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Abstract

Scalable big data analysis frameworks are of paramount importance in the modern web society, which is
characterized by a huge number of resources, including electronic text documents. Document clustering is an
important field in text mining and is commonly used for document organization, browsing, summarization and
classification. Hierarchical clustering methods construct a hierarchy structure that, combined with the produced
clusters, can be useful in managing documents, thus making the browsing and navigation process easier and quicker,
and providing only relevant information to the users’ queries by leveraging the structure relationships. Nevertheless,
the high computational cost and memory usage of baseline hierarchical clustering algorithms render them
inappropriate for the vast number of documents that must be handled daily. In this paper, we propose a new scalable
hierarchical clustering framework, which uses the frequency of the topics in the documents to overcome these
limitations. Our work consists of a binary tree construction algorithm that creates a hierarchy of the documents using
three metrics (Identity, Entropy, Bin Similarity), and a branch breaking algorithm which composes the final clusters by
applying thresholds to each branch of the tree. The clustering algorithm is followed by a meta-clustering module
which makes use of graph theory to obtain insights in the leaf clusters’ connections. The feature vectors representing
each document derive from topic modeling. At the implementation level, the clustering method has been dockerized
in order to facilitate its deployment on cloud computing infrastructures. Finally, the proposed framework is evaluated
on several datasets of varying size and content, achieving significant reduction in both memory consumption and
computational time over existing hierarchical clustering algorithms. The experiments also include performance
testing on cloud resources using different setups and the results are promising.
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Introduction
Hierarchical clustering has been proven to be a useful
technique in the field of document organization, as it con-
structs a hierarchy structure of document collections and
sub-collections. Such a structure can make the browsing
and navigation process easier and quicker [1] by hiding
irrelevant information from the users. Since each cluster
and the corresponding sub-clusters represent a set of topic
and sub-topics relationships [2], the hierarchy can help
automated systems to return only relevant information
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to the user, by exploiting the relationships stored in the
structure. Moreover, the hierarchy can be used to visualize
and interactively explore large amounts of documents [3].
Finally, the hierarchymay be used as a decision tree for the
categorization of new documents. However, existing solu-
tions for hierarchical document clustering are faced with
serious challenges.
Some of the current problems with document clustering

[4] include the selection of appropriate document fea-
tures and similarity measures, the quality assessment of
the clusters, the implementation of an efficient cluster-
ing algorithm which can make optimal use of the available
memory and CPU resources, the association of meaning-
ful labels to the final clusters, and the consideration of the
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semantic relationships between words. Hierarchical doc-
ument clustering methods have to deal with additional
challenges, including the handling of the very high dimen-
sionality of the data. A medium to large set of documents
can contain over 10,000 documents; this means that there
can be millions of term-document relations, thus lead-
ing to an extremely high computational complexity and
memory usage. This issue arises from the way most classi-
cal hierarchical clustering methods are implemented: they
are based on the formulation of high dimensional distance
matrices, used for pairwise comparisons between all the
available data points.
The high volume of documents that have to be han-

dled daily on the web presents a challenge to a cloud
environment as well. In order to provide efficient solu-
tions, researchers are increasingly turning towards scal-
able approaches, such as the utilization of cloud resources
in addition to local computational infrastructures. The
combination of running big data analytics algorithms
using cloud computing infrastructures seems to be the
solution. Cloud computing [5] provides shared comput-
ing resources on-demand over the Internet, including
large numbers of compute servers and other resources,
that have the ability to be scaled up and down accord-
ing to the computational requirements. The topology of
the computers in the cloud is usually hidden from the end
user.
Taking all these issues into account, this work focuses

on implementing a scalable hierarchical clustering algo-
rithm for document clustering. It attempts to overcome
limitations regarding the number of documents that can
be handled by existing algorithms due to memory lim-
itations, and to reduce the overall computational time.
The innovation of our proposed algorithm lies in the fact
that, instead of constructing an NxN similarity matrix
by computing the pairwise similarities between all data
points of the dataset in order to construct the hierarchi-
cal tree, we build a low-dimensionality frequency matrix
as a representation of the root cluster. This cluster is
then split recursively while moving down in the hierarchy,
which significantly reduces the memory requirements.
Additionally, the implementation of this work is based
on a distributed computing architecture and therefore
can handle an increasing number of documents based on
the available resources. The input of our algorithm con-
sists of documents represented as a bag of topics derived
from topic modeling. The documents are transformed
into the appropriate for the algorithm format during the
preprocessing and transformation phases in our proposed
framework. The whole framework has been dockerized in
order to facilitate easy deployment on cloud computing
infrastructures.
This work is an extended version of our previous work

[6] that presented a multi-metric hierarchical clustering

framework for item clustering. Here, we extend the pre-
vious work by re-designing our framework in order to be
applicable to the more general field of document cluster-
ing, and we add a meta-clustering module to the frame-
work. We explore the effectiveness and the performance
of our method regarding memory usage and computa-
tional time through a more detailed evaluation and many
more experiments, utilizing several datasets of varying
sizes and content.We compare the results withmore base-
line hierarchical clustering methods, and we make use of
the external evaluation metric FScore. Furthermore, we
extend the previous work by parallelizing our clustering
algorithm to achieve scalability, we make it suitable for
cloud execution using a virtualization solution, and we
measure the performance of the method using different
hardware resources.
The rest of the paper is organized as follows; the

“Literature review” section discusses related work, while
the proposed integrated framework for document clus-
tering is analysed in “A new document clustering frame-
work” section. In “The hierarchical clustering algo-
rithm” section our innovative hierarchical clustering
algorithm is detailed, whereas “Experiments and eval-
uation” section contains the experimental results and the
clustering evaluation. Finally, conclusions and future work
are highlighted in the “Conclusion” section.

Literature review
Topic modeling in document clustering
Getting from an initial collection of documents to a clus-
tering of the collection is an elaborate procedure, which
usually involves several stages. The basic operations are
feature extraction and selection, document representation
and clustering [4]. Feature extraction is usually the first
step of the process and filters out non-appropriate words
from the documents’ descriptions. Feature selection is a
preprocessing method that removes noisy features and
reduces the dimensions of the feature space, in order to
yield a better understanding of the data and overall better
performance of the clustering method that takes as input
those data. In the feature selection stage, various proba-
bilistic models have been used in the literature, like Latent
Dirichlet Allocation (LDA) [7] and Probabilistic Latent
Semantic Analysis (PLSA) [8]. Today, a lot of research
works around topic modeling focus on distributed imple-
mentations of LDA, such as AD-LDA [9], PLDA [10] and
PLDA+ [11]. BigARTM [12] is another distributed imple-
mentation for topic modeling which includes all popular
models such as LDA, PLSA, and many others. Other
approachesmake use of deep learning techniques for topic
extraction (e.g. lda2vec [13]).
Ahmadi et al. [14] proved that topic model based

clustering methods generally achieve better results than
only applying traditional clustering algorithms like the K-
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means. LDA has been used in many papers for represen-
tation and dimensionality reduction of text documents,
as well as for uncovering semantic relations in the text
[15]. Ma et al. [16] used LDA for document representa-
tion and identification of the most significant topics, the
K-means++ algorithm was used to define the initial cen-
ters of the clusters and the K-means algorithmwas used to
form the final clusters. Qiu and Xu [17] presented a clus-
tering method, where the LDA was used to extract topics
from the texts and the centroids of the K-means algorithm
were selected among the nouns with the highest prob-
ability values. More recently, Onan et al. [18] proposed
an improved ant clustering algorithm, where two novel
heuristic methods are proposed to enhance the clustering
quality of ant-based clustering. The latent Dirichlet allo-
cation (LDA) was used to represent textual documents.
Except from the classical LDA method, many variants
were examined in the literature [19, 20], including hier-
archical LDA, correlated topic models and hierarchical
Dirichlet process.

Document clustering
According to [21], document clustering can be divided
into hard clustering, where each document is assigned to
exactly one cluster, and soft clustering, where each doc-
ument is allowed to appear in more than one clusters.
Hard clustering methods can be further categorized in the
following sub-categories: 1) Partitioning methods, which
allocate documents into a fixed number of clusters with K-
means algorithm and its variants being the most popular
one, 2) Hierarchical methods [3], which build a dendro-
gram of clusters and 3) Frequent itemset-based methods
[22], which use association rulemining techniques to form
the clusters. In [7] some representative papers applying
those three categories are reviewed.
Hierarchical clustering algorithms [23] are categorized

in two major categories: a) agglomerative (or top-down)
algorithms and b) divisive (or bottom-up) algorithms.
Agglomerative algorithms can be further categorized
according to the similarity measures they employ into
single-link, complete link, group-average, and centroid
similarity. Top-down algorithms typically are more com-
plex, as they hold information about the global distribu-
tion of the dataset, in contrast to bottom-up methods that
make clustering decisions based on local patterns. The
advantages of Hierarchical clustering algorithms are that
they compose a tree of clusters that comprises a richer
data structure with more information than those provided
by flat algorithms’ output, and the fact that they do not
require users to define the number of clusters.
Nevertheless, the complexity of the naive hierarchical

clustering algorithm is O(N3) as for every decision that
needs to be taken, an exhaustive scan of the NxN simi-
larity matrix is necessary. Other more efficient algorithms

can reduce the complexity to O(N2logN) (with a heap
in the general case) or even O(N2) (with SLINK [24] for
single-linkage, CLINK [25] for complete-linkage cluster-
ing in the general case, and ROCK [26], Chameleon [27]
for categorical data). BIRCH [28] and its extensions [29]
comprise hierarchical clustering procedures that are espe-
cially suitable for very large databases, and comprise state
of the art incremental hierarchical methods. However, the
creation of the NxN similarity matrix is necessary for the
majority of the algorithms, hence memory requirement
demands become extremely high.
There have been many recent studies on Hierarchical

Clustering algorithms. In [30], an alternative approach
of a single-linkage clustering algorithm was proposed,
which was based on minimum spanning trees and had the
same complexity as the single-linkage algorithm. In [31],
a new non-greedy incremental algorithm for hierarchi-
cal clustering was suggested, which efficiently routes new
data points to the leaves of an incrementally-built tree.
Another recent work [32] proposed a hierarchical cluster-
ing algorithm based on the hypothesis that two reciprocal
nearest data points should be put in one cluster. In another
line of work, many researchers treated similarity-based
hierarchical clustering as an optimization problem, mak-
ing use of suitable objective functions [33, 34]. In [35] for
example, the author introduces a cost function that, given
pairwise similarities between data points, assigns a score
to any possible tree on those points.
In this paper, we introduce a method for clustering

documents represented by a number of topics, using an
approach that does not demand pairwise comparisons
between the documents, but it is instead based on the use
of low dimensional frequency matrices. Since the main
algorithm makes use of the frequency of occurrence of
the main terms in the documents, we call it Frequency-
based Hierarchical Clustering (FBHC). A relevant clus-
tering method that we presented in one of our previous
works [36] makes use of frequency matrices to construct
an hierarchy of biological sequences.

A new document clustering framework
In this section, we present an efficient framework for hier-
archical document clustering which makes use of topic
modeling to extract feature vectors that represent the pro-
cessed documents. The proposed framework is shown
schematically in Fig. 1 and it is formally described in the
following steps:

Input Documents in bag-of-words representation
Step 1: Word preprocessing

Stemming, Removing stop words, Making ortho-
graphic transformations, Stripping punctuation and
substitution, Excluding words that are not included
in the WordNet database
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Fig. 1 The proposed framework for hierarchical document clustering

Step 2: Data transformation
Step 2.1: Select a method to perform topic modeling
Step 2.2: Select the number of topicsNθ and the number

of words per topic Nw
Step 2.3: Transform documents to topic vectors
Step 3: Data discretization
Step 3.1: Select the number of bins B
Step 3.2: Discretize the topic vectors
Step 4: Hierarchical Clustering
Step 4.1: Apply the Binary Tree Construction Algorithm

(Algorithm 1)
Step 4.2: Apply the Branch Breaking Algorithm (Algo-

rithm 2)
Step 5: Meta-Clustering
Step 5.1: Graph Construction
Step 5.2: Graph Clustering
Step 5.2.1: Select the threshold thrG
Step 5.2.2: Exclude all those edges with weights < thrG
Step 5.2.3: Apply the Graph Merging Algorithm (Algo-

rithm 3)
Step 6: Evaluation
Step 6.1: Select a technique to compute semantic simi-

larity between the derived topics
Step 6.2: Compute Topic Similarity TS for each cluster
Step 6.3: If the actual class labels are known, compute

Fscore

Data preprocessing module
The initial data that are taken as input to the framework
are documents composed of words. Each word has a cor-
responding frequency of appearance. Before importing
the data to the data transformation module, the words are
preprocessed using various methods, including stemming

(using the Porter Stemming Algorithm 1), removing stop
words, making orthographic transformations (using the
spelling corrector 2), stripping punctuation and substitu-
tion. The words that are not included at theWordNet [37],
a lexical database of English words, are excluded from the
dataset at this module.

Data transformation module
The data transformation module employs topic modeling
to the desired input document in order to transform it
into a compressed representation in terms of its topics. In
this way we can deal with the high dimensionality and the
sparsity of the features of the documents. Topic model-
ing is based on the assumption that each document d is
described as a random mixture of topics P(θ |d) and each
topic θ as a focused multinomial distribution over terms
P(w|θ). The number of topicsNθ and the number of terms
per topic NW are specified by the user and express the
degree of specialization of the latent topics. As the data
transformation module is not part of the proposed clus-
tering method, any topic modeling method can be used
as part of this module, as a plugin. Literature on topic
modeling offers hundreds of models adapted to different
situations.
LDA: Latent Dirichlet Allocation [38, 39] is a commonly

used method to extract semantic information from the
documents and create a feature vector for each document.
LDA builds a set of Nθ thematic topics, each expressed
with a set of NW terms, utilizing terms that tend to co-
occur in a given set of documents. The topic-term distri-
bution P(θ |d) and the document-term distribution P(w|θ)

1https://tartarus.org/martin/PorterStemmer/index-old.html
2https://github.com/amarjeetanandsingh/spell_correct
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are estimated from an unlabeled corpus of documents D
using Dirichlet priors.
BigARTM: BigARTM [12] is an open-source library

for regularized multimodal topic modeling of large col-
lections, which is based on a non-Bayesian multicriteria
approach — Additive Regularization of Topic Models,
ARTM [40]. It is a distributed implementation which is
proven to be very fast and ideal for big collections of
documents.
Lda2vec: lda2vec [13] is a deep learning-based model

which creates topics by mixing Dirichlet topic models and
word embedding. It constructs a context vector by adding
the composition of a document vector and the word vec-
tor, which are simultaneously learned during the training
process.

Data discretization module
The numeric vectors created by the data transformation
module, i.e. the mixture of topics P(θ |d) calculated by the
topic modeling process, are discretized into B partitions
by assigning each value into a bin based on the closed
interval where it belongs to. By making use of alphabetic
letters to represent the bins, the numeric vectors are con-
verted into character vectors, which constitute the input
data to the clustering procedure. Practically, it is a lossy
compression where the number of bins B is selected based
on the amount of information we want to be considered
by the model.

Design for cloud
Since the proposed clustering algorithm is oriented
towards analyzing big data that may not fit in a sin-
gle machine, provision for cloud execution becomes a
necessity. Cloud computing [41] is moving from large-
scale centralized data centres to more distributed multi-
cloud settings, which may contain networks of larger
and smaller virtualized infrastructure runtime nodes. The
use of containers constitutes a lightweight virtualiza-
tion solution characterized by low resource and time
consumption.
Docker [42] is a containerization platform that allows

Linux applications, their dependencies, and their settings
to be composed into Docker images. These images run as
Docker containers on any machine running the Docker
daemon, which utilizes kernel namespaces and control
groups to isolate running containers and control their
set of resources. This makes the deployment of cloud-
oriented applications easy, as the image of an application
has to be built only once and then it can be deployed
on every system running the Docker deamon. Docker is
also appropriate for software benchmarking experiments,
since multiple Docker images can be created based on the
same root image but containing different benchmarked
configurations.

An image of the proposed FBHC algorithm was built
using the Docker technology in order to run perfor-
mance experiences using different hardware resources
in the cloud. The resources that were used and the
corresponding experimental results are described in
“Performance testing in the cloud” section.

The hierarchical clustering algorithm
In this section, we propose a novel hierarchical clustering
algorithm, consisting of two phases: 1) the construction
of a top down binary tree by consecutively dividing the
frequency matrix [6] into two sub-matrices until only
unique sequences remain at the leaf-level, and 2) the
branch breaking algorithm, where each branch of the
tree is pruned at an appropriate level using thresholds
for the metrics. The metrics that are used to form the
clusters are: a) Identity (I), b) Entropy (H) and c) Bin
Similarity (BS), and are described in [6]. In the final, meta-
clustering phase, a graph of the leaf clusters generated by
the clustering algorithm is constructed.

Binary tree construction
The first phase of the clustering method consists of a
top down hierarchical clustering algorithm (Algorithm 1).
At the beginning of the process, it is assumed that all N
sequences belong to a single cluster (C0), the root clus-
ter, which is consequently split recursively while moving
down the different levels of the tree. Ultimately, the con-
structed output of the clustering process is presented as a
binary tree. The tree is constructed per level by following
a procedure for each cluster (Ci) of the specific level, that
can run in parallel. This can be formally described in the
following steps:

Step 1 Construct frequency and frequency-similarity
based matrices (FMi, FSMi).

Step 2 Compute Identity, Entropy and Bin Similarity
metrics of the matrices (Ii, ISi, Hi, HSi, BSi) applying
the equations described in [6], on the FMi and the
FSMi respectively. From now on, the identity metric
computed on the FSM will be called Similarity (IS).

Step 3 Split the frequency matrix into two sub matrices
according to the following criteria:

Criterion 1: Select the element of the FMi with the
highest percentage.

Criterion 2: If the highest percentage value exists
in more than one elements of FMi, the column
with the lowest entropy value is selected.

Criterion 3: In the case where more than one
columns exhibit the exact same entropy value,
Criterion 1 is applied to the FSMi.

Criterion 4: In the case of non-unique columns,
Criterion 2 is applied to the FSMi.
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Criterion 5: If the number of columns is still more
than one, one column from the above sub group
of columns is randomly selected.

Step 4 Update the Level matrix (Y ) and theMetric matrix
(M) that contains the metrics for each cluster (I, IS,
H, HS, BS).

Step 5 Check for leaf-cluster.

At the beginning of the process, the user can select the
type of the algorithm, i.e. whether the split of the matri-
ces is performed on the FM (identityalgo option), or on the
FSM (similarityalgo option). In the similarityalgo option,
Criteria 1 & 2 are skipped at Step 3.
Branch breaking
The second phase of the clustering method consists of the
branch breaking process (Algorithm 2). This algorithm is
applied to the binary tree derived from the first phase. In
the field of document clustering, creating a hierarchy of
the documents can be very useful for document organi-
zation. In many cases, except from the formulation of a
hierarchy structure of the clusters, extracting meaningful
groups can also be useful. In a partitioning clustering algo-
rithm, the exact number of clusters to be created is chosen
by the user. In the FBHC algorithm, a solution to extract
useful groups from the binary tree would be to cut the
tree at a specific level TC , obtaining all those clusters that
belong to level TC and all the leaf clusters that belong to
higher levels than TC .
Since the tree is asymmetric and the number of doc-

uments in each cluster varies, the tree cannot be cut by
selecting a unique level TC for the overall tree. A more
accurate procedure to address this problem is to prune the
tree using branch-specific thresholds: For each branch,
the parent cluster is compared to its two children clusters
recursively as one goes down through the path of the tree
branch. The comparison is applied using the metrics that
have been computed for each cluster Ci (Ii, ISi, Hi, HSi,
BSi) and user selected thresholds for each metric (thrI,
thrH, thrBS). An additional limitation set for the identity
metric is that the leaf clusters must have an Identity value
higher than 20%. This lower threshold is set to avoid prun-
ing at a very high level of the tree in the case that Identity
is too small and the improvement in the metrics is not big
enough.

Graph construction
The hierarchy structure created during the clustering
phase is ideal for the graph theory application. A graph
can be useful to uncover connections between the clus-
ters and obtain an insight of how similar the leaf clusters
are. This information can be used to merge similar clus-
ters together as a next step. To this end, an undirected,
weighted and fully connected graph is constructed using
the binary tree.

Algorithm 1: Binary Tree Construction
N: #Sequences, TL: Tree Depth, NC: #Clusters
X: Input matrix (N × 2) {sequence id, sequence}
Y: Level-Cluster matrix (N × TL)
M: Metric Matrix (NC × 5) {I, IS, H, HS, BS}
type: The algorithm type (identityalgo or similarityalgo)
Data: X, type
Result: Y, M
Initialization
Create a root node (cluster C0) for the tree;
Iteration foreach new level-l do

beginParallelism();
forall the cluster-i in l do

leaf ← False;
1 Compute FMi and FSMi matrices;
2 Compute metrics (Ii, ISi, Hi, HS, BS);
3 if Ci is leaf then

leaf ← True;
Return(leaf )

end
4 Update M matrix;

Select celli of FMi or FSMi according to the
criteria

5 if type = similarityalgo then
Elm ← the elements of FSMi with the max
value;
Go to step 9;

end
6 Elm ← the elements of FMi with the max value;
7 if Elm.length <2 then

celli ← Elm;
Go to step 14;

end
8 Elm ← the elements of Elm with themin(Hi);
9 if Elm.length <2 then

celli ← Elm;
Go to step 14;

end
10 Elm ← the elements of Elm with themax(FSMi);
11 if Elm.length <2 then

celli ← Elm;
Go to step 14;

end
12 Elm ← the elements of Elm with themin(HSi);
13 if Elm.length <2 then

celli ← random element of Elm;
end
Division

14 j ← index of the left child of node i (Ci);
15 Add the sequences that belong to celli to cluster

Cj;
16 Add all the other sequences to cluster Cj+1 ;

Return(leaf, j, Cj, Cj+1);
end
endParallelism();

17 Collect the results from the parallel processes and
fill in column Y [ , level + 1] with the corresponding
cluster ids;

end
Return Y, M;

The graph is built by computing the graph similarity
matrix which is a square matrix with order equal to the
number of leaf clusters (C). The graphmatrix is computed
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Algorithm 2: Branch Breaking
Y: Level-Cluster matrix (N × TL)
M: Metric Matrix (NC × 5) {I, IS, H, HS, BS}
thrA: the threshold set for metric A
type: The algorithm type (identityalgo or
similarityalgo)
Data: Y, M, thrI, thrH, thrBS, algo
Result: Y, M
Initialization
Find all unique paths of tree from the root till the
leaves;
Iteration
foreach path-i do

1 PNi ← the cluster ids that constitute the path
Compare each cluster of the path with its
children using the metrics;

2 if type = identityalgo then
condI ← (|Ij-Ij+1|+|ISj-ISj+1|)*0.5 < thrI;
condH ← (|Hj-Hj+1|+|HSj-HSj+1|)*50 <

thrH;
condBS ← |BSj-BSj+1| < thrBS;
cut.condition ← Ij>20 &
(condI||condH||condBS);

else
condI ← |ISj-ISj+1|<thrI;
condH ← |HSj-HSj+1|*100 < thrH;
condBS ← |BSj-BSj+1| < thrBS;
cut.condition ← ISj>20 &
(condI||condH||condBS);

end
3 if cut.condition then

Convert Cj to leaf;
Update Y, M matrices;
break;

end
end
Return Y, M;

on the patterns that represent the clusters. The graph
similarity Gi,j between two clusters Ci and Cj is calcu-
lated as the combination of three aspects: a) the number
of bins that these clusters have in common through the
whole pattern that is computed using the identical bins
(pI), b) the number of bins that these clusters have in com-
mon through the whole pattern that is computed using
the groups of bins (pS), and c) the distance between the
nodes Ci, Cj of the tree. TL is defined as the maximum
distance presented in the binary, i.e. the distance between
the nodes that are far apart from each other.

Gi,j = 2
Nθ

|pIi ∩ pIj| + 2
Nθ

|pSi ∩ pSj| + 2
TL

|Ci,Cj| (1)

The representative pattern of a cluster is a string of
length equal to the number of topics and it is extracted
using the cluster’s frequency matrix, as follows: The posi-
tions of the strings with an exact alignment are repre-
sented by the corresponding bin, whereas the rest of them
are represented by the symbol “_”. Suppose that we are
interested in the distance between clusters 53 and 18.
The clusters’ patterns computed with the identical and
grouped bins of cluster 53 and the corresponding patterns
for cluster 18 are as follows:
pI53 = _ R G _ _ _ _ _ R Y Y Y Y G _ _ V ,
pS53 = _ R G _ _ _ _ B R Y Y Y Y G _ A V ,
pI18 = _ R G _ _ _ _ _ _ _ _ _ _ _ _ D _ ,
pS18 = _ R G _ _ _ _ _ G _ _ _ _ _ _ D _ ,
Then, |pI53 ∩ pI18| = 2 and |pS53 ∩ pS18| = 2.
After the graph construction, the graph is clustered into

sub groups. Graph clustering is the task of grouping the
graph nodes into clusters taking into consideration the
weights of the edges, in such a way that there should be
many high weighted edges within each node-cluster and
relatively low between the node-clusters. The graph can
be clustered using a user-selected threshold thrG, exclud-
ing from the graph all those edges that are characterized
by a weight smaller than thrG. This threshold is expressed
as a percentage and can be selected by observing the dis-
tribution of the weights’ values. If the user wants to export
a specific number of clusters, then a graph merging pro-
cedure can be applied. As described in Algorithm 3, the
clustered graph is composed of sub-graphs SGs. By sorting
the weights in descending order, the most highly similar
and strongly connected SGs can be merged by assigning
each node to the corresponding central node of the SGs
where it belongs to and forming merged clusters, until the
desired number of clusters is reached.

Experiments and evaluation
In this section the datasets, the external evaluation mea-
sures and the four sets of experiments performed to eval-
uate and validate the proposed framework are presented.

Experimental setup
Datasets
In order to evaluate the effectiveness of the proposed
clustering method on text documents, we used vari-
ous datasets from several domains such as sentiment
analysis, news articles, medical documents, web pages
and abstracts provided by [43, 44]. More specifically,
we used 23 benchmark datasets from [43] in order to
test the accuracy of our framework, with the small-
est and the largest ones consisting of 204 and 18,808
documents, accordingly. The number of actual classes
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of these documents vary from 4 to 51. The table also
shows the number of terms of the original documents,
i.e. the number of different words, and the final num-
ber of terms after the preprocessing. We also used two
big datasets from [44], the NYTimes news articles and
the PubMed abstracts, in order to evaluate the perfor-
mance of the method in terms of computational time
and memory usage. All these datasets are summarized
in Table 1.
In order to apply the proposed clustering procedure,

the datasets were preprocessed in the preprocessing
module and then were transformed into numeric vec-
tors using topic modeling. As use case in this paper
we utilized the LDA method in the data transforma-
tion module. The number of topics Nθ that will rep-
resent the documents was chosen to be equal to 20,
after experimenting on the values of Nθ from 5 to 500
and evaluating the results using the perplexity metric,
as described in our previous work [6]. Thus, for each
document of the datasets, we created topic vectors of
length 20.

The document vectors were then discretized in 10
bins represented by alphabetic letters from A to J, mak-
ing each document represented by a sequence of char-
acters. The bin with the highest percentage is repre-
sented by A, whereas the one with the lowest percent-
age is described with J. In order to create the FSM,
the groups of similar bins that were used are non-
overlapping and are given by pairing bins in descend-
ing order i.e. < A,B >,< C,D >,< E, F >,
< G,H >.

Evaluation measures
Two external evaluation metrics were used to evaluate the
effectiveness of the clustering procedure: FScore andTopic
Similarity.

FScore
When we have knowledge about the true class where each
document belongs to, then we can use FScore to measure
the accuracy of the clustering results. A commonly used
technique to measure Fscore in hierarchical clustering is

Table 1 Summary of datasets used to evaluate the hierarchical clustering algorithms

Dataset Domain # of docs # of terms # of terms after prep. # of classes Source

Classic4 Abstracts 7095 7749 6576 4 [43]

Reviews News articles 4069 22,927 12,431 5 [43]

Tr23 TREC documents 204 5833 4384 6 [43]

LATimes News articles 6279 10,020 6389 6 [43]

Tr31 TREC documents 927 10,129 6946 7 [43]

La2s News articles 3075 12,433 8517 7 [43]

WebKb Web pages 8282 22,892 11,009 7 [43]

Tr12 TREC documents 313 5805 4283 8 [43]

Re8 News articles 7674 8901 5379 8 [43]

Tr11 TREC documents 414 6430 4632 9 [43]

Tr45 TREC documents 690 8262 6016 10 [43]

Tr41 TREC documents 878 7455 5406 10 [43]

Oh10 Medical documents 1050 3239 2425 10 [43]

Dmoz-Science Web pages 6000 5011 3719 12 [43]

Dmoz-Health Web pages 3500 4217 3172 13 [43]

Re0 Articles 1504 2886 2209 13 [43]

Dmoz-Computers Web pages 9500 5011 3527 19 [43]

Wap Web pages 1560 8460 5988 20 [43]

20 Newsgroups E-mails 18,808 45,434 16,499 20 [43]

Re1 Articles 1657 3758 2863 25 [43]

ACM Digital library 3493 60,768 16,315 40 [43]

New3 News articles 9558 26,833 14,483 44 [43]

Opinosis Reviews 6457 2693 2201 51 [43]

NYTimes News articles 300,000 102,660 18,001 - [44]

PubMed Abstracts 8,200,000 141,043 21,451 - [44]
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Algorithm 3: Graph Merging
G: The graph similarity matrix containing the
weights of the edges of the connected nodes
thrG: the threshold set for edge exclusion
A: the number of actual classes – if the number of
actual classes is unknown, this is set equal to NULL
M: Metric Matrix (NC × 5) {I, IS, H, HS, BS}
Data: G, thrG, A
Result: M
Initialization
Exclude all those edges of G with weights < thrG;
if A != NULL then

Find the nearest neighbor of each node ;
Find the most highly connected sub-graphs SGs ;
Sort SGs by weight values in descending order ;
Find the central nodes of SGs i.e. the nodes
which have the bigger number of connections ;
Starting from the strongest connections, assign
the nodes of SGs to the corresponding central
node and form merged cluster until the desired
number of clusters is reached

end
ReturnM;

to take into account the overall set of clusters that are rep-
resented in the hierarchical tree. In this paper, we use the
FScore introduced by [45]. Given a particular class Lr of
size nr and a particular cluster Ci of size ni and assuming

that nri documents of cluster Ci belong to the real class Lr ,
then the Fscore of this class and cluster is given by (4). To
compute FScore, (2) and (3) must be used as follows.

F(Lr ,Ci) = 2 × R(Lr ,Ci) × P(Lr ,Ci)

R(Lr ,Ci) + P(Lr ,Ci)
(2)

where R(Lr ,Ci) is the recall value defined as nri/nr , and
P(Lr ,Ci) is the precision value defined as nri/ni for the
class Lr and the cluster Ci. The FScore of the class Lr , is
the maximum FScore value attained at any node in the
hierarchical clustering tree T. That is,

F(Lr) = max(F(Lr ,Ci)),Ci ∈ T (3)

The FScore of the entire clustering solution is then
defined to be the sum of the individual class FScore
weighted according to the class size.

FScore =
c∑

r=1

nr
n
F(Lr) (4)

where c is the total number of classes. The higher the
FScore values, the better the clustering solution is.

Topic similarity
Due to the sparsity of the frequency matrix of each clus-
ter and the fact that each cluster is characterized by only
a few topics, we evaluated the clustering results by cal-
culating the semantic similarity between major topics of
each cluster. The topic similarity is extracted using seman-
tic analysis of the topics that were derived from topic
modeling.

Table 2 The FScores and the TS values for the different datasets using various hierarchical clustering methods

Dataset
FScore TS-TS Actual

Average Single Complete Ward Diana FBHC Average Single Complete Ward Diana FBHC

Classic4 0.505 0.453 0.595 0.859 0.670 0.588 0.410 NA 0.410 0.00 0.410 0.410
Reviews 0.417 0.414 0.451 0.501 0.542 0.514 0.000 NA 0.000 0.000 0.000 0.000
Tr23 0.428 0.429 0.433 0.436 0.435 0.447 0.001 NA 0.358 0.239 0.218 NA
LATimes 0.419 0.329 0.449 0.470 0.353 0.468 0.464 NA 0.464 0.464 0.464 0.016
Tr31 0.387 0.387 0.387 0.388 0.387 0.391 - - - - - -
La2s 0.273 0.272 0.272 0.274 0.274 0.274 - - - - - -
WebKb 0.417 0.413 0.424 0.522 0.456 0.483 0.068 NA 0.276 0.276 0.166 0.191
Tr12 0.284 0.283 0.286 0.290 0.290 0.305 - - - - - -
Re8 0.669 0.497 0.643 0.665 0.685 0.708 0.198 NA 0.001 0.198 0.005 0.006
Tr11 0.310 0.308 0.315 0.318 0.311 0.329 - - - - - -
Tr45 0.245 0.242 0.256 0.254 0.248 0.254 - - - - - -
Tr41 0.294 0.294 0.293 0.294 0.295 0.302 - - - - - -
Oh10 0.264 0.207 0.238 0.277 0.239 0.271 - - - - - -
Dmoz-Science 0.327 0.154 0.289 0.394 0.322 0.397 0.131 NA 0.131 0.069 0.112 0.050
Dmoz-Health 0.353 0.143 0.341 0.402 0.393 0.408 0.201 NA 0.083 0.201 0.136 0.019
Re0 0.371 0.359 0.376 0.367 0.370 0.381 - - - - - -
Dmoz-Computers 0.351 0.100 0.280 0.371 0.343 0.365 0.134 NA 0.178 0.178 0.102 0.025
Wap 0.188 0.181 0.186 0.188 0.190 0.193 - - - - - -
20 Newsgroups 0.556 0.096 0.449 0.566 0.546 0.569 0.064 NA 0.102 0.064 0.061 0.080
Re1 0.210 0.198 0.210 0.212 0.211 0.221 - - - - - -
ACM 0.422 0.050 0.408 0.440 0.414 0.425 0.003 NA 0.207 0.131 0.070 0.034
New3s 0.377 0.058 0.369 0.398 0.371 0.408 0.058 NA 0.229 0.251 0.091 0.019
Opinosis 0.339 0.058 0.328 0.347 0.340 0.353 0.020 NA 0.001 0.016 0.070 0.181

The best results achieved by an algorithm for each one of the datasets are highlighted as boldface, whereas the second highest results are presented in italics
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Fig. 2 Comparison of the FBHC and BHC algorithms using subsets of the NYTimes dataset, in terms of performance

Semantic similarity, in contrast to string-based match-
ing can identify semantically relevant concepts that con-
sist of different strings. More specifically, semantic sim-
ilarity is a metric that is used to measure the distances
between a set of terms contained in documents based on
their meaning or semantic concept. Many techniques to
compute semantic similarities of words are reported in
the literature. Using Word Embeddings such as Google’s
Word2Vec, or a semantic net such as WordNet are com-
mon techniques to compute semantic similarity.
Word2vec: Word2vec [46] is a group of models that are

used to produce word embeddings. Thesemodels are neu-
ral networks that are trained to learn high-quality word
vectors from huge data sets with billions of words, and
with millions of words in the vocabulary. Word2vec takes
as its input a large corpus of text and produces a vector
space, with each unique word in the corpus being assigned
a corresponding vector in the space. Words that share
common contexts in the corpus are located in close dis-
tance to one another in the space. Similarity between two
vectors is defined as a cosine. To compute topic similarity,
we use an R implementation ofWord2vec to train a model
for each dataset by making use of the documents’ descrip-
tion. The similarity between two documents of a dataset
is computed using the cosine similarity between the topic
vectors that have been extracted after topic modeling.
WordNet: Making use of a lexical taxonomy (i.e. Word-

Net) to define distances between concepts is another
commonly used technique.WordNet structure [37, 47, 48]

is a large lexical database of English with words grouped
into sets of synonyms (synsets). Nouns, verbs, adjectives
and adverbs are grouped into synsets, each expressing
a distinct concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations. There are many
different distance metrics that make use of the WordNet
taxonomy to obtain semantic similarities. In this work,
in order to calculate the similarity between two words,
we use the Resnik distance [49], where the information
content of a word is denoted as the logarithm of the
probability of finding the word in a given corpus. This
metric only considers the information content of the low-
est common level in the hierarchy, i.e. the concept in
the taxonomy which has the shortest distance from the
concepts compared.

TSij = 2 × Match(θi, θj)
|θi| + |θj| (5)

Given that each topic-i is represented by a set of words
θi, in order to compute the topic similarity between two
topics-i, j, at first we obtained the pairwise similarities
between all the words contained in θi, θj using the Resnik
distance. To compute the overall matching score between
the two topics, i.e. the pairwise Topic Similarity (TSi,j), we
used the matching average method (5) [50], which calcu-
lates the similarity between two topics θi and θj by dividing
the sum of similarity values of all match candidates of
both sets by the total number of set tokens. More specif-
ically, the Match(θi, θj) function of the equations counts

Table 3 Statistical evaluation of the memory usage of the FBHC method compared to the BHC

N Mean Memory BHC (MB) Mean Memory FBHC (MB) DF 95% Confidence interval of the differences Mean of the differences t-value p-value

10000 786.941 27.908 4 -759.220 -758.845 -759.033 -11240.60 3.76e-16

15000 1743.466 33.561 4 -1710.150 -1709.660 -1709.900 -19389.60 4.24e-17

19000 2783.334 38.137 4 -2745.480 -2744.920 -2745.200 -27174.30 1.10e-17

25000 4800.901 44.289 4 -4756.9721 -4756.2516 -4756.612 -36659.18 3.32e-18

50000 >19000.000 56.549 - - - - - -
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Table 4 Statistical evaluation of the computational time of the FBHC method compared to the BHC

N Mean Time BHC (sec) Mean Time FBHC (sec) DF 95% Confidence interval of the differences Mean of the differences t-value p-value

10000 5807.156 92.382 4 -7870.3 -3559.24 -5714.77 -7.361 0.0018150

15000 22776.650 110.438 4 -29521.5 -15810.90 -22666.20 -9.178 0.0007820

19000 43940.550 121.944 4 -59602.3 -28034.90 -43818.60 -7.708 0.0015250

25000 89810.912 135.176 4 -102093.2 -77258.24 -89675.73 -20.050 0.0000365

50000 >993600.000 183.000 - - - - - -

the number of highly similar words of the two topics, i.e.
the number of words that have Resnik similarity higher
than the threshold 1. By employing (5), a Nθ ×Nθ similar-
ity matrix with the pairwise TS between all the Nθ topics
was created.

Results and discussion
We have performed a number of experiments to evaluate
the effectiveness and the performance of our framework.
Therefore, this subsection is divided into five parts: a)
the comparison against baseline hierarchical clustering
algorithms in terms of effectiveness is further discussed
in “Effectiveness evaluation” section, b) the comparison
against a baseline division hierarchical clustering algo-
rithm in terms of memory usage and computational time
is further discussed in “Performance statistical evalu-
ation” section, c) the performance experiments of the
proposed method running in the cloud is further dis-
cussed in “Performance testing in the cloud” section, d)
the complexity analysis is presented in “Complexity analy-
sis” section, and e) the overall proposed framework pre-
sented in “A new document clustering framework” section
applied on the NYTimes dataset is further discussed in
“Experimental results on the NYTimes dataset” section.

Effectiveness evaluation
The first set of experiments was focused on evaluating
the quality of the proposed Frequency based hierarchical
clustering (FBHC) method, by experimenting on the 10
first datasets described in Table 1. The effectiveness of the
FBHC was examined using the external metrics TS and
FScore, and comparing the results with baseline hierar-
chical clustering algorithms implemented in R language.
Both division (Diana)3 and agglomerative (Average, Single,
Complete and Ward)4 hierarchical clustering algorithms
were used as baselines.
In Table 2, average FScore and TS values on the pro-

posed algorithm and the baseline algorithms are pre-
sented. The best results achieved by an algorithm for
each one of the datasets are highlighted as boldface,
whereas the second highest results are presented in italics.
The FScore was calculated taking into account the whole

3https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/diana.html
4https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html

hierarchy structures that were created by the compared
algorithms. For most of the datasets used in the experi-
mental analysis, the highest FScore values are obtained by
the proposed FBHC algorithm. For the LATimes, Oh10,
Dmoz-Computers, Oh10 datasets, ward has a higher
FScore and the FBHC algorithm comes second with a
small difference, whereas for the Reviews dataset Diana
comes first and FBHC comes second.
The average TS values were calculated on the final

clusters that were set equal to the actual classes
for each dataset. To obtain the final clusters of the
dendrogram trees that were constructed using the
baseline algorithms, the cutree5 R function was
used, whereas for the FBHC method, the branch
breaking algorithm followed by the meta-clustering
module were applied experimenting on different
thresholds until the desired number of clusters were
obtained.
To compute the average TS value for each dataset pre-

sented in Table 2, we extracted the major topics i, j of each
cluster, we computed the TSi,j values using WordNet and
(5) for all the clusters and we computed the average value.
Instead of WordNet, we could also use Word2vec to cal-
culate TSi,j. However, the results in Table 2 would remain
the same, as we present the difference TS − TSActual.
Topic Similarity was calculated only for those clusters that
contain more than 5 elements and include at least one
major topic. Furthermore, TS was calculated for those
datasets with actual classes characterized by major top-
ics. The Tr31, Las2s, Tr12, Tr11, Tr45, Tr41, Oh10, Re0
and Re1 datasets do not follow the rule described in
“Topic similarity” section, hence most of their clusters
have NA values for the TS metric. The maximum value
that TS may assume is 1, which indicates that each one of
the clusters is characterized by a unique major topic. The
Single method failed to create clusters with major topics,
because it assigned most of the elements in one cluster
with the rest of the clusters containing only one element
each. Table 2 shows that the FBHC method usually pro-
duces TS values closer to the actual ones, compared to the
other methods.

5https://www.rdocumentation.org/packages/dendextend/versions/1.9.0/
topics/cutree

https://stat.ethz.ch/R-manual/R-devel/library/cluster/html/diana.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html
https://www.rdocumentation.org/packages/dendextend/versions/1.9.0/topics/cutree
https://www.rdocumentation.org/packages/dendextend/versions/1.9.0/topics/cutree
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Fig. 3 Computational time of the FBHC algorithm using subsets of the PubMed dataset running as a docker image on a local server and in a cloud
infrastructure

Performance statistical evaluation
The second set of experiments focused on evaluating the
performance of the proposed clustering method, in terms
of memory usage and computational time. The experi-
ments were run with R on a computer with Intel Core
i7 CPU 3.40 GHz with 8 cores and 24 GB RAM, using
one core. The Frequency based Hierarchical Clustering
(FBHC) algorithm was compared to the Baseline division
Hierarchical Clustering algorithm (BHC) Diana. Figure 2
makes clear that using subsets of the NYTimes dataset of
different sizes, the BHC algorithm has much higher mem-
ory demands. For the experiment with N equal to 50,000
documents, the BHC algorithm was running for 11 days
before it aborted with an “out of memory” error.
Additional results can be found in Tables 3 and 4, where

the average memory usage and computational time for
both FBHC and BHC algorithms, and the corresponding
results of the statistical evaluation of the aforementioned
values, for each subset size are analyzed. Statistical evalu-
ation is performed to ensure the significant difference of

the performance of our proposed algorithm and the base-
line one. This was necessary because the memory usage
and computational time of the baseline algorithms varied
in each execution. By the use of the statistical tests the
results can be generalized.
In the statistical test, we hypothesize that using the BHC

algorithm instead of the FBHC one we can achieve better
performance in terms of memory usage and computa-
tional time. To determine whether this hypothesis must be
rejected, a statistical hypothesis test in name t-test is used
(more details about the statistical method can be found in
[51]). Tables 3 and 4 report the Degree of Freedom (DF)
i.e. the amount of information in the data, the 95% Con-
fidence interval of the differences, the average values of
the differences, the t-test value and finally the probability
value (p-value) which is used to make a decision about the
statistical significance of the terms and model. According
to the reported results, the p-values for all subsets never
exceed α = 0.05, which means the null hypothesis must
be rejected and that the second hypothesis is supported.

Fig. 4Memory usage and computational time of the FBHC algorithm using subsets of the PubMed dataset running on a local server
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Table 5 Computational complexity of the FBHC method

N FBHC (1 core) FBHC (8 core) Diana HAC SLINK Birch

105 14.939 min 03.224 min 025.786 days 004.502 days 04.324 min 01.175 min

106 21.591 min 11.229 min 298.746 days 051.553 days 07.637 h 13.137 min

107 02.215 h 01.489 h 008.296 years 001.450 years 04.604 days 02.212 h

108 20.912 h 14.521 h 083.080 years 014.519 years 46.473 days 22.149 h

109 08.661 days 06.031 days 830.915 years 145.217 years 01.270 years 09.229 days

Tables 3 and 4 make clear that as the number of docu-
ments increases, the absolute value of the t-value of the
statistical t-test for both memory usage and computa-
tional time increases, except for the first run (the subset
with the smallest size) where the t-value of the memory
usage was extremely high. This means that the difference
between the performance of the two methods becomes
more and more statistically important with the increment
of the number of documents. For 25,000 documents, our
method achieved over 99% reduction in both memory
usage and computational time.

Performance testing in the cloud
The third set of experiments focused on evaluating the
performance of the proposed clustering method in the
cloud. In this round of experiments, we used the biggest
dataset of our collection, the PubMed dataset, which
contains 8 million documents. In order to test different
cloud resource configurations, we built a docker image of
the proposed clustering algorithm. The image is publicly
available in the Docker hub (mariakotouza/fbc:pubmed)
and includes all the subset datasets that were used in these
experiments.
The docker image was run as a container on three

different configurations: a) the local computer used in
the second round of experiences, b) a server that had
the following specifications: Ubuntu 18.04.3 LTS (ker-
nel 4.15.0.58-generic), 2 x Intel Xeon X5650 @ 2.67 GHz
with 16 cores and 118 GB RAM, and c) a configuration
provided by the Okeanos national cloud infrastructure,
with the following specifications: VMswithUbuntu server
18.04, Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz with 4
cores and 16 GB RAM.
The scalability of our algorithm can be observed in

Fig. 3, where different numbers of CPUs of the local com-
puter, the cloud resources and the server were used for
each subset. The X axis represents the number of CPUs,
and the Y axis represents the execution time in seconds.
The different lines in the figures correspond to a differ-
ent subset size N. Comparing the three plots in the figure
we observe that the computational time is highly affected
by the available hardware. As for the memory usage, the
demands for each core that is used are the same as those
presented in Fig. 4 in the following sub-section.

Complexity analysis
Figure 4 shows the results for memory usage and compu-
tational time for different subsets of the dataset running
on the local computer using one core. The figure makes
clear that bothmetrics follow a linearmodel with the com-
plexity being equal toO(N), whichmeans that the running
time and the memory usage increase at most linearly with
the size of the input N.
The same result can be obtained using a theoreti-

cal analysis to estimate the computational cost of ana-
lyzing datasets of different sizes. Table 5 shows the
expected computational cost of various clustering algo-
rithms applied to the corresponding datasets and exe-
cuted on the local computer, using 1 core (the results of
FBHC running on 8 cores are also shown). The hypotheti-
cal values were predicted after training a regression model
using as X and Y variables the Number of documents (N)
and the corresponding computational time (T) that were
calculated using the PubMed dataset and are depicted on
Fig. 4.
The computational complexity of our proposed algo-

rithm was compared to the following state-of-the-art
hierarchical clustering procedures:

(a) Diana 6 - The division hierarchical clustering
algorithm which was used as a baseline in a previous
set of experiments.

(b) HAC 7 - The agglomerative hierarchical clustering
algorithm using different linkage criterion, that were
utilized as baselines in the previous sets of
experiments.

(c) SLINK 8 - An optimized implementation for
hierarchical clustering using the single-linkage
criterion with O(N2) time complexity.

(d) Birch 9 - A top-down incremental hierarchical
clustering method where points are inserted greedily
using the node statistics, which is ideal for large
datasets.

6https://www.rdocumentation.org/packages/cluster/versions/2.1.0/topics/
diana
7https://www.rdocumentation.org/packages/cluster/versions/2.1.0/topics/
agnes
8https://github.com/battuzz/slink
9https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html

https://www.rdocumentation.org/packages/cluster/versions/2.1.0/topics/diana
https://www.rdocumentation.org/packages/cluster/versions/2.1.0/topics/diana
https://www.rdocumentation.org/packages/cluster/versions/2.1.0/topics/agnes
https://www.rdocumentation.org/packages/cluster/versions/2.1.0/topics/agnes
https://github.com/battuzz/slink
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html
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Table 6 Average values of the internal clustering evaluation
metrics per tree level after the application of the binary tree
construction algorithm on the NYTimes dataset

Level #C I IS HS BS TS

0 1 0.000 0.000 0.320 58.072 NA

1 2 0.000 2.500 0.238 69.462 1.000

2 4 25.000 30.000 0.152 79.915 1.000

3 7 36.429 47.857 0.121 84.922 0.814

4 13 48.462 62.692 0.084 90.207 0.539

5 21 55.238 71.667 0.068 92.481 0.524

6 32 58.125 75.938 0.060 93.833 0.468

7 49 61.837 80.204 0.048 95.010 0.422

8 72 66.181 83.819 0.041 95.926 0.393

9 101 68.911 86.584 0.034 96.594 0.367

10 138 71.377 88.659 0.029 97.071 0.350

11 184 72.962 90.272 0.025 97.417 0.335

12 235 73.617 91.447 0.022 97.626 0.314

13 298 74.295 92.416 0.020 97.814 0.298

14 374 75.013 93.583 0.018 97.993 0.286

15 460 75.304 94.543 0.016 98.127 0.278

16 561 75.383 95.463 0.015 98.240 0.275

17 681 75.206 96.300 0.013 98.335 0.263

18 827 75.224 97.056 0.011 98.432 0.256

19 997 74.493 97.723 0.010 98.484 0.249

20 1206 73.669 98.184 0.008 98.521 0.254

21 1462 72.302 98.683 0.005 98.519 0.269

22 1753 71.714 99.395 0.001 98.549 0.279

23 1965 74.221 100.000 0.000 98.711 0.287

The values presented on Table 5 are hypothetical, as
the ones for the FBHC algorithm. The results prove once
again that the FBHC algorithm outperforms the rest of the
methods in terms of computational time. The second-best
algorithm that scales for large number of documents is the
Birch algorithm. However, the algorithm is not scalable in
terms of memory usage, as we were not able to run it on
the local computer for datasets consisting of more than
80,000 documents due to memory limitation problems.

Experimental results on the NYTimes dataset
The last round of experiments include the application of
our proposed hierarchical clustering framework on the
NYTimes dataset. Using the binary tree construction algo-
rithm of type similarityalgo, a binary tree with 23 levels and
1965 leaf clusters was constructed. Table 6 shows that the
Identity and Similarity metrics began with 0 values at the
root of the tree, whereas the Entropy metric began with
0.32. These values improved when descending down the

Table 7 Average values of the internal clustering evaluation
metrics per tree level after the application of the branch breaking
algorithm on the NYTimes dataset

Level #C I IS HS BS TS

0 1 0.000 0.000 0.32 58.072 NA

1 2 0.000 2.500 0.238 69.462 NA

2 4 25.000 30.000 0.152 79.915 NA

3 7 36.429 47.857 0.121 84.922 NA

4 13 48.462 62.692 0.084 90.207 0.184

5 21 55.238 71.667 0.068 92.481 0.196

6 30 55.167 74.000 0.065 93.397 0.196

7 40 57.875 77.250 0.057 94.202 0.204

8 46 61.957 79.565 0.051 94.636 0.204

9 47 60.638 78.830 0.052 94.432 0.204

10 48 59.375 78.229 0.055 94.223 0.204

11 49 58.163 77.755 0.056 94.071 0.204

12 50 57.000 77.400 0.058 93.913 0.204

13 51 55.882 77.157 0.059 93.794 0.204

14 52 54.808 77.019 0.061 93.692 0.204

15 53 53.774 76.981 0.062 93.619 0.204

16 54 52.778 77.037 0.062 93.575 0.204

17 55 51.818 77.182 0.063 93.554 0.211

18 56 50.893 77.411 0.063 93.554 0.211

19 57 50.000 77.719 0.062 93.575 0.270

20 58 49.138 78.103 0.061 93.596 0.326

different tree levels, until at the leaf level the Similarity
value was equal to 100% while the Entropy was equal to 0.
During the second phase, the tree was pruned by apply-

ing the branch breaking algorithm using the percentage of
0.5% as threshold for all the comparisons of the metrics.
The final tree consists of 20 levels and 58 leaf clusters. The
average values of each level’s metrics using the FM and the
FSMmatrices are summarized in Table 7. The table shows
that the identity value increased towards the leaves of the
tree. Notably, when groups of similar bins are used instead
of the bins themselves, the similarity value (IS) was a little
higher as expected. The values of the Topic Similarity (TS)
metric, which is discussed in the following sub-section,
are also included in the table.
During the meta-clustering phase of the procedure, a

graph is constructed using all the leaf clusters that have
been formed after the branch breaking algorithm. The
hierarchy structure of the clusters are presented in Fig. 5,
where similar clusters are depicted using characteristic
colors. The graph is clustered using a threshold equal to
10%, removing all the edges that were connecting themost
dissimilar clusters. Figure 6 presents the fully connected
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Fig. 5 The binary tree of the NYTimes dataset. The most similar leaf clusters that was discovered during the graph construction module are
presented using the same colors

and the clustered graphs. Evidently, most of the big clus-
ters do not have similarities with other clusters, but some
smaller clusters like 12, 35, 36, 57, 58, 89, 90, 131, 132
could be merged with the cluster 87 due to the high con-
nectivity that is observed. The aforementioned clusters
that were given as an example for merging are presented
on Fig. 5 using red color.

Conclusion
In this paper, we presented a new scalable multi-metric
hierarchical clustering framework for document cluster-

ing. The input documents are preprocessed and trans-
formed into feature vectors using topic modeling, and
afterword they are discretized forming sequences of char-
acters. The clustering method is composed of three dis-
tinct phases: the binary tree construction algorithm, the
branch breaking algorithm, and a meta-clustering mod-
ule for generating graphical representations of the output.
The metrics that are used to form the clusters include
Identity, Similarity, Entropy and Bin Similarity. The clus-
tering method exhibits a high degree of parallelism and
several sub-processes can be distributed in multiple CPUs

Fig. 6 The initial graph and the clustered graph of the NYTimes dataset
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to speedup the whole process. It is also dockerized, to
enable execution in almost any configuration in the cloud.
Using this frequency-based approach to perform hier-

archical document clustering, many limitations on com-
putational time and memory usage, as the number of
documents increases, can be overcome. Our algorithm
has increased scalability compared to existing hierarchi-
cal clustering algorithms, because it uses frequency tables
to form the clusters instead of making pairwise compar-
isons between all the elements of the dataset. A series of
efficiency and performance evaluation experiments have
shown considerable reduction in both execution times
and memory requirements over a wide variety of publicly
available document sets and of cloud infrastructure.
A limitation of our proposed method may be the infor-

mation loss that comes from the data discretization mod-
ule, but it is up to the users to select the number of
bins B in such a way that the amount of information
that is considered by the model is sufficient, depending
on the problem. Considering the effectiveness of the pro-
posed method in the cloud, Future work involves further
parallelization of the clustering algorithm in order to opti-
mize the use of allocated resources in the cloud, including
GPU usage. Moreover, the proposed framework could
be extended to handle real time applications running in
the cloud that demand new document categorization.
This could be done by implementing a decision-making
algorithm that exploits the hierarchy of the clusters to
perform new document categorization into the existing
clusters.
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