmetric Maximum
(RAM) [22], a modified content defined chunking was
used, which increases more throughput with less
hash-based computations.

Motivation

The main objective of the research work is to reduce
the number of pages transferred from source ma-
chine to destination machine in live migration
process, thus achieving the reduction in migration
time and downtime. Hence, in the proposed algo-
rithm, deduplication process on VM disk images ap-
plied twice to reduce the duplicates effectively. In
the proposed Adaptive deduplication algorithm both
fixed size and variable size chunking strategies are
implemented to identify the redundant data in VM
image files by using Akka stream in the live migra-
tion of virtual machines. To accelerate the dedupli-
cation process, multithreading in Akka stream
framework is used. Akka streams are mainly meant
for reactive streams such as live data where handling
the non-predetermined volume of data is difficult.
For parallel programming, and delay minimization in
live data streaming it is better to use actor model.
Akka Stream is an actor programming model. In
parallel programming, it matches the speed between
producers and consumer messages by avoiding avoid
back-pressure mechanism. Back pressure means if
one component is under stress to handle the incom-
ing messages and subsequently drops the messages.
Most of the researchers use the Akka model for
Big-data analytics. In this work, Akka is used for
streaming of live virtual machine data. As variable
length block-level deduplication takes more time
Akka with multithreading is used to accelerate the
process. In this paper, the results after adaptive
deduplication with Akka stream compared with
existing deduplication techniques. Akka framework is
used here to complete the process without getting
OutofMemory Errors. The VM image data set was
collected from an image registry of OpenStack, cre-
ated when launching VMs with the configuration of
2GB RAM and 10GB hard disk assuming no appli-
cations running on the VM. Each VM is loaded with
several guest operating systems like Centos7, Centos
6.9, Ubuntu 12.04 Ubuntu 14.04 and Ubuntu 11.10
versions. Several formats of virtual disk images VDI,
QCOW?2, VMDK, and VHD of created VMs were
taken as input data set to our research work. The
proposed adaptive deduplication with Akka stream is
as follows.

(2019) 8:3 Page 6 of 12

Algorithm:
/l Algorithm for adaptive deduplication
using Akka stream.
/MInput: VM disk image file in any
format.
//Output: VM Disk image without
duplicate pages.
Step 1: Start
Step 2: Identify the VM from
overloaded/under loaded host in the data
centre using minimum utilization policy.
Step 3: Select the target host based on CPU
utilization.
Step 4: Reserve resources for VM on the
target host.
Step 5: Transfer the necessary CPU state
information to the target host.
Step 6: Take VM Configured memory
Step 6.1: If (VM Memory < 1 GB)
Step 6.1.1 Call Fixed Length block
deduplication (Chunk size 4KB)
Step 6.2: else
Step 6.2.1 Call Fixed Length block
deduplication (Chunk size 1GB)
End if.
Step 7: For each unique chunk obtained
from fixed length block deduplication do
Step 7.1: Using Akka framework
Call RabinKarpRollingHash (Window
size 1 KB) using multithreading.
Step 7.2: Perform live Migration of
VM pages.
End for.
Step 8: Resume VM on the target host.
Step 9: Stop.

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

Figure 3(a) shows the system architecture. Live Migra-
tion is the process of moving a virtual machine from
source host to destination host, to achieve the goals such
as load balancing, fault tolerance, efficient resource
usage, and reduction of power consumption. The

(2019) 8:3 Page 7 of 12

research work is has three steps. In the first step, if the
input file is less than 1GB then fixed length block-level
deduplication algorithm is invoked with 4 KB as chunk
size, as it is a reasonable chunk size [6] and a consider-
able number of duplicates are identified and eliminated.

Adaptive
Deduplication
using Akka
stream

Configured

Provisi Memory
rovisions

Provides virtual
disk image

Glance
(Image
Service)

Nova
(Instance
Management)

Cinder
(Block
Storage

Open stack

{

Live VM
Migration
Pages without
duplicates

Virtualization using
VMM

A

(Source Host

)

Target Host]

Window size=1KB

Data Stream

One byte I

Move the sliding window by one byte

Data Stream

Data Stream

Thread 1 1

The found boundaries (Rabin fingerprint of the
sliding window data & mask==mask-1)

/4

Chunking Results

.

Chunk 1
Thread 2

Chunk 2

\/ Data Stream

Chunk 3

y

Hash

Hash
computation

1 Matchin
Unique Chunks Hash table

Fig. 3 a System Architecture. b Parallelization of Rabin-Karp Rolling hash algorithm using Multithreading

computation

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

Then in the second step, if the virtual disk image file in-
put size is greater than 1GB, split into equal size chunks
each of size 1 GB except the last one. Each 1GB split
undergoes fixed length block-level deduplication with 4
KB chunk size. The resultant chunks that are obtained
after the first stage of duplication undergo variable
length block-level deduplication technique and a very
reasonable amount of redundant is removed. Thus, it re-
duces virtual disk image file size efficiently. The
Rabin-Karp rolling hash algorithm with 1 KB as the win-
dow size is used to find the chunk boundaries in variable
length block-level deduplication process. This process
takes more time as the boundaries of the chunk are de-
cided based on the content present in the chunk. Hence,
this process is parallelized using multithreading in the
Akka framework with two threads to improve the speed
of deduplication. One thread is for finding chunk
boundaries, and other is for computing the hash code as
shown in Fig. 3(b). Thus, the size of the virtual disk
image file further reduced with a reasonable amount of
deduplication time. We used Akka to avoid OutofMem-
ory errors and backpressure mechanism occurred during
parallel processing of bulk live data. In the third step,
the reduced size of a virtual disk image file is assigned to
the VM size parameter in CloudSim. CloudSim setup is
explained in section 5. Live migration of VM is per-
formed and the corresponding total migration time is
calculated.

Experimental setup
There are some parameters [23] to measure the VM mi-
gration performance.

e Number of pages transferred: The amount of VM
memory or pages transferred during the migration.
It also includes zero pages, duplicates, and similar
pages.

e Total Migration time: The total time required for a
VM on source host to migrate and to start on a
destination. The sum of all time that is preparation
time, page transfer time, down time and resume
time.

e Application degradation: The performance of the
host decreases as the migration is in process.

e DPreparation time: When migration is initiated, the
time for transferring minimal state of the CPU to
the destination. In the pre-copy approach, pages be-
come dirty while VM on source host is running.
This time includes the entire process of iteratively
pushing the dirty pages to the destination host.

e Resume time: The time taken by the migrated VM
to resume its operations at the target host.

e Network traffic overhead: Overhead is the extra
operations that are imposed by the virtual machine

(2019) 8:3 Page 8 of 12

migration technique. It shows the impact on
application performance.

e Downtime: The duration of time that a VM is
suspended (out of service) before it resumes on the
target host.

The experiments are meant to achieve the following
goals:

1. To evaluate the deduplication rate of VM image
data set using adaptive deduplication techniques
and compare with existing fixed length, variable
length block deduplication techniques.

2. To carry out the process of live migration of VMs
where VMs size dynamically allocated after adaptive
deduplication using Akka Streams.

3. To accelerate the adaptive deduplication process by
using multithreading.

HARDWARE SPECIFICATIONS:

Processor: Intel® Core (TM) i5-8250U
8th Generation CPU 1.8 GHz DDR4
OS: Windows 10

RAM: 8GB

Memory: 1 TB disk

System Type: 64-bit OS, x 64-based

SOFTWARE SPECIFICATIONS:

e Software: JDK 1.8 and Oxygen 2
e Simulator: Cloud Sim 3.03

Fixed length and variable length block-level deduplica-
tion techniques are implemented in Java and Akka
framework. This code returns the size of VM virtual disk
image after eliminating the duplicates. CloudSim live mi-
gration code is invoked using IqrMu.main(args) which
outputs the total migration time.

CloudSim set up
CloudSim configuration and assumed parameters are
shown in Fig. 4(a).

Data set

Different formats of VM images like VDI, VMDK,
QCOW?2, VHD files are provided by glance component
of OpenStack image registry. These images have much
impact on deduplication rate [24] and are discussed by
many researchers. In our work VM Image dataset are
taken from OpenStack image registry by creating VMs
with a standard configuration of 2GB memory and 10GB
hard disk.

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

(2019) 8:3

Page 9 of 12

Scheduling Interval: 300

Simulation Limit: 24*60*60

Cloudlet Length= 2500 * simulation limit
Cloudlet PEs = 1

Dynamic Workload

VM Types: 4

VM Ram: 870, 1740, 1740, 613

VM Bandwidth: 100000 (100Mbits)

VM Size: Allocated during adaptive deduplication by Akka Stream

Host Types: 2 HP Proliant ML110 G4 (1x [Xeon 3040 1860 MHz, 2 Cores].
4GB) HP ProLiant ML110 G35 (1x [Xeon 3075 2660 MHz, 2 Cores], 4GB)

+ Host MIPS= 1860, 2660
+ RAM= 4096, 4096

-

Data Center
+ System Architecture= x86
* 0S=Linux

* VMM= Xen

Number of physical hosts=50

+ Number of VMs = 60

b

» Host Bandwidth= 1 000 000 (1 Gbit/s)

Storage Capacity= 1 000 000 (1 GB)

* VmAllocationPolicy = igr, Inter Quartile Range (IQR) VM allocation policy
vmSelectionPolicy= mu, Minimum Utilization (MU}

+ Safety parameter = 1.5, the safety parameter of the IQR policy

Deduplication Rate = (Original Image Size-Reduced Image Size)

Fig. 4 a Testbed configuration of CloudSim. b Deduplication Rate

Original Image Size

The given Table 1. Provides several formats of VM im-
ages for various operating systems, of CentOS, Ubuntu
different versions. OpenStack [24] was developed by
Rackspace for NASA and is a cloud operating system
which is used to implement public and private clouds
easily. The core components of OpenStack are Horizon,
Keystone, Nova, Swift, Glance and many other. Horizon
is the dashboard which is the graphical user interface
which allows the users to automate the cloud resources.
Keystone is the identity service which provides the

authentication services. Nova is a compute component
which manages the creation of many VMs that handle
numerous computing tasks. Swift is in object storage
which stores many peta bytes of data. Glance is an image
registry service which supports VDI, VMDK, VHD, Raw,
qcow2 images of VMs. Deduplication rate is calculated
as shown in Fig. 4(b). Deduplication rate is affected by
the deduplication algorithm, chunk size, and data sets.
Variable size chunking strategy gives better deduplica-
tion rate than that of fixed size chunking. In our

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:3 Page 10 of 12
Table 1 Virtual Machine disk images in the data set (Bytes)

CentOS7 Cent0S6.9 Ubuntu12.04 Ubuntu14.04 Ubuntu11.10
VMDK 1,242,859 446,922 3,511,238,307 4,882,761,848 1,831,810
VHD 146,448 24,576 3,511,646,874 149,467 477,556
VDI 2,322,209 2,216,387 3/412,228,224 4,856,112,381 2/423,744,118
QCOW2 161,368 131,729 3,462,770,688 4,855,561,190 498,630
Total (bytes) 3,872,884 2,819,614 13,897,884,093 14,594,584,886 2/426,552,114

experiments, first we concentrated to reduce the size of
several VM disk images with various guest operating
systems. To implement fixed length block-level dedu-
plication the chunk size 4 KB is used as it is the rea-
sonable average chunk size to get better deduplication
rate [25]. The smaller the chunk size the better the
deduplication rate [26] but a smaller chunk size in-
creases the metadata overhead and the time for the
deduplication process also.

Results and discussion

In Fixed length block-level deduplication technique any
format of virtual disk image file is taken as input and the
file is split into small chunks each of size 4 KB. Using
the SHA algorithm, the hash code of each chunk is cal-
culated. The hash code and chunk name are stored in
the hash table. If any further in coming chunk having
the same hash code, the chunk is not stored in the hash
table. Thus, the duplicates are eliminated. As the file size
is small, there is no significant impact on live migration
performance.

From the Fig. 5(a) it has been understood that mini-
mum 6.61% improvement in the deduplication rate for
Ubuntu 11.10 files and 92.66% maximum deduplication
rate for Centos 6.9 files are achieved. The small the size
of the VM image size the large the deduplication rate.
The better the deduplication rate, the better reduction
in virtual disk image size reduction, the better the migra-
tion time and less downtime. From the above figures for
different OS versions of virtual disk images, total migra-
tion time is reduced by 86.6% for VHD files of Ubuntu
11.10 which is a lighter version. Migration time is very
well reduced by 92.6% for VMDK format of centos 6.9
files. We got 50.4% overall deduplication rate for qcow2
files which is the same as existing.

From Fig. 5(b) and (c) it is observed that Ubuntu OS
versions don’t have many duplicates except for that
lighter versions. 89.87% is the maximum reduction in
the size of Ubuntu OS disk image files. 19.77% is the
percentage of size reduction for Ubuntul4.04 VMDK
format which is the minimum among all available
Ubuntu versions. 91.6% reduction in total migration
time is achieved for Centos6.9 disk image file. Conse-
quently, the downtime, application performance degrad-
ation will be reduced reasonably.

Figure 5(d). shows that adaptive deduplication shows
the better deduplication rate for all the input files com-
pared to the fixed and variable length block deduplica-
tion techniques. The better the deduplication rate, the
more the VM file size is reduced. It means the number
of VM pages to be transferred is reduced. We also ob-
served that small VM image files which are lighter ver-
sions have many duplicates when compared to large VM
image files.

Figure 5(e) and (f) show that adaptive deduplication
technique gives better performance when compared
with fixed and variable deduplication techniques in
terms of deduplication rate and migration time.
92.66% for fixed, 94.35% for variable and 95.53% for
adaptive deduplication rate achieved regarding size.
91.4% for fixed, 91.6% for variable and 92.5% better
reduction achieved regarding total migration time.
Minimum percentage of deduplication rate 6.61%,
19.77%, 56.29% achieved by using fixed length, vari-
able length, and adaptive duplication techniques re-
spectively. 5%, 14.1%, 41.5% total migration time is
reduced by using fixed length, variable length, and
adaptive deduplication techniques respectively.

Figure 5(g) show the comparison of all techniques re-
garding storage. By using the proposed technique 6.61%
minimum for Ubuntu files and 95.5% maximum dedu-
plication rate is obtained for centos files. The minimum
of 5% and 92.5% maximum reduction in total migration
time is obtained. IM-Dedup [24] uses static (fixed
length) chunking procedure and it achieves 80% reduc-
tion in overall image storage. We achieved a 83% reduc-
tion in the overall storage of images. 3% improvement is
significant because this algorithm is used in data centres
for optimal storage of VM disk images. As large VM disk
images have peta bytes of size, 3% reduction in storage
give a significant memory savings. 89.76% reduction in
migration time by using adaptive deduplication. The
number of duplicates present in VM disk images is
based on the data set taken, the type of disk image, and
the applications running on the VM. In this paper, we
didn’t discuss the time for deduplication process since
the adaptive deduplication process if it carried out by
high-end servers of cloud, the deduplication was com-
pleted within no time and there is no significant impact
on migration time and downtime.

YJ and G Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:3 Page 11 of 12
-
a Fixed Length Block Deduplication e - - -
Size of virtual disk image
BEVMDK ®VHD =VDI ©QCOW2 3E+10
100%
909 25E+10
o 80%]
g 2E+10
g ™% —
5 60% QI,SE‘*IO
5 50% z
b1 =
£ 40% = IE+10
E 3
£ 0% N NN
2 50 4
20% g s
10% £
0% °
3 .
CentOS7 Cent0S6.9 Ubuntu12.04 Ubuntul4.04 Ubuntul1.10 Fixed Variable Adaptive
. N Deduplciation Technique
Virtual Disk Image
= Cenos7 VMDK =Cenos7 VHD = Cenos7 VDI
Cenos7 QCOW2 ¥ Cent0S6.9 VMDK ¥ Cent0S6.9 VHD
. R =Cent0S6.9 VDI Cent0S6.9 QCOW2 & Ubuntul2.04 VMDK
b Variable Length Block Dedupllcatlon = Ubuntul2.04 VHD = Ubuntu12.04 VDI = Ubuntul2.04 QCOW2
Ubuntul4.04 VMDK # Ubuntul4.04 VHD Ubuntul4.04 VDI
Ubuntu14.04 QCOW2 ® Ubuntul1.10 VMDK # Ubuntul1.10 VHD
"VMDK ®VHD =VDI =QCOW2 = Ubuntul1.10 VDI = Ubuntul1.10 QCOW?2
100%
90%
S 0% f . PR
£ % - Total migration time
E 60% - 14
= 50% 12
) |
B 30% 3 1
Z w% % 08 I
10% £ 06
0% & —
CentOS7 Cent0S6.9 Ubuntu12.04 Ubuntu1d.04 Ubuntu11.10 04
Virtual Disk Image 02
0
1E+10 0.001 Fixed Variable Adaptive
1E+09 Deduplication Technique
100000000 = Cenos7 VMDK = Cenos7 VHD = Cenos7 VDI Cenos7 QCOW2
10000000 # Cent086.9 VMDK # Cent0S6.9 VHD = Cent0S6.9 VDI = Cent086.9 QCOW2
T 1000000 .01 ®Ubuntul2.04 VMDK ®Ubuntul2.04 VHD ~ ®Ubuntul2.04 VDI = Ubuntu12.04 QCOW2
z
% 100000 # Ubuntul4.04 VMDK = Ubuntul4.04 VHD # Ubuntul4.04 VDI Ubuntul4.04 QCOW2
j 10000 # Ubuntul1.10 VMDK = Ubuntul1.10 VHD ® Ubuntul1.10 VDI # Ubuntul1.10 QCOW2
=
g 1000
F 01
& 100 g
g
E 10 J h 100
%
a 1
3 X e 3o x2ezEoKXesox2xezss¥as o
| 258 zfE858z£8EE8zz888z8az28z1 %
£ -85 -5:5°F5-5855"-¢8
- - <3 - 3 - 3 - S - S &
Cenos?7 Cent0S6.9 Ubuntul2.04 Ubuntul4.04 Ubuntul1.10
Virtual Disk Image 70
g
<
s Size Before = Size After —— Migration Before Migration After S 0
g
. s §
Adaptive Deduplication i
d g a0
EVMDK EVHD =VDI ©QCOW2 E]
4
100% e
30
90%
g so%
2 0% 20
é 60%
= % 10
3 40%
E- 30% 0
g W% @%%Q%%E%%E%%E%%
10% § £ 3 £ § §: € T 3 & T B & % %
0% s 32 s 2 s 2 S 32 s 32
CentOS7 Cent0S6.9 Ubuntul2.04 Ubuntu14.04 Ubuntu11.10 Cent0s 7 cent6s Ubuntu12.04 ubuntutd Ubuntu 1110

Virtual Disk Image

Fig. 5 a Deduplication Rate (in %) for Fixed length block deduplication. b Deduplication Rate (in %) for Variable length block deduplication.
¢ Comparison of virtual disk image size and total migration time before and after variable length block deduplication for the image data set.
d Deduplication Rate (in %) for Adaptive deduplication. e Comparison of size of disk image files after performing fixed length, variable length
adaptive deduplication techniques. f Comparison of total migration time after performing fixed length, variable length adaptive deduplication
techniques. g Comparison of Deduplication rate for fixed size, variable size block deduplication and adaptive deduplication

Conclusion

In this research the existing deduplication techniques
fixed length, variable length block deduplication tech-
niques are implemented and compared with proposed
adaptive deduplication techniques on standard VM
images dataset which is taken from open stack image

registry when created with each VM configuration of
RAM 2GB and hard disk of 10GB assuming no
applications running on any VM. The Rabin-Karp rolling
hash algorithm is used for variable length block deduplica-
tion. IM-Dedup uses static (fixed length) chunking pro-
cedure, and it achieves 80% reduction in overall image

TYJ and G Journal of Cloud Computing: Advances, Systems and Applications

storage. We achieved an 83% reduction in the overall
storage of images and 89.76% overall reduction in mi-
gration time by using adaptive deduplication. 3% im-
provement in deduplication rate by the proposed
method. As the migration time is reduced obviously,
downtime and application performance degradation
also reduced.

Abbreviations
LZO: Lempel-ziv—oberhumer; NAS: Network attached storage; NFS: Network
File System; VM: Virtual machine; VMM: Virtual machine migration

Acknowledgments
We are thankful for the people who gave the technical assistance in getting
the data set of VM images.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Authors’ contributions

NM did a literature survey on live migration techniques, deduplication
techniques. She proposed and implemented adaptive deduplication of
virtual machine images by using fixed length and variable length block
deduplication techniques. VG guided choosing of parameters for evaluating
various techniques. She approved the final version of the paper to be
submitted. Both authors read and approved the final manuscript.

Competing interests
TYJNaga Malleswari, GVadivu declares that they have no competing
interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Computer Science and Engineering, SRMIST, Chennai
603203, India. “Department of Information Technology, SRMIST, Chennai
603203, India.

Received: 6 June 2018 Accepted: 9 January 2019
Published online: 06 February 2019

References

1. Naga Malleswari TYJ, Rajeswari D, Senthil J (2012) A survey of cloud
computing architecture and services provided by various cloud service
providers. In: Proceedings of 2" international conference on demand
computing, the Oxford College of Engineering, November 15-16, Bangalore

2. Venkatesha, Sharath & Sadhu, Shatrugna & Kintali, Sridhar. (2009). Survey of
Virtual Machine Migration Techniques

3. Sun G, Liao D, Vishal A, Dongcheng Z, Yu H (2016) A new technique for
efficient live migration of multiple virtual machines. Futur Gener Comput
Syst 55:74-86. https//doi.org/10.1016/jfuture. 2015.09.005

4. Choudhary A, Govil MC, Singh G, Awasthi LK, Pilli ES, Kapil D (2017) A critical
survey of live virtual machine migration techniques. J Cloud Comp 6(23):1-
41. https//doi.org/10.1186/513677-017-0092-1

5. Diego Perez-Botero, “A Brief Tutorial on Live Virtual Machine Migration from
a Security Perspective”

6. X Zhang, Z Huo, J Ma and D Meng, "Exploiting Data Deduplication to
Accelerate Live Virtual Machine Migration," 2010 IEEE international
conference on cluster computing, 2010, pp. 88-96. https://doi.org/10.1109/
CLUSTER.2010.17

7. S.Sharma and M. Chawla, "A technical review for efficient virtual machine
migration," 2013 International Conference on Cloud & Ubiquitous
Computing & Emerging Technologies (CUBE), Pune, India, 2014, pp. 20-25.
doihttps://doi.org/10.1109/CUBE.2013.14

20.

22.

23.

24.

25.

26.

(2019) 8:3 Page 12 of 12

Hu, Wenjin, Hicks, Andrew, Zhang, Long, Dow Eli, Soni, Vinay, Jiang, Hao,
Bull, Ronny, Matthews, Jeanna. (2013). A quantitative study of virtual
machine live migration. Proceedings of the 2013 ACM Cloud and
Autonomic Computing conference. https://doi.org/10.1145/2494621.
2494622

Naga Malleswari TY, Malathi D, Vadivu G. Deduplication Techniques: A
Technical Survey. International J Innovative Res Sci Technoll, 2014, 1, (7) pp.
318-325

Jin Hai & Deng, Li & Wu, Song, Shi, Xuanhua, Pan, Xiaodong. (2009). Live
virtual machine migration with adaptive, memory compression. Proceedings
- [EEE International Conference on Cluster Computing, ICCC. 1-10. 10.1109/
CLUSTR.2009.5289170

Jin H, Deng L, Wu'S, Shi X, Chen H, Pan X (2014) "MECOM: live migration of
virtual machines by adaptively compressing memory pages’, ACM
transactions on. Futur Gener Comput Syst 38:23-25

Jo C, Gustafsson E, Son J, Egger B (2013) Efficient live migration of virtual
machines using shared storage. ACM SIGPLAN Not 48:41-50. https://doi.
0rg/10.1145/2451512.2451524

D. Bhagwat, K. Eshghi, D. D. E. Long and M. Lillibridge, "extreme binning:
scalable, parallel deduplication for chunk-based file backup," 2009 IEEE
international symposium on modeling, Analysis & Simulation of Computer
and Telecommunication Systems, London, 2009, pp. 1-9. doi: https://doi.
0rg/10.1109/MASCOT.2009.5366623

Jinhua H, Jianhua G, Sun G, Zhao T (2010) A scheduling strategy on load
balancing of virtual machine resources in cloud computing environment,
3rd international symposium on parallel architectures. Algorithms and
Programming:89-96

X. Zhao, Y. Zhang, Y. Wu, K. Chen, J. Jiang and K. Li, "Liquid: a scalable
deduplication file system for virtual machine images," in IEEE Transactions
on Parallel and Distributed Systems, vol. 25, no. 5, pp. 1257-1266, 2014.doi:
https:.//doi.org/10.1109/TPDS.2013.173

U. Deshpande, B. Schlinker, E. Adler and K. Gopalan, "Gang Migration of
Virtual Machines Using Cluster-wide Deduplication," 2013 13th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, Delft,
2013, pp. 394-401.doi: 10.1109/CCGrid.2013.39

H. Liu, H. Jin, X. Liao, C. Yu and C. Z. Xu, "Live virtual machine migration via
asynchronous replication and state synchronization," in IEEE Transactions on
Parallel and Distributed Systems, vol. 22, no. 12, pp. 1986-1999, Dec. 2011.
doi: https://doi.org/10.1109/TPDS.2011.86

J.Min, D. Yoon and Y. Won, "Efficient deduplication techniques for modern
backup operation," in IEEE Transactions on Computers, vol. 60, no. 6, pp.
824-840, 2011. doi: https://doi.org/10.1109/TC.2010.263

W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li and Y. Zeng, "Multi-level Selective
Deduplication for VM Snapshots in Cloud Storage," 2012 IEEE Fifth
International Conference on Cloud Computing, Honolulu, HI, 2012, pp. 550-
557. doi: https://doi.org/10.1109/CLOUD.2012.78

Jin Keren and Ethan L. Miller. “The effectiveness of deduplication on virtual
machine disk images.” SYSTOR '09 Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference SYSTOR (2009). Article 7

Zhou B, Wen J (2016) A data deduplication framework of disk images with
adaptive block skipping. J Comput Sci Technol 31(4):820-835. https://doi.
0rg/10.1007/511390-016-1665-Z

N.S. Widodo, Ryan & Lim, Hyotaek & Atiquzzaman, Mohammed. (2017). A
new content-defined chunking algorithm for data deduplication in cloud
storage. Futur Gener Comput Syst 71. https://doi.org/10.1016/jfuture.2017.02.013
Naga Malleswari TYJ, Vadivu G, Malathi D (2015) Live virtual machine
migration techniques-a technical survey. In: 2" international conference on
intelligent computing, communication and devices intelligent computing
august 2015, intelligent computing, communication and devices, volume 1.
Springer, pp 303-309

Jilin Zhang, Shuting Han, Jian Wan, Baojin Zhu, Li Zhou, Yongjian Ren, and
Wei Zhang (2013) IM-Dedup: an image management system based on
deduplication applied in DWSNs, international journal of distributed sensor
networks July 16, 2013, doi.org/https://doi.org/10.1155/2013/625070

Kim D., Song S., Choi BY. (2017) Existing deduplication techniques. In: Data
Deduplication for Data Optimization for Storage and Network Systems.
Springer, Cham

TYJ Naga Malleswari, Vadivu G (2017) Deduplication of VM Memory Pages
Using Mapreduce In Live Migration, ARPN Journal Of Engineering And
Applied Sciences, 2017, Vol 12, No. 6, Pp. 1890-18%4

https://doi.org/10.1016/j.future.2015.09.005
https://doi.org/10.1186/s13677�017�0092-1
https://doi.org/10.1109/CLUSTER.2010.17
https://doi.org/10.1109/CLUSTER.2010.17
https://doi.org/10.1109/CUBE.2013.14
https://doi.org/10.1145/2494621.2494622
https://doi.org/10.1145/2494621.2494622
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1145/2451512.2451524
https://doi.org/10.1109/MASCOT.2009.5366623
https://doi.org/10.1109/MASCOT.2009.5366623
https://doi.org/10.1109/TPDS.2013.173
https://doi.org/10.1109/TPDS.2011.86
https://doi.org/10.1109/TC.2010.263
https://doi.org/10.1109/CLOUD.2012.78
https://doi.org/10.1007/S11390-016-1665-Z
https://doi.org/10.1007/S11390-016-1665-Z
https://doi.org/10.1016/j.future.2017.02.013
https://doi.org/10.1155/2013/625070

	Abstract
	Introduction
	Virtual Machine Migration
	Deduplication
	Fixed length block-level deduplication
	Variable length block-level deduplication
	Related work
	Motivation
	Experimental setup
	CloudSim set up
	Data set

	Results and discussion
	Conclusion
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

