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Abstract

The use of cloud computing data centers is growing rapidly to meet the tremendous increase in demand for
high-performance computing (HPC), storage and networking resources for business and scientific applications. Virtual
machine (VM) consolidation involves the live migration of VMs to run on fewer physical servers, and thus allowing
more servers to be switched off or run on low-power mode, as to improve the energy consumption efficiency,
operating cost and CO2 emission. A crucial step in VM consolidation is host overload detection, which attempts to
predict whether or not a physical server will be oversubscribed with VMs. In contrast to the majority of previous work
which use CPU utilization as the sole indicator for host overload, a recent study has proposed a multiple regression
host overload detection algorithm, which takes multiple factors into consideration: CPU, memory and network BW
utilization. This paper provides further improvement along two directions. First, we provide Multi-Dimensional
Regression Host Utilization (MDRHU) algorithms that combine CPU, memory and network BW utilization via Euclidean
Distance (MDRHU-ED) and absolute summation (MDRHU-AS), respectively. This leads to improved results in terms of
energy consumption and service level agreement violation. Second, the study explicitly takes real-world HPC
workloads into consideration. Our extensive simulation study further illustrates the superiority of our proposed
algorithms over existing methods. In particular, as compared to the most recently proposed multiple regression
algorithm that is based on Geometric Relation (GR), our proposed algorithms provide an improvement of at least 12%
in energy consumption, and an improvement of at least 80% in a metric that combines energy consumption,
service-level-violation, and number of VM migrations.

Keywords: Cloud Computing, Power management, Data center management, Virtual machine consolidation, Host
overload detection, Multiple regression

Introduction
Cloud computing [1] technology is acquiring a great
deal of prominence across the computing and network-
ing research communities. Nowadays, cloud data centers
are the basic framework for the computing and data stor-
age communities that offer expanded services to the end
users. These data centers consume large amounts of elec-
trical energy to process the cloud services bringing a large
quantity of CO2 emissions, high operational cost, and
influencing the reliability of hardware equipments [2]. The
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fundamental drain of power consumption in data cen-
ters are processing, network, cooling systems, and disk
storage. Since conventional ways [3–5] to decrease the
power consumption are no longer suitable for modern
data centers, new adaptive software-oriented techniques
are inevitable. To reduce energy consumption, it is impor-
tant to address inefficiencies and waste in the manner
electricity is conveyed to computing servers, and in the
manner these resources are utilized to satisfy the running
workloads. This may be possible by enhancing the data
centers physical infrastructure, in addition to resource
management and allocation algorithms.
One of the important methods to address the energy

inefficiency in cloud data centers is to leverage the capa-
bilities of the virtualization technology. Virtualization is
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a key player in cloud computing [6]. In particular, virtu-
alization permits logical resource abstraction in isolation
from their corresponding physical resources; the phys-
ical resources are transformed into virtual on-demand
resources of cloud data centers. Virtualization is provided
by the utilization of a hypervisor to logically allocate vir-
tual machines (VMs) on physical server resources. The
hypervisor permits the VM guest operating system to
operate as if it were solely in control of the hardware,
unaware that other guests are sharing it. Virtualization
gives a chance to consolidate various VM instances run-
ning on under-utilized server machines into fewer nodes,
allowing more servers to be switched-off, which leads
to considerable energy savings. Virtual machine consol-
idation [7] involves scheduling/migrating several virtual
machines into a few number of physical servers. Vir-
tual machine consolidation has essentially an important
tradeoff, namely reduction of energy consumption with-
out scarifying the Quality of Service (QoS) delivered by
the system (energy-performance trade off ). The improve-
ment of the system QoS may be achieved indirectly by
tuning parameters of the assigned host. The tuning is
based on the utilization percentage achieved by the phys-
ical resources in a computing node. According to this
percentage we can decide if a node is underloaded or over-
loaded. According to the workload information, a VM can
be migrated from an overloaded host to an underloaded
host. Server overload results in applications performance
degradation and resource shortages, as well as an exten-
sive increase in power consumption. Monitoring the over-
loaded hosts will enhance the host utilization and prevent
thrashing of the VMs.
The capability to manage physical machine (PM) over-

load is a critical element of next-generation, competitive
cloud services. If overload is not handled properly, cloud
service providers will take the risk of violating their Ser-
vice Level Agreements (SLAs) [8]. SLAs provide a level of
assurance to customers that their requested resources are
available when they request them [9]. An overloaded host
directly affects the QoS because, if the resource capac-
ity is fully utilized for a significant time window, it is
expected that the applications will encounter performance
degradation and resource shortage.
Most of the recent studies migrate VMs based on

the CPU utilization of the physical server. This may be
suitable for CPU-intensive applications, but will not be
accurate for network, I/O and memory intensive applica-
tions [10]. Motivated by the fact that high-performance-
computing (HPC) applications, and server applications
usually utilizing cloud data centers, are sensitive to multi-
ple factors (CPU, Memory and Network BW utilization),
we propose a family of novel multi-dimensional regression
host overload detection algorithms that explicitly take
these orthogonal factors into consideration. In particular,

the most crucial aspect of multi-dimensional regression
is how to combine the orthogonal factors (CPU, Mem-
ory and Network BW utilization) into a composite metric
that accurately captures whether or not the host is over-
loaded. Making such a decision accurately is the ultimate
goal of the regression algorithm. To this end, we introduce
two alternative mathematical formulas for VM utilization,
namely Euclidean Distance (ED) and Absolute Summa-
tion (AS), that aremore general than the existing approach
in [11].
More specifically, the contribution of this paper can be

summarized as:

1. This paper introduces a Multi-Dimensional
Regression Host Utilization algorithm (MDRHU) for
host overload detection. In particular, we introduce
two alternative mathematical composite metrics to
measure the host utilization based on the VM
utilization profiling of three independent factors:
CPU, memory and network BW. The proposal is
tuned and enhanced to meet the specs of the Cloud.
The numerical results reveal the superiority of the
proposed approach as compared to the existing
state-of-the-art.

2. This study explicitly takes real-world HPC workloads
into consideration. This ensures the trustworthiness
of our numerical study in revealing the suitability of
our proposed approach for HPC applications.

This paper is organized as follows: “Related work” section
presents the related work, and summarizes the contribution
of this paper. “Multi-dimensional regression host
utilization for host overload detection algorithms
(MDRHU)” section introduces the proposed regression-
based, multi-dimensional host overload detection algorithm.
“Evaluation methodology” section presents the eval-
uation methodology. “Simulation results and analysis”
section presents the simulation results. Finally,
“Conclusion” section concludes the paper.

Related work
Previous techniques to energy efficient host overload
detection can be broadly divided into three categories: (1)
static threshold based heuristics, (2) adaptive utilization
based heuristics and (3) regression based heuristics. All
categories enjoyed significant attention from the research
community, so we focus here on the most relevant and
significant work.
Threshold-based techniques rely on setting a static CPU

utilization threshold distinguishing the non-overload and
overload states of the node. These techniques com-
pare the current CPU utilization of the host against
the predefined threshold. If the threshold is exceeded, a
host overload is declared. See, e.g., [12] and [13]. Fixed
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Fig. 1Multi-Dimensional Regression Host Utilization for Overload Detection (MDRHU)

utilization thresholds are not suitable for environments
with dynamic and unpredictable workloads, where vari-
ous types of applications may share a physical resource.
The system should be capable of adjusting automatically
its behavior based on the workload patterns. Adaptive
utilization based algorithms provide auto-adjustment of
the utilization thresholds depending on a statistical anal-
ysis of historical data calculated within the lifetime of
the VMs. See, e.g., [7, 14, 15]. Adaptive utilization based

algorithms are efficient for dynamic environments, but
provide poor prediction of host overloading. Hence, host
overload detectionmay also benefit from the estimation of
future CPU utilization. Regression-based techniques pro-
vide better prediction of host overloading because they
depend on estimation of future CPU utilization. Although
they are complex, their benefits may payoff. Example
regression algorithms include the Local Regression (LR)
algorithm [14]. The basic idea of local regression is to

Fig. 2 CPU, RAM, BW, Geometric Relation (GR), Euclidean Distance (ED) and Absolute Summation(AS)
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Fig. 3 Power consumed by the chosen hosts at various load levels in Watts [14]

fit a simple model to the localized subsets of the data to
produce a curve that approximates the original data.
The main drawback of the above-mentioned studies is

that host overload detection is mainly based on the CPU
utilization. Studies that combined multiple criteria, e.g.,
CPU, memory and/or BW utilization, do exist. Table 1
provides an overview of the main existing studies that
considered multiple factors for detecting host overload.
In a previous effort, Abdelsamea et al. [11] have devel-
oped a multiple regression algorithm that uses CPU uti-
lization, memory utilization and BW utilization for host
overload detection. They proposed preliminary results for
this methodology using random and planetLab workload
traces which are significant for CPU and RAM but are
insignificant for BWutilization. This follow-up paper pro-
poses a new family of multi-dimensional regression host
overload detection algorithms using Euclidean Distance
(ED) and Absolute Summation (AS) that are more general
than that in [11]. Also, and in contrast to [11], we use real-
life HPC workloads that are sensitive to CPU, RAM and
network BW.
It is worth noting that host overload detection is

considered as the first step in the VM consolidation
process. Once the overloaded hosts are detected, VM

consolidation entails two other steps: (1) selecting the
VMs to be migrated from the overloaded hosts to
other hosts (known as VM migration), and (2) re-
placement of the VMs selected for migration on new
hosts (known as VM placement). Some recent stud-
ies on energy-efficient VM placement and VM migra-
tion can be found, e.g., in [21–23]. In particular, the
study in [21] addressed the VM placement problem
with the objective of improving energy consumption
and SLA violations. The authors proposed a novel VM
placement algorithm based on the bin packing heuris-
tic. The study in [23] also addressed the energy-efficient
VM placement problem, but proposed a genetic algo-
rithm meta-heuristic. Finally, the study in [22] presented
new energy-efficient VM placement and VM migration
policies. Our work, however, focuses on host overload
detection.

Multi-dimensional regression host utilization for
host overload detection algorithms (MDRHU)
In what follows, we present a novel family of multi-
ple regression based algorithms for host overload detec-
tion. The presented algorithms explore different models
for host utilization using multiple factors, namely CPU,

Table 2 Planetlab Workload data [14]

Date 03-03-2011 06-03-2011 09-03-2011 22-03-2011 25-03-2011 03-04-2011 09-04-2011 11-04-2011 12-04-2011 20-04-2011

Number of VMs 1052 898 1061 1516 1078 1463 1358 1233 1054 1033
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Table 3 Relative Energy consumption for different algorithms vs.
Number of VMs

Algorithm 898 1033 1233 1463 1516

HLRHOD -0.077 -0.121 -0.054 -0.076 -0.096

MRHOD -0.089 -0.144 -0.089 -0.081 -0.115

MDRHU-ED -0.211 -0.243 -0.176 -0.245 -0.291

MDRHU-AS -0.207 -0.244 -0.206 -0.242 -0.289

memory and BW. The flowchart for the proposed Multi-
Dimensional Regression Host Utilization (MDRHU) algo-
rithm is presented in Fig. 1. In order to predict future
host utilization values, the regressor requires two major
components. The first component is the profiled data for
the independent factors (dimensions) of the running VMs
that contribute to the host utilization evaluation. This data
is readily available through the online profiling of the VMs
and can be superimposed/aggregated across all VMs per
host.
The second and the most critical component needed

to perform the multiple regression process is the func-
tion to combine the independent factors together to derive
a dependent metric representing the overall host utiliza-
tion. This non-trivial component is required as the host
utilization cannot be measured directly. A successful eval-
uation of the host utilization leads to a correct decision
of whether the host is really overloaded or not, which is
the ultimate goal of our proposed algorithm. Although the
work in [11] incorporated the Geometric Relation (GR)
function for the host utilization formulation, we believe it
does not closely trace the actual host utilization behaviour.
In this paper, two alternativemodels considering the space
distance (the multi-dimensionality of the problem) for
the host utilization are proposed as discussed, namely,
Euclidean Distance (ED) and Absolute Summation (AS).
The following paragraph discusses these two proposed
models. In addition, GR is also discussed as a benchmark
for comparison purposes.

1. MRHOD [11]: Geometric Relation (GR) is a
multi-factorization relationship that combines
multiple parameters in one metric that summarizes
the overall system behavior. The most critical factors
to be considered for VMs are CPU, memory and BW.
However, the absolute values for those factors scores

Table 4 Relative ESV metric vs. Number of VMs

Algorithm 898 1033 1233 1463 1516

HLRHOD -0.161 -0.113 -0.078 -0.136 -0.072

MRHOD -0.164 -0.112 -0.046 -0.126 -0.056

MDRHU-ED -0.245 -0.233 -0.248 -0.269 -0.206

MDRHU-AS -0.267 -0.216 -0.223 -0.27 -0.234

are not the desired parameters to be used. The
utilization of the aforementioned factors relative to
the maximum permissible utilization is more
meaningful to make the factors dimensionless and
representative for the host overload. The maximum
utilization is either defined by the cloud service
provider or the absolute available host utilization.
Hence, the profiled data is to be normalized to
represent a fractional utilization per factor.
Geometric Relation (GR) for host utilization
evaluation is used in [24] as shown in Eq. 1. However,
the GR lacks the consideration of the orthogonality
of the multi-dimensional space among the different
factors.

HostUtilization = ω1
1 − CPU

× ω2
1 − RAM

× ω3
1 − BW

(1)

where ωi The weight of for factor i, where the factors
are CPU, memory and BW
CPU The relative CPU utilization
RAM The relative memory utilization
BW The relative network utilization
An alternative method to the GR relation above is to
use different space distance methodologies. Several
methods can be used [25] such as Euclidean Distance
(ED) or Absolute Summation (AS) to calculate the
distances of two points in space.

2. MDRHU-ED: As mentioned above, the CPU, RAM
and BW utilizations have different scales or measures.
Therefore,the host utilization cannot be determined
by simply summing up these values. To overcome this
difficulty, the objective is divided by a normalization
constant (normConst) as shown in Eq. 2.

HostUtilization = CPU + RAM + BW
normConstED

(2)

Our proposed algorithm MDRHU-ED uses the
Euclidean distance between the current and previous
host utilizations as the normalization constant. In
particular, the normalization constant used by
MDRHU-ED is shown in Eq. 3:

normConstED =
√
d(CPU)2 + d(RAM)2 + d(BW )2 (3)

Note that d(CPU), d(RAM) and d(BW ) denote the
relative difference between the current and previous
CPU utilizations, memory utilizations and BW
utilizations, respectively.

3. MDRHU-AS: Similarly to MDRHU-ED, our
alternative proposed algorithm MDRHU-AS
estimates the host utilization using:

HostUtilization = CPU + RAM + BW
normConstAS

The normalization constant (normConst), however,
is calculated as the summation of the absolute values
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(a) (b)

(c) (d)

(e)
Fig. 4 Algorithms vs. Number of VMs for PlanetLab. a Energy Consumption. b SLAV metric. c ESV metric. d VM Migrations. e ESM metric

of the utilization distances. In particular, the
normalization constant used by MDRHU-AS is
shown in Eq. 4:

normConstAS = |d(CPU)| + |d(RAM)| + |d(BW )| (4)

Again, d(CPU), d(RAM) and d(BW ) denote the
relative difference between the current and previous
CPU utilizations, memory utilizations and BW
utilizations, respectively. This strategy results in a
bigger divisor as compared to the Euclidean distance
strategy, and is considered to be preferable for
scaling problems that are considered badly

incommensurable. On the other hand, it is
characterized by a similar robustness to the
Euclidean distance method.

It is worth noting that our proposed alternative approa-
ches (MDRHU-ED andMDRHU-AS) are used to estimate
the host utilization using profiled data related to CPU,
memory and BW utilizations, respectively. As shown in
Fig. 1, the next step is to build a general model that
maps the independent variables (here CPU, memory and
BW) to their corresponding dependent variable (here
host utilization). This is accomplished using a multiple
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(a) (b)

(c) (d)

(e)
Fig. 5 Algorithms vs. Number of VMs for Gaia. a Energy Consumption. b SLAV metric. c ESV metric. d VM Migrations. e ESM metric
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regression algorithm. See, e.g., [26]. Multiple regression
is an extension of simple linear regression. Its objective
is to predict the value of a dependent variable (here host
utilization) based on the values of multiple independent
variables (here CPU, memory and BW). The outcome
of the multiple regression algorithm is a prediction of
the future host utilization. After the predicted Host Uti-
lization is obtained through the regressor, its value is
evaluated. The host is considered to be overloaded if the
predicted host utilization exceeds some threshold as rec-
ommended by [14]. Consequently, a VM is selected to be
migrated from the overloaded host.
To examine the correlation between the multi-

dimensional approach and the utilization of the single
factor parameters, Fig. 2 depicts the VM utilization for
each individual factor and the host utilization calculated
through GR, as compared to the two proposed multi-
dimensional models (MDRHU-ED and MDRHU-AS)
at different time slots. We can observe that the GR
host utilization is somewhat averaging the individual
utilization behaviour. On the other hand, ED and AS
trace the overall utilization behaviour better with more
pronounced variation in the curves.

Evaluationmethodology
Experimental setup
Since it is hard to conduct repeatable large scale experi-
ments on a real infrastructure [14], simulations are chosen
as an approach to highlight the superiority of our pro-
posed algorithms. The Cloudsim toolkit [27] has been
utilized as a simulation framework because of the follow-
ing reasons. Cloudsim supoorts VM provisioning at two
levels: the host level and the VM level. At both levels,
Cloudsim performs space-shared and time-shared pro-
visioning techniques. Space-shared techniques distribute
certain CPU cores among the VMs. These techniques
behave similarly to the First Come First Serve (FCFS)
scheduling algorithm. Time-shared techniques variably
distribute the capacity of one core among the VMs. These
techniques act similarly to the Round-Robin (RR) schedul-
ing technique. Also Cloudsim permits the modeling of
virtualized frameworks, sustaining on demand resource
provisioning and resource management. Therefore, we
choose the Cloudsim 3.0.3 toolkit as our simulation plat-
form. We have extended Cloudsim with energy-aware
simulations, which were originally not available in the core
framework [27]. For the multi-dimensional regression
process, Ordinary Least Square (OLS) Multiple Regres-
sion function [26, 28] is used for the regression coefficient
calculation, then host utilization prediction.
To assess the performance of the newly proposed

algorithms (MDRHU-ED and MDRHU-AS), we use the
following host overload detection algorithms from the
literature as benchmarks:

• The Local Regression (LR) algorithm from [14].
• The Hybrid Local Regression Host Overload

Detection (HLRHOD) algorithm from [11].
• The Multiple Regression Host Overload Detection

(MRHOD) algorithm from [11].

It is worth noting that LR is already implemented in the
CloudSim simulator. However, we add an implementation
of HLRHOD and MRHOD, as well as our proposed algo-
rithms (MDRHU-ED and MDRHU-AS), to CloudSim.
A critical parameter to be adjusted for the host over-

load detection process is the threshold used to identify
whether the host is overloaded or not. This parameter is
called safety parameter in Cloudsim. The safety parame-
ter defines how aggressively the system consolidates VMs
on physical servers. If the safety parameter is too tight,
opportunities for energy savings become too low. On the
other hand, if the safety parameter is too relaxed, the lev-
els of service level agreement violations become too high.
Therefore, we perform an experimental (via simulation)
selection for the safety parameter value, as to achieve an
acceptable tradeoff between energy saving and SLA viola-
tion, as indicated by the overall performance metric. All
results reported in the following sections are using the
experimentally adjusted safety parameter.
Note also that, once a host overload has been detected,

the next step is to select particular VMs to be migrated
from the overloaded host to other hosts. To this end, we
use the MinimumMigration Time (MMT) algorithm [14]
for VM selection, and the modified Best Fit Decreasing
(BFD) algorithm proposed in [14] for VM migration. It
is worth noting that MMT and BFD are already imple-
mented in Cloudsim.

Power model
The Power consumed by computing resources in cloud
data centers is mostly consumed by the CPU, disk storage,
memory, power supplies and cooling devices [29]. Estab-
lishing exact analytical models for power consumption is a
complicated task due to the complexity of the power mod-
els of modern multicore CPUs. Consequently, we utilize
real data on power consumption offered by the outcomes
of the SPECpower benchmark [14] as an alternative to
the usage of an analytical power consumption model. The
host overload is frequently examined every scheduling
interval chosen to be 300 sec. The host types are: HP Pro-
Liant ML110 G4 (Intel Xeon 3040/2 cores/1860 MHz/4
GB), and HP ProLiant ML110G5 (Intel Xeon 3075/2
cores/2660 MHz/4 GB), and their power consumption
features are shown in Fig. 3.

Performance metrics
The metrics we use to assess the performance of our
proposed algorithms are summarized as follows:
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• Total energy consumption (E) is defined as the sum
of energy consumed by the physical resources of a
data center, and is computed using the model
presented in [14, 30].

• Number of VMmigrations is an important metric
reflecting the time needed to migrate VMs from the
overloaded host to other underloaded hosts.

• SLA Violation (SLAV) captures the performance
degradation due to host overloading and
performance degradation due to VMmigration. SLA
Violation (SLAV) [14] occurs when a VM cannot
obtain its promised Quality of Service (QoS) [31, 32].

• Energy and SLA Violations (ESV) is a metric that
combines energy consumption and SLA Violations.
This metric is originally proposed in [14], and is
shown in Eq. 5. Note that the energy consumed by
physical hosts and SLAV are adversely related, as
energy can be frequently minimized on the expense
of increasing SLA violations. The lower the ESV
metric lower, the better the performance.

ESV = E × SLAV (5)

• Energy-SLA-Migration (ESM) [33] captures the
simultaneous minimization of energy, SLA violation,
and number of VMs migrations, and is given by Eq. 6.

ESM = E × SLAV × Number of VM migrations (6)

Workloads
We have used two real workloads for our experiments.
The first workload data is provided as a part of the CoMon
project, a monitoring infrastructure for PlanetLab. We
have randomly chosen 10 days of the workload traces col-
lected during March and April 2011 [14]. Each day is
characterized by a specific number of VMs as shown in
Table 2.
The second workload contains 3 months worth of HPC

data from the Gaia cluster at the University of Luxem-
bourg [34]. The workload data includes CPU and memory
usage [35]. The log is available directly in standard work-
load format (SWF). We use UniLu-Gaia-2014-1.swf. It
is based on accounting data collected by the scheduler.
We build three utilization models that read the CPU
and RAM, and calculate the BW, respectively, from the
workload and pass it to the cloudlets.

Simulation results and analysis
Sensitivity analysis
In this subsection, we assess how the performance of our
proposed algorithms are affected by varying the number
of VMs, and by varying the scheduling interval. Experi-
ments for the sensitivity analysis uses PlanetLabworkload
traces by default. However, the sensitivity for the number
of VMs is also studied for the Gaia workload.

Number of VMs
Varying the number of VMs with fixed 800 hosts and
300 sec. scheduling interval is tested and evaluated. The
effect on the E and ESV metrics are shown in Tables 3
and 4, respectively. MRHOD is used as the baseline algo-
rithm using Eq. 7. The higher the energy consumption,
the more inferior the algorithm. Accordingly, a positive
value for this equation indicates worse performance, while
a negative value indicates better performance.

Relative Improvement = Algorithm − Reference
Reference

(7)

As shown in Table 3, MDRHU-ED is the best since
it causes a reduction in energy consumption by about
21% as compared to the LR algorithm. As the number of
VMs increases, MDRHU-AS is the best when the num-
ber of VMs is 1033 and 1233. HLRHOD is the simplest
multiple regression algorithm since it depends on local
regression. Its best improvement is when the number of
VMs is 1033 where the energy consumption is enhanced
by about 12% compared to LR. MRHOD based on mul-
tiple regression outperforms HLRHOD in term of energy
consumption. MRHOD gives an improvement more than
HLRHOD of about 2% for 898 VMs and about 14% for
1033 VMs. Also it is clear from Table 3 that space distance
based multiple regression algorithms (MDRHU-ED and
MDRHU-AS) give better enhancement in term of energy
consumption than Geometric Relation (GR) based multi-
ple regression algorithm (MRHOD). MDRHU-ED is the
best when number of VMs are 898, 1463 and 1516 while
MDRHU-AS is the best when number of VMs are 1033
and 1233.
In Table 4, when the number of VMs is small (898),

MDRHU-AS gives the best results as it causes a reduction
of the ESV metric by about 26%. For the largest number
of VMs (1516), MDRHU-AS is the best since it decreases
the ESV by about 23%. HLRHOD gives better results
than MRHOD across all number of VMs except when the
number of VMs is 898. MDRHU-ED is the best when
number of VMs are 898, 1463 and 1516, respectively, while
MDRHU-AS is the best when number of VMs are 1033
and 1233, respectively. The results in Table 4 prove that
multi-dimensional regression algorithms do not sacrifice
energy consumption with SLA violations.

Table 5 Relative Energy consumption vs. Scheduling interval
(sec.)

Algorithm 300 500 700 900 1100

HLRHOD -0.122 -0.08 -0.085 -0.084 -0.028

MRHOD -0.144 -0.145 -0.097 -0.099 -0.033

MDRHU-ED -0.243 -0.222 -0.162 -0.205 -0.163

MDRHU-AS -0.244 -0.227 -0.156 -0.208 -0.148
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Figure 4 shows the variation of the results for different
number of VMs per algorithm as a box plot to indicate
the maximum, minimum, first quartile and third quar-
tile using PlanetLab workloads. Each part of the Figure
shows one of the evaluation metrics as (a) E, (b) SLAV,
(c) ESV, (d) VM migrations and (e) ESM across differ-
ent algorithms. For the energy consumption, both newly
proposed MDRHU-ED and MDRHU-AS algorithms are
very close to each other, and better than all other algo-
rithms. MDRHU-AS is very stable and shows the least
variation in its results for the VM migrations, followed by
MDRHU-ED which comes in the second place. For the
SLAV, HLRHOD is the best. However, for the combined

metrics (ESV and ESM) MDRHU-ED and MDRHU-AS
are the best. Similar behaviour is noticed for the Gaia
workload with even better results for MDRHU-ED and
MDRHU-AS, as depicted in Fig. 5. However, it is interest-
ing to see HLRHOD and MRHOD are not performing as
good as LR for Gaia workloads. This supports the impor-
tance of using the multi-dimensional regression approach
for the HPC workloads.

Scheduling Interval
Relative energy consumptions with respect to LR while
varying the scheduling interval with fixed 800 hosts and
1033 VMs are shown in Table 5. Increasing the scheduling

(a) (b)

(c) (d)

(e)
Fig. 6 Algorithms vs. Scheduling Interval for PlanetLab. a Energy Consumption. b SLAV metric. c ESV metric. d VM Migrations. e ESM metric



El-Moursy et al. Journal of Cloud Computing: Advances, Systems and Applications             (2019) 8:8 Page 12 of 17

interval indicates a lower frequency of running the VM
consolidation and vice versa. HLRHOD provides bet-
ter results than single factor algorithm since it causes a
reduction in energy consumption by about 12% as com-
pared to LR when the scheduling interval is 300 sec. Our
new proposed multi-dimensional regression based algo-
rithms outperform single factor algorithm as well as the
HLRHOD multiple regression algorithm across all values
of scheduling interval. MDRHU-AS gives the best energy
consumption. In particular, it reduces the energy con-
sumption by about 24% when the scheduling interval is
300 sec. It is worth noting that the scheduling interval
specifies how often the overload detection is performed.

So, a small scheduling interval allows a better predic-
tion of host overloading. This leads to better reduction in
energy consumption as compared to when the schedul-
ing interval is large. However, this comes at the cost of an
increased computational complexity.
Similar to Fig. 4, Fig. 6 shows the variation of the results

for different scheduling intervals. For the energy con-
sumption, MDRHU-ED and MDRHU-AS outperform all
other algorithms. MDRHU-AS is very robust, and shows
no variation in the SLAVs. However, LR has the lowest
SLAV and ESV values among all algorithms. However, it
has the worst performance in terms of the VMmigrations.
MDRHU-ED is the best in terms of the ESM metric.

(a) (b)

(c) (d)

(e)
Fig. 7 Algorithms Comparison for PlanetLab relative to MRHOD. a Energy Consumption. b SLAV metric. c ESV metric. d VM Migrations. e ESM metric
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Algorithms comparative analysis using PlanetLab
Workload
The comparison between our proposed multi-dimensional
family of algorithms (MDRHU-AS and MDRHU-ED) and
the existing multiple factor algorithms (HLRHOD and
MRHOD) is shown in Fig. 7. Note that the results are
normalized with respect to MRHOD. Note also that the
y-axis of Fig. 7e is in log-scale. We use a PlanetLab work-
load trace with the number of hosts set to 800 and the
number of VMs set to 1033. For the PlanetLab work-
load we consider two factors only (CPU and RAM) in
MDRHU and HLRHOD. The reason is that PlanetLab
workloads are insensitive to the BW utilization because
the VMs are not HPC in nature, and thus not commu-
nicating among each other. The next subsection, how-
ever, is devoted for results using a Gaia HPC workload
trace that is sensitive to all three (CPU, RAM and BW)
factors.
Across different metrics for power/performance and

QoS, our proposed MDRHU-ED and MDRHU-AS algo-
rithms outperform all other algorithms. In particular, the
energy consumption is reduced by about 28% as compared
to LR. This can be justified by the robustness of the abso-
lute summation, which resists data outliers. Moreover,
our newly proposed MDRHU-ED and MDRHU-AS algo-
rithms outperform HLRHOD and MRHOD algorithms
by about 12%. The SLAV is lower in LR as compared to
othermultiple factor algorithms by a negligible percentage
(2%) because the energy and SLAV are negatively corre-
lated. However, MDRHU-AS and MDRHU-ED improve
the combined ESV metric by about 25% as compared to
LR. MDRHU-AS and MDRHU-ED have lower (better)
ESV than the recently proposedMRHODby 12% and 14%,
respectively.
Multi-dimensional regression algorithms outperform

multi-factor algorithms due to their superiority in pre-
dicting host overloading, which leads to a decreased
number of VM migrations as well. The latter leads to
a decrease in the SLAV metric. The effect of num-
ber of VM migrations on energy consumption and ESV
is observed when using the ESM metric. MDRHU-
AS and MDRHU-ED have lower (better) ESM than
the recently proposed MRHOD by 12% and 15%,
respectively.
Although multiple regression enhances the energy con-

sumption, its higher complexity adds overhead as com-
pared to the simpler techniques. For the sake of fair
comparison, Fig. 8 depicts the execution times of the
different algorithms. HLRHOD is the best in terms of
execution time. In spite of the higher execution time
of MDRHU, the overhead is insignificant for typical
job dispatch rates in cloud data centers. The other
components of VM consolidation have even a higher
overhead.

Fig. 8Mean Execution time in seconds

Algorithms comparative analysis using Gaia Workload
In this part of our simulation study we use a Gaia HPC
workload trace with the number of hosts set to 800 and
the number of VMs set to 1001. Using the Gaia work-
load is motivated by its HPC nature, and its significance to
the BW utilization parameter. To this end, we re-address
the PlanetLab workload with 800 hosts and 1033 VMs
as to illustrate, in contrast to Gaia, its insignificance to
the BW utilization. In particular, we test the recently pro-
posed algorithmMRHODwith only two factors (CPU and
RAM) taken into consideration in the regression model,
then with all three (CPU, RAM and BW) factors taken
into consideration in the regression model. The same
(two vs. three factors) comparison is done on the Plan-
etLab workload. Figure 9 depicts the parameters relative
improvement results for MRHOD considering all three
factors as compared to considering only two factors when
using the Gaia HPC workload and the PlanetLab work-
load, respectively. In particular, considering three factors
in MRHOD improves the energy consumption by more
than 10% for the Gaia workloads, while considering three
factors improves the energy consumption by only 0.3%
for the PlanetLab workloads. MRHOD improves the ESV
metric by more than 23% for the Gaia workloads, while
considering three factors in the proposed MRHOD only
makes the ESV metric worse for PlanetLab workloads.
This proves that the PlanetLab workload is insignificant
to the BW utilization, i.e., non-HPC in nature. In con-
trast, the Gaia workload is indeed HPC in nature due to its
dependance on the BW utilization of the VMs. This partly
illustrates the importance of this work in testing the pro-
posed algorithms for real HPC workloads, in contrast to
[11], which used only the non-HPC PlanetLab.
Since there is improvement when using three factors

as opposed to using two factors, a comparison between
different multiple factors algorithms (MRHOD and
HLRHOD) and multi-dimensional algorithms (MDRHU-
AS & MDRHU-ED) when taking all three factors (CPU,
RAM, BW) into consideration is presented in Fig. 10.
The results are normalized with respect to MRHOD. In
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Fig. 9 Percentage improvement for using three factors relative to using two factors in MRHOD for the Gaia HPCworkload and the PlanetLab workload

particular, Fig. 10 shows that the consideration of the
BW utilization in HPC workloads causes an improve-
ment in all metrics for multiple factor algorithms. Using
MRHOD leads to about 23% better (less) energy con-
sumption and HLRHOD leads to about 14% better (less)
energy consumption as compared to LR. However, the
new multi-dimensional regression used in MDRHU-AS
and MDRHU-ED achieve a slight energy saving of 2% and
4%, respectively. The SLAV metric is reduced in MRHOD
by about 18% as compared to that of LR. MRHOD violates
the service level agreement more than 60% as compared
to the newly proposed MDRHU-AS and MDRHU-ED.
Hence, the ESV metric is greatly improved for MDRHU-
AS and MDRHU-ED as compared to using MRHOD or
LR algorithm. The number of VM migrations is also
reduced significantly by the newly proposed algorithms.
MDRHU-AS andMDRHU-ED reduce the VMmigrations
by about 40% as compared to MRHOD. Hence, the ESM
metric shows a significant improvement (reduction) for
the new proposals. MDRHU-AS and MDRHU-ED reduce
the ESM metric by about 78% and 80%, respectively,
as compared to MRHOD. The improvement achieved
using the new formulas in multi-dimensional regression
using the Gaia HPC workload is six times better than
the improvement achieved using the PlanetLab workload.
However, we can hardly claim a winner when compar-
ing MDRHU-AS and MDRHU-ED. Both of these mutli-
dimensional distance measurement concepts are signifi-
cantly superior than using the GR formula; yet they are
very close to each other to discriminate a winner.

Conclusion
The use of cloud computing data centers has gained
a lot of interest as a viable solution to satisfy the
tremendously increased demand for high-performance
computing (HPC), storage and networking resources for

business and scientific applications. Such large-scale data
centers lead to excessive amounts of energy consump-
tion, operating costs and CO2 emissions. Virtual machine
(VM) consolidation, which involves the live migration
of VMs to run on fewer physical servers, comes as an
important solution because it allows more servers to be
switched off or run on low-power mode, which helps
reduce the energy consumption, operating cost and CO2
emission. A crucial step in VM consolidation is host
overload detection, which attempts to predict whether
or not a physical server will be oversubscribed with
VMs. Unlike most of the previous work, which use the
CPU utilization as the sole indicator for host overload,
this paper took multiple factors into consideration: CPU,
memory and network BW utilization. This is motivated
by the fact that HPC applications are not only con-
strained by the CPU, but also by the memory and BW
requirements. Therefore, this paper presented a fam-
ily of novel multi-dimensional regression host overload
detection algorithms, which combine CPU, memory and
network BW utilization via Euclidean Distance (ED) and
Absolute Summation (AS), respectively. The contribution
of this paper is two-fold. First, the presented algorithms
are based on multi-dimensional regression, leading to
improved results in terms of energy consumption and
service level agreement violation. Second, the proposed
algorithms were tested using real-world HPC workloads.
Our extensive simulation study illustrated the superior-
ity of our proposed algorithms over existing methods. In
particular, as compared to the most recently proposed
multiple regression based on Geometric Relation (GR),
our proposed algorithms provide an improvement of at
least 12% in energy consumption, and an improvement of
at least 80% in a metric that combines energy consump-
tion, service level agreement violation and number of VM
migrations.
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(a) (b)

(c) (d)

(e)
Fig. 10 Algorithms Comparison for Gaia HPC workload relative to MRHOD. a Energy Consumption. b SLAV metric. c ESV metric. d VM Migrations.
e ESM metric
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