
Journal of Cloud Computing:
Advances, Systems and Applications

Meng et al. Journal of Cloud Computing: Advances, Systems
and Applications (2019) 8:24
https://doi.org/10.1186/s13677-019-0145-8

RESEARCH Open Access

Publicly verifiable and
efficiency/security-adjustable outsourcing
scheme for solving large-scale modular
system of linear equations
Panpan Meng1, Chengliang Tian1,2,3* and Xiangguo Cheng1

Abstract

Solving large-scale modular system of linear equations (LMSLE) is pervasive in modern computer and
communication community, especially in the fields of coding theory and cryptography. However, it is
computationally overloaded for lightweight devices arisen in quantity with the dawn of the things of internet (IoT)
era. As an important form of cloud computing services, secure computation outsourcing has become a popular topic.
In this paper, we design an efficient outsourcing scheme that enables the resource-constrained client to find a
solution of theLMSLE with the assistance of a public cloud server. By utilizing affine transformation based on
sparse unimodular matrices, our scheme has three merits compared with previous work: 1) Our scheme is
efficiency/security-adjustable. Our encryption method is dynamic, and it can balance the security and efficiency to
match different application scenarios by skillfully control the number of unimodular matrices. 2) Our scheme is
versatile. It is suit for genericm-by-n coefficient matrix A, no matter it is square or not. 3) Our scheme satisfies public
verifiability and achieves the optimal verification probability. It enables any verifier which is not necessarily the client
to verify the correctness of the results returned from the cloud server with probability 1. Finally, theoretical analysis
and comprehensive experimental results confirm our scheme’s security and high efficiency.

Keywords: Cloud computing, Secure computation outsourcing, Modular system of linear equations, Unimodular
matrix transformation, Privacy-preserving

Introduction
With the rapid development of 5G technologies, the
Internet of things (IoT) era is coming. More and more
intelligent devices are connected to the internet and com-
municate with each other, which will greatly facilitate peo-
ple’s life [1–3]. It is predicted by the technology research
firm Gartner that there will be 26 billion smart devices on
the Internet of Things (IoT) by 2020 [4]. However, quanti-
ties of these devices, such as wearable devices, home appli-
ances, and RFID cards, suffer from limited computing
ability, low storage space and constrained communication
bandwidth. It is unrealistic for these resource-constrained

*Correspondence: tianchengliang@qdu.edu.cn
2Business School, Qingdao University, Qingdao 266071, China
3State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China
Full list of author information is available at the end of the article

devices to perform large-scale data computation and
storage task. Fortunately, cloud computing, as a type
of Internet-based computing, offers availably abundant
processing resources to electronic devices on demand.
Under this promising computing paradigm, the resource-
constrained clients can outsource their overloaded com-
putations and storages to the resource-abundant cloud
servers without the investment of purchasing and main-
taining their own computing facilities. Although it brings
many advantages, the fact that clients and cloud servers
are not necessarily in the same trusted domain brings
many security issues and challenges [5–7]. On the one
hand, the clients’ outsourcing data may contain their sen-
sitive information such as proprietary research data, pri-
vate asset records, and personal health information, etc.
The exposure of these critical information could incur
the severe loss of clients’ credit, economic, spirit, life

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-019-0145-8&domain=pdf
http://orcid.org/0000-0002-2474-910X
mailto: tianchengliang@qdu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 2 of 13

and asset. On the other hand, the physical isolation from
the clients and external ill-disposed economic incentives
may make cloud servers curious, lazy and even mali-
cious, and then steal clients’ private information and
return random, or deliberately forged results to the clients.
Therefore, a security outsourcing scheme should fulfill the
following properties [8, 9]: (1) Correctness. The clients
should obtain the correct computation results if the cloud
servers conduct the assigned computation task honestly.
(2) Input/output privacy. The curious or even malicious
cloud servers can not steal or speculate clients’ actual
input/output information. (3) Verifiability. The clients can
verify the correctness of the results returned from the
cloud servers. (4) Efficiency. The scheme must be effi-
cient. That is, the clients’ time/space cost of performing
the large-scale data computation/storage task should be
substantially cheaper than that of performing the task by
themselves.
For some given integer q, a vector b ∈ Z

n
q and a full (col-

umn or row) rank matrix A ∈ Z
m×n
q , solving the modular

systems of linear equations

Ax ≡ b mod q (1)

is a fundamental computational problem in modern com-
puter algebra [10]. It has various applications in informa-
tion and communications fields. For example, in coding
theory, we needs to solve this problem to decode q-ary
linear code [11, 12], and, in lattice-based cryptography, it
is used for generating signatures and private keys in the
signature and encryption/decryption schemes based on
Small Integer Solution (SIS) [13] and Learning with Errors
(LWE) problems [14–16]. Also, it frequently emerges in
machine learning [17]. The classic algorithm of solving
this problem is Gaussian elimination with a time complex-
ity of O(mn2(log q)2). It is efficient when the size of A is
small. However, the exponential growth in the quantity
of data generated in IoT era makes us often have to deal
with large-scale matrices. For example, the recent post-
quantum key exchange protocol [18] requiresm, n ≥ 1024
and q = 232−1, and its improved variant [19] also requires
m, n ≥ 1024 and q = 12289. For the large-scale matrix A,
the Gaussian elimination becomes time-consuming which
may result in the infeasible for the resource-constrained
clients to solve this problem. Therefore, it is of great
necessity to design an efficient algorithm to securely out-
sourcing the solving of the large-scale modular system of
linear equations (LMSLE).
Obviously, when A is square and invertible modulo

q, the (LMSLE) problem (1) has a unique solution
in Zq which can be denoted as x = A−1b mod q.
In this case, we can realize the securely outsourcing of
(LMSLE) by designing an efficient method to outsource
the inverse of A modulo q. Although many researches
have considered the outsourcing of large-scale matrix

inversion computation [20–22], they focused on matrices
over the real field R or the finite field Fq and the
probability of verifiability can not achieve the optimal 1.
Furthermore, the existing methods only designed for a
square and invertible matrix A, while here we consider a
general m-by-n matrix A. Another viable way is directly
considering the secure outsourcing of LMSLE . Through
imitating the currently most efficient outsourcing algo-
rithm of large-scale system of linear equations (LSLE)
[23], onemay want to blind the input (A,b) and the output
x by sparse matrix transformations and translation vector.
However, just as the authors’ mentioned in the paper, their
method can not provide strong enough privacy. There-
fore, how to design an efficient and strong enough security
outsourcing scheme for a general input matrix A is left as
a meaningfully practical problem.

Our contributions
To address the above-mentioned problem, in this paper,
we put forward an efficiency/security-adjustable out-
sourcing scheme to find a solution vector of the LMSLE
problem Ax ≡ b mod q in case that the problem is solv-
able. Also, our scheme is publicly variable, i.e. any verifier
(not necessarily the client) can assess the correctness of
the server’s results. The main technique involved in our
scheme essentially can be treated as an improvement of
Zhang et al.’s technique [22] and Chen et al.’s technique
[23], which makes our scheme superior in the following
three aspects:

1) Our scheme provides an adjustable encryption
method based on successively sparse unimodular
matrix transformations. That is, we can adjust the
number of sparse unimodular matrices in the scheme
to balance security and efficiency to match the
different application scenarios.

2) Our scheme is applicable to any matrix A such that
Ax ≡ b mod q is solvable, no matter it is square or
non-square.

3) Our scheme are publicly verifiable and achieves the
optimal verifiability probability 1. In other words, our
scheme allows the client to delegate the verification
task to any honest or even curious edge server
without leaking the client’s private information.
Additionally, the verifier (e.g. the client or the
third-party edge server) can detect the cloud server’s
misbehaviors with optimal probability 1.

Organization
The rest of our paper is arranged as follows: In “Security
model and definitions” section, we illustrate the system
model and related definitions in our outsourcing design of
LMSLE . “Preliminaries” section reviews some necessary
preliminaries used in the design of our scheme. The main

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 3 of 13

scheme and its correctness, privacy, verifiability and effi-
ciency analysis are presented in “Main scheme” section,
and “Performance evaluation” section evaluates the prac-
tical performance of the proposed scheme by compre-
hensive experiments. We survey the related work in
“Related work” section. Finally, we conclude our paper in
“Conclusion and future direction” section.

Security model and definitions

Systemmodel
As shown in Fig. 1, the system model of our secure
outsourcing scheme SOSLMSLE (q,A,b) involves three
entities: a resource-constrained client C, a remote public
cloud server S, and an edge server E closed to C.
Client: The client C is with constrained computing

resource and storage space. It intends to securely find
a solution of the large-scale modular system of linear
equationsAx ≡ b mod q by leveraging the cloud server’s
computation resource. To keep the privacy of the input
(A,b) and the output (solution vector) x, C firstly gener-
ates a secret key SK and utilizes it to encrypt (A,b) into
(A′,b′), and then sends (q,A′,b′) to S and E.
Cloud server: The cloud server S is public and resource-

abundant, yet it is far from the client C and thus
maybe untrusted. After receiving (q,A′,b′), S performs
the assigned computation task that solving another large-
scale modular system of linear equations A′x′ ≡ b′
mod q, and returns the solution vector x′ to E.
Edge server: The edge server E is semi-public and has

more computing power and larger storage space than that
of the client C. However, compared with the cloud server
S, edge server’s resource is also limited, so it cannot sup-
port complex computation task. In our outsourcing sys-
tem, it mainly assists the client to verify the correctness of
the returned result from S. Noteworthily, the verification
task also can be conducted by the client itself, and thus

Fig. 1 System model

this entity is optional in our system and here mainly used
to illustrate the public verifiability of our scheme.
Formally, the framework of our system model consists

of the following five probabilistic polynomial time (PPT)
algorithms:

1) KeyGen(�, 1m, 1n) → {SK}: On input a LMSLE
problem instance � = (q,A,b) with A ∈ Z

m×n
q , this

algorithm performed by the client C generates a
random secret key SK which should be kept secret
by C.

2) CEnc(�, SK) → {�′}: Utilizing the secret SK, the
client C performs this algorithm to encrypt the input
instance � = (q,A,b) into a blind input
�′ = (q,A′,b′), and sends �′ to the cloud server S
and the edge server E.

3) SCom(�′) → {x′}: After receiving the encrypted
input �′ = (q,A′,b′), the cloud server S invokes this
algorithm to solve the large-scale modular system
A′x′ ≡ b′ mod q, and returns a solution vector x′ to
the edge server E.

4) EVer(x′,�′) → {x′, δx′ }: This algorithm performed
by the edge server E firstly verifies the correctness of
the x′ returned from S. If x′ is correct, then δx′ = 1.
Else, δx′ = 0. At last, the algorithm sends (x′, δx′) to
the client C.

5) CDec(x′, δx′ , SK) → x∪ ⊥: This algorithm is
performed by the client C. If the input δx′ = 1, then
the algorithm uses the secret key SK to decrypt x′
into the actual solution vector x. Otherwise, the
algorithm outputs ⊥.

Threat model
Standing at the client’s perceptive, the threats in our com-
putation outsourcing system mainly originate from the
credibility of the cloud server S and the edge server E.
According to the misbehaviors of servers, the threats
mainly come from the following two types of servers: the
honest-but-curious (HBC) server, and the fully malicious
(FM) server.
HBC server: the server will perform the specified

computation task honestly and return the correct cal-
culation result. However, it is curious about the actual
input/output information, and tries to steal the client’s
valuably private information for selfish purposes.
FM server: the server not only wants to steal the client’s

private information, but also may arbitrarily deviate from
the specified computation task and returns a random or
even a tactical forged result to fool the client.
Clearly, For the HBC server, a secure outsourc-

ing scheme must ensure the privacy of the client’s
input/output information. While, For the FM server, an
outsorucing scheme is secure if it simultaneously satisfies
input/output privacy and the returned result’s verifiability.

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 4 of 13

In the light of the different misbehaviors of the two
servers in our system model, there exist four possible
threat models: HBC-cloud + HBC-edge, FM-cloud +
HBC-edge,HBC-cloud + FM-edge, and FM-cloud+FM-
edge. Since the cloud server is remote and out of control,
and the edge server is semi-public which can be deemed
as an interior small server for a group, we consider the
threat model as the combination of a FM cloud server and
a HBC edge server.

Design goals
To design an efficient outsourcing scheme under the FM-
cloud + HBC-edge servers model, the scheme should at
least fulfill four properties: correctness, privacy, verifiabil-
ity and efficiency.
The first requirement correctnessmeans that the scheme

enables the client to acquire one solution vector of the
LMSLE problem if the cloud server honestly performs
the specified computation task.

Definition 1 (Correctness) A secure outsourcing com-
putation scheme SOSLMSLE (·) is correct if, for any valid
input � = (q,A,b), the key generation algorithm pro-
duces {SK} ← KeyGen(�, 1m, 1n) such that, if {�′ =
(q,A′,b′)} ← CEnc(�, SK), x′ ← SCom(�′) and A′x′ ≡
b′ mod q, the algorithm CDec(x′, δx′ , SK) outputs x sub-
ject to Ax ≡ b mod q.

The second requirement is privacy which means the
scheme should guarantee a FM or a HBC server can not
obtain the client’s actual input/output information with a
overwhelming probability.

Definition 2 (Input/Output privacy) A secure out-
sourcing computation scheme SOSLMSLE (·) satisfies the
input (resp. output) privacy if, for any valid input � =
(q,A,b), the key generation algorithm produces {SK} ←
KeyGen(�, 1m, 1n) such that the probability that the
cloud/edge server can recover (A, b) (resp. x satisfying
Ax ≡ b mod q) is negligible even if the cloud/edge server
knows {�′ = (q,A′,b′)} ← CEnc(�, SK) and x′ ←
SCom(�′).

The third requirement verifiability means the scheme
can verify the correctness of the result returned from the
cloud server with a nonnegligible probability.

Definition 3 ((1 − β)-Verifiability) A secure out-
sourcing computation scheme SOSLMSLE (·) is (1 − β)-
verifiability if, for any valid input � = (q,A,b),
the key generation algorithm produces {SK} ←
KeyGen(�, 1m, 1n) such that, if {�′ = (q,A′,b′)} ←
CEnc(�, SK), and {x′} ← SCom(�′), the probability of
EVer(x′,�′) outputting δx′ satisfies

Pr[δx′ = 1 ← EVer(x′,�′) | A′x′ ≡ b′ mod q]= 1,
Pr[δx′ = 1 ← EVer(x′,�′) | A′x′
= b′ mod q]≤ β .

Finally, the scheme should be efficient. In other words,
the scheme should enable the client to achieve substantial
computation savings compared to performing the work on
client’s own.

Definition 4 (α-Efficiency) A secure outsourcing com-
putation scheme SOSLMSLE (·) is α-efficiency if, sup-
pose,for any valid input � = (q,A,b), the client’s time
overhead of solving Ax ≡ b mod q on its own is toriginal,
and the local-client’s time overhead of performing the task
by performing the outsourcing algorithm SOSLMSLE (�)

is tclient,
toriginal
tclient ≥ α.

It is worth mentioning that the factor α in the above
definition measures the level of outsourcing scheme’s effi-
ciency. Clearly, The larger the factor α becomes, the more
computational savings the local-client achieves and the
more efficient the scheme SOSLMSLE (·) is.

Preliminaries
In this section, we review the frequently used symbols in
this paper and some necessary basic concepts involved the
design of our scheme.

Notations and terminologies
Throughout the paper, we use capital and bold (resp.
lower-case and bold) letters to denote matrices (resp. vec-
tors). For some matrix A (resp. vector b), AT (resp. bT)
denotes the transposition of matrix A (resp. vector b),
det(A) denotes the determinant of A. Let Z denote the
set of integers and Zq = {0, 1, · · · , q − 1} denote the
residue ring Z/qZ. Zm×n

q represents the set of all them×n
matrices whose entries belong to Zq.

Unimodular matrix
Unimodular matrices are a special kind of integer matri-
ces, which has wide applications in computer science
community, especially in matrix computation theory, cod-
ing theory and lattice-based cryptography [24].

Definition 5 (Unimodular matrix [25]) An n-by-n inte-
ger matrix U is unimodular if and only its determinant
det(U) = 1 or det(U) = −1.

A very “nice” property of unimodular matrix is that the
inverse of an unimodular matrix is still unimodular. Here
we list it as a lemma and omit its proof.

Lemma 1 ([26]) For some unimodular matrix U ∈
Z
n×n, there exists a unique matrix V ∈ Z

n×n such that

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 5 of 13

UV = In×n and | det(V)| = 1, where In×n denotes the
n-by-n identity matrix.

For instance, for the unimodularmatrixU =
(
3 2
4 3

)
, its

inverse is V =
(
3 −2
−4 3

)
with det(V) = 3 × 3 − (−2) ×

(−4) = 1, which is trivially unimodular.
Now, we prove another important result about the

unimodular matrix, which is very useful in the forth-
coming analysis of our scheme’s input/output privacy in
“Input/output privacy” section.

Lemma 2 Let P denote the set{
X | X =

(
x11 x12
x21 x22

)
∈ X 2×2 and det(V) = ±1

}
,

(2)

where X = Z ∩ (−2λ, 2λ) denotes the set of the integers
with bit length no larger than λ. Then the size of P satisfies

#P ≥ 48
π2 (2λ − 1)2.

Proof From the definition of P , ∀X ∈ T , | det(X)| =
|x11x22 − x21x12| = 1. Since the number of the unimodu-
lar matrices with determinant 1 is the same as that of the
unimodular matrices with determinant −1, we only count
the number of unimodular matrices with determinant 1
(i.e. x11x22 − x21x12 = 1).
Since x11x22 − x21x12 = 1, we have gcd(x11, x21) = 1.

Clearly, for any relatively prime pair (a, b) ∈ X ×X , there
exists at least one unimodular matrix in P . According to
the proof of Theorem 3.9 in reference [27], the number of
relatively prime pairs inX ×X is no less than 24

π2 (2λ −1)2.
Therefore, the number of unimodular matrices with
determinant 1 is at least 24

π2 (2λ − 1)2.
Consequently, the size of P satisfies

#P ≥ 2
24
π2 (2λ − 1)2 = 48

π2 (2λ − 1)2.

Main scheme
A bird’s-eye view of the Main idea
Given an integer q, a vector b ∈ Z

m
q and a large-scale full

(column or row) rank matrix A ∈ Z
m×n
q , we intend to find

a solution vector x such that

Ax ≡ b mod q (3)

in case that the system is solvable. Since the size of A is
very large, the resource-constrained client wants to dele-
gate such overload work to a public andmaybe not trusted
cloud server in a secure way.

In case that the system (3) has a unique solution, we
can achieve the above objection by securely outsourcing
the pseudoinverse of A modulo q. Then we can recover
the unique solution x = (ATA)−1ATb mod q. However,
this method requires that the matrixA is full column rank
(i.e. m ≥ n) and the product matrix ATA is invertible
modulo q (i.e. gcd(det(ATA), q) = 1). Also, the existing
outsourcing algorithms [22, 28] for matrix inversion only
detect the cloud server’s misbehavior with a certain prob-
ability and thus do not achieve the optimal verifiability 1.
Another direction is along the way of securely outsourcing
LSLE [23, 29]. We can blind the inputs A, b and the out-
put x simultaneously by performing random sparsematrix
transformations on A and adding a random vector r to x.
In other words, we can convert the Eq. (3) into

MANN−1(x + r) ≡ M(b + Ar) mod q, (4)

whereM,N are two random sparse (or even permutation)
matrices. Briefly, we denote the linear system (4) as

A′x′ ≡ b′ mod q, (5)

out of whichA′ = MAN, x′ = N−1(x+r) and b′ = M(b+
Ar). This method can be applied for general (non-square)
matrix A and achieve the optimal verifiability. Nonethe-
less, this kind of simple sparse matrix transformation can
not provide strong enough privacy. E.g. it may leak the
statistical information of certain entries in the matrix A.
Therefore, to design an efficient outsourcing algorithm for
general matrix A with high security, a natural idea is to
combine the above-mentioned techniques.
Different from the encryption method in [23] which

encrypts A by only two sparse matrices, we blind the
matrix A by dense enough matrices. Inspired by the
method introduced in [22], we present a dynamic and
adjustable method to encrypt the original matrix by using
a series of sparse and unimodular matrix transformations.
That is, the A′ in Eq. (5) is obtained by the following
method

A′ = Uf (m) · · ·U1AV1 · · ·Vg(n), (6)

where Ui,Vj are sparse and unimodular matrices for 1 ≤
i ≤ f (m), 1 ≤ j ≤ g(n). To ensure the efficiency of
the encryption operation, the f (m) (resp. g(n)) should be
some linear function of m (resp. n) and the computa-
tion of A′ can be efficiently implementation by virtue of
the associativity of matrix multiplication. Obviously, as
the increasing of the number of the sparse unimodular
matrices used in the left (resp. right) transformation, the
product matrix Uf (m) · · ·U1 (resp. V1 · · ·Vg(n)) becomes
denser, and thereby the scheme performs with stronger
security and lower efficiency. Therefore, the scheme pro-
vides an alternative way to balance the security and
the efficiency according to different specific application
scenarios.

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 6 of 13

Outsourcing scheme of Ax ≡ b mod q
Concretely, our secure outsourcing scheme
SOSLMSLE (q, A,b) consists of the following five
algorithms.

1) Pre-processing: Given a small constant λ > 0, this
step generates a large resource pool P consisted of
2-by-2 random unimodular matrices as shown in
equation (2).

2) KeyGen: On input a triple (q,A,b) with q ∈ Z,
A ∈ Z

m×n
q and b ∈ Z

m
q . The client C generates a

random secret key
SK = (U1, · · · ,Uf (m),V1, · · · ,Vg(n), r) as follows:
Firstly, this algorithm chooses some non-negative
integer c which is adjustable according to different
application scenarios, and defines
f (m) = c(m − 3) + (c + 1) + (m − 2) and
g(n) = c(n − 3) + (c + 1) + (n − 2).
Secondly, for 1 ≤ i ≤ f (m) and 1 ≤ j ≤ g(n), it
randomly chooses 2-by-2 unimodular matrices

U(i) =
(
u(i)
11 u(i)

12
u(i)
21 u(i)

22

)
and V(j) =

(
v(j)
11 v(j)

12
v(j)
21 v(j)

22

)
from the

resource pool P . Further, if
i = 2k(m − 3) + (2k + 1) + (� − 1) or
i = 2k(m − 3) + (2k + 1) − (� − 1) for some
1 ≤ � ≤ m − 1 and 0 ≤ k ≤ c, this algorithm
generates the m-by-m unimodular matrix

Ui =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · u(i)
11 u(i)

12 · · · 0
0 · · · u(i)

21 u(i)
22 · · · 0

...
...

...
...

. . .
...

0 · · · 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
m×m, (7)

by replacing the entries located in (�, �), (�, � + 1),
(� + 1, �) and (� + 1, � + 1) positions of the identity
matrix Im×m with U(i). Also, if
j = 2k(n − 3) + (2k + 1) + (� − 1) or
j = 2k(m − 3) + (2k + 1) − (� − 1) for some
1 ≤ � ≤ n − 1 and 0 ≤ k ≤ c, this algorithm
generates the n-by-n matrix

Vj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · 0 0 · · · 0
...
. . .

...
...

...
...

0 · · · v(j)
11 v(j)

12 · · · 0
0 · · · v(j)

21 v(j)
22 · · · 0

...
...

...
...

. . .
...

0 · · · 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
n×n (8)

by replacing the entries located in (�, �), (�, � + 1),
(� + 1, �) and (� + 1, � + 1) positions of the identity
matrix In×n with V(j).

Finally, this step randomly generate a vector r ∈ Z
n
q .

3) CEnc: Utilizing the secret key SK = (U1, · · · , Uf (m),
V1, · · · ,Vg(n), r), the client C encrypts the original
matrix A and the vector b into

A′ = (Uf (m) · · · (U1((AV1) · · ·Vg(n)))) mod q
(9)

and b′ = (Uf (m) · · · (U1(b + Ar))) mod q
respectively, and then sends (A′,b′, q) to the cloud
server S.

4) SCom: After receiving the blinded values (A′,b′) and
q, the cloud server S finds a solution vector x′ such
that A′x′ ≡ b′ mod q, then returns x′ to the edge
server E.

5) EVer: After receiving x′, the edge server E first
verifies whether the equation A′x′ ≡ b′ mod q
holds. If it does, the algorithm defines δx′ = 1. Else, it
defines δx′ = 0. Then it sends (x′, δx′) to C.

6) CDec: After receiving (x′, δx′) sent from E, the client
C first check the value of δx′ . If δx′ = 1, the algorithm
outputs

x = (V1(V2 · · · (Vg(n) · x′))) − r mod q , (10)

Otherwise, it outputs ⊥.

Example 3: To make our scheme more clear, we further
illustrate it with a toy example. Take m = n = 3, f (m) =
g(n) = 2, q = 7, the original matrix

A =
⎛
⎝ 1 2 3

6 0 5
4 6 6

⎞
⎠ , b =

⎛
⎝ 1

6
0

⎞
⎠ .

We omit the preprocessing step. Our scheme goes as
follows.

1) The client C invokes the algorithm KeyGen to
generate a random secret key
SK = (U1,U2,V1,V2, r). Let

U1 =
⎛
⎝ 1 2 0

2 3 0
0 0 1

⎞
⎠ , U2 =

⎛
⎝ 1 0 0

0 1 3
0 2 5

⎞
⎠ , r =

⎛
⎝ 6

5
6

⎞
⎠ ,

V1 =
⎛
⎝ −1 2 0

2 −3 0
0 0 1

⎞
⎠ , V2 =

⎛
⎝ 1 0 0

0 −1 3
0 2 −5

⎞
⎠

2) The client C invokes the algorithm CEnc to compute

A′ = (U2U1((AV1)V2)) mod 7 =
⎛
⎝ 5 6 2

5 3 2
2 5 1

⎞
⎠ ,

b′ = (U2U1(b + Ar)) mod 7 =
⎛
⎝ 4

3
0

⎞
⎠ .

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 7 of 13

Then C sends the three-tuple (q,A′,b′) to the cloud
server S.

3) The cloud sever S conducts the algorithm SCom to
find a solution vector x′ satisfying A′x′ ≡ b′ mod q.
Namely,

⎛
⎝ 5 6 2

5 3 2
2 5 1

⎞
⎠ ·

⎛
⎝ x′

1
x′
2
x′
3

⎞
⎠ =

⎛
⎝ 4

3
0

⎞
⎠ mod 7.

Then S returns the solution

x′ =
⎛
⎝ x′

1
x′
2
x′
3

⎞
⎠ =

⎛
⎝ 3

5
4

⎞
⎠

to E.
4) The edge server E performs the algorithm EVer to

verify whether A′x′ ≡ b′ mod q. Since it holds, E
sends (x′, 1) to C.

5) Since δx′ = 1, the client C performs the algorithm
CDec to decrypt

x = (V1(V2x′) − r) mod 7 =
⎛
⎝ 5

1
5

⎞
⎠ .

Remarks 1 In the preprocessing step, the set P can be
constructed through the following method: for the 2-by-2
unimodular X with determinant 1, the client C randomly
chooses two coprime integers x11, x21 ∈ X , and then runs
the well-known extended Euclidean algorithm to compute
two integers x12 and x22 subject to x11x22 − x12x21 = 1.
Swapping the two columns of the matrix with determinant
1, the client C can obtain the matrix with determinant -1.

Correctness
It is easy to see that our scheme is correct for our toy
example. Now, we prove the correctness of the proposed
scheme for arbitrary instance.

Theorem 1 For any valid inputs q ∈ Z,b ∈ Z
m
q ,

and A ∈ Z
m×n
q , the proposed secure outsourcing scheme

SOSLMSLE (q,A,b) is correct according to the defini-
tion 1.

Proof For the inputs q ∈ Z,b ∈ Z
m
q , assume that the

SK produced by the algorithm KeyGen is (U1, · · · , Uf (m),
V1, · · · ,Vg(n), r). Then, invoking the encryption algorithm
CEnc,

A′ = (Uf (m) · · · (U1((AV1) · · ·Vg(n)))) mod q

and b′ = (Uf (m) · · · (U1(b + Ar))) mod q. If the result x′
computed by the cloud server satisfies A′x′ ≡ b′ mod q,
the algorithm EVer sends (x′, 1) to the client C. Therefore,

the algorithm CDec outputs

x = V1(V2 · · · (Vg(n) · x′)) − r mod q ,

which satisfies

Ax = A
(
V1(V2 · · · (Vg(n) · x′)) − r mod q

)
= AV1V2 · · ·Vg(n) · x′ − Ar mod q
= (Uf (m) · · ·U1)

−1(Uf (m) · · ·U1)AV1V2 · · ·Vg(n) · x′

− Ar mod q
= (Uf (m) · · ·U1)

−1A′x′ − Ar mod q
= (Uf (m) · · ·U1)

−1b′ − Ar mod q
= (Uf (m) · · ·U1)

−1(Uf (m) · · ·U1(b + Ar)) − Ar mod q
= b + Ar − Ar mod q
= b mod q.

Namely, x = (V1(V2 · · · (Vg(n) · x′))) − r mod q is
a solution of Ax ≡ b mod q. That is, the algorithm
CDec(x′, SK) outputs correct result.

Input/output privacy
Now, following the analysis of the work [23], we prove
that the input (A,b) and the actual output x is private
against the FM cloud server and the HBC edge server in
our scheme.

Theorem 2 For any valid inputs q ∈ Z,b ∈ Z
m
q , A ∈

Z
m×n
q , (A,b) (resp. x) in our proposed secure outsourcing

algorithm SOSLMSLE (q,A,b) satisfies the input (resp.
output) privacy according to the Definition 2.

Proof First, we prove the privacy for the input vector b
and the output vector x. Since b = U−1

1 · · ·U−1
f (m)

b′ − Ar
mod q, x = (V1(V2 · · · (Vg(n) · x′))) − r mod q, r ∈ Z

n
q

is random and A is full rank, both b and x are blinded by
r in sense of indistinguishability. That is, the cloud/edge
server has to guess the value of b (resp. x), and then the
probability is

1
#Zm

q
= 1

qm

(
resp.

1
#Zn

q
= 1

qn

)
,

which clearly is negligible function ofm (resp.n).
A-privacy: If the cloud/edge server wants to steal the

information of the original coefficient matrix A, since it
knows the ciphertext matrix

A′ = Uf (m) · · ·U1AV1 · · ·Vg(n) mod q,

it can recover A by computing

A = U−1
1 · · ·U−1

f (m)
A′V−1

g(n) · · ·V−1
1 mod q.

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 8 of 13

Let U = U−1
1 · · ·U−1

f (m)
and V = V−1

g(n) · · ·V−1
1 . Then

aij =
m∑
s=1

n∑
t=1

uisa′
stvtj mod q.

Since uis, vtj are random, aij is also indistinguishable with
a random number in Zq. The cloud/edge server can guess
aij by brute-force attack, in which case the probability of
recovering A = (aij)1≤i≤m,1≤j≤n is

1
#Zm+n

q
= 1

qm+n .

It is clearly a negligible function ofm (resp. n).
Another feasible way of recovering A is to obtain the

unimodular matrices Ui and Vj for 1 ≤ i ≤ f (m) and
1 ≤ j ≤ g(n). Since each Ui (resp. Vj) is constructed
by a 2-by-2 unimdoular matrix randomly chosen from a
set P with size #P ≥ 48

π2 (2λ − 1)2, the probability of the
cloud/edge server can guess the correct Ui (resp.Vj) is

1
#P ≤ 1

48
π2 (2λ − 1)2

,

Overall, the probability of the malicious cloud server can
guess the correct A is

(
1
#P

)f (m)+g(n)

≤
(

1
48
π2 (2λ − 1)2

)f (m)+g(n)

,

which also is negligible function ofm (resp. n).

Verifiability
In this section, we will prove that the edger server and
thus the client can detect the cloud server’s misbehaviours
with probability 1. Strictly speaking, we have the following
result.

Theorem 3 For any valid inputs q ∈ Z,b ∈ Z
m
q ,

A ∈ Z
m×n
q , the proposed secure outsourcing algorithm

SOSLMSLE (A, q,b) is 1-verifiability according to the
Definition 3.

Proof Based on the Definition 3, we need to prove the
following two conditional probability identities:

Pr[δx′ = 1 ← EVer(x′,�′) | A′x′ ≡ b′ mod q]= 1,(11)
Pr[δx′ = 1 ← EVer(x′,�′) | A′x′
= b′ mod q]= 0.(12)

The identity (11) is straightforwardly from the correctness
of our scheme, and the identity (12) is also obviously from
the definition of algorithm EVer(x′,�′).

Efficiency
Let tKeyGen, tCEnc, tSCom, tEVer and tCDec denote the time
overhead of corresponding algorithm in our scheme.

Overhead of KeyGen. In the key generation step, the
secret key SK = (U1, · · · , Uf (m),V1, · · · ,Vg(n), r) is gen-
erated by randomly chosen operation. Since the size of key
space #P ≤ 28λ and the size of Zn

q is qn, the time overhead
of this step is tKeyGen = O((f (m) + g(n))λ + n log q).
Overhead of CEnc. In the encryption step, the client can
compute A′ = (Uf (m) · · · (U1((AV1) · · ·Vg(n)))) mod q,
and b′ = (Uf (m) · · · (U1(b + Ar))) mod q by associa-
tivity. Therein, computing A′ requires 4mg(n) + 4nf (m)

multiplications over ring Zq, and computing b′ requires
mn+ 4f (m) multiplications over ring Zq. Since the multi-
plication operation is performed on two integers with bit
length no more than log q, the time overhead of this step
is tCEnc = O((mg(n) + nf (m) + mn)(log q)2).
Overhead of SCom. In the cloud server computation step,
C needs to solve the large-scale modular system of lin-
ear equationsA′x′ mod q which has a time complexity of
tSCom = O(mn2(log q)2).
Overhead of EVer. In the edge server verification step,
E also needs to compute A′x′ mod q, which requires
mn multiplications over ring Zq. Also, the multiplica-
tion operation is performed on two integers with bit
length no more than log q. Therefore, tEVer = tSCom =
O(mn(log q)2).
Overhead of CDec. In the client decryption step, the
client needs to compute x = (V1(V2 · · · (Vg(n) · x′))) − r
mod q,which requires 4g(n) multiplications over ring Zq.
Also, the multiplication operation is performed on two
integers with bit length no more than log q. Therefore,
tCDec = O(g(n)(log q)2).
Since f (m) (resp. g(n)) is a linear function of m (resp.n)

and λ is a small constant, the overall time overhead on the
client side is

tclient = tKeyGen + tCEnc + tCDec

= O((mg(n) + nf (m) + mn)(log q)2)
= O(mn(log q)2).

The time overhead of the cloud server S is

tcloud = tSCom = O(mn2(log q)2),

and the time overhead of the edge server E is

tedge = tEVer = O(mn(log q)2).

Since, if the client performs the work by itself, the time
overhead is to = O(mn2(log q)2). Therefore efficiency in
Definition 4 is

α = toriginal
tclient

= O
(
mn2(log q)2

mn(log q)2

)
= O(n).

That is, we have proved the following result

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 9 of 13

Theorem 4 For any valid inputs q ∈ Z,b ∈ Z
m
q ,

A ∈ Z
m×n
q , the proposed secure outsourcing algorithm

SOSLMSLE (A, q,b) is O(n)-Efficiency according to the
Definition 4.

Performance evaluation
To evaluate the practical performance of our scheme, in
this section, we provide a comprehensive experimental
analysis.

Evaluation methodology
Our analysis is presented by experimentally simulating
the outsourcing process. All the experiments are imple-
mented on Mathmatica 11.0 software platform. For the
algorithms performed on the client side, we carry out
them on a computer with Intel i3-2330M CPU proces-
sor running at 2.20 GHz, 2 GB memory. We simulate
the edge server on a computer with Intel(R) Core(TM)
i5-7200U CPU processor running at 2.71 GHz, 8 GB
memory, and simulate the cloud server on a computer
with Intel(R)Xeon(R) W-2123 CPU @ 3.60GHz 3.60 GHz,
32.0 GB memory.
To comprehensively evaluate the performance of our

scheme, we make comparisons from the following three
different perspectives:

• Compare the client’s time cost of outsourcing
different computation instances by performing the
proposed scheme with that of solving the
corresponding computation instances on its own.

• Compare the total time cost of outsourcing different
computation instances by performing the proposed
scheme with that of achieving the corresponding
computation instances on client’s own.

• Simulate the variance of the client’s time cost of
outsourcing different computation instances with
different f (m) and g(n) in our scheme.

Evaluation results
Let toriginal, tCEnc, tCDec, tSCom, tEver, tclient, tcloud, tedge
denote the same meanings as that in “Efficiency” section.
ttotall() = tclient + tcloud + tedge represents the total cost
of our scheme for solving LMSLE instances. We take
q = 251 and q = 12289 which are common in learn-
ing with errors (LWE)-based cryptosystems [19, 30]. The
parameter λ is set to 2 in our experiments. The experi-
mental results are shown in Tables 1, 2, 3, 4, 5, 6, 7 and 8.
Noting that the time overhead of the algorithmKeyGen is
negligible compared with other algorithms, we omit it in
the tables.
From the tables, we can easily observed the following

three results: (1) Our proposed scheme enables the client
to achieve decent computational savings compared with
conducting the task on client’s own, and the speedup ratio

Table 1 Ax ≡ b mod 251 with parameters
f (m) = m − 1, g(n) = n − 1 (unit:s)

Problem Size tCEnc tSCom(tcloud) tEVer(tedge) tCDec

1 450×500 0.07587596 0.7940 0.00177463 0.00950239

2 950×1000 0.17872325 6.21088 0.00844535 0.0125903

3 1450×1500 0.3961571 20.783 0.0184996 0.0277531

4 1950×2000 0.6928951 49.303 0.0329889 0.0290819

5 2450×2500 1.2596379 95.0151 0.0489073 0.0454629

6 2950×3000 1.7189 161.221 0.0731548 0.0451746

Table 2 Ax ≡ b mod 251 with parameters
f (m) = m − 1, g(n) = n − 1 (Continue with Table 1, unit:s)

Problem Size tclient ttotall() toriginal
toriginal
tclient

toriginal
ttotall()

1 450×500 0.08537835 0.88115298 1.40008 16.40 1.5889

2 950×1000 0.19131355 6.4106389 10.5693 55.25 1.6487

3 1450×1500 0.4239102 21.2254098 36.6499 86.46 1.7267

4 1950×2000 0.721977 50.0579659 86.9538 120.44 1.7371

5 2450×2500 1.3051008 96.3691081 169.814 130.12 1.7621

6 2950×3000 1.7640746 163.058229 293.245 166.23 1.7984

Table 3 Ax ≡ b mod 251 with parameters
f (m) = 2m − 3, g(n) = 2n − 3 (unit:s)

Problem Size tCEnc tSCom(tcloud) tEVer(tedge) tCDec

1 450×500 0.10514155 0.7908 0.0017516 0.0192382

2 950×1000 0.34959892 6.208 0.00861224 0.0395156

3 1450×1500 0.7866935 20.783 0.0182387 0.0443406

4 1950×2000 1.3715709 49.303 0.032109 0.0596953

5 2450×2500 2.3783475 95.0151 0.0488523 0.0828955

6 2950×3000 3.4255175 160.891 0.0721897 0.0802106

Table 4 Ax ≡ b mod 251 with parameters
f (m) = 2m − 3, g(n) = 2n − 3 (Continue with Table 3, unit:s)

Problem Size tclient ttotall() toriginal
toriginal
tclient

toriginal
ttotall()

1 450×500 0.12437975 0.91693135 1.34423 10.81 1.466

2 950×1000 0.38911452 6.60572676 10.9535 28.15 1.6582

3 1450×1500 0.8310341 21.6322728 36.8087 44.25 1.70156

4 1950×2000 1.4312662 50.7663752 86.9632 60.76 1.713

5 2450×2500 2.461243 97.5251953 170.006 69.07 1.7432

6 2950×3000 3.5057281 164.468918 293.878 85.82 1.78683

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 10 of 13

Table 5 Ax ≡ b mod 12289 with parameters
f (m) = m − 1, g(n) = n − 1 (unit:s)

Problem Size tCEnc tSCom(tcloud) tEVer(tedge) tCDec

1 450×500 0.06575108 0.8125 0.00202232 0.00749616

2 950×1000 0.17575052 6.05226 0.00890071 0.0131726

3 1450×1500 0.3993411 20.2893 0.0201133 0.0278017

4 1950×2000 0.6892857 48.2628 0.0346034 0.0350569

5 2450×2500 1.2048372 95.8165 0.0498146 0.0475414

6 2950×3000 1.7189946 161.006 0.0748025 0.0497302

Table 6 Ax ≡ b mod 12289 with parameters
f (m) = m − 1, g(n) = n − 1 (Continue with Table 5,unit:s)

Problem Size tclient ttotall() toriginal
toriginal
tclient

toriginal
ttotall()

1 450×500 0.07324724 0.88776956 1.40402 19.17 1.5815

2 950×1000 0.18892312 6.25008383 11.121 58.87 1.7793

3 1450×1500 0.4271428 20.7365561 37.3979 87.56 1.803

4 1950×2000 0.7243426 49.021746 89.3161 123.31 1.821

5 2450×2500 1.2523786 97.1186932 172.927 138.08 1.7806

6 2950×3000 1.7687248 162.849527 299.213 169.17 1.83736

Table 7 Ax ≡ b mod 12289 with parameters
f (m) = 2m − 3, g(n) = 2n − 3(unit:s)

Problem Size tCEnc tSCom(tcloud) tEVer(tedge) tCDec

1 450×500 0.09749518 0.8022 0.00210615 0.0131503

2 950×1000 0.33596836 6.1038 0.00890071 0.0252105

3 1450×1500 0.7694877 20.2703 0.0195651 0.0406829

4 1950×2000 1.3436429 48.9895 0.034724 0.0653062

5 2450×2500 2.3465147 95.0048 0.049123 0.0964595

6 2950×3000 3.3026583 161.087 0.074192 0.0948513

Table 8 Ax ≡ b mod 12289 with parameters
f (m) = 2m − 3, g(n) = 2n − 3 (Continue with Table 7, unit:s)

Problem Size tclient ttotall() toriginal
toriginal
tclient

toriginal
ttotall()

1 450×500 0.11064548 0.91495163 1.40206 12.67 1.5324

2 950×1000 0.36117886 6.47387957 11.0904 30.71 1.7131

3 1450×1500 0.8101706 21.1000357 37.5176 46.31 1.7781

4 1950×2000 1.4089491 50.4331731 88.3165 62.68 1.7511

5 2450×2500 2.4429742 97.4968972 172.665 70.68 1.771

6 2950×3000 3.3975096 164.558702 298.048 87.73 1.8112

(toriginaltclient) increases monotonously with the size of the input
instances. For example, when q = 251, f (m) = m − 1,
g(n) = n−1, the size of coefficient matrix is 450×500, the
client obtains 16.40 times speedup in efficiency, and, when
the size of coefficient matrix increases to 2950 × 3000,
the speedup ratio achieves 166.23. (2) The total time over-
head of our scheme is cheaper than that of conducting
corresponding computation instances on client’s own, and
the speedup ratio (toriginalttotal()

) also increases with the incre-
ment of the problem size. For instance, when q = 12289,
f (m) = m−1, g(n) = n−1, the size of coefficient matrix is
450× 500, our scheme obtains 1.58 times speedup in effi-
ciency, and, when the size of coefficient matrix increases
to 2950 × 3000, the speedup ratio achieves 1.83. (3) The
efficiency/security of our scheme is adjustable and the
efficiency decreases with the increment of f (m) and g(n).
E.g. when q = 251 with f (m) = m − 1, g(n) = n − 1, and
the problem size is 2950×3000, the client’s time overhead
can be reduced by 99.40% = (1 − 1/166) ∗ 100% by out-
sourcing solving Ax ≡ b mod 251, while, when the same
problem size with f (m) = 2m − 3, g(n) = 2n − 3, the
client’s time cost is only reduced by 98.82% = (1−1/85)∗
100%.
As we have observed from the experimental results,

the proposed scheme is effective and achieves great ben-
efits in efficiency compared with the algorithm without
outsourcing.

Related work
Since a wide range of applications of linear algebraic
operations in various fields, outsourcing linear algebraic
operations, such as matrix multiplication computation
(MMC) [31], matrix determinant computation (MDC)
[32], matrix factorization [33–35], and matrix’s charac-
teristic polynomial and eigenvalues computation [36] has
become a hot topic [8]. Out of which, the closely related
operations with our work are matrix inversion compu-
tation (MIC) and large-scale system of linear equations
(LSLE)solving.
Matrix inversion computation outsourcing. In 2012,

Mohassel first investigated the secure outsourcing of
MIC and initialized a secure outsourcing algorithm [20].
The algorithm encrypts the original matrix through a
random matrix transformation technique (i.e. multiply-
ing the original matrix by a random secret matrix) and
invokes the outsourcing algorithm of MMC as a subrou-
tine. Since the outsourcing algorithm of MMC needs to
perform expensive homomorphic encryption (HE) oper-
ations. Therefore, their algorithm suffers from low effi-
ciency and then is not practical. To avoid the time-
consuming HE operations, Lei et al. [21] further put
forward a new protocol by directly exploiting a simple
random permutation matrix transformation technique.

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 11 of 13

However, this technique is inherently with a severe secu-
rity problem of exposing the statistical information of
some certain entries in the original matrix, e.g. the num-
ber of zeros. Recently, Zhang et al. [22] presented a
novel matrix encryption method based on consecutive
sparse and unimodular matrix transformation, and then
exploited this method to design a new MIC outsourc-
ing algorithm over finite fields. Their algorithm favor-
ably balances the security and efficiency, i.e. it conceals
the entries’ statistical information in the original matrix
without greatly reducing the efficiency. However, the ver-
ification algorithm of all the aforementioned schemes is
based on a randomized Monte Carlo verification, which
is not deterministic with the optimal probability 1. Also,
the outsourcing methods of MIC are only suit for out-
sourcingLMSLE with a square and invertible coefficient
matrix A.
LSLE computation outsourcing. Atallah et al. [37] ini-

tialized the study on secure outsourcing of linear algebraic
operations, and presented the first efficient outsourc-
ing scheme for solving LSLE by using simple random
permutation matrix transformation. Nevertheless, just as
mentioned in Lei et al.’s work [21], this technique leaks the
statistic information of entries in the coefficient matrix.
Also, their algorithm doesn’t concern the result verifica-
tion. Wang et al. [38] further investigated this problem
and proposed a privacy-preserving, cheating-resilient and
effective outsourcing protocol based on iterative method.
However, their protocol needs to invoke the expen-
sive homomorphic encryption scheme [39] and requires
multi-round interactions between the client and the cloud
server, which incurs large communication and computa-
tion overhead. Noticing this deficiency of Wang et al.’s
protocol, Chen et al. [40] proposed an improved scheme
based on a new matrix encryption method which mul-
tiplies the coefficient matrix by diagonal and random
permutation matrices. Afterward, Chen et al. [23] put
forward a new secure outsourcing algorithm for solving
LSLE based on a sparse matrix transformation tech-
nique. These sparse matrix encryption methods make
their algorithms achieve high efficiency with optimal
communication overhead and optimal verifiability prob-
ability 1. Almost at the same time, Salinas et al. [41]
proposed an efficient outsourcing algorithm based on
the conjugate gradient method which achieves low com-
putational complexity and low memory I/O complexity.
Nonetheless, the algorithm also needs multi-round inter-
actions and is not security as they claimed. Subsequently,
based on Salinas et al.’s matrix encryption method, Yu
et al. [42] proposed a secure non-iterative outsourcing
algorithm for solving LSLE , but the algorithm calls the
outsourcing algorithm of MMC as a subroutine which
leads to be inefficient in practice. Recently, Ding et al. [43]
successfully attacked Salinas et al.’s scheme and presents

an efficient algorithm to recover the protected matrix.
Therefore, among these proposals, Chen et al.’s [23]
scheme is the most efficient, but, just as the authors’ men-
tioned in their paper, the sparse matrix transformation
can not provide strong enough security.

Conclusion and future direction
In this paper, we introduce an efficiency/security-
adjustable scheme for publicly verifiable delegation of
computation which enable a resource-constrained client
to securely outsource the solving of LMSLE . We built
our scheme upon a novel dynamic affine transformation
by successively utilizing sparse and unimodular matrices
which may has potential applications in outsourcing other
linear algebraic operations. However, there still exist some
open problems deserved for further research. First, in the
case that theLMSLE problem hasmultiple solutions, the
presented outsourcing scheme can only ensure the client
to securely find one solution. That is, if the cloud server
returns multiple solutions, the client or the edge server
in our scheme can verify the correctness of each solution,
but it can not confirm whether the cloud returns the set
of all solutions. Therefore, how to design an efficient out-
sourcing scheme that enables the client to securely and
correctly find the set of all solutions is an interesting prob-
lem. Moreover, for some strong threat model including
outside adversary [44], our scheme may suffer from unau-
thorized attack. It is meaningful to improve our scheme
to resist this attack. Adding a simple identity authenti-
cation protocol may be a good choice. Also, our scheme
does not consider the privacy preservation of the modu-
lus q. In some practical application scenarios, themodulus
may contain sensitive information, such as the bit length
of the solution vector, and thus keeping the privacy of
the modulus is also very significative. Consequently, how
to design a modulus-invisible outsourcing scheme for
solving LMSLE is also deserved for further research.

Acknowledgement
Not Applicable.

Authors’ contributions
The authors equally contributed to this research and the paper initiated by the
corresponding author. All authors read and approved the final manuscript.

Authors’ information
PanpanMeng received the B.E. degree in computer information
management from Shandong University in 2016. She is currently pursuing the
M.S. degree in the College of Computer Science and Technology, Qingdao
University. Her research interests include cloud computing security and
cryptography.
Chengliang Tian received the B.S. and M.S. degrees in mathematics from
Northwest University, Xi’an, China, in 2006 and 2009, respectively, and the
Ph.D. degree in information security from Shandong University, Ji’nan, China,
in 2013. He held a post-doctoral position with the State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese Academy
of Sciences, Beijing. He is currently with the College of Computer Science and
Technology, Qingdao University, as an Assistant Professor. His research
interests include lattice-based cryptography and cloud computing security.

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 12 of 13

Funding
This research is supported in part by National Natural Science Foundation of
China (61702294), Natural Science Foundation of Shandong Province
(ZR2016FQ02), National Development Foundation of Cryptography
(MMJJ20170126), the Open Research Project (2016-MS-23) of State Key
Laboratory of Information Security in Institute of Information Engineering,
Chinese Academy of Sciences, Applied Basic Research Project of Qingdao City
(17-1-1-10-jch).

Availability of data andmaterials
The full experimental data and the description of the experiment setup are
provided in the manuscript in section Performance Evaluation.

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Computer Science and Technology, Qingdao University, Qingdao
266071, China. 2Business School, Qingdao University, Qingdao 266071, China.
3State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China.

Received: 15 July 2019 Accepted: 20 November 2019

References
1. Singh KJ, Kapoor DS (2017) Create your own internet of things: A survey

of iot platforms. IEEE Consum Electron Mag 6(2):57–68
2. Xu LD, He W, Li S (2014) Internet of things in industries: A survey. IEEE

Trans Ind Informa 10(4):2233–2243
3. Xia H, Zhang S, Li Y, Pan Z, Peng X, Cheng X (2019) An attack-resistant

trust inference model for securing routing in vehicular ad hoc networks.
IEEE Trans Veh Technol 68(7):7108–7120

4. Rivera J, Goasduff L (2014) Gartner says a thirty-fold increase in
internet-connected physical devices by 2020 will significantly alter how
the supply chain operates. Gartner. https://www.gartner.com/en/
newsroom/press-releases/2014-03-24-gartner-says-a-thirty-fold-
increase-in-internet-connected-physical-devices-by-2020-will-
significantly-alter-how-the-supply-chain-operates

5. Brunette G, Mogull R, et al. (2009) Security guidance for critical areas of
focus in cloud computing v2. 1. Cloud Security Alliance. http://www.
cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf

6. Xia H, Cq Hu, Xiao F, Cheng Xg, Pan Zk (2019) An efficient social-like
semantic-aware service discovery mechanism for large-scale internet of
things. Comput Netw 152:210–220

7. Xia H, Zhang Ss, Li Bx, Li L, Cheng Xg (2018) Towards a novel trust-based
multicast routing for vanets. Secur Commun Netw 2018:1–1

8. Shan Z, Ren K, Blanton M, Wang C (2018) Practical secure computation
outsourcing: A survey. Acm Comput Surv 51(2):1–40

9. Zhou Q, Tian C, Zhang H, Yu J, Li F (2019) How to securely outsource the
extended euclidean algorithm for large-scale polynomials over finite
fields. Inf Sci. https://doi.org/10.1016/j.ins.2019.10.007

10. von zur Gathen J, Gerhard J (2013) Modern Computer Algebra. 3rd
edition. Cambridge University Press, New York

11. Moon TK (2005) Error Correction Coding: Mathematical Methods and
Algorithms. Wiley-Interscience, New York

12. Ryan W, Lin S (2009) Channel Codes: Classical and Modern. Cambridge
University Press, New York

13. Ajtai M (1996) Generating hard instances of lattice problems (extended
abstract). In: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, STOC ’96. ACM, New York. pp 99–108

14. Gentry C, Peikert C, Vaikuntanathan V (2008) Trapdoors for hard lattices
and new cryptographic constructions. In: Proceedings of the 40th annual
ACM symposium on Theory of computing, STOC ’08. ACM, New York.
pp 197–206

15. Peikert C (2014) Lattice cryptography for the internet. In: Mosca M (ed).
Post-Quantum Cryptography. Springer International Publishing, Cham.
pp 197–219

16. Gentry C, Halevi S, Vaikuntanathan V (2010) A simple bgn-type
cryptosystem from lwe. In: Proceedings of the 29th Annual international

conference on Theory and Applications of Cryptographic Techniques,
EUROCRYPT’10. Springer-Verlag, Berlin, Heidelberg. pp 506–522

17. Regev O (2005) On lattices, learning with errors, random linear codes, and
cryptography. In: Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, STOC ’05. ACM, New York. pp 84–93

18. Bos JW, Costello C, Naehrig M, Stebila D (2015) Post-quantum key
exchange for the tls protocol from the ring learning with errors problem.
In: 2015 IEEE Symposium on Security and Privacy. IEEE, San Jose.
pp 553–570

19. Alkim E, Ducas L, Pöppelmann T, Schwabe P (2016) Post-quantum key
exchange-a new hope. In: 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin. pp 327–343

20. Mohassel P (2012) Efficient and secure delegation of linear algebra. Iacr
Cryptol Eprint Archive. https://eprint.iacr.org/2011/605

21. Lei X, Liao X, Huang T, Li H, Hu C (2013) Outsourcing large matrix inversion
computation to a public cloud. IEEE Trans Cloud Comput 1(1):1–1

22. Zhang S, Tian C, Zhang H, Yu J, Li F (2019) Practical and secure
outsourcing algorithms of matrix operations based on a novel matrix
encryption method. IEEE Access 7:53823–53838

23. Chen X, Huang X, Li J, Ma J, Lou W, Wong DS (2015) New algorithms for
secure outsourcing of large-scale systems of linear equations. IEEE Trans
Inf Forensic Secur 10(1):69–78

24. NewmanM (1972) Integralmatrices, volume 45. Academic Press, New York
25. Horn RA, Johnson CR (2012) Matrix Analysis. 2nd edition. Cambridge

University Press, New York
26. Schrijver A (1986) Theory of Linear and Integer Programming. Wiley, New York
27. Apostol TM (1998) Introduction to Analytic Number Theory.

Undergraduate Texts in Mathematics. Springer, New York
28. Lei X, Liao X, Huang T, Heriniaina F (2014) Achieving security, robust

cheating resistance, and high-efficiency for outsourcing large matrix
multiplication computation to a malicious cloud. Inf Sci 280:205–217

29. Qian C, Wang J (2015) Secure and efficient protocol for outsourcing
large-scale systems of linear equations to the cloud. In: International
Conference on Cloud Computing and Security. Springer, Basel. pp 25–37

30. Lu X, Liu Y, Zhang Z, Jia D, Xue H, He J, Li B, Wang K, Liu Z, Yang H (2018)
Lac: Practical ring-lwe based public-key encryption with byte-level
modulus. Cryptology ePrint Archive, Report 2018/1009. https://eprint.iacr.
org/2018/1009. Accessed 16 Oct 2018

31. Atallah MJ, Frikken KB (2010) Securely outsourcing linear algebra
computations. In: Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security, ASIACCS ’10. ACM,
New York. pp 48–59

32. Lei X, Liao X, Huang T, Li H (2015) Cloud computing service: The case of
large matrix determinant computation. IEEE Trans Serv Comput
8(5):688–700

33. Zhou L, Zhu Y, Choo K-KR (2018) Efficiently and securely harnessing cloud
to solve linear regression and other matrix operations. Futur Gener
Comput Syst 81:404–413

34. Luo C, Zhang K, Salinas S, Li P (2017) Efficient privacy-preserving
outsourcing of large-scale qr factorization. In: 2017 IEEE
Trustcom/BigDataSE/ICESS. IEEE, Sydney. pp 917–924

35. Luo C, Zhang K, Salinas S, Li P (2017) Secfact: Secure large-scale qr and lu
factorizations. IEEE Trans Big Data. https://ieeexplore.ieee.org/document/
8194901

36. Hu X, Tang C (2015) Secure outsourced computation of the characteristic
polynomial and eigenvalues of matrix. J Cloud Comput 4(1):7

37. Atallah MJ, Pantazopoulos KN, Rice JR, Spafford EE (2002) Secure
outsourcing of scientific computations. In: Advances in Computers,
volume 54. Elsevier, Cambridge. pp 215–272

38. Wang C, Ren K, Wang J, Wang Q (2013) Harnessing the cloud for securely
outsourcing large-scale systems of linear equations. IEEE Trans Parallel
Distrib Syst 24(6):1172–1181

39. Paillier P (1999) Public-key cryptosystems based on composite degree
residuosity classes. In: Stern J (ed). Advances in Cryptology— EUROCRYPT
’99. Springer Berlin Heidelberg, Berlin, Heidelberg. pp 223–238

40. Chen F, Xiang T, Yang Y (2014) Privacy-preserving and verifiable protocols
for scientific computation outsourcing to the cloud. J Parallel Distrib
Comput 74(3):2141–2151

41. Salinas S, Luo C, Chen X, Li P (2015) Efficient secure outsourcing of
large-scale linear systems of equations. In: Computer Communications
(INFOCOM) 2015 IEEE Conference on. IEEE, Atlanta. pp 1035–1043

https://www.gartner.com/en/newsroom/press-releases/2014-03-24-gartner-says-a-thirty-fold-increase-in-internet-connected-physical-devices-by-2020-will-significantly-alter-how-the-supply-chain-operates
https://www.gartner.com/en/newsroom/press-releases/2014-03-24-gartner-says-a-thirty-fold-increase-in-internet-connected-physical-devices-by-2020-will-significantly-alter-how-the-supply-chain-operates
https://www.gartner.com/en/newsroom/press-releases/2014-03-24-gartner-says-a-thirty-fold-increase-in-internet-connected-physical-devices-by-2020-will-significantly-alter-how-the-supply-chain-operates
https://www.gartner.com/en/newsroom/press-releases/2014-03-24-gartner-says-a-thirty-fold-increase-in-internet-connected-physical-devices-by-2020-will-significantly-alter-how-the-supply-chain-operates
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf
http://www.cloudsecurityalliance.org/guidance/csaguide.v2.1.pdf
https://doi.org/10.1016/j.ins.2019.10.007
https://eprint.iacr.org/2011/605
https://eprint.iacr.org/2018/1009
https://eprint.iacr.org/2018/1009
https://ieeexplore.ieee.org/document/8194901
https://ieeexplore.ieee.org/document/8194901

Meng et al. Journal of Cloud Computing: Advances, Systems and Applications (2019) 8:24 Page 13 of 13

42. Yu Y, Luo Y, Wang D, Fu S, Xu M (2016) Efficient, secure and non-iterative
outsourcing of large-scale systems of linear equations. In: 2016 IEEE
International Conference on Communications (ICC). pp 1–6

43. Ding Q, Weng G, Zhao G, Hu C (2018) Efficient and secure outsourcing of
large-scale linear system of equations. IEEE Trans Cloud Comput:1–1.
https://ieeexplore.ieee.org/document/8531754

44. Wu J, Mu N, Lei X, Le J, Zhang D, Liao X (2019) Secedmo: Enabling efficient
data mining with strong privacy protection in cloud computing. IEEE
Trans Cloud Comput:1–1. https://ieeexplore.ieee.org/document/8781873

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://ieeexplore.ieee.org/document/8531754
https://ieeexplore.ieee.org/document/8781873

	Abstract
	Keywords

	Introduction
	Our contributions
	Organization

	Security model and definitions
	System model
	Threat model
	Design goals

	Preliminaries
	Notations and terminologies
	Unimodular matrix

	Main scheme
	A bird's-eye view of the Main idea
	Outsourcing scheme of Axb12mumodq
	Correctness
	Input/output privacy
	Verifiability
	Efficiency

	Performance evaluation
	Evaluation methodology
	Evaluation results

	Related work
	Conclusion and future direction
	Acknowledgement
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

