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Abstract

Task stragglers in MapReduce jobs dramatically impede job execution of data-intensive computing in cloud data
centers. This impedance is due to the uneven distribution of input data, heterogeneous data nodes, resource
contention situations, and network configurations. Data skew of intermediate data in MapReduce job causes delay
failures due to the violation of job completion time. Data-intensive computing frameworks, such as MapReduce or
Hadoop YARN, employ HashPartitioner. This partitioner may cause intermediate data skew, which results in straggler
reducers. In this paper, we strive to make Hadoop YARN more efficient in cloud environments. We present, a new
partitioning scheme, called balanced data clusters partitioner (BDCP), to handle straggler Reduce tasks based on
sampling of input data and feedback information about the current processing task. Our extensive experimental
results show that BDCP can outperform the default Hadoop HashPartitioner and Range partitioner. BDCP can assist in
straggler mitigation during reduce phase and minimize the job completion time in MapReduce jobs within
data-intensive cloud computing.

Keywords: Cloud computing, MapReduce, Data-intensive computing, Parallel and distributed processing, Straggler
reduce task, Sampling

Introduction
The rapid growth of information and data in the age of
data explosion in industry and research poses tremendous
opportunities, as well as tremendous computational chal-
lenges. To manage the immense volumes of data, users
have needed new systems to scale out computations to
multiple nodes. Modern cloud data centers are composed
of thousands of servers to support the increasing demand
on cloud computing.
Due to the large scale of the data-intensive jobs, the only

feasible way to solve them while fulfilling Quality of Ser-
vice (QoS) requests is to partition them into small tasks
which can be processed in parallel across many comput-
ing nodes [1]. MapReduce, designed by Google, has been
widely used as the most popular distributed programming
model for parallel processing of massive datasets (usu-
ally greater than 1 TB) in cloud environments. It divides
a large computation into small tasks and assigns them to
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multiple computational cluster of nodes running in par-
allel. MapReduce is unique in reliability, and scalability
to large clusters of inexpensive commodity computers.
It divides the job into multiple tasks, and handles tasks
execution and the complexity of fault tolerance in a dis-
tributed manner [2].
MapReduce consists of two main phases: map, and

reduce. Tasks are distributed to cluster of processing
nodes during map and reduce phases. During map phase,
chunks of the huge data sets are processed concurrently
on individual computers in the cluster. Reduce phase has
3 steps: shuffle, sort, and reduce. Shuffle starts when the
data is collected by the reducer from each mapper. Shuffle
may start when mappers have generated enough amount
of data. On the other hand, sort and reduce can start once
all the mappers have finished map phase and the resulted
intermediate data have been shuffled to the reducers.
Reduce phase combines the intermediate data from map
phase and derives the final output.
Big data tools like Hadoop and Apache Spark provide

productive high-level programming interface for large
scale data processing and analytics. Hadoop uses MapRe-
duce as programming paradigm. It has been used for
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parallel processing of large-scale data on a large cluster
of commodity machines to handle data-intensive appli-
cations. The next generation of Hadoop, namely Hadoop
YARN, is accommodated to various programming frame-
works and capable of handling many kinds of workload
such as interactive analysis, and stream processing. In a
MapReduce cluster, the job is submitted, then it is divided
into multiple map tasks.
Map tasks extract (Key, Value) pairs from the input data

chunks. All (Key, Value) pairs sharing the same key form
data cluster. The total number of (Key, Value) pairs in
the data cluster is the data cluster size. Map outputs gen-
erate the intermediate data. The intermediate data are
divided according to a user defined partitioner before
being sent to the reducers [3]. Thus, the mapper groups
the data clusters into partitions. The partition is a set of

data clusters assigned to the same reducer. Therefore, the
number of partitions in each mapper equals the number
of reducers. Every partition from each mapper is sent to
the corresponding reducer, as shown in Fig. 1.
The default partitioner of Hadoop is HashPartitioner.

Since all map tasks use the same partitioner, all similar
keys are dispatched to the same partition. Every partition
consists of many data clusters. The number of data clus-
ters is equal to the number of distinct keys in the input
data. One reducer processes one data partition.
Ideally, the resulted intermediate pairs of keys and val-

ues consist of different keys that are approximately equal
in their values. In this ideal case, the reducers process
same amount of data because all reducers process same
number of data clusters. However in real applications, the
reducers vary in their assigned intermediate data because

Fig. 1Map Reduce process
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the data clusters vary in their sizes, and the reducers vary
in the number of data clusters they process.Moreover, one
reducer may have been assigned too much data to process
as compared to the other reducers for the same job. Con-
sequently, all other reducers complete their reduce tasks
while heavy reducer becomes straggler reducer.
The straggler reducers degrade the performance of

MapReduce applications because the result of the reduce
phase is computed after receiving the results of all reduce
tasks including straggler reduce task. In cloud comput-
ing platform, the reduce task that receives extremely large
data becomes straggler, eventually delays the overall job
completion time. Straggler problem is very common in
reduce tasks in data-intensive MapReduce jobs because of
three major reasons:

• The data skew resulted from the partitioner: In case
of data skew, the resulted data load on a reducer is
much higher than the data load on the other reducers
for the same job. In Hadoop, data skew happens
because of the keys dispatching is based on the
hashing algorithm. The size of partition depends on
the number of relevant (Key, Value) pairs. Data skew
is one of the main performance bottlenecks in
MapReduce environment.

• The variations in computing capabilities of reducers:
In heterogeneous hadoop cluster the data nodes may
vary in data processing speed due to the diversity of
their computing capabilities [4]. Even if there is no
data skew, the variations in computing capabilities of
data nodes that perform the reduce tasks lead to the
case in which the slow node becomes straggler.

• The network congestion: It is resulted from the huge
amount of data transferred from mappers to the
reducers during the shuffle phase. Since the reducer
waits for all the data clusters to arrive in order to start

reduce task, the delay in transferring the data needed
by a reducer leads to straggler reduce task.

Partitioner controls the partitioning process of the keys
generated in map phase. The key (or a subset of the key)
is used to derive the partition, typically by a hash func-
tion. The total number of partitions is the number of
reduce tasks of the job. During the reduce phase, large
data partition may be assigned to one reducer while the
other reducers receive small partitions, as shown in Fig. 1.
Consequently, all other reducers complete their reduce
tasks and wait for the large data reducer to process the
large partition of data, which leads to delay of final result.
For example, Hadoop 2.9.2 employs the following static
hash function to partition the intermediate (Key, Value)
pairs [5].

Hash
[
HashCode (Key)mod (numReducer)

]
.

Unfortunately, hash function cannot solve the issue of
skewed data. For reduce tasks, partitioning skew leads to
shuffle skew, eventually some reducers receives extremely
more data than others [6]. For example, Fig. 2 shows dif-
ferent amounts of input data that have been assigned to 12
reducers by using benchmark Word Count with 15 GB of
text data [7].
Many straggler mitigation techniques have been devel-

oped in order to solve the issue of straggler. One of
straggler mitigation techniques is the reallocation of strag-
gler reduce task. In this technique, an alternative reducer
is selected to run the reduce task. This process requires
transferring all data of the reduce task to the new alter-
native reducer. In some cases, task reallocation leads to
a higher overhead compared to the overhead produced
by processing the task using the original slow node. This
overhead resulted from the delay of transferring the data

Fig. 2 Variation in reducers data load
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over the network to the alternative node. However, the
decision of transferring a reduce task to another reducer
should be based on accurate calculations about the data
transfer cost in order to minimize the completion time of
the reduce phase.
The ideal way to avoid straggler reduce tasks issue is

by trying to distribute the data clusters evenly as much
as possible to the reducers. In order to distribute the
intermediate data to reducers in an efficient way, the par-
titioning policy must be based on information about the
(Key, Value) pairs resulted from each map task before the
beginning of the shuffle process. The information must
include the frequency of each key produced from every
mapper in order to apply the partitioning policy that pro-
duce partitions that are similar in their sizes. Obtaining
an ideal solution for this problem is unrealistic because of
two reasons:

• In current Hadoop, the execution time of shuffling
the mappers outputs to the reducers is overlapped
with the map tasks execution time. Reduce phase is
activated when specific percentage of map tasks have
been completed, (5% by default in Hadoop 2.9.2).
Overlapping the execution of map tasks and reduce
tasks is handled in order to avoid network
congestion, and fully utilize the resource.
Consequently, minimizing the job completion time.

• An accurate information about the intermediate data
can be obtained only when all map tasks have been
finished. However, it is meaningless to obtain the
(Key, Value) distribution after processing all input
data in map phase, because the cost of pre-scanning
the whole data is hard to be accepted when the
amount of data is very large.

Furthermore, when the amount of input data is very
large, the job completion time in case of waiting for all
map task to finish then starting the reduce phase is higher
than the job completion time when the current default
hash policy has been used [8].
To counter this problem, we propose a strategy to

mitigate straggler reducer in MapReduce job on mas-
sive datasets, namely, Balanced Data Clusters Parti-
tioner(BDCP). BDCP makes an estimation of the whole
intermediate data, by taking sufficient sample of the input
data, applies the MapReduce job on the sampled data
using the mappers and reducers assigned to the job, then
starts the actual MapReduce job on the actual input data.
It can balance the load on reducers based on the esti-
mation of the sizes of intermediate data and the current
data processing capacity of the reducers. The extensive
experiments show that this policy produces shorter job
completion time than the default partitioner of Hadoop
2.9.2 and Range partitioner [9].

The rest of this paper is organized as follows. “Background
and related work” section introduces the background and
related work. “Design overview” section describes the
proposed policy. “Evaluation” section presents the evalua-
tion results. We conclude in “Conclusions” section.

Background and related work
Due to its importance in data-intensive cloud computing,
the subject of straggler identification and tolerance has
received considerable amount of research attention. The
mechanism of speculative execution is used in MapRe-
duce to address the straggler problem. Speculative execu-
tion performs backup execution of the remaining running
tasks when the parallel processing is close to comple-
tion. There are numerous speculation-based techniques
for straggler-mitigation. SkewTune [10] re-partitions the
data of stragglers to move it to idle slots resulted after
completing the processing of short tasks. However, mov-
ing re-partitioned data to idle nodes may lead to nodes
communication overload, which could negatively impact
the computing performance.
Restarting reduce tasks on another node requires trans-

ferring the whole amount of data over the network.
Recently, many algorithm and models about reduce tasks
scheduling have been proposed. Hassan et al. [11] pro-
posed a MRFA-Join algorithm , it is a new frequency
adaptive algorithm based on MapReduce programming
model and a randomized key redistribution approach for
join processing of large-scale data sets.
Data skew and load balancing problem is one of the

main reasons of straggler reducers. In order to achieve bal-
anced load, many researchers have focused on designing
a new parallel programming model based on MapRe-
duce [12–14]. LIBRA has been proposed in [5]. It is a
lightweight strategy to resolve the data skew problem,
it applies a sampling technique to produce an accurate
estimation of the distribution of the intermediate data.
It samples part of the intermediate data during the map
phase. LIBRA supports large cluster and it works for het-
erogeneous environments, but the partitioning does not
consider the current processing load of the reducers.
Yu et al. [15], use sampling MapReduce job to gather the

distribution of keys’ frequencies, make estimation of the
overall distribution, then partition scheme is generated
in advance. Two partition schemes have been proposed
based on sampling results: cluster combination and clus-
ter partition combination. The idea of cluster combination
is that the biggest data cluster is assigned to the reducer
with the smallest load in order to achieve the load balanc-
ing of all reducers. The cluster partition combination is
used when the skew in intermediate data is very high. In
this case the large cluster is divided into equal pieces, and
then, every piece is assigned to a reducer. This method
breaks the rule that each partition should be processed by
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a single reducer. An additional reduce phase is configured
to merge the results generated from multiple reducers.
Tang et al. [16], have proposed splitting and combina-

tion algorithm for skew intermediate data blocks (SCID).
The sampling is used to predict the distribution of the keys
in intermediate data. In SCID, the data clusters are sorted,
and for each map task the output filled into buckets. A
data cluster must be split once it exceeds the residual vol-
ume of the current bucket. After filling this bucket, the
remainder cluster will be started the next iteration. The
main idea is that each reduce task gets its share of inter-
mediate data from particular bucket of map task. SCID
focuses on how to split and combine the output data
from map tasks to the proper buckets rather than decide
when the sampling should start. This method split a big
partition to be processed by more than one reducer.
In our previous work [17], we proposed Progress and

Feedback based Speculative Execution Algorithm (PFSE).
It is a new Straggler identification scheme to identify the
straggler tasks in MapReduce jobs based on the feed-
back information received from completed tasks, and the
progress of the non-completed processing task. (PFSE)
focuses on map phase and sort part of reduce phase
only. Dolly [18], provides a speculative execution at job
level which clones small jobs with straggler tasks. Dolly
employs a technique called “delay assignment” to avoid
contention of intermediate data. It launches multiple
clones of every task, the output that completes first is used
while the other clones are neglected. But duplication of
the entire job most probably increases the resource usage
and I/O contention on data.
Zaharia et al. [19] suggested Longest Approximate Time

to End (LATE), a modified version of speculative execu-
tion. It allows Hadoop to speculatively execute the task
that expected to be delayed. Instead of considering the
progress made by a task, LATE computes the estimated
remaining time to complete the task. LATE depends on
HDFS for replica placement, this restriction minimizes
the number of tasks that involved in the speculative execu-
tion. LATE is designed to enhance Hadoop performance
in both homogeneous and heterogeneous environments.
The experimental results indicate that LATE can improve
the job completion time of Hadoop by a factor of two.
Xie et al. [20] are partitioning the data according to clus-

ter nodes capabilities. Slow nodes receive less data load
than faster nodes. This static profiling does not consider
other loads that may begin share the node with the cur-
rent MapReduce job. The drawback of this work is when
the predicted node to receive more load fail, the job takes
longer time than if the slower node has been used.
Lin et al. [21] proposed Self-Learning MapReduce

scheduler (SLM) to improve the speculative algorithm in
a multi-job cloud platform. SLM uses feedback informa-
tion collected from some recently completed tasks of the

same job to calculate the phase weights. However, SLM
gets better accuracy of estimation with the progress of
time because it needs to determine a specific number of
finished tasks to use it for learning process.
All these approaches lack the ability to identify the per-

formance bottleneck of the straggler tasks. Speculative
copies of tasks perform better but it causes resources
overload, and it is not always successful solution. Load
imbalance among cluster nodes is a major reason for the
occurrence of stragglers in parallel processing. In our pre-
vious work [22] we address the load balancing issue from
the perspective of balancing replicas assignment across all
cluster nodes of Hadoop, and propose a replica placement
policy that run an algorithm to distribute the replicas
across all cluster nodes based on their data load.
In [23], we address the load balance issue of Hadoop

from two different perspectives: task assignment and
replica placement mechanism. We present two improved
replica placement policies for Hadoop Partition Replica
Placement Policy (PRPP) [24], and Slot Replica Placement
Policy (SRPP) [25].

Design overview
An algorithm named Balanced Data Clusters Partitioner
BDCP has been developed to improve MapReduce per-
formance. This algorithm reduces the MapReduce job
execution time by addressing the problem of straggler
reducers caused from skewed data, network overhead, and
slow reducers, by the following contributions:

1 Minimizing the effect of intermediate data skew.
2 Preventing the reducers skew by balancing the data

load on the reducers.
3 Minimizing the amount of data transfer during

shuffle phase over the network from mappers to the
reducers.

The main steps of this algorithm are summarized as
following:

1 Implementing the MapReduce job on a small sample
from each split of the input data.

2 Calculating the estimated frequency of every key .
3 Collecting feedback information about the

computing capabilities of reducers.
4 Building a new partitioning policy of the

intermediate data for heterogeneous and
homogeneous reducers nodes.

BDCP policy starts the sampling phase before the actual
execution of MapReduce job. In sampling phase, a sam-
ple from the data input of each map task is taken. The
sampling process used must ensure an accurate data rep-
resentation of the original data in the sample data. The
original MapReduce job is applied on the sampled data
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by using the same mappers and reducers reserved for this
job. Once the information about the intermediate data and
the reducers processing capabilities are received by the
partitioning algorithm, the partitioning policy is created,
and the MapReduce job starts to be implemented on the
original data.
The efficiency of the algorithm depends on the size of

data sample, the accuracy of sampling method used, and
the accuracy of feedback information about the reducer
nodes. The bigger the size of data sample used, the more
accuracy of the estimation of the key frequency for the
original data.
However, the bigger size of data sample used, the longer

time it takes to complete the sampling phase, conse-
quently longer job completion time. Sample size %10 of
the original input data is used in the experiments in pol-
icy evaluation. The main processing steps of MapReduce
job with BDCP partitioning policy is shown in Fig. 3. At

the beginning, the reservoir sampling takes a sample of
input data from each split using efficient samplingmethod
as discussed in next section, then the regular MapReduce
job is implemented on the sampled data. The intermedi-
ate data are partitioned using the default HashPartitioner.
The reducers that are assigned to the original job is used to
reduce the intermediate data in sampling phase. The last
part of sampling phase is that the partitioning policy part
of BDCP receives the results. However, the NameNode
receives the information about speed of data processing
of the reducers through the heartbeats. Thus, during the
sampling phase and before the actual execution ofMapRe-
duce job, an accurate information about the data process-
ing tare of the reducers are available in the NameNode to
be used in the distribution policy. The distribution policy
uses a modified knapsack problem algorithm. It assumes
the reducers are the buckets with one size or different
sizes, and data clusters are the items that need to be placed

Fig. 3MapReduce job with BDCP partitioning policy
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inside the buckets. The size of the reducer is based on the
data consumption rate received by NameNode.

Sampling
Sampling is the selection of a subset (representative sam-
ple) from a target population then collecting data from
that sample in order to estimate characteristics of the
whole population. It is an efficient tool to reduce the
amount of input data and dealing with a sample as a repre-
sentative for the original data. Even though there are many
sampling techniques, the type and features of data deter-
mine the sampling method that makes best representation
of the original data. For example, if the data set is already
sorted and a sampling method needed to find the distri-
bution of this data set, then the best sampling technique
is the interval sampling method. When a general infor-
mation about the density distribution of numbers, and
the probability about data distribution are known, then a
probability sample may be used.
In probability sample every unit in the population has

a chance of being selected in the sample, and this proba-
bility can be accurately determined. When the data set is
entirely unknown, it is best to apply simple random sam-
pling. In a simple random sample (SRS) of a given size, all
such subsets of the frame are given an equal probability.
Each element of the frame thus has an equal probabil-
ity of selection. Since the Hadoop MapReduce processes
different kind of data with different features, it is best
to use simple random sample. In practical applications
of Hadoop MapReduce, the amount of data is very large,
therefore BDCP use the sampling phase. The number of
(Key, Value) pairs for each key in sample is approximately
the proportion of (Key, Value) pairs in the original input
data. The number of (Key, Value) pairs sharing the same
key appear in the sample can be scaled up by dividing it by
the sampling ratio to produce the estimated frequency of
this Key in the original data, as in Eq. (1).

size(k) =
size

(
k′)

S_Ratio
(1)

S_Ratio is the sampling ratio, k is the original key, and k′

is the key that appears in the sample.

Reservoir sampling
The reservoir sampling takes k elements from the popu-
lation. It saves k preceding elements first, then randomly
replace original selected elements in the reservoir with a
new element that is selected from outside the reservoir.
The final sample data of size k is generated after finish-
ing the scanning of all the original input data, as shown
in Algorithm 1. Assume S is the data population and the
required sample size is k. The algorithm creates a “reser-
voir” array of size k, and directly place first k items of S
in it. It then iterates through the remaining elements of S,
beginning from the (k + 1)th element until S is exhausted.
At the ith element of the iterations, the algorithm gener-
ates a random number j between 1 and i. If j is less than
or equal to k, jthelement of the reservoir array is replaced
with the ith element of S.
In effect, for all i, the ith element of S is chosen to be

included in the reservoir with probability k/i. Similarly,
at each iteration the jth element of the reservoir array is
chosen to be replaced with probability

( 1
k
) ×

(
k
i

)
=

( 1
i
)
.

We analyze the time complexity of Algorithm 1 as fol-
lows: Line 2 takes O(1) time. The time of the loop in
lines 3–12 depends on N, where Data blocks consist of N
records to be assigned. Therefore, the time complexity of
this loop is O(N). If statement in lines 4–12 takeO(1) time.
So the total time complexity of sampling algorithm is O
(N) .
Theorem: When the Reservoir Sampling algorithm has

finished sampling process on a data set, each item in the
data set has gotten equal probability of being chosen for
the reservoir.
Proof: Let’s assume that a sample of size k representing

data set of size S. We are required to prove that each item
in S has gotten equal probability of being chosen for reser-
voir. As shown in Fig. 4, assume the algorithm is in the
(i − 1)th round, x is the element of the (i − 1)th round, it
either has been selected as a sample in the reservoir or has
been skipped. The probability of x being selected in the
reservoir array after completing round (i − 1) is

(
k

i−1

)
.

Since the probability of the jth element of the reservoir
array is chosen to be replaced in the ith round is ( 1i ),
the probability that x survives inside the reservoir in the
ith round is

( i−1
i

)
. Thus, the probability that x is in the

Fig. 4 Reservoir sampling
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reservoir after the ith round is the product of these two
probabilities, i.e. the probability of being in the reservoir
after the (i−1)th round, and probability of x staying inside
reservoir in the ith round:

(
k

i−1

)
× ( i−1

i
) = k

i .
At the same time, the probability for the ith element

to be swapped in is also k
i . Hence, the result holds for i.

Moreover, since the base case of i−1 = k is true, the result
is therefore true for all i ≥ k by induction.
In general, for (k + 1) < i ≤ n, probability of S[ i]

being in the reservoir is: (Probability of selecting S[ i] to be
in the reservoir in ith round)×(Probability of not remov-
ing S[ i] from the reservoir during the (i + 1)th round)×
(Probability of not removing S[ i] from the reservoir dur-
ing the (i + 2)th round)×....× (Probability of not removing
S[ i] from the reservoir during the nth round). It can be
simplified as follows:

p(i) = k
i
× i

i + 1
× i + 1

i + 2
× i + 2

i + 3
...
n − 2
n − 1

× n − 1
n

= k
n

the result is true for all (k + 1) < i ≤ n.

Algorithm 1: Reservoir sampling.
Input: Input: Si[ 1, 2, ..,N]: Data block, it has N

records.
Data blocks consist of N records to be assigned,
which are numbered from 1 to (N)

Result: Ri[ 1, 2, ..,K]: sample which has k records.
1 begin
2 CB = 0; (Current block number)
3 for i = 1 to n do
4 if i ≤ k then
5 R[ i]= S[ i];
6 else
7 j = random(1, i);
8 if j ≤ k then
9 R[ j]= S[ i];

10 end
11 end
12 end
13 Return R
14 end

Partitioning policy
Partitioning of the data clusters is the process of grouping
data clusters into partitions. Every partition is assigned to
a reducer to implement the reduce task. To increase the
utilization of the resources in reduce phase, the reduc-
ers must be similar in their data load received during the
shuffle phase. After finding an accurate sample that repre-
sents the original input data, partitioning policy of BDCP

is decided. There are three important factors controlling
the partitioning policy:

• Estimated (key, value) distribution.
• Reducers processing capacity.
• Network bandwidth.

Let’s assume that the number of mappers and reduc-
ers are M, and R, respectively. The key and value sets
are K, and V respectively. The intermediate data set,
(Key,Value) pairs, generated during map phase is I. Data
cluster is the set of all (Key,Value) pairs that sharing the
same key. The number of data clusters in I is C. The
data clusters, Cluster0 through Cluster(c−1), need to be
distributed into R reducers.
ki ∈ K is the key of Clusteri for i = 1, 2, ..C.
Clusteri = < ki, v > ∈ I for i = 1, 2, ..C.
One partition, Pi, is a set of data clusters that assigned

to Reduceri. Therefore, the intermediate data I consists
of partitions from P1 through PR: I = (P1,P2, ..,PR). Let’s
assume a Hadoop Cluster consists of R reducers. C is
the total number of data clusters appears in the sampling
phase. The frequency of keys in data clusteri is keyi , where
(i = 0, 1, 2, ...,C − 1). The total number of (Key,Value)
pairs that need to be distributed to the reduce tasks is D.
As in Eq. (2).

D =
C∑

i=1
keyi (2)

Since data clusters vary in their sizes, and one data clus-
ter must be assigned to one reducer, the sizes of partitions
are not similar. Consequently, the distribution of data
loads to the reduce tasks cannot be even. The mean
size of the partitions, Mean, can be calculated as shown
in Eq. (3).

Mean =
(
D
R

)
(3)

The ideal case is when all data partitions are similar in
their sizes, i.e. the partition size equals Mean. practi-
cally this case is unrealistic, but as much as the partitions
sizes are close to Mean as much as the reduce phase is
closer to the Ideal case. The suggested partitioning algo-
rithmminimizes this variation, it tries as much as possible
to minimize the standard deviation, s, of the number of
(Key,Value) pairs on every reducer from Mean, as shown
in Eq. (4).

minTij s =
√

∑R
i=1

((∑C
j=0 keyjTij

)
−Mean

)2

n
s.t.

∑R
i=0 Tij = 1, for all j = (1, ..,C)

Tij = 0 or 1, for all i = (1, ..,R)

and j = (1, ..,C)

(4)
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Where T is the main assignment table, it has R rows and
C columns.
The distribution algorithm is shown in Algorithm 2.

Data clusters assignment algorithm assigns C clusters to
R partitions, one partition for one reducer. Every reducer
pulls its data from its corresponding partition to achieve
the reduce task.

Algorithm 2: Data clusters assignment algorithm-
homogeneous

Input: Input: A collection of R reducers.
C data clusters to be distributed, which are
numbered Cluster1 through ClusterC .
Number of keys in every data cluster i is Key[ i]
where (i = 1, 2, ...,C − 1)
Result: T[ 1, 2, ..R] [ 1, 2, ..,C]

1 begin
2 for i = 1 to R do
3 Reducer_load [i] = 0;
4 T[ i] [ j]= 0; for all j = 1 to C
5 end
6 Sorted_key[ ]= sort_descending(Key[ ] );
7 Index_Sorted_key[ ]=index of Sorted_key[ ] in

Key[ ] ;
8 for i = 1 to C do
9 j = Index_Sorted_key[ i];

10 if (keys of Clusterj are the Map output of
Mapper/Reducer node) && (this node
produces more than half of data cluster j)
then

11 z = Index(Mapper/Reducer node);
12 else
13 z = Minimum(Reducer_load[1,..,R]);
14 end
15 T[ z] [ j]= 1;
16 Reducer_load[ z]=

Reducer_load[ z]+Key[ j];
17 end
18 Return T [1,2,..R][1,2,..,C]
19 end

Lines 1-5 in Algorithm 2 clear the array called
reducer_load, it stores the current load on the reducer. At
the beginning of the distribution reducer_load for every
reducer is 0. The algorithm creates R × C array to store
the assignment table as shown in Fig. 5 . At the beginning
of the algorithm, all values of main assignment table equal
0. During the process of the algorithm, if a cell inside this
table has been assigned value of 1, then data cluster of cor-
responding column number is assigned to the reducer of
corresponding row number in main assignment table.
It is important to sort the data clusters based on their

size in descending order. The reason of this descending
order is to start the assignment of the largest data clus-
ters first then the smaller size. Leaving the data clusters
with small sizes to the end of distribution make it eas-
ier to balance the load among reducers. In lines 6 − 7,
the function Sort_descending sorts the sizes of data clus-
ters, key[ ], in descending order. The results are saved in
sorted_key[ ] array and their original index in Key[ ] are
stored in array named Index_sorted_key[ ]. For example:
Key =[ 22, 41, 11, 32], then sorted_key =[ 41, 32, 22, 11],
and Index_sorted_key =[ 2, 4, 1, 3]. Line 9 takes the next
data cluster from sorted_key[ ], and store its index on the
original data clusters sequence.
Lines 10 − 11 in Algorithm 2 is the part that minimize

the data transfer over the network. A data node may be
selected to execute both map and reduce tasks of a job,
we call it Mapper/Reducer node. BDCP takes advantage
of this opportunity to reduce the network overhead dur-
ing the shuffle phase. The amount of data transferring
over the network can be minimized by keeping the out-
put of map task on a data node as an input of reduce
task on the same node. Assume a data node X acts as
Mapper/Reducer node for specificMapReduce job. In the
proposed algorithm, if X produces more than half of the
size of a data cluster during map task, the partitioning
algorithm assigns this data cluster to X for reduce task.
Line 13 assigns the data cluster in the reducer with

minimum load for the current iteration. The data load of
the selected reducer is updated in line 16 by adding the
size of the data cluster to its load. BDCP produces the
Main Assignment Table (MAT), shown in Fig. 5. MAT

Fig. 5Main assignment table
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is the partitioner that used during the shuffle phase to
map every key to its dedicated reducer. The final values
of Tij determine the reducer of every data cluster. During
the assignment process, in every iteration line 15 assigns
value of 1 to the selected row and column in the main
assignment table.
We analyze the time complexity of Algorithm 2 as fol-

lows: Line 3 takes O(1) time, and line 4 takes O(1) time.
The time of the loop in lines 2–5 depends on R, where R
is the number of reducers. Therefore, the time complexity
of this loop is O( R ). The time of the loop in lines 8–17
depends on C, where C is the number of data clusters to
be distributed. Therefore, the time complexity of this loop
is O(C). So, the total time complexity of data assignment
algorithm is O (N) + O(C).
The partitioning algorithm is different in heteroge-

neous cluster environments. Since the reducers are usu-
ally belonging to different hardware generations, reduc-
ers may differ in their processing capability. Name node
receives, from every reducer, the reducer data processing
rate through the heartbeats. Sampling phase is the per-
fect time for checking the current data processing speed
of reducers before the starting of actual MapReduce job.
BDCP assigns a processing ratio to the reducers and cal-
culate the ratio of data every reducer should get to satisfy
the balancing capacity. During the sampling phase, BDCP
calculates, di, the amount of data processed between two
successive heartbeats by reducer i. The processing ratio,
pi, of reducer i can be calculated by BDCP during the
sampling phase as shown in Eq. 5.

pi = di
∑R

j=1 dj
(5)

pi is the approximate ratio that reducer i should get from
the total intermediate data, where (i = 1, 2, ...R). The size
of data that should be assigned to reducer i, noted as shi,
is calculated using Eq. 6

shi = pi × D (6)

D is the total estimated data size of intermediate data.
During data clusters distribution, every time a data clus-
ter is assigned to partition, the share, shi of the reducer
corresponding to this partition is decreased.
The partitioning algorithm in heterogeneous reducers

is designed as a modified multiple knapsack problem,
where every knapsack has a capacity, we called it balanc-
ing capacity. The load distributed evenly across knapsacks
if every knapsack maintains a data load within its balanc-
ing capacity. Every reducer is considered as a knapsack,
the balancing capacity of reducer i is, shi, as shown in
Eq. (6). Let’s assume there are C data clusters, the fre-
quency of keys in clusterj is keyj, where (j = 1, 2, ..,C).
These data clusters have to be partitioned into R reducers,

the data share of reducer i that satisfy the balancing capac-
ity is shi, then we can get the balancing partitioning based
on Eq. 7.

minTij
∑R

i=1

∣
∣
∣
(∑C

j=1
(
keyj × Tij

)) − shi
∣
∣
∣

s.t.
∑R

i=0 Tij = 1, for all j = (1, ..,C)

Tij = 0 or 1, for all i = (1, ..,R)

and j = (1, ..,C)

(7)

Since the data clusters vary in their sizes, and one data
cluster cannot be split into two reducers, then the par-
titioner cannot guarantee that the reducer receives data
load that equal its data share. However, the data load on a
reducer is either exceed its share or lower than it. The par-
titioning algorithm minimize this difference as much as
possible in order to give better data load balancing among
the reducers. As shown in the above minimizing equation,
the balancing partitioner minimizes the absolute differ-
ence between the load on the reducer and the balancing
capacity of the reducer.
To guarantee the best-balanced distribution, the algo-

rithm sorts the data clusters in descending order accord-
ing to the number of keys in each data cluster. The algo-
rithm selects the first data cluster in the sorted array (data
cluster with largest size), assigns it to the reducer with
the largest balancing capacity , and update the remaining
capacity of the reducer.
In the second round, the algorithm selects the sec-

ond data cluster in the array (second largest size data
cluster), assign it to the biggest capacity reducer, update
the remaining capacity of the reducer, and so on until it
reaches the last data cluster (smallest data cluster). Note
that, with the progress of the distribution algorithm, the
sizes of data clusters become smaller, and the capacity of
reducers get lower, and so on.
The reason of leaving the smaller data clusters to the

end of distribution is because the small size data clusters
are easier to be distributed without effecting the overall
balancing of data load among reducers.
The data clusters assignment algorithm for heteroge-

neous reducers is shown in Algorithm 3. Lines 2 − 4
initiate the reducers competition array. The initial capac-
ity of every reducer is the data share of reducer calculated
in Eq. (6). The value that represents capacity of reducer in
the competition array is decreased every time the reducer
has been assigned a data cluster. Line 5 sorts the sizes of
data clusters in descending order as mentioned earlier in
the Algorithm 2.
In line 9, for every data cluster, the algorithm checks if

the mapper node that produce the keys of this data clus-
ter is Mapper/Reducer node.When such a case exists, and
the Mapper/Reducer node produces more than half of the
size of this data cluster, during the map phase, the data
cluster is assigned to theMapper/Reducer node for reduce
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task, as discussed earlier in homogeneous environment.
Line 12 is the normal mode of distribution. The function
elected_R( ) returns the index of reducer with the mini-
mum data load. Line 14 is for assigning the data cluster to
the selected reducer. Line 15 updates the capacity of the
selected reducer, and so no until the algorithm reaches the
last data cluster in the array (smallest data cluster).

Algorithm 3: Data clusters assignment algorithm-
heterogeneous

Input: Input: A collection of R reducers.
shi The share of the intermediate data of reduceri
that satisfying balancing capacity. Calculated using
Eq. (6)
C data clusters to be distributed, which are
numbered Cluster0 through ClusterC−1.
Key[ i] is the number of keys in data Clusteri
Result: T[ 1, 2, ..R] [ 1, 2, ..,C]

1 begin
2 for i = 1 to R do
3 reducer_compete [i] = sh[i];
4 end
5 Sorted_key[ ]= sort_descending(Key[ ] );
6 Index_Sorted_key[ ]=Index of original order

ofsort_key[ ] ;
7 for i = 1 to C do
8 j = Index_Sorted_key[ i];
9 if (keys of Clusterj are the Map output of

Mapper/Reducer node) && (this node
produces more than half of data cluster j)
then

10 z = Index(Mapper/Reducer node);
11 else
12 z = elected_R

(reducer_compete[1,2,..R])
13 end
14 T[ z] [ j]= 1;
15 reducer_compete[ z]=

reducer_compete[ z]−Key[ j];
16 end
17 Return T[ 1, 2, ..R] [ 1, 2, ..,C]
18 end

In both homogeneous and heterogeneous reducers
environments, during the sampling phase, the selected
sample size controls the accuracy of representation of
input data in the sample. If the sample size is small, many
keys in the input data may not appear in the sample. The
smaller the sample size, the higher probability the key is
not appearing in the sampling phase. Therefore, it is very
normal situation when many keys are not presented in the
sample.

BDCP is designed for partitioning the keys that appears
in the sampling phase. Moreover, it calculates the actual
size of data based on the resulted data sample. To solve
this issue for those keys that do not appear in the sample,
BDCP applies the default HashPartitioner on those data
clusters because their size is very small in the actual input
data and do not cause reducers data skew.
The partitioning process using BDCP, adds extra phase

(sampling phase) to MapReduce job. The execution time
of sampling phase cannot be overlapped with the execu-
tion times of the other phases. Sampling phase makes the
actual map tasks on input data starts later than the actual
job start time. This delay should guarantee minimizing
the reduce phase time, and slightly decreasing the shuffle
phase time. As illustrated in the Fig. 6.

Evaluation
To test the performance of the proposed strategy, homo-
geneous and heterogeneous Hadoop cluster environment
have been prepared. Practical MapReduce application
jobs were chosen to evaluate the performance of BDCP.
The crucial factor is to minimize the job execution time.
The performance of the suggested algorithm is exam-
ined by comparing the execution time of reduce phase
using this algorithm against other algorithms. Two dif-
ferent types of benchmarks with synthetic and real-world
datasets with different data skew rate are used to evaluate
BDCP in homogeneous and heterogeneous Hadoop clus-
ters. We compared BDCP with the default Hadoop Hash-
Partitioner, and Range partitioner [9] in same experiment
environment.
Hadoop HashPartitioner is the default mechanism in

Hadoop environment which can obtain a good perfor-
mance only when the (Key,Value) pairs are distributed
uniformly. Range partitioner is a widely used algo-
rithm of partition distribution in which the intermediate
(Key,Value) pairs are sorted by key first, and then the
pairs are assigned to reduce tasks according this key
range sequentially. Range is one of the algorithms that can
improve the data balance among reduce tasks.
The performance of default Hadoop hash-partitioner,

range partitioner, and BDCP have been compared based
on the reduce execution time in order to verify the effect
of intermediate data placement. Heavy MapReduce jobs
that process large amounts of input data, and gener-
ate large intermediate data are implemented. In order to
ensure accuracy, each group of experiments has been exe-
cuted at least 10 times, and the mean value has been used
as result. We implemented our system on Hadoop YARN
version 2.9.2. During the sampling phase, we choose 10%
of input data as the sample size. We implemented the
experiments on homogeneous cluster environment, then
we implemented the same experiments on heterogeneous
cluster environment.
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Fig. 6MapReduce phases for Default Hadoop and BDCP

Homogeneous cluster experiments
The experiments are conducted on a Hadoop YARN clus-
ter consists of 20 physical machines connected on single
switch with 1 Gbps network bandwidth, installed with
Ubuntu 14.10. with 8 cores 2.53 GHz processors, 16G
memory, 1TB hard disk. The proposed system has been
implemented and evaluated by running different types of
benchmarks.

Word count benchmark testing
Three algorithms are compared under Word Count
benchmark. Word Count job counts the number of each
key in a file and produces an output file containing all keys
and their frequencies. a heavy MapReduce job has been
used to processes large amount of input data. The input
data is split into blocks in HDFS. Each block is processed
line by line to count the number of keys. Word Count job
is suitable job to test the proposed algorithm because it
generates large intermediate data .
Figure 7 shows the reduce phase execution time of word

count job on 6 GB of data file, the skew degree of the
data used ranges from 0.1 to 1.1. As shown in the figuer,
as the data skew increases the processing time gets larger
because of the data skew leads to reducers skew espe-
cially with using the HashPartitioner. At the beginning,
the execution times is relatively low. The increasing of
data skew has big impact on the reduce phase execution

time using Hadoop HashPartitioner and lower impact on
Range algorithm, while BDCP algorithm mitigates this
impact and shows slightly increasing in processing time as
the data skew increases.
Figure 8 shows the reduce execution time of word count

job on files with data sizes, 2 GB, 4 GB, and 6GB. The skew
degree of the data used is 0.1. Even though the data skew
is low, the increasing of file size makes the reduce phase
execution time increases with different ratios depending
on the used partitioner. Figure 9 shows the reduce execu-
tion time of word count job on file with data sizes, 2 GB,
4 GB, and 6 GB and the skew degree of the data used is
1.1. Because the data skew is high, the reduce phase exe-
cution time is high even when the file size is not large. The
increasing of file size makes the execution time longer,
because the bigger data file the more intermediate data
skew for the same input data skew degree.

Sort benchmark test
Sorting is a part of widely adopted benchmarks for paral-
lel computing [26]. Sort job, a reduce-input- heavy job, is
used to test the proposed algorithm by processing input
data with different data skew degrees. sort benchmark job
has been implemented on file with size 6 GB of data, and
the skew degree of the data used ranges from 0.1 to 1.1.
The reduce phase execution time of BDCP is shorter

than HadoopHashPartitioner and Range when processing
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Fig. 7Word count job on a file of size 6 GB, and 0.1 to 1.1 skew degree

Fig. 8Word count job on files of sizes, 2, 4, and 6 GB. skew degree is 0.1

Fig. 9Word count job on files of sizes, 2, 4, and 6 GB. skew degree is 1.1
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Fig. 10 Sort job on a file of size 6 GB, and 0.1 to 1.1 skew degree

the data with high skew rate. if the data skew rate is lower
than a certain value, BDCP performance is better but it
is close to the performance of the other two algorithms.
While BDCP performs much better with the increase of
data skew. As shown in Fig. 10, when data skew degree is
less than 0.40, the Hadoop HashPartitioner has an execu-
tion time closer to the other two algorithms because of its
even partitions of intermediate data.
When the skew becomes more than 0.3 BDCP starts

to outperform the Hadoop HashParitioner and Range
algorithms.
When both the data skew degree and file size are small,

the reduce phase execution times for the three algorithms
are relatively low. However, the increasing of file size with

the same data skew degree makes the execution time
slightly higher. However, BDCP has lower execution time
than other two algorithms with the increase of the file size.
Figure 11 shows the reduce phase execution time of Sort
jobs on files with data sizes, 2 GB, 4 GB, and 6 GB, the
skew degree of the data used is 0.1.
Using higher data skew for different sizes of data files

shows that BDCP highly outperforms both algorithms.
With the increasing of data file for the same (high)
data skew, the execution time of reduce phase of BDCP
becomes less than half of the reduce phase execution time
using HashPartitioner, and less than 0.6 of the reduce
phase execution time using Range partitioner. Figure 12
shows the reduce execution time of Sort jobs on files with

Fig. 11 Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 0.1
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Fig. 12 Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 1.1

sizes, 2 GB, 4 GB, and 6 GB of data, the skew degree of the
data used is 1.1.

Heterogeneous cluster experiments
In order to implement the partitioning algorithm in a het-
erogeneous cluster environment where the reducers vary
in their available resources, experiments are conducted on
a Hadoop YARN cluster consists of 20 physical machines
connected on single switch with network bandwidth of 1
Gbps installed with Ubuntu 14.10, as following:

• 10 machines, 8 core 2.53 GHz processors, 16G
memory.

• 5 machines with 4 core 3.4 GHz processor, 8G
memory.

• 5 machines with 4 core 2.7 GHz processors, 4G
memory.

The proposed system has been implemented and evalu-
ated by running different types of benchmarks. The data
skew and the variation in DataNodes processing capa-
bilities are the main two reasons that cause straggler
tasks.
In this experimental environment these two factors are

exist. In this experiment the impact of these factors on
the reduce phase running time is examined by running
different types of benchmarks.

Word count benchmark
Heterogeneous Hadoop cluster with the mentioned con-
figuration produces unbalanced distribution of interme-
diate data load among reducers nodes which results in
increasing the processing time of reduce phase especially
in HashPartitioner. However the increasing of data skew
Aggravates the problem of balancing the data load among
reducer nodes. Figure 13 shows the reduce execution time
of word count jobs on a files with 6 GB of data, the skew

degree of the data used ranges from 0.1 to 1.1. The figure
shows that the reduce phase processing time in BDCP is
lower than the reduce phase processing time of the other
two algorithms for all skew degrees.
Even though the processing times for the three algo-

rithms are relatively low when the data skew is low, they
are much higher than those of same job in homogeneous
cluster environment. The reduce phase processing time
increases with the increasing of data skew with the exist-
ing of variation of reducers processing capabilities. BDCP
shows good mitigation for the increasing of data skew in
heterogeneous cluster environment.
Figure 14 shows the reduce phase execution time of

word count job with data sizes, 2 GB, 4 GB, and 6 GB, the
skew degree of the data used is 0.1. As shown the Figs. 13
and 14, even though when the data skew is low, BDCP is
achieving better than Hadoop HashPartitioner and Range
because it considers the variation of computing capabil-
ities of the reducers. While HashPartitioner, and range
took longer time than the time they took previously in
homogeneous cluster environment. Figure 15 shows the
reduce execution time of word count job on a file with data
sizes, 2 GB, 4 GB, and 6 GB, on a heterogeneous Hadoop
cluster, the skew degree of the data used is 1.1.
Both high data skew and variation in computing capa-

bilities of the reducers result in higher reduce execution
time for all algorithms. The results show that BDCP algo-
rithm always has the shortest reduce time for different file
sizes with high skew degrees. However the increasing of
file size, for the same input data skew degree, increases the
execution time of reduce phase.

Sort benchmark test
Sort benchmark job has been implemented on a file with 6
GB of data, the skew degree of the data used ranges from
0.1 to 1.1. Figure 16 shows the reduce execution time of
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Fig. 13Word count job on a file of size 6 GB, and 0.1 to 1.1 skew degree

the sort job. BDCP works in similar efficiency to Hadoop
HashPartitioner and Range when the data skew rate is
lower than 0.2, but it gives shorter execution time, while
it performs better with the increasing of data skew. BDCP
is much faster than Hadoop HashPartitioner and Range in
processing the data with high skew rate.
Hadoop HashPartitioner of intermediate data does not

consider the heterogeneity on the reducers, so it takes
more time than the previous sort experiment on homoge-
neous environment. Figure 17 illustrates the reduce phase
execution time of Sort job of file with sizes, 2 GB, 4
GB, and 6 GB, the skew degree of the data used is 0.1.

BDCP performs better than HashPartitioner and Range.
The differences in reduce phase execution times for the
three algorithms increase with the increasing of the file
size for the same skew degree. However, the variations
in reduce phase execution time are not large because the
skew degree is low.
Figure 18 shows the reduce phase execution time of

Sort jobs on files with data sizes, 2 GB, 4 GB, and 6
GB, the skew degree of the data used is 1.1. For this
high skew degree, the reduce phase execution times for
the three algorithms are relatively high and increase with
the increasing of the file size. However, the variations in

Fig. 14Word count job on files of sizes, 2, 4, and 6 GB. Skew degree is 0.1
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Fig. 15Word count job on files of sizes, 2, 4, and 6 GB. Skew degree is 1.1

reduce phase execution time are large because the skew
degree is high. BDCP outperforms HashPartitioner and
range especially with the increasing of file size with high
data skew.
To illustrate the timing of all theMapReduce job phases,

a Word Count job on a file with size of 2 GB of data
and the skew degree is 0.3 has been implemented using
the same configuration of heterogeneous cluster environ-
ment. BDCP algorithm divides MapReduce job execu-
tion process into five phases, as shown in Fig. 19. The
phases are represented on the figure are sampling, map,
overlapped map and shuffle, shuffle, and reduce phase.
Sampling phase is only used by BDCP algorithm. It can

not be overlapped with map phase. In BDCP, map phase
starts right after sampling phase.
Because the partitioning policy has been already gener-

ated after the sampling phase, shuffle phase starts when-
ever there is an output from the map phase. While the
Hadoop HashPartitioner begins shuffling the map task
outputs when 5% of map tasks have completed. The exe-
cution time of reduce phase is minimized in BDCP as
shown in Fig. 19.

Conclusions
In this paper, we minimize the effect of the commonly
known problem of skew data andmitigate straggler reduce

Fig. 16 Sort job on a file of size 6 GB, and 0.1 to 1.1 skew degree
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Fig. 17 Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 0.1

Fig. 18 Sort job on files of sizes, 2, 4, and 6 GB. Skew degree is 1.1

Fig. 19 MapReduce phases of Word Count job on a file of size 2 GB, and skew degree is 0.3
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task by balancing the distribution of intermediate data
to reducer. We propose BDCP algorithm, it adds a new
phase to MapReduce job, it is the sampling phase. During
the sampling phase, an estimation of the data distribu-
tion is calculated and feedback about reducer processing
ability is received during the process of creating partition-
ing policy. We conduct extensive experiment on different
data size and skew degree to evaluate the performance of
BDCP compared with the Hadoop-Hash and Range algo-
rithms. The simulation results indicate that BDCP give
better reduce task completion time. In the future, we are
planning to calculate network bandwidth between cluster
nodes to add it as a factor to this algorithm.
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