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Abstract

Cloud computing considerably reduces the costs of deploying applications through on-demand, automated and
fine-granular allocation of resources. Even in private settings, cloud computing platforms enable agile and self-service
management, which means that physical resources are shared more efficiently. Cloud computing considerably
reduces the costs of deploying applications through on-demand, automated and fine-granular allocation of
resources. Even in private settings, cloud computing platforms enable agile and self-service management, which
means that physical resources are shared more efficiently. Nevertheless, using shared infrastructures also creates more
opportunities for attacks and data breaches. In this paper, we describe the SecureCloud approach. The SecureCloud
project aims to enable confidentiality and integrity of data and applications running in potentially untrusted cloud
environments. The project leverages technologies such as Intel SGX, OpenStack and Kubernetes to provide a cloud
platform that supports secure applications. In addition, the project provides tools that help generating cloud-native,
secure applications and services that can be deployed on potentially untrusted clouds. The results have been
validated in a real-world smart grid scenario to enable a data workflow that is protected end-to-end: from the
collection of data to the generation of high-level information such as fraud alerts.
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Introduction
Cloud computing has emerged as the main paradigm
for managing and delivering services over the Internet.
The automated, elastic and fine-granular provisioning of
computing resources reduces the barrier for the deploy-
ment of applications for both small and large enterprises.
Nevertheless, confidentiality, integrity and availability of
applications and their data are of immediate concern
to almost all organizations that use cloud computing.
This is particularly true for organizations that must com-
ply with strict confidentiality, availability and integrity
policies, including society’s most critical infrastructures,
such as finance, utilities, health care and smart grids.

The SecureCloud project focused on removing tech-
nical impediments to dependable cloud computing,
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overtaking the barriers to a broader adoption of cloud
computing. Therefore, the project developed technologies
that can help secure computing resources to be provided
quickly, by using familiar tools and paradigms to derive
meaningful, actionable information from low-level data in
a secure and efficient fashion. With this goal, the Secure-
Cloud project makes use of state-of-the-art technologies
such as OpenStackl, Kubernetes?, and Intel SGX [1],
generating tools or extensions that enable the deployment
of secure applications.

The validation of the developed technologies has been
conducted in the general context of smart grids. This
application domain, as many others, is affected by the
increasing amount of data generated by a large range of
device types (e.g., meters and sensors in the distribution
or transmission systems) and by the sensitivity of such
data (e.g., revealing habits from individual consumers

Uhttps://www.openstack.org
Zhttps://www.kubernetes.io
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or opening vulnerabilities in the operation of the power
system).

The project considers several applications in the smart
grids domain to demonstrate the feasibility and appropri-
ateness of the SecureCloud platform for big data process-
ing. In this paper we focus on two of them, which are part
of a smart metering big data analytics use case:

e Data validation: computes a billing report, applying
not only the billing logic, but also considering the
completeness of the dataset and verifying the
integrity of individual measurements;

e Fraud detection: estimates the likelihood of an
individual consumer to be involved in frauds.?

The rest of the paper is organized as follows. We intro-
duce the use case scenario in the “Smart metering appli-
cations” section and discuss the SecureCloud approach
in the following section, “The SecureCloud approach”.
The “SQL-to-KVS converter — cascaDB” section and
“Confidential batch job processor — asperathos” section
discuss the components used in the two applications.
The “Related work” section discusses other academic
and industry consortia that address similar issues. The
“Conclusion” section concludes the paper with some final
remarks.

Smart metering applications

The smart metering scenario comprises the communi-
cation and data storage structure of Advanced Metering
Infrastructure (AMI) systems, from the smart meters
up to the Metering Data Collector (MDC), including
the metering database. Figure 1 shows the complete
communication, processing, and storage structure needed
to validate a smart metering management scenario.
Initially, this application was deployed using only real
smart meters to validate this process. The smart meters
communicate with an aggregator module using a mesh
network based on a customized Zigbee stack for the trans-
port layer [2]. As application protocol, we used a modified
version of the Brazilian protocol for electronic metering
reading, named ABNT NBR 14522 [3]. The modifica-
tions were necessary to enable the protocol to run in an
asynchronous communication system, as well as to add
some features, such as data encryption and to command
load connection and disconnection. With this modifica-
tion in the smart meter, all communication steps in the
data workflow are encrypted. As shown in the figure, it is
also possible to use different key lengths or algorithms.

3Frauds in electrical metering systems are endemic in some regions of Brazil,
being responsible for approximately 27 TW# of energy loss annually. In
general, energy theft accounts for 6% of the total distributed energy in Brazil
according to the Brazilian Association of Electrical Power Distributors (see
http://www.abradee.com.br/setor-de-distribuicao/furto-e-fraude-de-energia/
— in Portuguese).
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A smart meter simulator software was then added to
enabled experimenting with increasing number of con-
nections with the MDC, making it model real communi-
cation demands more closely. It also provided flexibility
when testing for the whole AMI as well as the Secure-
Cloud platform in terms of data volume. This software is
able to simulate up to 65,000 smart meters communicat-
ing and sending data simultaneously. The simulated data
is created based on energy consumption data acquired
from real customers.

Secure data communication is required to gather the
metering data since the smart meters are located outside
of the SecureCloud platform’s scope. Data communication
between the smart meters and the MDC, from physical to
transport layers, must go through two different networks.
In the pathway, aggregators work as bridges connecting
smart meters to the authentication application in the cloud.

The smart metering management structure is inher-
ently distributed, having usually hundreds of smart
meters connected to one aggregator and several aggre-
gators connected to authentication applications. Thus,
the structure should enable several parallel authentication
microservices to communicate with the aggregators act-
ing as external clients and services.

The confidentiality and integrity of metering data must
be protected. Confidentiality is important to maintain
customers’ privacy. Integrity is needed to protect the
power utility against fraud attempts. Therefore, data pro-
cessing within microservices in the cloud should be
secure. The SecureCloud platform leverages SCONE [4]
as the runtime for services and applications. As will be
detailed in the next section, SCONE guarantees that appli-
cations are executed in protected regions of a processor’s
memory, shielding data and encryption keys even from
software with higher privileged levels. These protected
memory regions are named enclaves.

Besides the basic link-encryption between the differ-
ent components, e.g., smart meters to authenticator and
authenticator to MDC, smart meter data is addition-
ally protected by applying end-to-end encryption and
authentication. An RSA key pair and the public key of
the MDC are embedded into each smart meter, enabling
mutual authentication. To ensure end-to-end security,
all ABNT request and response messages are encrypted.
Since the MDC application and the database are located
within the boundaries of a secured cloud platform, the
data is decrypted inside the enclaves in the authentica-
tion application and stored using the platform database
service. Data is also signed using cryptographic keys pro-
vided by INMETRO, the (Brazilian) National Institute for
Metrology, Quality and Technology. These signatures will
be later used for auditing of the bills. Finally, the data is
stored into a secure key-value store (KVS) and consumed
by applications.


http://www.abradee.com.br/setor-de-distribuicao/furto-e-fraude-de-energia/
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Two applications that consume the data are consid-
ered here. The first application is for bill auditing and
validation. It is composed of two main parts: one under
control of the distribution company and does the billing,
producing a bill and a hash value; while the other is con-
trolled by INMETRO and, based on the hash, can check
whether the bill considered all the measurements properly
(e.g., no values were duplicated or missing).

The second application is for fraud detection. It pro-
cesses all the measurements from consumers, considering
also other demographic information (e.g., information
specific to the individual consumer or of the type of indus-
try) and generates a fraud risk evaluation. In particular,
fraud attempts of large customers (i.e., with voltage supply
greater than 1 kV) are typically much more sophisti-
cated than frauds of residential customers. This type of
customers have very high energy costs and, therefore,
successful fraud attempts award large economical gains,
fostering more sophisticated frauds.

The main idea of the fraud detection application is
to use the stored measurements to detect variations
in the customer’s consumption behavior. Measurements,

named phasor reports, are acquired every 15 minutes
and contain data such as line voltage, current, angle,
three-phase power, power factor, harmonic distortion,
frequency, demand, and energy consumption. The basic
concept behind the analysis includes the processing of
the metering data by a classifier, based on self-organizing
maps, in order to classify the behavior of consumption
data. After the classification, the correlation coefficient
matrix of the customer with the regular behavior is calcu-
lated, using a fixed time-window of one day. The results
are used to create a ranking of potential fraudulent con-
sumer units.

Both applications discussed above work as batch pro-
cesses with the following tasks:

e Periodic, independent tasks to analyze individual
consumers;

e A task for billing validation, which requires only the
measurements from a single customer and the result
is a validated billing report;

e A task for fraud detection, which may require
additional information from other records or tables
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and may issue additional queries to the database; the
result is a fraud risk analysis report.

The SecureCloud approach

The SecureCloud approach is depicted in Fig. 2. Services
are divided into infrastructure services, which control
the cloud resources, and platform services, which imple-
ment higher level services used in the development of
applications. Applications can be developed in a mul-
titude of programming languages. Simple applications
may use no platform services, while others could need
support for secure indirect communication or scalable
storage. Services and applications execute over a run-
time, which facilitates the usage of hardware secu-
rity features. These layers are described in the next
sections.

SecureCloud runtime

Securing data by guaranteeing confidentiality and
integrity is extremely desirable to protect sensitive smart
grid data from malicious attacks. There are currently
many cloud provider-specific approaches that provide
some level of confidentiality and integrity. Nevertheless,
they lack the capability to prevent application data from
being compromised by software with higher privilege
levels, such as hypervisors [5, 6].

Intel’s Software Guard eXtensions (SGX) [1, 7] is becom-
ing increasingly popular. It is a hardware-based tech-
nology that guarantees data integrity and confidentiality,
creating a Trusted Execution Environment (TEE) that
protects the code even in cases where the operating sys-
tem and the hypervisor are not to be trusted.

SGX operates with a modified memory engine, gen-
erating protected areas named enclaves [8]. To pro-
vide integrity capabilities, SGX also offers local and
remote attestation features [7], in which a third party
can ensure that only the expected code is being exe-
cuted inside an enclave, and on an authentic SGX-capable
server.

Microservices in the SecureCloud platform can be
developed either by directly using the Intel SDK [1] or
using the SCONE runtime [4]. In our case, the recom-
mendation is to use SCONE for the SecureCloud appli-
cation development, i.e., for SecureCloud microservices
that are closely related to a given SecureCloud applica-
tion. Indeed, SCONE provides better usability and relieves
the developers from much of the complexity of SGX pro-
gramming. Intel SDK has been used for developing cer-
tain core microservices part of the SecureCloud platform
itself, such as those related to storage and communica-
tion. In this case, the flexibility of the lower level pro-
gramming enables optimizing performance and resource
consumption at the cost of much greater development
complexity.
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SCONE provides the necessary runtime environment —
based on the mus1 library* — to execute a microservice
within an SGX enclave. SCONE is a set of tools that
provide the necessary support for compiling and pack-
aging Docker containers from the microservice’s source
code. The SecureCloud runtime supports several pro-
gramming languages, notably C, C++, Go, Fortran, Lua,
Python, R, and Rust.

Finally, because of its availability and security guar-
antees, we currently focus on Intel SGX. Nevertheless,
the SCONE approach abstracts most security concerns
and, thus, other trusted execution environments could be
eventually supported. To illustrate the performance cost
of using SCONE with Python, the most popular program-
ming language currently, we have selected a variety of
benchmarks from the Python community” and created an
interactive portal with the PySpeed tool to make it easier
to compare performance of different execution alterna-
tives®. A subset of the benchmarks is shown in Fig. 3.
Four bars are shown for each benchmark, illustrating the
slowdown or speed up when using two versions of Python
(the default CPython interpreter and, PyPy, an alternative,
more efficient implementation”), with or without SCONE.
The first bar in each benchmark depicts the execution
with PyPy, but without the SCONE runtime; the second
shows the execution with PyPy and SCONE; the third,
which is the reference value, corresponds to the execution
with the default Python and without SCONE; finally, the
fourth bar depicts the execution with the default Python
interpreter and SCONE. In most of the cases, the over-
head of using SCONE is small and can be mitigated by
using a more efficient implementation of Python, such as
PyPy.

In the case of our two applications, they have been
developed to use the SCONE toolset: the Data Validation
is written in C and compiled with SCONE, while the Fraud
Detection has been developed in Python and runs on
top of a Python interpreter compiled with SCONE. Both
tools use infrastructure and platform services developed
in different languages as detailed next.

Infrastructure services
The lower-level services in the SecureCloud ecosystem
are named SecureCloud Infrastructure Services and com-
prise services necessary to deploy and execute Secure-
Cloud microservices. Examples of infrastructure services
are scheduling and orchestration, attestation, auditing and
monitoring.

Two platforms, OpenStack and Kubernetes, are the cor-
nerstones of the SecureCloud infrastructure services and

*https://www.musl-libc.org/
Shttps://speed.pypy.org/about/
Ohttp://pyspeed Isd.ufcg.edu.br
7https://pypy.org/
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have been selected because of their popularity and the
provided features. OpenStack is an open-source Iaa$ plat-
form that can be used to deploy private, public, and
hybrid clouds. Recent user surveys among OpenStack [9]
and Kubernetes users [10] report that Kubernetes is the
most popular tool for using containers in the cloud, used
by 50% of deployments. The surveys still highlight that
Kubernetes leads the usage for orchestration in produc-
tion environments with 32%, followed by Docker Swarm
(10%) and Apache Mesos (6%).

In Fig. 2, three services are relevant for the applications
described in this paper. The Monitoring Service is based on
the upstream OpenStack Monasca system.® In our case,
we simply add a few metric collection agents that expose
metrics related to the usage of secure resources, for exam-
ple, SGX Enclave Page Cache (EPC) usage. This metric is
useful because over-commitment of EPC memory causes
considerable performance degradation. In addition, other
relevant metrics for the monitoring of secure applications
have been added and open sourced’.

Once applications are running inside an enclave, the
next issue is to provide them sensitive configuration,
such as secrets. This is a known hassle of Intel SGX
as it requires the development and operation of a dif-
ferent piece of software to remotely attest the original
applications before passing the secrets. Both our demon-
stration applications require secrets, especially certificates
for authenticating itself and the other microservices used.
The Configuration and Attestation Service (CAS) is then
responsible for the attestation and trust management,
abstracting the problem of verifying if applications that
are actually running have the code hashes registered dur-
ing development and validation. These code hashes are
computed upon application instantiation and serve as a

8http://monasca.io/
%https://github.com/christoffetzer/linux-sgx-driver

signature for that application or microservice. If the sig-
nature of the running application match with a previously
registered signature, the application is granted access to
secrets, such as database credentials, TLS certificates and
configuration parameters.

Lastly, the Scheduling and Orchestration Service pro-
vides functionalities spread over a set of low-level services.
For example, we modify OpenStack Nova so that meta-
data on the flavor is passed to the special hypervisor
that is able to instantiate VMs with SGX access. This
special hypervisor is a fork from the popular KVM hyper-
visor and is maintained by Intel'°. For cloud environments
without KVM, an alternative is to consider bare-metal
instances (e.g., using OpenStack Ironic!! or infrastructure
containers (e.g., LXD'?), which could directly access the
non-virtualized SGX device. In addition, the OpenStack
Magnum component instantiates Kubernetes clusters on
demand, clusters which now need to be aware of SGX.

Platform services

The higher level services are named SecureCloud platform
services. These services offer functionality that can be
used by applications. More specifically, the SecureCloud
platform services offer different types of storage services,
such a secure key-value and object store, and an SQL
adapter on top of it. For communication, the SecureCloud
platform services offer point-to-point communication as
well as many-to-many communication. The latter, named
Secure Content Based Routing (SCBR) [11], is based on the
publish/subscribe model.

Additionally, data processing services are also offered.
One example is the usage of MapReduce paradigm for
secure data processing [12]. Another example is a set
of modifications made on Apache Spark that enable

Ohttps://github.com/intel /kvm-sgx
Hhttps://wiki.openstack.org/wiki/Ironic
2https://linuxcontainers.org/lxd/getting-started-openstack/
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encrypted data to be processed in a way that decryption is
done only inside enclaves.

Three platform services are specially important for the
data validation and the fraud detection applications pre-
sented in this paper: the secure key-value store (KVS),
the SQL-to-KVS converter (CascaDB) and the batch
job processor (Asperathos). These services are detailed
next.

Secure KVS
We have implemented a distributed Secure Key-Value
Store (KVS) that exhibits a trade-off between the fea-
tures required by big data applications and the complexity,
performance, and security impact of individual features.
The rationale for our feature set is described in [13]. As
a result, we managed to implement a reliable, scalable,
and secure system that satisfies our use case requirements.
For example, both Billing Validation and Fraud Detection
applications have a phase for data aggregation where large
blobs of measurement sets for individual consumers and
retrieved and analysed, while being kept confidential in all
steps from storage to processing, even on top of standard
storage volumes provided by the cloud infrastructure.
The KVS provides scalability by being itself a set of
microservices that run on top of Kubernetes. As seen
in Fig. 4, client applications communicate with the KVS
via HTTPS connections, using their unique API keys to
authenticate themselves. In order to protect the confi-
dentiality and authenticity of objects stored in the KVS,
a microservice was added in front of our REST API. We
refer to it as the TLS interceptor which is based on TaLoS
[14], our library for building applications that support TLS
connection termination inside enclaves. This interception

service has the role of intermediating the connection
between applications and storage components, handling
the HTTPS requests inside the enclaves and encrypting
the data that is written to the KVS. Likewise, it inter-
cepts and decrypts HTTPS responses containing object
data before they are returned to the client. The termi-
nation of TLS connections and encryption/decryption
operations are performed inside an SGX enclave, thus
cleartext object data is never exposed outside of an

Secure Key-Value
Store

TLS interceptor
)
SGX

encrypt/decrypt

REST API

KVS microservices

Fig. 4 Secure KVS:architecture overview
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enclave. The other microservices that make up the KVS
handle only encrypted object data and have no access to
the decryption keys. After the TLS interceptor compo-
nent, the request is forwarded to a well-defined REST API.
The request is handled in the KVS microservices accord-
ing to the target storage policy, i.e. redundancy is added
before it gets stored on a variable number of distributed
persistent storage nodes. Positioning the TLS interceptor
as the gateway of the KVS removes the need to provide
trusted computation capabilities in the other components
of our system. Thus, the other KVS microservices do not
need to run on SGX hardware.

This secure KVS provides reliability and redundancy
by distributing data onto multiple storage nodes using
replication, erasure coding, or a combination of the
two. Any combination of replication and erasure cod-
ing can be specified to achieve the optimal trade-off
between storage cost, throughput, and reliability. A fre-
quently used object (hot data) can be stored with mul-
tiple replicas. An infrequently used object (warm data)
could have one exact replica and eight erasure coded
fragments, of which only six are necessary for recover-
ing a copy of the object. An archival object (cold data)
can be stored simply by using erasure coding. Addition-
ally, the policy can be changed as object access patterns
change.

As seen on Fig. 5, replication has much higher stor-
age requirements than erasure coding. However, it has
a higher throughput for storing or accessing data as it
does not require encoding or decoding steps, respectively.
Hybrid policies are in between the two approaches in stor-
age and throughput, thus, they provide a natural trade-off:
data can be accessed from the replica as often as possible,
while storage costs are reduced.

Lastly, we have deployed the KVS to an OpenStack
cluster, using the infrastructure services discussed earlier,
and measured the read and write operations per second
for various data sizes. The results can be seen Fig. 6.
We used Kubernetes to orchestrate the microservices.
The benchmarks used 32 distinct Python client pro-
cesses to execute the read and write operations, ensuring
that enough load is placed on the system. There were
8 instances of the TLS interceptor component run-
ning on two different nodes, each with its own 8-core
SGX-enabled virtual CPU (vCPU) and 16 GB or RAM.
Incoming requests were load-balanced between the two.
These were the only nodes in the deployment to utilize
SGX hardware. The microservices in charge of access-
ing the underlying storage subsystem ran on 6 nodes
with a single vCPU core and 2 GB of RAM each. These
storage nodes used Kubernetes’ persistent volumes fea-
ture to ensure they always accessed the correct storage
volume. The volumes were mapped to the underlying
physical storage devices using OpenStack Cinder with a
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CEPH backend'?, both required no modification as data
was already encrypted. All other KVS microservices were
scheduled to run on a single node with an 8-core vCPU
and 16 GB of RAM. Additional details on the experiments
can also be found in [13].

SQL-to-KVS converter - cascaDB

Many applications need to handle high volumes of data,
be it a simple information system that needs to persist
customer data or a complex application that needs to
persist low-level data for posterior aggregation. Using a
database factors out much of the complexity to manage
the data. The two applications discussed in this paper are
no exception.

When choosing a database, one initial decision a devel-
oper needs to make is regarding the trade-off between
scalability and feature set. On the one hand, key-value
storage systems are easier to scale both in performance
and capacity. On the other hand, relational systems offer
a much richer set of features and count on the experience
of developers with SQL semantics.

Not surprisingly, power grids, as other critical systems,
have many legacy applications. Rewriting applications
is a major obstacle that needs to be overcome when
migrating the applications to the SecureCloud platform.
In the SecureCloud project, we take a hybrid, layered
approach. First, the core of existing applications does
not need to be modified to run in enclaves. As detailed
in previous sections, the SCONE toolset enables com-
piling applications written in languages such as C/C++
and Fortran to be run inside enclaves and be remotely
attested.

Next, we understand that managing big data requires
systems that scale massively. In addition, and maybe even
more importantly, making these systems fault-tolerant
and secure requires carefully thinking on which features
will be implemented. We used the distributed secure
KVS described in “Secure KVS” section and built a SQL
mapping engine that runs inside enclaves, supporting the
basic queries needed by our applications.

Thus, on top of the KVS, the Customizable Adapter
for Secure Cloud Applications (CascaDB) converts SQL
statements into key-value accesses transparently. It offers
TLS connections for communication and runs inside
SGX enclaves to enable protection of sensitive data
(including the SQL statements themselves). Figure 7
depicts the approach adopted for CascaDB’s implemen-
tation. On the top left-hand side, the querying service
(e.g., MDC) accesses CascaDB. On the top right-hand
side, the KVS implements the actual storage. Using
such an approach, legacy systems used to insert mea-
surements in the databases require no modifications,

3https://ceph.io
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while new analysis applications such as new imple- CascaDB receives SQL statements and returns JSON
mentations of the Data Validation and Fraud Detection  results after transforming these data requests into key-
applications can be written to access data directly in  value ones. It was built in a modular architecture.
the Secure KVS to perform big data analysis more Independent modules are easier to fit in the enclave’s
efficiently. limited memory and can be replicated for scalability.
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Fig. 6 Secure KVS: read and write operations for different object sizes
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Fig. 7 CascaDB approach

The SQL translation engine handles SQL queries and
interacts with the underlying KVS module to answer
requests. Figure 8 depicts the internal parts of the SQL
translation module and its interactions with the KVS.
Data definition (DDL) queries are handled by the parser
and have their settings stored in the data dictionary. The
schema and keys define how each tuple will later be
mapped to the key-value model.

When a data manipulation (DML) query is received, a
dictionary lookup is performed to determine the map-
pings between the models. For insertion queries, a key
is composed by a concatenation of the table name and
the primary key(s) (a predefined separator is used for
readability). Tuple attributes are also concatenated to be
stored as the value. Figure 9a depicts an insert query for
a table named reading that has the first two attributes
as primary keys. Figure 9b depicts the resulting key-value
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pair generated. The key-value pair is then submitted to the
KVS. For selection queries the key is assembled with the
table name and the keys presented in the query, potentially
with a wildcard character (*) to retrieve all keys match-
ing the prefix. Currently only queries with conditions over
the primary keys are supported. More flexible selects and
joins are upcoming developments.

For example, a wider coverage of the SQL language
can be implemented with extra indexes for non-key
attributes — stored in the key-value store. Joins on the pri-
mary keys can be implemented efficiently since the KVS
returns keys in alphabetical order, enabling the use of a
merge-join algorithm. Other joins can be implemented
using the aforementioned extra indexes or full table scans
when indexes are not available.

Confidential batch job processor - asperathos

The Asperathos framework!'* provides tools to facilitate
the deployment and control of applications running in
cloud environments. For example, Asperathos can provide
quality of service (QoS) by controlling resources allocated
during runtime. Nevertheless, in contrast to other orches-
tration tools, such as Kubernetes itself or OpenStack Heat,
it can be configured to consider application specific met-
rics and to actuate in a customized fashion. In the case
of batch jobs using enclaves for data protection, as in the
case in the two applications considered here, this is even
more relevant as the operator may want to add the usage
of enclave memory into the control logic [15].

The architecture of Asperathos is depicted in Fig. 10. It
is composed of three main modules: (i) the Manager is
the entry point for the user and is responsible for receiv-
ing an application submission, triggering all other steps;
(ii) the Monitor is responsible for gathering, transforming
and publishing metrics collected from applications (e.g.,
the application progress) or environment resources (e.g.,
CPU usage); (iii) the Controller is the component that
adjusts the amount of allocated resources dedicated to an
application.

Each of the components above can be customized with
plugins. For example, in a deployment with the Secure
KVS serving several applications and the Data Validation
application executing analysis of the user billing data, the
user could could want to have custom plugins in the
Monitor and in the Controller so that whenever the
Secure KVS scales up its TLS interceptors, the Data
Validation batch workers are reduced to free up SGX
resources.

While both applications require some batch pro-
cessing in addition to the storage and communication
services, diversifying the number of infrastructure ser-
vices can increase the operation burden. Therefore, we

4 https://github.com/ufcg-lsd/asperathos
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leveraged Kubernetes also for the orchestration of legacy
batch jobs.

As discussed in “Smart metering applications” section,
both the Data Validation and Fraud Detection applications
discussed in this paper work as a set of independent tasks.
This pattern is easily mapped into Kubernetes with the
help of the Kubernetes Job object!®. The job abstraction
provides the ability to run finite workloads by creating a
set of containers (i.e., Pods, in Kubernetes terminology)
and guaranteeing that a specified number of them
successfully terminate. It is also possible to specify
parallelism, time-out deadlines, and basic retrial policies,
turning it into an option for running batch workloads
while benefiting from other Kubernetes features and tools.
We have then implemented three plugins to enable the
execution of batch processing tasks using Kubernetes
jobs, and the logic to monitor and actuate (e.g., scaling the
cluster) through Kubernetes APIs.

To properly orchestrate secure containers on stan-
dard cloud clusters, Kubernetes needs to deal with the

https://kubernetes.io/docs/concepts/workloads/controllers/jobs- run-to-
completion/

infrastructure’s SGX capabilities. As discussed above, con-
tainers requiring SGX will contend on the availability
of enclave memory. The monitoring infrastructure that
feeds Kubernetes’ scheduler with resource metrics must
keep track of enclave memory requests and allocate the
containers accordingly.

We then developed a vertical implementation of
an SGX-aware architecture for orchestrating containers
inside Kubernetes clusters. Using a slightly customized
SGX driver, we have Linux report on enclave mem-
ory usage per container and to enforce limits to their
allocation, providing Kubernetes with a new device plug-
in. We also implemented a new Kubernetes scheduler

a)INSERT INTO reading
( <clientlD>, <timestamp>, <read 1> ... <read 30>);
b)key: reading—<clientld>—<timestamp>
value: [<read 1> ... <read 30>]

Fig. 9 Example of an insert query (@) mapping into a key-value pair
(b). clientlD and timestamp compose the primary key of the table and
become part of the mapped key. The table has 30 attributes that
were omitted for clarity
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that takes into account the amount of enclave memory
required by the containers and the amount of enclave
memory available in the cluster nodes, preventing over-
allocations, which may abruptly decrease performance in
orders of magnitude [4]. Our implementation has been
used to map container jobs with security requirements
with priority on SGX machines [16] and to demonstrate
that appropriate management of enclave memory man-
agement can reduce their overall turnaround time.

To illustrate the Asperathos framework in execution,
Fig. 11 present a view of a Grafana dashboard.!® Three
different executions are shown, each with a different tol-
erance value regarding to how late an execution could be
before actuation is triggered. As expected, less tolerance
to deviations implies on more actuation events on the
infrastructure.

Related work

The use of Trusted Execution Environments (TEE) in
cloud computing scenarios has been growing recently as
it can help address confidentiality and integrity challenges
when delegating critical processing and sensitive data to
the cloud. As an example of other initiatives, SERECA
[17] has investigated the usage of SGX enclaves to harden
microservices following a reactive paradigm based on the
Vert.x toolkit!”. Fetzer et al. then illustrate the usage of
this framework with two use cases: a water management
system, which has an integrity requirement, and a cloud-
based service for performance analysis of applications,
which has a confidentiality requirement.

16https://grafana.com/
http://vertx.io/
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Another research initiative to use TEE in cloud com-
puting is the ATMOSPHERE project [18]. In this case,
the consortium addresses the more general problem of
trustworthiness in the health domain. In their case, in
addition to confidentiality and integrity, the TEEs are used
to support other trustworthiness features such as privacy
(by executing anonymization algorithms in enclaves) and
transparency (by using enclaves to enforce that accesses to
sensitive data are logged and can be tracked).

Finally, on the industry side, the recent Confidential
Computing Consortium, announced by the Linux Foun-
dation'®, is a cross industry initiative aiming to speed
up the adoption of confidential computing mechanisms.
The initiative includes producers of alternatives to the
SCONE toolkit used in this paper to port applications to
run on SGX enclaves: Microsoft's Open Enclave SDK'
and Google’s Asylo?’.

Conclusion

This paper presents the SecureCloud approach for imple-
menting secure data processing for big data applica-
tions. The SecureCloud approach is divided into runtime,
infrastructure, and platform services. The infrastructure
services provide the mechanisms for orchestrating basic
resources such as VMs, containers, clusters, and secrets
(including both the attestation of applications and the
provisioning of the secrets). On top of the infrastruc-
ture services, platform services have been provided to
support the application developer. Examples of platform
services are the secure content-based publish-subscribe
service (SCBR) and the secure key-value store (Secure
KVS). For the applications, end users with limited secu-
rity knowledge are advised to build applications on top of
the SCONE runtime, having the option of using compilers
(e.g., for C or Fortran) or interpreters (e.g., Python). Such
an approach relieves the developer from handling non-
trivial tasks, such as having to split code between secure
and insecure portions, and to build ad hoc helpers tools
for attestation and secret provisioning. Leveraging a richer
runtime also enables the user to inherit benefits from
approaches that enhance security, such as side-channel
protection mechanisms [19].

For the development of the infrastructure and platform
services themselves, we used a mixed approach. Some
services were built on top of Intel SGX SDK to enable
more flexibility in splitting the code into secure and inse-
cure parts, leading to less resource usage at the cost
of much higher complexity. Some other services reuse
existing code and therefore are simply adapted and recom-
piled using the SCONE toolset. Details on individual

8https://confidentialcomputing.io
Dhttps://openenclave.io
2https://asylo.dev/
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components, including performance evaluations, can be
found on the project’s website?!.

Finally, two applications in the context of Smart Grids
were used to validate the proposed tools: a data valida-
tion and a fraud detection application. These applications
have been used to illustrate the need for some of the
infrastructure and platform services, for example: the
need for bootstrapping application requires trust manage-
ment and distribution of secrets, achieved through the
Configuration and Attestation Service (CAS); the need for
support for both legacy SQL queries and blob accesses
for big data processing jobs, achieved through the Cas-
caDB and Secure KVS; and the need for orchestrat-
ing applications using popular tools, but still enabling
the efficient usage of the currently very limited enclave
memory, achieved using OpenStack, Kubernetes and
Asperathos.
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