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Abstract

Unlike a traditional virtual machine (VM), a container is an emerging lightweight virtualization technology that
operates at the operating system level to encapsulate a task and its library dependencies for execution. The
Container as a Service (CaaS) strategy is gaining in popularity and is likely to become a prominent type of cloud
service model. Placing container instances on virtual machine instances is a classical scheduling problem. Previous
research has focused separately on either virtual machine placement on physical machines (PMs) or container, or
only tasks without containerization, placement on virtual machines. However, this approach leads to underutilized
or overutilized PMs as well as underutilized or overutilized VMs. Thus, there is a growing research interest in
developing a container placement algorithm that considers the utilization of both instantiated VMs and used PMs
simultaneously.
The goal of this study is to improve resource utilization, in terms of number of CPU cores and memory size for
both VMs and PMs, and to minimize the number of instantiated VMs and active PMs in a cloud environment. The
proposed placement architecture employs scheduling heuristics, namely, Best Fit (BF) and Max Fit (MF), based on a
fitness function that simultaneously evaluates the remaining resource waste of both PMs and VMs. In addition,
another meta-heuristic placement algorithm is proposed that uses Ant Colony Optimization based on Best Fit
(ACO-BF) with the proposed fitness function. Experimental results show that the proposed ACO-BF placement
algorithm outperforms the BF and MF heuristics and maintains significant improvement of the resource utilization
of both VMs and PMs.

Keywords: Cloud container, Virtual machine placement, Container placement, Two-tier placement algorithm, Ant
colony, Best fit, Max fit

Introduction
Cloud computing is the on-demand delivery of comput-
ing applications, storage and infrastructure as services
provided to customers over the Internet. Users pay only
for the services that they use according to a utility char-
ging model [1–3]. Cloud services are typically provided
in three different service models: (1) Infrastructure as a
Service (IaaS), which is a computing infrastructure in
which storage and computing hardware are provided
through API and web portals; (2) Platform as a Service
(PaaS), which is a platform for application development
provided as services, such as scripting environments and
database services. (3) Software as a Service (SaaS), which
provides applications as services, (e.g. Google services).

Virtual machine (VM) technology is the leading execu-
tion environment used in cloud computing. The
resources of a physical machine (PM), such as CPUs,
memory, I/O, and bandwidth, are partitioned among
independent virtual machines, each of which runs an in-
dependent operating system. A Virtual Machine Monitor
(VMM), also called a hypervisor, manages and controls
all instantiated VMs, as shown in Fig. 1a.
A container is a new lightweight virtualization tech-

nology that does not require a VMM. A container
provides an isolated virtual environment at the oper-
ating system level. Furthermore, different containers
executing on a specific operating system share the
same operating system kernel; consequently, executing
a container does not require launching an operating
system, as shown in Fig. 1b.
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To provide containers as services, a relatively new
cloud service model based on container virtualization,
called Container as a Service (CaaS), has emerged. CaaS
solves the problem of applications developed in a certain
PaaS environment and whose execution is restricted to
that PaaS environment’s specifications. Therefore, CaaS
frees the application, making it completely independent
of the PaaS specification environment, and eliminates
dependencies. Hence, container-based applications are
portable and can execute in any execution environment
[4]. Several container services are currently available on
public clouds, including Google Container Engine and
Amazon EC2 Container Service (ECS).
Docker, which is an open platform for executing

application containers [5], comprises an ecosystem for
container-based tools. A Docker Swarm functions as a
scheduler for the containers on VMs. However, the
Docker Swarm placement algorithm simply maps
containers onto the available resources in round-robin
fashion [6], and the round-robin placement algorithm
does not consider resource usage or the utilization of
either PMs or VMs. The problem of container or task
placement has been widely studied [7–9]. This
problem is critical because it has a direct impact on
the utilization of PMs, the performance of VMs, the
number of active PMs, the number of instantiated
VMs, energy consumption, and billing costs. This
paper investigates the following research problem:

� Container placement: This involves mapping new
containers to VMs by considering VMs placements
on the PMs at the same time. The placement aims
to minimize instantiated VMs, minimize active PMs
and to optimize the utilization of both the active
PMs and VMs in terms of number CPU cores and
memory usage.

In this paper, we propose a placement architecture
for containers on VMs. The proposed architecture aims
to maximize the utilization of both VMs and PMs and
to minimize the number of instantiated VMs and active

PMs. To this end, we explore the Best Fit and Max Fit
heuristics along with a fitness function that evaluates
resource usage as scheduling algorithms. Furthermore,
a meta-heuristic Ant Colony Optimization based on
Best Fit (ACO-BF) in combination with the proposed
fitness function is also proposed.
The scope of the study is as follows:

� Each job consists of a set of independent tasks, and
each task executes inside a container.

� Each task is represented by a container whose
required computing resources, CPU and memory, are
known in advance. The CPU and memory resources
are the only resources considered in the study.

� Each container executes inside a single VM.

The remainder of this paper is organized as follows.
Section 2 discusses the related research background.
The proposed placement architecture and algorithms are
introduced Section 3. Section 4 discusses the experimen-
tal evaluation and presents the feasibility study of the
proposed algorithms. Section 5 concludes the paper and
presents future work.

Background and related work
Cloud computing is led by the virtualization technology. A
virtual machine is an emulation of physical hardware re-
sources that runs an independent operating system on top
of a VMM, also called a hypervisor. The hypervisor acts as
a management layer for the created virtual machines. Re-
cently, however, a new virtualization technology has
emerged, namely, containerization. A container is a light-
weight virtual environment that shares the operating sys-
tem kernel with other containers. Docker is an open-source
application development platform in which developed ap-
plications can execute in either a virtual machine or on a
physical machine [6]. Docker Containerization is consid-
ered lightweight for two main reasons: (1) it significantly
decreases container startup times because the containers
do not require launching a VM or an operating system,
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Fig. 1 Virtualization technology. a. Virtual machine architecture. b. Container virtualization architecture
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and (2) communications are performed through system
calls using the shared operating system kernel—unlike the
heavyweight communication performed by a virtual ma-
chine hypervisor.
To this end, a container is considered an isolated

workload unburdened by the overhead of a hypervisor.
An application’s tasks execute inside the containers, and
the containers are scheduled to virtual machines, which
are mapped to physical machines. Consequently, it is
challenging to design an effective placement algorithm
that considers the utilization of both VMs and PMs.
Placement problems have been considered in the

literature from the following different perspectives:

� Placement of virtual machines on physical machines
� Placement of containers on physical machines
� Placement of containers on virtual machines
� Placement of containers and virtual machines on

physical machines.

Placement of VMS on PMs (VM-PM)
A virtual machine is a simulation of physical hard-
ware resources, including processors, memory, and I/
O devices. Each VM runs an independent operating
system on top of the VMM. Previous studies on the
problem of VM-PM placement were mainly intended
to optimize the utilization of PMs in IaaS cloud infra-
structure and to maintain certain Quality of Service
(QoS) requirements of the applications submitted to
IaaS clouds. Much of this research was conducted to
investigate VM placement and provisioning on PMs,
including static and dynamic scheduling, and optimal
PM utilization was their main objective [9–11].

Placement of containers on PMs (C-PM)
Docker is an operating system-level virtualization mech-
anism that allows Linux containers to execute independ-
ently on any host in an isolated environment. For
container placement, algorithms such as Docker Swarm
and Google Kubernets [12, 13] have been proposed. The
Docker Swarm allocation algorithm simply maps con-
tainers to the available resources in round-robin fashion
[6]; however, many other scheduling algorithms have been
proposed. The main goals of these scheduling algorithms
are to either maximize the utilization of PMs or to
maximize container performance. For example, in [14], an
architecture called OptiCA was proposed in which each
component of the distributed application is executed in-
side a container, and the containers are deployed on PMs.
The main goal is to optimize the performance of big-data
applications within the constraints of the available cores
of the PMs. In [15], an algorithm was proposed to
minimize the energy consumption of a data center by

placing applications on the PMs efficiently under a certain
defined service level agreement constraint while simultan-
eously minimizing the number of required PMs. A simula-
tion was used to model the workload using a Poisson
distribution with a queuing routing strategy to map the
workload to the determined PMs.

Placement of containers on VMs (C-VM)
The placement algorithms of VMs on PMs are mainly
intended to optimize PMs utilization. Currently,
containerization technology has been used to optimize the
utilization of VMs. Application containers are provided by
Amazon EC2 in the form of a CaaS cloud service. In the
CaaS model, tasks execute inside containers that are allo-
cated to VMs to minimize the application response time
and optimize the utilization of the VMs. For example, the
proposed queuing algorithm in [15] can be used to map
the containers directly onto VMs rather than onto PMs to
minimize the required number of VMs and, consequently,
to minimize energy consumption. In [16], a placement al-
gorithm for containers on VMs was proposed. The main
goal of the proposed placement algorithm was to reduce
the number of instantiated VMs to reduce billing costs
and power consumption. The proposed model used the
constraint satisfaction programming (CSP) approach. In
[17], a meta-heuristic placement algorithm was proposed
that dynamically schedules containers on VMs based on
an objective function that includes the number of PMs,
PM utilization, SLA violations, migrations and energy
consumption. In [18], the proposed placement algorithm
was based on using Constraint Programing (CP) to map
containers to VMs with the goal of minimizing the num-
ber of required VMs.

Two-tier placement of containers and VMs on PMs (C-
VM-PM)
The two-tier placement algorithm schedules containers
and VMs on PMs. The objectives of such placement
algorithms are to (1) maximize the utilization of PMs
and VMs, (2) minimize the number of PMs and VMs,
and (3) improve the overall performance of the executed
applications. This type of placement algorithm is the
main concern of this research.
For example, in [19], a two-level placement algo-

rithm is proposed for scheduling tasks and VMs on
PMs simultaneously. The main goal of the proposed
algorithm is to maximize PMs utilization. The place-
ment algorithm first schedules VMs on the PMs using
the Best Fit algorithm and then schedules tasks on
the VMs using Best Fit. The results are compared
with the those of FCFS scheduler. However, the pro-
posed scheduler focuses on PMs utilization and does
not simultaneously consider the utilization of both
VMs and active PMs.
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In [20], the Best Fit algorithm is used to load-balance the
tasks over VMs by first considering the placement of VMs
on active PMs using the Best Fit algorithm. This approach
aims to ensure moderate PMs utilization. However, the
focus of the study involves VM placement on PMs.
In [21], a placement algorithm is proposed based on a

fitness function that considers the utilization of both the
PMs and the VMs. The Best Fit placement algorithm is
used along with the fitness function to evaluate the selec-
tions of both PMs and VMs. The experimental results
show that the proposed algorithm improved PM
utilization compared with the Best Fit algorithm without
the fitness function. In this paper, a similar fitness function
is proposed based on the remaining available resource
percentages of both VMs and PMs. The fitness function is
employed in the placement algorithms. Furthermore, in
this paper, we explore using different heuristics, such as
Best Fit, Max Fit and the meta-heuristic Ant Colony
Optimization (ACO) algorithm.

The proposed (C-VM-PM) placement architecture and
scheduling algorithms
As mentioned above, most existing research has focused
on the problem of scheduling containers on either VMs or
PMs or on the placement of VMs on PMs. Thus, the exist-
ing provision architectures and container-scheduling algo-
rithms for VMs do not consider the VMs and PM
attributes together. This leads to major fragmentation of
the PM’s resources and poor PMs utilization. For example,
consider the placement scenario for container C5 using
the configuration shown in Fig. 2. There are several place-
ment options, and each placement decision impacts the
utilization of VMs and PMs. The first placement option is
the placement of container C5 in either VM1 or VM2.
This placement improves the utilization of VM1 or VM2.

The second placement option is the placement of con-
tainer C5 in VM4. This placement option improves the
utilization of PM2 as well as the utilizations of VMs on
that PM. Finally, the last placement option is the place-
ment of container C5 in VM4. This placement option is
the worst option where an unnecessary PM is switched
on. Without this placement option, PM3 can be put to
sleep to minimize the number of PMs used.
This section presents the proposed placement archi-

tecture and scheduling algorithms proposed to improve
PM and VM utilization while scheduling containers in a
CaaS cloud service model. The architecture aims to
minimize the number of instantiated VMs and active
PMs and maximize their resource utilization.

The proposed placement architecture
In CaaS, tasks execute inside containers that are sched-
uled on VMs, which, in turn, are hosted on PMs. The ob-
jective of the placement architecture is to improve the
overall resources utilization of both VMs and PMs, and to
minimize the number of instantiated VMs and the num-
ber of active PMs. An overall view of the proposed archi-
tecture is shown in Fig. 3. The architecture consists of the
following components:

Physical machine controller (PMC)
The PMC is a daemon that runs on each PM. The
PMC collects information such as the utilization of
each PM and its resource capacity. The PMC sends
the collected data to the container scheduler.

VM controller (VMC)
A VMC is a daemon that runs on each instantiated VM.
The VMC collects information such as the resource cap-
acity of the VMs and its used resources. The VMC sends

Fig. 2 An example of a container placement
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the collected data to the container scheduler and to the
VM information repository.

VM information repository (VMIR)
The VMIR maintains information about the types of
VMs that can be instantiated and information about
each instantiated VM.

VM provisioning (VMP)
The VMP schedules the placement of newly instantiated
VMs on available PMs using the information available
from the VMIR and PMC. Furthermore, the VMP is re-
sponsible for VMs provisioning.

Container scheduler (CS)
The CS determines the placements of containers on the
VMs. The placement decisions are based on the infor-
mation available from the PMC and the VMIR.
In the proposed architecture, each job consists of a

number of independent tasks, each of which executes in-
side a container. The Container Scheduler (CS) contacts
the VMIR to obtain the available resource capacity of
each VM. The CS applies the placement algorithms that
are proposed in the following subsections to find a
placement for each container on a VM. When the CS
finds a placement, it contacts the VMC to launch the
container. When there is no VM available with enough
physical resources to host the container, a new VM must

Fig. 4 Sequence diagram for scheduling a container in the proposed architecture
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be instantiated—either on a new or currently active PM.
To accomplish this task, the CS asks the VMP to instan-
tiate a new VM. The VMP finds a placement for the new
VM using the information provided by the VMIR and
the PMC. The VMP instantiates the new VM and up-
dates the VMIR. Finally, the VMC starts the container
on the newly instantiated VM. Figure 4 shows the se-
quence diagram for container placement in the proposed
architecture.
The following subsection presents a mathematical for-

mulation for the problem of container placement on
VMs and PMs. The main objective is to improve the
overall utilization of VMs and PMs. Based on the pro-
posed formulation, heuristic and meta-heuristic schedul-
ing algorithms will be presented.

Problem formulation
This subsection presents the mathematical formulation
of the objective function for the proposed architecture,

which minimizes the number of active VMs and PMs
and maximizes the utilization of both VMs and PMs.
Table 1 summarizes the symbols used in this section.
The goal of the objective function is to minimize the

number of physical machines:

minimize Npm ¼
X
j

Nvmpm j

We consider the following constraints on the schedul-
ing decisions:

C k;i; jð Þ ¼ f xð Þ ¼ 1; container k is scheduled to vmi; j

0; otherwise

�
ð1Þ

vmi j ¼ f 1; vmi is scheduled on pmj

0; otherwise ð2Þ
X
j

X
i

C k;i; jð Þ ¼ 1∀k ð3Þ

X
i

vmC i; j;rð Þ≤SC j;rð Þ∀r

¼ cpu cores;memory; bandwidth; storagef g; j
ð4ÞX

i

X
k

CC k;i; j;rð Þ≤SC j;rð Þ∀resource r; j: ð5Þ

Equation (4) ensures that the sum of each resource type
allocated by all VMs on each PM is less than or equal to
the total amount of that resource available on the PM.
Equation (5) ensures that the sum of each resource re-

quested by the containers on all VMs vmij on the physical
machine pmj is less than or equal the total capacity SC(j, r)

of that resource on that physical machine pmj. This condi-
tion applies to computational resources, such as CPU
cores, memory, storage, and bandwidth. The placement
algorithms should maximize the resource utilization on

Fig. 5 The Best Fit algorithm for container-VM-PM placement

Table 1 Symbol and descriptions

Symbol Description

vmij Virtual machine i on physical machine j.

pmj Physical machine j.

C(k, i, j) Container number k on vmij

CC(k, i, j, r) The container k capacity of resource r on vmij

vmC(i, j, r) The resource r capacity of vmij

SC(j, r) The resource r capacity of pmj

NCvmi; j Number of containers on vmij

Nvmpm j
Number of VMs on pmj

Npm Total number of PMs

CPUrequired The required number of CPU cores for new container
placement

memoryrequired The required amount of memory for new container
placement
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the VMs and PMs. This can be achieved by minimizing
the resource waste on both the VMs and PMs simultan-
eously. Equation (6) calculates the normalized resource
waste on a PM considering only the number of CPU cores
and the memory resources.

PF jð Þ ¼ w1 �
PM availableCPU cores

j

SC j;r¼cpu coresð Þ
þ w2

�PM availablememory
j

SC j;r¼memoryð Þ

ð6Þ

w1 and w2 are weights constants. PM availableCPU cores
j

and PM availablememory
j represent the available number

of cores and the amount of memory on pmj after

assigning the requested physical resources, respectively,
and they are calculated using Eqs. (7, 8).

PM availableCPUcoresj ¼ SC j;r¼cpu coresð Þ

−ð
X
i

vmij �
X
k

CC k;i; j;r¼cpu coresð Þ

 !

þCPUrequiredÞ

ð7Þ

PM availablememory
j ¼ SC j;r¼memoryð Þ

−ð
X
i

vmij �
X
k

CC k;i; j;r¼memoryð Þ

 !

þmemoryrequiredÞ

ð8Þ

Fig. 7 The ACO algorithm for container-VM-PM placement

Fig. 6 The Max Fit algorithm for container-VM-PM placement
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VF i; jð Þ ¼ w1 �
VM availableCPU cores

ij

vmC i; j;r¼CPU coresð Þ
þ w2

�VM availablememory
ij

vmC i; j;r¼memoryð Þ
þ PF jð Þ � vmij

ð9Þ

Equation (9) calculates the normalized resource waste
of a VM while considering the resource waste of the PM
hosting that VM. VM availableCPU cores

ij and VM

availablememory
ij represent the number of cores available

and the amount of memory on vmij after assigning the
requested virtual resources, respectively, and they are
calculated using Eqs. (10) and (11).

VM availableCPUcoresij ¼ vmC i; j;r¼CPU coresð Þ

−ð
X
k

C k;i; jð Þ � CC k;i; j;r¼CPU coresð Þ
� �

þCPUrequiredÞ

ð10Þ

VM availablememory
ij ¼ vmC i; j;r¼memoryð Þ

−ð
X
k

C k;i; jð Þ � CC k;i; j;r¼memoryð Þ
� �

þmemoryrequiredÞ
ð11Þ

The placement algorithm should make its decisions
based on the minimum values of Eqs. (6) and (9).

Fig. 8 A sample of the vCore and memory requests for 1000 tasks

Fig. 9 The number of tasks to be scheduled during a 1000-s period
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However, this problem is NP-hard and the difficulty in-
creases exponentially as the number of containers in-
creases [9]. The following subsection discusses the
heuristic and meta-heuristic scheduling algorithms.

The proposed scheduling algorithms
This subsection discusses the proposed scheduling al-
gorithms for scheduling containers on VMs and
scheduling VMs on PMs. The problem can be viewed
as a multitier bin-backing problem in which the VMs
are considered the bins for the containers, while sim-
ultaneously, the PMs are considered the bins for the
VMs. The goals of the proposed scheduling algo-
rithms are to (1) maximize PMs utilization and (2)
maximize VMs utilization. To achieve these goals, we
propose three algorithms using the mathematical for-
mulation discussed in Section 3.2. The algorithms are
Best Fit, Max Fit, and a meta-heuristic based on Ant
Colony Optimization and Best Fit.

Best fit algorithm
The Best Fit algorithm (BF) is a heuristic that is used
to optimize the bin packing problem. The BF algo-
rithm is widely used in the literature to find place-
ments for VMs on PMs [22]. In this study, the BF
algorithm is used to find a placement for containers
on VMs by considering the resource utilizations of
both the VMs and the PMs. The BF algorithm pre-
sented in Fig. 5 schedules containers onto VMs that
have the least available resource capacity that can ac-
commodate the resources required by the new con-
tainer. This is achieved by scheduling the container
to the VM with the minimum resource wastage, using
Eq. (9). When no existing VM has sufficient available
resources to accommodate the resources required by
the new container, a new VM must be instantiated.
The same idea is applied to the placement of VMs

onto PMs: a new VM is instantiated on the PM with the
least available resource capacity that can accommodate
the resources required by the new VM using Eq. (6). Fi-
nally, when there is no PM available whose available re-
source capacity fits the resources required by the new
VM, a new PM is activated. The Best Fit algorithm is
shown in Fig. 5.

Max fit algorithm
The Max Fit (MF) algorithm is similar to the Best Fit
heuristic. However, the main difference is that Max
Fit elects to place containers on VMs that have the
maximum available resource capacity and can accom-
modate the resources required by the new container.
Thus, in Max Fit, containers are scheduled to VMs
that have the maximum resource wastage using Eq.
(9). When no VM has sufficient available resources to

accommodate the resources required by the new con-
tainer, a new VM must be instantiated. The new VM
is instantiated on the active PM with the maximum
available resource capacity that can accommodate the
resources required by the new VM using Eq. (6). Fi-
nally, when no PM exists whose available resource
capacity can accommodate the resources required by
the new VM, a new PM is activated. The Max Fit al-
gorithm is shown in Fig. 6.

Ant colony optimization (ACO)
ACO is a meta-heuristic inspired by real ant colonies
and their collective foraging behavior for food sources.
ACO is a probabilistic method used to solve discrete
optimization problems, such as finding the shortest path
in a graph [23]. In the search for food, an ant leaves the
nest and travels along a random path to explore the sur-
rounding area for food. During the search, the ant pro-
duces pheromone trails along its path. Other ants smell
the pheromones and choose the path with a higher
pheromone concentration. During the ant’s return trip,
it releases a quantity of pheromone trails proportional to
the quantity and quality of the food it found. All the
remaining ants of the colony will follow paths with
higher pheromone concentrations at a higher probability
than they follow paths with lower pheromone concentra-
tions. Eventually, all the ants will follow a single optimal
path for food. For m ants and n possible paths, each ant
determines its path according to the concentration of
pheromone trail in each path of the possible paths. Ini-
tially, all the ants select a path randomly because of the
negligible differences in pheromone quantity among the
paths [24, 25].

Table 2 Virtual machine types of instances

VM Type vCPU Memory Size (GB) VM Type vCPU Memory Size (GB)

Type 1 1 1 Type 9 16 64

Type 2 1 2 Type 10 16 128

Type 3 2 4 Type 11 32 128

Type 4 2 8 Type 12 32 256

Type 5 4 8 Type 13 48 256

Type 6 4 16 Type 14 48 256

Type 7 8 32 Type 15 64 1024

Type 8 8 64 Type 16 64 2048

Table 3 Physical machine configuration attributes

Server Type Number CPUs Number of Cores/CPU Memory Size (GB)

Type 1 32 4 1024

Type 2 64 8 2048
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The ACO algorithm has proven effective as an
optimization algorithm for a number of problems, in-
cluding the traveling salesman and job shop schedul-
ing [26] problems. Furthermore, the ACO algorithm
has been used to efficiently schedule VMs on cloud
resources with the objective of minimizing total re-
source wastage and power consumption [27]. The
ACO has also been used to schedule tasks on cloud
VMs with the goal of load-balancing the tasks on the
VMs and reducing the make span of the tasks [28]. A
number of schedulers have adopted the ACO algo-
rithm to load balance tasks on cloud resources [29,
30]. The following proposed algorithm uses ACO to
find container placements on VMs with the objective
of maximizing the utilization of VMs and PMs while
minimizing the number of instantiated VMs and ac-
tive PMs.
In a search for container placement on vmij and pmj

with the objective of maximizing the used PMs and VMs
utilization, the following equation represents the phero-
mone trail of that container placement for an ant k in
iteration (t + 1).

τkij t þ 1ð Þ ¼ 1−ρð Þτij tð Þ þ
Xm
k¼1

Δτkij tð Þ; ð12Þ

where Δτkij represents the amount of pheromone released
by an ant due to the quality of the placement of a con-
tainer on vmij and pmj. Here, ρ is a constant that repre-
sents the rate of pheromone evaporation to simulate the
effect of the evaporation of the pheromone at each step,
and Δτkij is calculated using the following equation:

Δτkij ¼
1

VF i; jð Þ ;VF i; jð Þ is calculated using Equation 9ð Þ

ð13Þ
VF(i, j) is the fitness of the placement on vmij and rep-

resents the probability that an ant k will select the place-
ment of a container on vmij and pmj.

Pk
ij tð Þ ¼

τij tð Þ� �α
ηij tð Þ
� �β

X
s

τis tð Þð Þα ηis tð Þ� �β ; α; β are heuristic constants;

ð14Þ
where ηij(t) is a heuristic function that represents the
quality of a container placement, and ηis(t) is calculated
as follows:

ηij tð Þ ¼
Q

VF i; jð Þ ;Q is a heuristic constant; ð15Þ

The complete algorithm is shown in Fig. 7. The pro-
posed algorithm starts by calculating the total amount
of resources available in the instantiated set vmij. If the
available resources are below the total amount of
resources required by the set of containers C, a new
subset of VMs is instantiated using the BF algorithm
that satisfies Eqs. (6) and (9), which maximize the VMs
and PMs utilization. The algorithm starts by calculating

Fig. 10 Number of instantiated VMs

Table 4 Parameter settings of the conducted experiments

Parameter Description Value

nContainer Number of containers request scheduling 25–250

Max_Iteration Maximum number of iterations in ACO 100

nAnts Number of ants 8

α Heuristic constant 0.1

β Heuristic constant 2

Q Heuristic constant 1

ρ Evaporation rate 0.2

w1 First resource normalization weight 0.5

w2 second resource normalization weight 0.5
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the initial pheromone trail matrix τij and the place-
ment cost matrix ηij using Eqs. (13) and (15), respect-
ively. During each iteration, each ant antk finds a
placement for the set of containers Ck on vmij with a
probability calculated using Eq. (14). The selection of
vmij is performed using the roulette wheel method
where a random number ϵ [0, 1] is generated and a
cumulative sum of the probabilities is calculated. The
cumulative sum probabilities are arranged in ascend-
ing order, and the cumulative probability equal to or
greater than the generated random number is se-
lected. After each iteration, the ACO algorithm up-
dates the pheromone trail matrix τij. The algorithm
iterates until the maximum number of iterations is
reached or the best placement of the containers on
the subset of VMs is found.

Performance evaluation
This section presents the experiments conducted to
evaluate the proposed placement architecture and
scheduling algorithms. A program is designed and
developed using MATLAB to simulate the proposed
placement algorithms. A simulation-based evaluation
is adopted because it allows the environment param-
eters to be controlled and the experiments to be
repeated under different constraints. The experi-
ments are conducted to evaluate the proposed
scheduling algorithms in terms of the utilization of
VMs and PMs. The following subsections discuss the
workload utilized for the simulation, the parameter
settings and the evaluation of the proposed algo-
rithms for effective placement of container-based
cloud environments.
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Google cloud workload
A workload is a set of jobs submitted for allocation and
execution in a cloud environment. The workload dataset
used in the evaluation is the Google Cloud trace log,
which was published in 2011 [31]. The Google real
workload dataset is used because it is widely used in the
literature for the purpose of workload placement and
scheduling evaluations. In this paper, the workload is
used to evaluate the applicability of the proposed place-
ment algorithms in real world scenarios. The workload
consists of a number of tables that describe the submit-
ted task requirements, machine configurations, and task
resource usage. The Task Event table contains informa-
tion such as time, job ID, and task ID. Additionally, the
table includes normalized data, such as resource re-
quests for CPU cores and RAM. The number of vCores
used to denormalize the CPU requests in the task Event
table is 64. The amount of memory used to denormalize
memory requests in the task Event table is 1024 GB. Fig-
ure 8 shows a sample of the vCore and memory requests
for 1000 tasks in the Google cloud workload dataset,

while Fig. 9 shows the number of tasks received for
scheduling during a 1000-s period in the sample Google
workload. Each task in the workload, the task Event
table, is used to represent a container that requires a
placement using the available VMs and PMs configura-
tions described in the following subsections. The re-
quired CPU cores and memory request for each task,
after denormalization, are considered the required re-
sources for container placement.

Virtual machine configuration
The VM type repository includes several types of VMs
that can be instantiated. Each VM type has distinct re-
source characteristics, including the number of vCPUs,
the memory size, and the storage size. Each vCPU in a
VM is allocated one core of the PM. Table 2 presents
the different VM types used in the experiment.

PM configuration
Table 3 shows simulated configurations of the physical
machines used in the evaluation experiment.
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Parameters setting
The simulation was run on a PC with an Intel Core i7–
4510 CPU at 2.60 GHz and 8 GB RAM. In the experi-
ments the parameters are set to the values described in
Table 4. The parameter settings are obtained by con-
ducting several preliminary experiments.

Experiments and evaluation
The goal of the experiments was to evaluate the pro-
posed placement architecture using the Best Fit, Max
Fit, and ACO-BF scheduling algorithms. The placement
architecture works as a multitier scheduling algorithm in
which the placement decision considers the utilization
of both PMs and VMs. Each scheduling algorithm is ex-
ecuted 10 times for different number of containers. Ini-
tially, all PMs are off with no instantiated VMs. The
output of each algorithms is the set of VMs to instanti-
ate with their corresponding PMs to turn on.
Figure 10 shows the number of instantiated VMs for

different numbers of containers. It is observed that the
ACO-BF scheduler guarantees the lowest number of in-
stantiated VMs compared to the other schedulers. Fur-
thermore, the Max Fit algorithm instantiates a larger
number of VMs.

Figures 11 and 12 show the average CPU and memory
utilization of the instantiated VMs using the proposed
scheduling algorithms for different numbers of con-
tainers. It is clear that the proposed ACO-BF algorithm
yields the best resource utilization of VMs.
Figure 13 shows the number of PMs turned on for

scheduling different number of containers. It is observed
that the proposed ACO-BF algorithm turns on a larger
number of PMs than the Best Fit and Max Fit algo-
rithms. The Max Fit algorithms activates the lowest
number of PMs.
Figures 14 and 15 show the CPU and memory

utilization of the activated PMs for different numbers of
containers. The proposed ACO-BF placement algorithm
achieves the highest resource utilization. It is clear that
the Max Fit algorithm guarantees a small number of ac-
tive PMs but achieves poor resources utilization, as it ac-
tivates the PMs with largest the physical resources. The
proposed ACO-BF placement algorithm activates a large
number of PMs because it turns on the PMs with the
lowest resource capacities that can accommodate the re-
sources required by the scheduled containers.
Figure 16 shows the time costs of the heuristics, which

are computationally lightweight compared to the

0.5

0.6

0.7

0.8

0.9

1

1.1

25 50 75 100 125 150 175 200 225 250

 s
M

P detavitca fo noitazilitu yro
me

M

Number of Containers

Max Fit Best Fit ACO

Fig. 15 Memory utilization of activated PMs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

T
im

e 
in

 S
ec

on
ds

Number of Containers

Max Fit Best Fit

Fig. 16 The time cost of the scheduling heuristics

Hussein et al. Journal of Cloud Computing: Advances, Systems and Applications             (2019) 8:7 Page 13 of 15



meta-heuristic ACO-BF, as shown in Fig. 17. Although
the ACO requires a substantial amount of time com-
pared to the heuristic algorithms, it guarantees the high-
est utilization of both VMs and PMs.

Conclusions and future work
In this paper, a placement architecture is presented for
container-based tasks on a cloud environment. The pro-
posed architecture is a multitier scheduler that aims to
maximize the utilization of both the active PMs and the
instantiated VMs while minimizing the number of active
VMs and PMs. Two scheduling algorithms, including
the heuristic Max Fit and Best Fit algorithm as well as
the meta-heuristic ACO, are tested using a fitness func-
tion that analyzes the percentage of remaining resources
that are wasted in the PMs and VMs. The evaluation
shows that the ACO is highly effective in terms of VM
and PM utilization and in minimizing the number of ac-
tive PMs and instantiated VMs. Furthermore, but the
proposed ACO increases the number of active PMs be-
cause it activates PMs with the lowest configurations
that can accommodate the required resources.
This study assumed that each job consists of inde-

pendent containers. In the future, we will study work-
flow containerization processes in which each workflow
consists of a set of dependent communicating container-
ized tasks. This type of workflow is represented as a Di-
rected Acyclic Graph (DAG), where each containerized
task requires a specific execution environment to satisfy
the priorities and communication constraints of the
workflow. Furthermore, this study considered only the
number of CPU cores and the memory size as comput-
ing resources in the proposed scheduling algorithms.
However, in workflow scheduling, additional computing
resources that must be considered include processing
cores, memory, storage, and data transfers. These add-
itional considerations arise because PMs are distributed;
thus, data transfer bandwidth is an important factor that
must be considered in the workflow scheduling problem.
Furthermore, maintaining the quality of service (QoS) of

the workflows submitted by the users of the executed
containers in terms of SLA is another important re-
search issue. Finally, additional meta-heuristics such as
Particle Swarm and Cuckoo Search, should be tested for
scheduling and provisioning workflow containers on
cloud environments.
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