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Abstract

This work reports on the development details and results of an experimental setup for the localization of the
attendants of a music festival. The application had to be reporting in real-time the asymmetric crowd density based
on the Received Signal Strength Indicator (RSSI) between the attendants’ smartphones and an experimental
installation of 24 WiFi access points. The impermanent nature of the application led to the implementation of a
cloud-based solution, called “STRAND”. STRAND is based on Node.js components, which communicate through
websockets, collect, process and exchange data and continuously report the produced information to the end-user.
To cope with the near real-time requirements, and the volatility of the crowd concentration density, STRAND
horizontally scales the trilateration component, i.e. the component that estimates the user location based on distance
measurements. STRAND was tested during the festival days in July 2018 and the results show a system that copes
with very high loads and achieves the temporal and accuracy requirements the were set.
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Introduction
Amusic festival in Germany concentrates dozens of thou-
sands of visitors within a mid-July weekend every year.
At peak times it reaches almost 150,000 visitors. The
organizers would like to have a bird’s eye view of the con-
centration of the visitors in the area of the festival, so as to
identify situations of emergency and to swiftly adapt their
risk mitigation plans such as the evacuation plans of the
area. This resulted to the need for a heatmap visualization
that depicts the crowd concentration density, in the map,
in near-real time (i.e. at 1 min intervals). This implies that
once the position information is collected, by an installa-
tion of sensors, it has to be processed and reported to the
organizers’ dashboard within 1 min.
During the festival days, the large crowd is concentrated

in a relatively confined space. This concentration leads to
a high contention ratio of the effective mobile telecommu-
nication bandwidth practically rendering it useless. The
automatic detection of crowd concentration in near-real
time is a critical yet challenging task for the organizers.
Using image analysis techniques for this task, suffers from
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lack of computational resources to handle the increased
complexity and results in an increased installation cost.
Also, such methods do not perform well in all conditions
(e.g. in low light) and can hardly avoid counting the same
person multiple times. Techniques that transmit the GPS
signal of users’ devices via a smartphone app are energy
and bandwidth consuming. As a result, the use of the festi-
val official mobile app for collecting position data from the
devices’ GPS receiver is not an option since the app will
have to compete for the limited bandwidth with popular
mobile apps such as Instagram, Facebook, Twitter, etc.
The restrictions of visual techniques in such environ-

ment and the high energy consumption of embedded GPS
sensors in smartphones and the frequent loss or erro-
neous GPS signal due to unavoidable obstructions, i.e.
trees, buildings, etc., leave space for passive techniques,
which take advantage of the pervasive availability of WiFi
infrastructure and allow effective localisation and crowd
concentration estimation in outdoor as well as in indoor
scenarios.
In order to exert theWiFi-based outdoor localization we

deployed a number of Raspberry Pi devices which are con-
figured to operate as open WiFi access points (APs). The
mobile devices of the visitors, with their WiFi transceiver
activated, would poll continuously for the networks in
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their vicinity, exchanging some basic information with
the WiFi open access points. The received signal strength
indicator (RSSI) could be then used to estimate the dis-
tance of the users frommultiple access points and then, by
a process known as "trilateration", to estimate the position
of those users. This is an approach commonly employed
in the literature mainly in indoor localization setups.
From a non-functional point of view, the application

needed to be scalable, i.e to be able to simultaneously
locate a large number of users, maintaining the near real
time (1 min) requirement and ensuring that the cost in
resources based on the asymmetric crowd’s density fluc-
tuates proportionally to the crowd’s volume at various
times.
Also, the application should provide adequate guaran-

tees regarding the users’ location privacy. To deal with
the first issue it was necessary to employ cloud resources
and the cloud providers’ API that would enable the auto-
matic scaling. For the issue of privacy, as the user location
can be correlated with far more personal information
related to behavior, mood etc., appropriate encryption
was adopted to preserve and guarantee the user loca-
tion privacy and anonymity, namely the MAC address
of the users’ mobile devices was obfuscated using pseu-
doanonymization.
A third requirement was related to the accuracy of the

location estimation, considering minimum cost for infras-
tructure and low number of nodes to obtain an estimate
on user location, to avoid delays and performance degra-
dation due to packet collision or wrong measurements
[43], an error of 12 meters in terms of 2D accuracy was
permitted by the festival organizers. This requirement is
also tightly linked to the previous as this relaxed accu-
racy threshold also served as an artificial way to obfuscate
the actual users’ positions. Finally, in parallel to the low
cost aspect of the application, vendor locking-in should
be avoided, as the festival is essentially free and it is rely-
ing on volunteers without much expertise on the field of
application development.
The experimental setup comprised of 24 operational

Raspberry PI devices covering critical areas of the festi-
val grounds, including the main entrance/exit, the three
main stages, the food and drink stand and the toilets. The
devices were deployed in clusters of 3 or 4 with trees,
infrastructure and festival facilities often obstructing their
line of sight with the attendants. The measurements
were collected in an on-site system and then distributed
through a satellite link to the cloud-based application
pipeline. The federation between the edge nodes, ie. the
Raspberry PI devices, and the cloud was orchestrated by a
cloud brokerage platform, called BASMATI ([2, 3]).
The research objectives were to implement the cloud-

based application that would support the processing of
the measurements and provide a near real-time (1 min

intervals) heatmap of the crowd’s concentration density.
The low-cost requirement for the application as well as its
impermanent nature justified the use of cloud resources
and the satellite link instead of an investment in perma-
nent resources. The implementation was based onMicro-
Service Architecture inspired by a pattern introduced
in [36].
The main contributions of this work are:

• an open source software reference implementation,
• a cost-efficient, easy-to-deploy, large-scale

localization system,
• a micro-service architecture pattern that allows

efficient load balancing on the cloud.

The implementation details of STRAND and the expe-
rience from its use during the festival days (July 19-
22, 2018), are described in what follows: “Related work”
section provides an analysis of the state of the art that
justified the selection of the individual decisions in the
application implementation; “Implementation” section
gives the implementation details including the applica-
tion architecture, the components’ functionality and inter-
faces, the implementation technology decisions and the
key-design characteristics. The evaluation results are pre-
sented in “Evaluation results” section and in Section
Conclusions the major conclusions of this work.

Related work
A thorough analysis of the current state-of-the-art in two
main distinct domains was conducted prior to the imple-
mentation of the application: the localization systems and
the cloud load balancing techniques. The selection of
tools, technologies and approaches was based on the par-
ticular requirements of the application. This analysis is
presented in what follows.

Passive sensing localization techniques
The use of image analysis techniques for the estimation
of crowd density and person localisation has been pro-
posed in the literature. For example, road traffic detection
systems are using image segmentation and analysis tech-
niques for processing the signal from road cameras [5],
for the detection and counting of vehicles. In the case
of crowd counting, Crowdnet [6] is a deep CNN trained
to analyse video streams, whereas Convolutional LSTMs
have been proposed in [41] for creating crowd density
maps. An interesting survey on the use of CNN for single-
image crowd counting can be found in [32]. The advantage
of image analysis methods is that they are passive and
device-free, since they can track any person in sight, with-
out requiring smartphones or any other device. Their
main disadvantage is that they are computationally heav-
ier, thus they require more processing power. In addition,
they are not applicable in all lighting conditions, unless
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thermal cameras or infrared cameras or combinations are
used, which also increases the cost of the installation.
Finally, visual solutions may have to tackle the problem of
blind spots. In the case of a festival, this requires multi-
ple cameras to increase coverage and careful position in
order to avoid double counting. The latter is avoided by
device-based methods that employ the device identify for
disambiguation.
A large body of works deal with the problem of local-

ization of "blind" nodes by passively sensing WiFi, Blue-
tooth or RFID signals. The methods are either device-free
[10, 14] or device-dependent [40]. In the former case, a set
of transmitters and receivers operates in a constant basis
and human presence is detected based on changes in the
strength of the received signals. In the latter case, users
are carrying devices, which transmit WiFi or similar sig-
nal and a set of area sensors continuously collect the signal
and analyse its strength. In such cases, the signal strength
is used to detect the distance from each fixed sensor node,
and algorithmic approaches, such as trilateration or N-
point lateration, are employed for the estimation of the
position of the moving signal source.
In fact, the concept appears in multiple works, both in

indoor and outdoor localization with the former com-
prising the bulk of the works in the literature (e.g.
[7, 18, 29, 31, 43]). When it comes to outdoor localiza-
tion, there is a range of approaches being used so as to
determine the location of a node in question. The major-
ity of them are relying in measuring the distance of the
blind node from a number of fixed-point (anchor) nodes
that are part of the sameWireless Sensor Network (WSN)
and then employing algorithms to estimate the node’s
location. Some common distance measurement meth-
ods are angle of arrival (AoA) (e.g. [39]), time of arrival
(ToA) (e.g. [30]), time difference of arrival (TDoA) (e.g.
[42]), acoustic energy (e.g. [38], time of flight (TOF) (e.g.
[16]) and received signal strength indicator (RSSI) (e.g.
[13, 34, 35]). The first three methods require complex
hardware set up, while TOF needs line of sight to effec-
tively locate nodes. On the other hand, RSSI-based solu-
tions are easy to implement and cost efficient but less
accurate due to additional signal attenuation resulting
from transmission through big obstacles and severe RSS
fluctuation due to multipath fading ([9, 24]).
Beyond this range-based technique, other solutions

have been presented for outdoor localization such as
topographical maps and propagation-prediction tools, as
well as statistical modeling, neural networks and particle
filters ([23]).
Once the distance of the node in question is known from

at least 3 known anchor nodes, the problem is reduced to
an overdetermined system. Assuming a linear state space,
the system is comprised of at least 3 second-degree poly-
nomials expressing the euclidean distances of the node

in question from the anchor nodes. By subtracting them,
the polynomial degree is reduced and thus the system is
solvable with standard algebraic solutions such as a least
squares approximation. This approach was followed by
[25] and it seems to be appropriate in small distances and
near perfect input. In the case of the festival, the dis-
tances are large and the natural environment affect the
RSSI. Furthermore, if the number of equations increases,
i.e. more than 3 anchor points report their inaccurate
RSSI with the node in question, the linear least squares
solution complexity increases. The alternative is to use
a nonlinear least squares fitting approach such as the
Levenberg-Marquardt curve-fitting algorithm ([12]). The
latter is appropriate for real-time operations due to its
low complexity, however, the accuracy degrades when the
measuring node’s speed increases([26]).
This work employs an RSSI-based trilateration local-

ization algorithm to accurately localize the festival atten-
dants’ smartphones. To deal with the near real-time
requirements, the Levenberg-Marquardt curve-fitting
algorithm was used for the trilateration part, considering
the fact that the monitored crowd moves typically in very
low speeds.

Cloud computing load balancing
Load balancing is a critical component provided by every
public cloud service provider as it allows the application to
adapt to load demands dynamically. scaleout and scalein
operations are typically employed, allowing the horizontal
scaling of the application, i.e. adding new cloud resources
(scaleout) and removing them (scalein) at runtime so as to
cope with the load. On the other hand, vertical scaling, i.e.
adding more "power" to the existing cloud resources for
load balancing purposes, is generally more rare (e.g. [33])
due to the high overhead and hard constraints involved
in vertical scaling (usually the machines have to be reset).
Load balancing in IaaS environments, implies that an
application can scale through the addition or removal of
Virtual Machines (VM). This is a standard practice in
many applications, including distributed databases [20].
There are various taxonomies for load balancing strate-

gies in the literature (e.g. [1, 22]). Perhaps the most
relevant classifications for STRAND relate to the distinc-
tion of application-agnostic VS application-oriented and
dynamic Vs static load balancing strategies.
Practically all major cloud providers are offering off-

the-shelf IaaS solutions for load balancing 1 2. In order
for them to maintain a general purpose nature, they are
made in a stateful way, i.e. they operate independently of
the application characteristics. This is commonly referred
to as "load balancing as a service" ([8, 27]). As such,

1https://cloud.google.com/load-balancing/
2https://aws.amazon.com/elasticloadbalancing/

https://cloud.google.com/load-balancing/
https://aws.amazon.com/elasticloadbalancing/
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the load balancing strategy is built on the basis of an
infrastructure-related metric, such as the resource utiliza-
tion of the processors, or the incoming traffic (requests
per second-RPS). These strategies are part of what is
referred to as internal and/or HTTP load balancing. There
is the option to distribute instances from a regional
managed instance group, based on custom-made metrics
using external tools such as Google’s Stackdriver3 but this
usually comes at an extra cost.
However, in other cases, the load is defined in terms

of application-related metrics, as in distributed data man-
agement systems, where the load is dependent on the
amount of load/store operations ([21]). In these cases, the
Load Balancer must be integrated in the application and
be able to invoke the public cloud providers’ API to man-
age VMs. This approach also comes at the cost that apart
from the deployment of the VM, the Load Balancer needs
to instruct the public cloud’s API to install and run the
application. This can be done through a startup script that
installs and resolves all necessary dependencies and runs
the processor’s code or deploys docker files.
This latter approach was selected in the case of this

application in order to remove the burden of knowing the
public clouds’ concepts from the future application devel-
oper. When someone will have to re-run the application,
perhaps in a different cloud provider, the idea is to stick to
basic devops (expressed in the startup script), which most
likely won’t change in the years to come.
In terms of the load balancing strategy, a dynamic

approach was followed as opposed to static. In static
load balancing, a fixed number of operational proces-
sors (or remote nodes) is reserved and the systems use
them accordingly. In the case of STRAND, the applica-
tion scaled in and out based on some predetermined rules
adapting to runtime conditions, and in particular the load
itself. In the literature, there is a great number of dynamic
load balancing approaches in cloud computing (e.g.
[11, 15, 28]) that apply sophisticated mechanisms to his-
torical data so as to predict and cope future loads. In the
investigated case, these solutions were not applicable due
to the lack of previous knowledge and due to the fact that
the systems in the literature are not investigating mobil-
ity patterns which were relevant in this case, but different
parameters such as e-commerce consumer habits.
Among the two controlling forms in dynamic load bal-

ancing algorithms, namely centralized and distributed,
STRAND opted for the centralized. In centralized load
distribution, a single node in the network is nominated
to be responsible for all load distribution in the network.
In the distributed approach, many nodes are undertaking
the responsibility of sharing the load ([17]). A distributed
solution like [19] would infuse unnecessary complexity

3https://cloud.google.com/stackdriver/

with multiple cloud components needing to be configured
to talk to one another.

Implementation
The processing pipeline
The key concept in this work was to implement a work-
flow of standalone components that will process the raw
measurements as data streams and will deliver the data
for the heatmap visualization. As such, the architecture of
the application involves a logical pipeline of a number of
components, namely, the data Collectors, the data Aggre-
gator, the Clusterer, the Load Balancer, the Trilaterator
(Processor), the Storage and the Frontend (Fig. 1). These
are described in detail in what follows.
The first two components in the pipeline are deployed

locally on site, as part of a local network and commu-
nicating trough standard TCP/IP protocols. The rest of
the components are deployed on virtual machines (VM),
on cloud resources communicating through websockets.
The focus of this paper is to report on the details of the
cloud-based part of the application, however for reasons
of integrity, the on-site part is also presented.
According to this architecture, the rawWiFi signal mea-

surements transmitted by every smartphone in proxim-
ity are collected by the Raspberry Pi, using the nexmon
driver (https://github.com/seemoo-lab/nexmon) and a
shell script, which was written for this purpose. Similar
scripts are widely available online 4. Each measurement
contains a timestamp and the id of the device that trans-
mitted the signal. Data from the Raspberry Pis, which are
the local data collectors, are aggregated and anonymized
by a physical machine onsite, which stores the data locally
and provides an API for accessing them. A cloud-based
filtering module is responsible for retrieving data at reg-
ular intervals from the onsite machine, aggregating them
per uid and sending them to the cloud-based load bal-
ancer. The latter is responsible for retrieving data and
re-distributing them to micro-services hosted in cloud-
based virtual machines for further processing, storage and
display. The details for these operations are provided in
what follows.

Component functionality
For a better understanding of the role of every component
involved in the pipeline, this Section provides a descrip-
tion of their functionality starting from the first item in
the pipeline, i.e. the Collectors.

Collectors
The data Collectors are executing the task of sensing for
WiFi adapters in their vicinity in fixed time intervals and
maintaining a record of their findings locally, in files. They

4https://maker.pro/raspberry-pi/tutorial/how-to-make-a-wireless-signal-
meter-app-for-raspberry-pi-using-node-red

https://cloud.google.com/stackdriver/
https://github.com/seemoo-lab/nexmon
https://maker.pro/raspberry-pi/tutorial/how-to-make-a-wireless-signal-meter-app-for-raspberry-pi-using-node-red
https://maker.pro/raspberry-pi/tutorial/how-to-make-a-wireless-signal-meter-app-for-raspberry-pi-using-node-red
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Fig. 1 High-level architecture. The STRAND application workflow

do not perform any other task given that a) their compu-
tational capacity is limited, b) their main task of sensing
is rather frequent (once every 15”) and c) the fact that
they are exposed to adverse weather conditions (outdoors
under direct sunlight or rain). The Collectors are deployed
in strategically selected positions so as to cover areas of
interest and to ensure that some level of overlap exists
between their area of coverage (see Fig. 2).
Sensing: Operating as WiFi access points with the pre-

tense that they are offering an open WiFi access, the
Collectors implement a standard communication proto-
col with devices (mainly mobile) that have their WiFi
transceivers on. Through this process, they are registering
4 main data items for each connected device:

• uid: a unique user id that is in the form of a MAC
address, assuming that the connecting, mobile devices
are always transmitting the same MAC address.

• did: the device id of the Collector device that
collected the data. This field is needed to map the
device that collected the signal to a specific location
(Lat, Lon pair).

• rssi: the received signal strength indicator in dB. This
is needed to estimate the radius upon which the user
was detected with the centre being the collector’s
device location.

• timestamp: unix time during which the data were
generated

A unique uid is needed so as to avoid to depict the same
user many times in the heatmap, affecting its accuracy.
However, in some cases, namely in some iOS versions and
a few Android devices, the transmitted MAC address is
randomly generated by the device itself. This can’t be tack-
led in a systematic way and it is considered as a system
error. Notwithstanding the statistical value of this error
is negligible as a) it has been observed that in the vast
majority of the cases during the festival, the mobile
devices are transmitting their actual MAC address and b)
we are interested in the number of unique visitors dur-
ing a limited timespan, a fact which significantly reduces
the possibility that a user whose device is in fact ”fakes”
its MAC addresses will be taken into consideration more
than once within this timespan.
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Fig. 2 Deployment of Raspberry PI access points. The blue markers indicate the positions of the access points

Storing: Each Collector is polling its surroundings for
mobile devices in a fixed time interval and writes out the
collected information to a locally stored file. One times-
tamped file is created for each round of measurements in
order to mitigate potential synchronization issues.

Aggregator
The data Aggregator is providing four basic function-
alities: data aggregation, initial data filtering, pseu-
doanonymization and data access provision to other com-
ponents. It is an onsite component running on a physical
machine which is part of the Collectors’ network. This
machine has access to the internet, thus it bridges the local
Collectors’ network to the application cloud resources.
It persists the data from the files it collects, organizes
them in a relational database and emits them to interested
parties.
Data aggregation: The Aggregator, being part of the

Collectors’ network, can access their storage and pull the
measurement files at fixed intervals. It does so by con-
necting to each one of them through SSH and executing
a shell script to retrieve the latest data files that it hasn’t
retrieved yet. In this way the need for hard synchroniza-
tion constraints is lifted with the Aggregator and each of
the Collectors executing their operations at independent
times and possibly at a different frequency.

Filtering: Occasionally there are reasons to discard cer-
tain measurements, e.g. same data are received twice, or
the signals are too weak to make any sense. This com-
ponent is filtering out measurements that are problem-
atic. Also, there are many cases in which the signals are
received by external to the application fixed WiFi access
points which are consistently trying to register to the open
WiFi network. A lookup table can be used here to allow
the Aggregator to filter out MAC addresses that belong
to such network devices manufacturers or even MAC
addresses that persisting measurements’ values.
Pseudoanonymization: To protect user privacy, the

Aggregator uses a fixed hash function to transform the uid
value from a MAC address to a new, seemingly random,
device id. The hash function is deterministic which means
that the same input will always result in the same output
because it is important to distinguish unique users.
Data access: The Aggregator stores the preprocessed

measurements in a db and provides a RESTful API for
other components to access it.

Filtering
The first cloud component provides a higher-order func-
tion that processes the input data structure so as to bring
it in a form that is possible to find all the data necessary for
trilateration within a single object. Its main functionality



Tserpes et al. Journal of Cloud Computing: Advances, Systems and Applications            (2019) 8:16 Page 7 of 16

is to filter the input data structure that it receives from the
Aggregator.
Filtering: This functionality clusters messages based on

their uid and timestamp, i.e. groups measurements with
the same MAC and a timestamp indicating that they were
generated within a 1 min time window. The clustering
is essentially a two-step process: a) group by uid and
b) merge measurements under a single uid and a single
timestamp, in particular the last received timestap in the
time window. The resulting data structure is comprised of
records containing the uid, the timestamp and an array of
RSSI values coupled by the Collector’s device id (did) that
collected each value, i.e. an array of did, rssi pairs.

Load balancer
The Load Balancer buffers the measurements received by
the Aggregator in an internal queue and distributes the
load to all connected processor components (Trilatera-
tors). Judging from the queue length and the rate that it
is evolving, the Load Balancer can request the deploy-
ment of more processor components or decommissioning
of the excess ones. Assuming the existence of the appro-
priate resources, the Load Balancer provides temporal
constraint guarantees and it is a central component in the
implementation of the scalable application.
Load distribution: This functionality allows to pro-

cessor components (Trilaterators) to request and receive
measurements to process. The Load Balancer removes the
oldest pending object of measurements in the queue for a
uid and pushes them to the requesting processor.
Scaling: Simple, demand-based autoscaling rules are

adopted. The rationale is that the Load Balancer can iden-
tify the need for a new processor component to be added
by monitoring the length of its queue periodically. If the
rate at which the queue size is increasing exceeds a certain
threshold, then the Load Balancer proactively requests the
deployment of new processor components. Conversely,
if the rate is decreasing, the Load Balancer requests the
decommission of the excess processor(s) components.
These requests are implemented through the underlying
cloud providers’ API (the one to which the processor is
deployed). The time that it takes for a new processor to be
fully operational and the fluctuating number of measure-
ments entering the application both play a detrimental
role in the scaling operations, imposing a large number
of constraints and exceptions. As such upper and lower
thresholds are provided for the queue length. Exceeding
those thresholds result in scaling commands to be issued.
To avoid new scaling commands to be issued before the
previous are completed a cooldown period is provided.
Furthermore, the number of VMs that can be spawned at
any time is also limited by a value set manually. Equiva-
lently, a warm-up period is considered, so as to be able
to count the generated instances by increasing them by

one, when the instance actually starts operating. Details
on how the various thresholds are selected are discussed
in detail in “Evaluation results” section.

Trilaterator
The Trilaterator is undertaking the task of processing
measurements that are assigned to it by the Load Balancer
and finding the approximate location of the respective
user at the given timespan. It is deployed on Virtual
Machines and cold or hot deployment is employed based
on the end users assigned budget. The particular process-
ing that is done is called trilateration and it requests at
least three distances of the object in question from an
equivalent number of known points, in order to estimate
its position. Thus, before the trilateration task, the Trilat-
erator is calculating the distance of the user in question
from the Collector device by means of the RSSI.
Distance calculation: The distance (dis) is calculated

based on the RSSI and the location of the Collector that
measured this signal strength. The formula is:

dis = 10(Ptx−rssi/10∗plex)

where Ptx is the transmit power of the Collector device
and plex is the path-loss exponent. The context is that the
transmitter and the receiver are rarely placed within a line
of sight and that the signal propagation model needs to
consider the environment within the transmission takes
place as well as the power it is transmitted [25]. This
general purpose formula considers these two parameters.
The default transmit power for DD-WRT based routers is
between 70mW or 18.5dBm. Also, as a rule of thumb the
path-loss exponent receives the following values: 2 for free
space, 2.7 to 3.5 for urban areas, 3.0 to 5.0 in suburban
areas and 1.6 to 1.8 for indoors when there is line of sight
to the router. For the particular experiment, it was set to
2.5.
Trilateration: Since the Collector’s devices are in fixed

points, we can employ a simple lookup table and the did
of the Collector’s device to get the approximate location of
the Collectors in GPS coordinates. Knowing the distances
from n(n > 2) fixed points allows us to estimate the user
location in the form of lat,lon coordinates.
In a perfect situation the rationale behind trilateration

would be the following: For each user i and Collector
device j there is a pair locj, disij that defines a sphere of
radius disij around location locj and the user may lie in
any point of this sphere. Two such pairs may limit the user
location in any point of the circle that is created by the
intersecting spheres. Three pairs further limit the possible
user location to the two points defined by the intersection
of the three spheres. Since we only need to identify the lat,
lon pair of the user, the altitude can be disregarded. There-
fore, the earth operates as a fourth sphere further limiting
the points to a single one.
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In reality, there are multiple errors that are infused by
various systems along the way, including errors in mea-
suring the RSSI, inaccurate GPS coordinates of the Collec-
tors, erroneous calculation of the distance, etc. Therefore,
the spheres may not always intersect, or the intersection
may commonly lead to an area rather than a point (Fig. 3).
Selecting any point from the intersection area will result

in a declination from the expected values for at least two
of the measurements, i.e. the selected point will not be
on at least two of the circles. The key point is to identify
the lat, lon pair for the user within the intersection area
that minimizes this declination. A solution for this prob-
lem is to find the user position that will minimize the sum
of squares of this declination. This method is called least
square and it is commonly used in data fitting problems
like the one at hand. In fact, we want to identify the func-
tion f which maps the user location (Yi) to the {loc, dis}
pair (Xi) of the i− th Collector from a set ofm, or in other
words Yi = f (Xi), i = 1 . . .m. The evaluation of this func-
tion for every Collector will give a residual ri, therefore the
point is tominimize

(∑m
i=1 r2i

)
.

This problem is solved using the Levenberg-Marquardt
algorithm as it is implemented in the trilat package
(https://www.npmjs.com/package/trilat).

Storage
The Storage component provides a RESTful API enabling
other components to persist user locations to its database
and at the same time to access the data.
Persisting: An API allows a client to "push" tuples of

the form of uid, lat, lon, timestamp to the database.
Accessing: An API allows a client to "pull" tuples of
the abovementioned format in a stateful, synchronized

way, allowing the querying of the database using multiple
criteria.

Frontend
The Frontend is an HTML-based web client that retrieves
data from the Storage and depicts it in heatmap visualiza-
tion in real time.
Data retrieval: A timed AJAX request is using the

Storage API to retrieve data.
Visualization: Using the Leaflet Javascript library

(https://leafletjs.com), the Leaflet.heat extension (https://
github.com/Leaflet/Leaflet.heat) and Openstreetmap
(https://www.openstreetmap.org/), the Frontend chro-
matically depicts the concentration density of users in
various locations of the festival area within consequent
timespans.

Interfaces and data formats
The basic mode of communication between the cloud-
based components is implemented through websockets.
Each component maintains a websocket interface for its
counterpart for the purpose of data exchange. Depending
on the situation the data may be “pushed” or “pulled” (sent
after request) from one component to another.
The following subsections provide an overview of

the inputs/outputs of the components in terms of data
exchange.

Collector
As already stated, the Collectors do not expose any inter-
face, rather they allow predefined components to pull
their data through SSH.
Input:WiFi signals

Fig. 3 Trilateration. The pink colored area at the intersection of the three circles defines the possiblepositions of the user

https://www.npmjs.com/package/trilat
https://leafletjs.com
https://github.com/Leaflet/Leaflet.heat
https://github.com/Leaflet/Leaflet.heat
https://www.openstreetmap.org/
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Output: raw data files, timestamped. An example mea-
surement from one Collector looks like this:

{
" d id " : " r a spbe r r yp i −5" ,
" u id " : 123457 ,
" r s s i " : −74 ,
" t imestamp " : 1532267012

}

Aggregator
The Aggregator pulls the data from the Collectors in a
synchronized way, performs some basic processing, stores
them and then exposes them through a standard RESTful
API.
Input: the output of the Collectors
Output: the same as the input but in arrays grouped by

the did. E.g.

{
" d id " : " r a spbe r r yp i −5" ,
" r e co rdsAr ray " : [

{
" u id " : 123457 ,
" r s s i " : −74 ,
" t imestamp " : 1522919784

} ,
{

" u id " : 123457 ,
" r s s i " : −76 ,
" t imestamp " : 1522919785

} ,
{

" u id " : 123 ,
" r s s i " : −83 ,
" t imestamp " : 1522919787

} ,
]

}

Filtering
The Filter pulls the data from the Aggregator, orders them
based on their uid and timestamp and pushes the new
structures to the Load Balancer. It uses standard HTTPS
requests towards the Aggregator and exposes a websocket
interface towards the Load Balancer.
Input: The output of the Aggregator
Output:An array of objects, each containing all the col-

lectors’ measurements rssi, did for a specific user within a
specific timespan (defined by a timestamp, commonly the
time that the timespan finishes).

[
{

" u id " : 123457 ,
" t imestamp " : 1522919785 ,
" s i g n a lA r r a y " : [

{
" d id " : " r a spbe r r yp i −5" ,
" r s s i " : −76 ,

} ,
{

" d id " : " r a spbe r r yp i −8" ,
" r s s i " : −81 ,

} ,
{

" d id " : " r a spbe r r yp i −9" ,
" r s s i " : −79 ,

} ,
] ,

} ,
. . .

]

Load balancer
The Load Balancer receives the measurements in batches
from the Filter in a fixed interval (1 min). Then it stores
it in its local FIFO queue and distributed one object at a
time, to each connected Trilaterator. The communication
protocol between the Load Balancer and the Trilaterator
is the following:

• Listen for new Trilaterators
• Accept new Trilaterator connections
• Expect a "status":"ready" message from a Trilaterator
• Remove the oldest measurement in the queue and

send it to the Trilaterator that issued the "ready"
status message

This allows for a flexibility in adding or removing new
Trilaterators without the Load Balancer having to know
anything about it nor about their status.
Input: The output of the Filter in batches (in an array)
Output: The oldest object from the queue where the

Filter batches are stored

Trilaterator
The Trilaterator retrieves data from the Load Balancer
through a websocket client according to the previously
mentioned protocol. It uses those data to calculate the
position of the user. Then it creates a new data structure
that includes the uid, timestamp, lat, lon and pushes it
through another websocket to the Storage component.
Input: The output of the Load Balancer
Output: A message containing the uid, timestamp, lat,

lon, like the following:

{
" u id " : 123457 ,
" t imestamp " : 1522919785 ,
" l a t " : 48 . 99917 ,
" lon " : 8 . 37415 ,

}
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Storage
The Storage component exposes a websocket server for
persisting and another for accessing the data. Through
the websocket, it can enable a stateful communication
with the client, i.e. every time the client sends a particu-
lar command, the Storage responds by sending messages
pertaining to the latest fixed time interval, i.e. fetches only
new messages, starting from where it finished during the
previous call.
Input: The output of the Trilaterators
Output:An array of objects in the same format as in the

input

Frontend
The Frontend implements a websocket client that pulls
data from the Storage and visualizes them, also in an
animated way, like a timelapse.
Input: The output of the Storage
Output: -

Underlying technologies and deployment plan
The cloud-based components (Filtering, Load Balancer,
Trilaterator and the Storage) are all based on open-
source technologies. The components are deployed in
a Node.js framework in independent virtual machines,
using npm packages such websocket, mysql, forever, tri-
lat and @google-cloud/compute. The Storage maintains
the data in a standard MySQL database. The Frontend
is based on client-side technologies, and in particular
HTML, CSS and Javascript (vanilla) as well as Javascript
libraries such as Leaflet.Heat.
Node.js is selected as a technology because:

• it is lightweight in comparison to the use of
application containers

• it is non-blocking which is critical for the case of the
Load Balancer, allowing at the same time to avoid the
hassle of dealing with threads

• it is simple passing from front-end to back-end
development since both are based on Javascript

• it achieves good response times and throughput in
the backend in comparison to other server-side
technologies

The communication between components is achieved
mainly through websockets. Websockets are appropriate
for bi-directional communication and data streams trans-
fer, especially when there a many small object like in this
case.
The scalability is achieved through the Node.js client

for the Google Compute API (https://www.npmjs.com/
package/@google-cloud/compute). A scalability engine
with a simple scale in/out/back interface was imple-
mented that allows the creation of new VM instances on
Google Cloud and the deployment and execution of the

application code as a startup script. The scalability engine
was stateful, maintaining the list of created instances and
details about their state. This kind of information was
useful once a scalein command was issued, when the
scalability engine had to pick the oldest running VM.
The automated deployment of those components was

achieved through shell scripts which installed the neces-
sary components and configured the software (through
a ”config.js” file) so as for the components to instantly
become part of the application pipeline. The script con-
ceptual steps include:

• Installation of git and Node.js and creation of the
environment to install the code

• Fetching the code from gitlab. The code contains all
npm packages pre-installed

• Creating a firewall exception for the websockets and
RESTful APIs

• Setting up the execution environment for the
application, e.g. setting the endpoints of the servers
to which the application clients will connect. This is
done through setting the execution variables in the
config.js file

• Creation of the table in the database (only for the
Aggregator)

• Execution with standard error and output logging
support

• Execution of the code in the Node.js container with
forever

Design characteristics
Event-based
The implementation on Node.js is entirely event-based,
therefore the workflow is asynchronous. Callbacks are
commonly used in order to be able to asynchronously han-
dle the events. Once an asynchronous function is called,
it receives a callback as an input. The callback is evaluated
by the function code when an event of interest happens.
Each callback typically has at least one input parameter.
This parameter indicates whether an error happened dur-
ing the execution of the function. The other parameters, if
any, are used as the payload of the executed function.

Concurrency & synchronization
The use of events allows the separation of inner function-
ality of the components as well as the support of some
form of concurrency and synchronization. E.g. the web-
socket servers are registering custom events in shared
objects so that, when a message of importance arrives
from the client, the server to be able to process it when
the single application thread becomes available. This way
the Load Balancer queue is filled with messages inde-
pendently to the rest of the operations. At the same
time, a timer event (every 500 ms) triggers a function

https://www.npmjs.com/package/@google-cloud/compute
https://www.npmjs.com/package/@google-cloud/compute
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that attempts to empty the queue by shifting messages
(FIFO) and distributes them to the connected Trilater-
ators. Given that each Node.js instance is supported by
a single-threaded process, the queue variable meets the
mutex requirement and the event-driven model meets
the scheduling requirement. These are called "correctness
requirements" and meeting them guarantees the correct
synchronization process.

Scaling
The requirement for near-real time depiction of the atten-
dant concentration and their large numbers may turn
certain computational intensive components to a bottle-
neck to the whole pipeline. In this application, such a
component is the Trilaterator which conducts complex
processing, especially in the case of a large number of
measurements for a single user. The Load Balancer is the
component that has the information to control the normal
flow of information throughout the pipeline. By moni-
toring the queue size periodically, it can define whether
the current rate of message consumption from the Tri-
laterators can potentially lead to bottlenecks. As such,
it employs a scalability engine, to request more or less
Trilaterators.

Resilience
Each of the components needs to remain functional dis-
regarding the presence of the other components. This is
rather demanding, especially for the components imple-
menting a tightly-coupled pipeline of servers and clients,
like the Load Balancer, the Trilaterator and the Storage. To
resolve this issue, the servers and the clients are invoked
asynchronously and if the fail to start they are restarted.

Evaluation results
For a period between July 19, 2018 when the measure-
ments started flowing in and the last day of the festival
(July 22, 2018) the application received an average of 318
unique MAC addresses per minute, with the figure sky-
rocketing to 2934 during the last day (Fig. 4). The actual
MAC addresses recorded on a 1’ basis averaged on 4647
for the peak period (Fig. 5). To give a perception of the
necessity for such a GPS-free setting, we requested data
from the official mobile app of the festival. It turns out
that they collected locations from 866 unique users for the
complete festival duration; a number that is dwarfed by
the 164,247 unique users captured by STRAND.
The fluctuations between the 2-h intervals in the

evenings of the 3 days, are mainly related to the changing

Fig. 4 Unique MAC addresses captured. Unique MAC addresses in the period July 19-22, 2018
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Fig. 5Measurements received per minute. Total measurements in the period July 19-22, 2018

of lineups that were performing in 3 different stages. Fur-
thermore, a shower during the evening on the 21st, when
the most popular line-ups were expected to show, limited
the crowd’s attendance greatly.
At the peak of the day, the heatmap appeared as in Fig. 6.

The areas appearing as "heated" in most of the cases were
the toilets (top-left), the festival entrance (mid-right) and
the beer stand (bottom-left).
The heavy processing was done by the Trilaterator

component. Since each Trilaterator processes one set of
readings and only receives a new one when it finishes
there are minimum requirements from each of them. For
budget efficiency a f1-micro (1 vCPU, 0.6 GB memory)
instance type in Google Cloud Compute was selected.
Such a machine, could do some minor filtering (clearing
readings from the same access points) and trilateration, on
average, in 56 ms. Considering that about 80% of the mea-
surements that were sent for trilateration were unqualified
mainly because they contained readings from less than 3
access points, it is obvious that an increase in the num-
ber of access points would increase the processing time of
each measurement from 56 ms to higher values.
In the current setup, a single Trilaterator could handle

about 1071 measurements per minute. As seen in (Fig. 4),
this threshold was exceeded multiple times during the

evenings of the 21st and 22nd of July, resulting in scaling
commands to be issued by the Load Balancer. The load
balancing algorithm that regulated the scale in and out
commands had to take into consideration the following
facts:

• It takes between 25-30 s (HTTP request round trip
time) to Google Cloud to create a new instance on a
f1-micro machine type with an Ubuntu 16.04 image
and an external IP.

• It takes almost 3.5 min (HTTP request round trip
time) from the moment that the new Trilaterator is
created, to connect to the Load Balancer and start
consuming data. This time is attributed to the startup
script for the Trilaterator, that included the
installation of "git", "node", "npm" and “forever” and
the deployment and execution of the application.

• It takes about 11 s (HTTP request round trip time)
for Google Cloud to stop a VM and, thus, disconnect
it from the Load Balancer.

These figures can be greatly improved if an instance
template is used so as to spawn new VMs based on that
and within a controlled instance group. However, this
solution was not selected as it was very much tailored to
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Fig. 6 View of the heatmap. Heatmap at the peak of the festival according to the application

the particularities of Google Cloud. A key-concept is to
allow for the same application to be used with other public
cloud providers in the future with minimum intervention
from the festival organizers’ side.
Based on these facts, the Load Balancing algorithm

issued scaleout commands so as to ensure that each con-
nected and each requested (but not yet connected) Tri-
lateror would be assigned 1000measurements perminute.
On the other hand, the Load Balancer was more strict
with the issuing of scalein commands, which it did when
the corresponding threshold was set to 200 measure-
ments per minute per Trilaterator. Due to the fact that
scaleins were implemented almost immediately, the algo-
rithm blocked the issuing of scalein commands when
there where pending scaleouts or scaleins. The latter,
allowed for dealing efficiently with the case of fluctuating,
yet gradually increasing loads, like in the evenings of the
3 high-traffic days without the need of prewarming the
Load Balancer. On the downside, it resulted in cases where
more Trilaterators than required where assigned due to
the slow cooldown effect (only 1 Trilaterator is deleted at
a time).
In order to provide an example of how the load bal-

ancer scales, we consider a case where the load increases
rapidly (burst) within a 8 min period. Figure 7 illus-
trates the fluctuation of the load balancer queue uniformly
spread within 1 min intervals. It is presented this way for

producing a more readable chart. In practice the load
arrives in infrequent bursts resulting in multiple scale
commands to be issued at once.
We notice that the burst starts at the middle of the

chart, at which point the system operates with its sin-
gle, standard trilaterator. For the following 5 min the load
increases at an average rate of ∼200 measurements per
second. About 10 scaleout commands are issued almost
simultaneously after 90 seconds to 100 seconds once
the burst started and another 10 new trilaterators were
requested∼80 seconds later, reaching the upper threshold
of 20 spawned trilaterators operating at once. Every tri-
laterator needed about 4 min to be operational since the
issuing of a scaleout command. By the time that the length
of the queue reaches ∼7300 objects, 10 new trilaterators,
plus the fixed one (11 in total), have started receiving part
of the load and whithin 35 s the length of the queue is con-
trolled (every trilaterator consumes 17.85 data objects per
second on average). Within 50 s another 10 trilaterators
are up and about requesting to consume objects from the
queue. At that time, with 21 operational trilaterators deal-
ing with nearly 370 objects per second, even the increased
incoming rate of 250 objects per second does not suf-
fice to increase the length of the queue, which drops
rapidly. After almost 8 min since the start of the burst,
the load is controlled and a single scalein command is
issued.
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Fig. 7 Scale operations impact on load. Load balancer queue length fluctuation in an extreme case

The evaluation of the location estimation accuracy
was achieved by comparing the estimations with values
retrieved on the field at registered time intervals. The
average haversine distance between the controlled test
and the estimation was used as an evaluation metric.
This test was conducted before the anonymization of the
dataset, as the id (MAC address) of the control device
was needed. The results showed an average declination
of 10.67 meters which was marginally acceptable for the
purposes of the application.

Conclusions
The main functional specifications for this application
revolved around a near-real-time localization service with
mediocre accuracy. The specific key performance indi-
cators were set to 1 min response time and a deviation
of max 12m in the location estimation. This accuracy
requirement is almost 2 times the accuracy of a smart-
phone’s GPS (4.9 m according to [37] or more when
trees and other obstacles are in the area 5), which can be
acceptable when other restrictions (e.g. bandwidth lim-
itations, battery drainage, the need to install additional
applications) hold. The conditions to which this exper-

5https://www.gps.gov/systems/gps/performance/accuracy/

imental application was tested were unique. In about
12,600 m2, part of a music festival grounds, 24 Rasp-
berry Pi devices, acting as WiFi access points, collected
the RSSI from an average of 318 smartphones per minute
for a 3-day period. With the load becoming x8 times
higher during peak times, the application should grace-
fully scale to cope with the demand and continue con-
suming the complete set of measurements delivered on
a 1 min basis. We opted for a rather relaxed accu-
racy goal in order to obfuscate the exact position of the
users.
The application was implemented as a component

pipeline that allowed the scaling of the Trilateration com-
ponent so as to cope with the near real-time require-
ments. Each component of the pipeline was implemented
on Node.js and they communicated with one another
through websockets. This implementation proved effi-
cient and allowed the practically continuous flow of the
high-frequency data streams.
The results showed that there is room for improvement,

especially in the accuracy of the localization, perhaps by
configuring the formula for calculating the distance from
the RSSI measurements on each access point basis. Part
of our next work in this field, will be in the direction of
improving the localization accuracy and testing the effect

https://www.gps.gov/systems/gps/performance/accuracy/
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of using redundant information from multiple sensor
nodes.
In terms of scalability, the Google Cloud Compute

resources and API proved very efficient in assisting the
application scale gracefully. At the same time the appli-
cation architecture itself allowed for a minimized cost,
since there were limited requirements for the spawned
machines. At the end, the cost of the Google Cloud infras-
tructure for a complete run for the three days, plus the
preceding tests, summed to roughly 80$.
Finally, it is worth noting that this experimental setup

was tested under the premise that the number of atten-
dants that kept their devices’ WiFi transceivers on, is ade-
quately large to give an accurate perception of the overall
asymmetric crowd density. The success of the experi-
ment, led the festival organizers to consider increasing
the number of Raspberry PI devices for the future festi-
vals. The alternative of using the GPS-based localization
system of the official mobile app of the festival yielded a
5% of the amount of participants recorded in comparison
to STRAND. This difference shows that for one reason
or another, it is not possible to acquire a critical mass of
measurements for the purposes of the application.
Among the limitations that potential practitioners of

this software might face, is the fragile way to estimate
the distance using the signal strength. For each access
point, multiple experiments must be conducted to fine-
tune the formula which is something generally difficult in
outdoor locations due to the potentially large number of
such access points.

Availability & requirements
Project name & STRAND
Project home page & http://snf-825292.vm.okeanos.
grnet.gr/ktserpes/STRAND
Operating system & Platform Independent (originally
for Ubuntu Linux)
Programming language & NodeJS (Javascript)
Other requirements & NodeJS v8 or higher, Google
Cloud Project
License & Apache v2.0
Restrictions to use by non-academics & License applies
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