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Abstract

compared with MPTCP protocol.

In the data center networks, multipath transmission control protocol(MPTCP) uses multiple subflows to balance traffic
over parallel paths and achieve high throughput. Despite much recent progress in improving MPTCP performance in
data center, how to adjust the number of subflows according to network status has remained elusive. In this paper,
we reveal theoretically and empirically that controlling the number of concurrent subflows is very important in
reducing flow completion time (FCT) under network dynamic. We further propose a novel design called MPTCP_OPN,
which adaptively adjusts the number of concurrent subflows according to the real-time network state and flexibly
shifts traffic from congested paths to mitigate the high tail latency. Experimental results show that MPTCP_OPN
effectively reduces the timeout probability caused by full window loss and flow completion time by up to 50%
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Introduction

With the rapid development of cloud computing and stor-
age, data centers have gradually become the infrastruc-
tures of many bandwidth- and latency-sensitive applica-
tions such as web search and big-data analytics. Under the
increasing traffic requirement of such applications, many
multi-rooted tree topologies such as Clos [1] and Fat-tree
[2] are deployed to utilize the multiple paths between the
source and destination hosts to improve network through-
put and reliability in data center.

In recent years, many state-of-the-art load balancing
designs are proposed to make full use of the available
multiple paths. As the de facto load balancing scheme in
data center, Equal Cost Multipath (ECMP) [3] randomly
sends each flow to one of the parallel paths by hash func-
tion. Though ECMP is very simple, it suffers from well-
known performance problems such as hash collisions and
low link utilization. Random Packet Spraying (RPS) [4]
is a packet-level load balancing scheme that sprays each
packet to a random path to obtain high link utilization,
while also leading to packet reordering and throughput
loss. Compared with the flow-level and packet-level load
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balancing schemes, MultiPath TCP (MPTCP) uses paral-
lel subflows as the rerouting granularity to achieve better
tradeoff in minimizing packet reordering and increasing
link utilization [5].

Unfortunately, existing MPTCP designs do not con-
sider an important issue, that is, the number of subflows
has significant impact on MPTCP performance. On the
one hand, if the number of subflows is small, the net-
work resources of multiple paths are wasted, resulting in
suboptimal flow completion time and even hot spots in
congested paths. On the other hand, if the number of
subflows is large, the congestion window of each subflow
becomes very small, easily leading to timeout (i.e., full
window loss) and high tail latency under heavy congestion
[6-10].

In this work, we propose a novel design called
MPTCP_OPN, which adaptively adjusts the number of
concurrent subflows according to the real-time network
state. Under heavy congestion, MPTCP_OPN shrinks the
number of subflows to avoid timeout event caused by
full window loss. On the contrary, MPTCP_OPN utilizes
more subflows to improve the link utilization. More-
over, when some subflows experience severe congestion,
MPTCP_OPN flexibly shifts the unlucky subflows from
congested paths to less congested ones to mitigate the
high tail latency.
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We briefly summarize the contributions of this paper, as

follows:

e We provide extensive study to exploit the impact of
number of subflows on MPTCP performance.
Through empirical studies and theoretical analysis,
we reveal that controlling the number of concurrent
subflows is crucial to achieve the tradeoff between
high link utilization and low tail latency under

network dynamic.
e We propose a novel design MPTCP_OPN by

carefully adjusting the number of concurrent
subflows on the sender-side. To reduce the long tail
flow completion time due to the stalled subflow,
MPTCP_OPN transfers traffic from congested paths
to less congested ones. The design only needs to be
deployed at the sender-side without any changes
made to switch, thus ensuring the minor deployment

overhead.
® We evaluate our design on large-scale test. The

results demonstrate that, MPTCP_OPN is able to
greatly reduce the flow completion time by up to 50%
compared with the state-of-the-art load balancing
designs, such as RPS, MPTCP and MMPTCP.

The remainder of this paper is structured as follows. In
“Design motivation” section, we describe our design moti-
vation. The design detail of MPTCP_OPN is presented
in “MPTCP_OPN design” section. In “Performance eval-
uation” section, we show the experimental results of NS2
simulation. In “Related works” section, we demonstrate
existing approaches. Finally, we conclude the paper in
“Conclusion” section.

Design motivation

A MPTCP connection consists of multiple subflows, each
of which may take a different route across available paths
and maintains its own congestion window. In this section,
we use NS2 simulation to evaluate the impact of the
number of MPTCP subflows on the congestion win-
dow size, number of timeout events and flow completion
time.

Firstly, we measure the congestion window of subflows
under different number of subflows. The experimental
scenario uses the Leaf-Spine topology as shown in Fig. 1.
The number of available paths between any pair of hosts
is 20. The link bandwidth and round trip time are 1Gbps
and 100us, respectively. Under each ToR switch, there are
50 hosts, each of which sends one MPTCP flow to one
receiver under the other ToRs. The RTO of each subflow
is set to 200ms as default. The default flow size of MPTCP
is 800 packets with 1.5KB packet size. In order to obtain
the average test results, the experiments are repeated for
20 times.

Figure 2 shows the average congestion window sizes
of subflows with varying number of subflows from 1 to
20. The size of each MPTCP flow increases from 400 to
800 packets. When the number of subflows increases, the
average congestion window of subflows is reduced. The
reason is that, when the sender uses more subflows, the
amount of data transmitted by each subflow decreases.
For example, when 400 packets are transferred by
20 subflows, each subflow transmits only 20 packets on
average, resulting in the average congestion window as
small as about 5.
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Fig. 2 Average congestion window with varying number of subflows
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Secondly, we measure the number of timeout events
with varying number of subflows. Under heavy conges-
tion, if multiple packet losses occur in a single flow, this
unlucky flow may experience full window loss and induce
timeout. Figure 3 shows the maximum, minimum and
average number of timeout events. Since the congestion
window decreases with larger number of subflows, each
subflow is more likely to lose packets within the entire
congestion window, resulting in more timeout events.
This will make the sender unable to rely on fast retrans-
mission to recover lost packets, and has to wait for the
retransmission timeout (RTO) (i.e, 200ms) to retransmit
the lost packets.

Finally, we calculate the average flow completion time
of MPTCP under different number of subflows. Here, the
flow completion time of MPTCP flow is the time when the
last subflow finishes its transfer. Figure 4 shows the aver-
age flow completion time for 20 experiments, respectively.

From Fig. 4, we observe that when the number of
subflows is small, the flow completion time decreases
with larger number of subflows, showing the benefit of
high link utilization achieved by more subflows. How-
ever, when the number of subflows exceeds a certain
point, the small congestion window of each subflow eas-
ily leads to higher timeout probability, which enlarges
the tail latency and greatly increases the overall flow
completion time.

Our observation of this experiment leads us to conclude
that (i) large number of subflows decreases the congestion
window, leading to the significantly increment in timeout
probability under heavy congestion, and (ii) using small
number of subflows reduces link utilization and enlarges
the flow completion time under light congestion, which
suggests that adopting fixed number of subflows is not
an optimal solution under dynamic network traffic. These
conclusions motivated us to investigate a novel approach

# of Timeout Events
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Fig. 3 Timeout events with varying number of subflows
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Fig. 4 Average flow completion time

adjusting number of subflows. In the rest of this paper, we
present our MPTCP_OPN design in detail.

MPTCP_OPN design

The objective of MPTCP_OPN is to help MPTCP to
achieve high performance in dynamic network. The core
of MPTCP_OPN design is to adjust the number of sub-
flows (i.e., flow concurrency) based on network state to
achieve the tradeoff between link utilization and low tail
latency. Besides, to mitigate the impact of network uncer-
tainties such as link failures, MPTCP_OPN swiftly moves
the stalled traffic from the slow path to fast ones once
detecting congestion. Therefore, we design MPTCP_OPN
consisting the Concurrency Tuning and Traffic Shifting
modules, which only modify the MPTCP scheduler on the
sender side.

Concurrency tuning

Tuning the concurrency of subflows is the core design
of MPTCP_OPN. To address this issue, we establish the
MPTCP throughput model to solve the optimal number
of subflows.

We analyze the evolution of total congestion window
of multiple subflows to obtain the aggregated throughput.
Table 1 shows the variables used in the modeling anal-
ysis. Figure 5 depicts the total congestion window CW,,
of n subflows. We use i and d to denote the window-
increasing and window-decreasing factor of the conges-
tion window, respectively. If no packet loss occurs, the
total window size of n subflows will increase by #i in
each round trip time (RTT). On the contrary, once packet
loss happens, one of the subflows will reduce its conges-
tion window, while the window size of the other n — 1
subflows remaining unchanged. Therefore, the total con-
gestion window becomes (1 —d)CW,,/n. After packet loss
occurs, it requires dCW,,/(n%i) RTTs to restore the total
window to CW,,.

Given the packet loss rate p, the total amount of pack-
ets sent by n subflows is 1/p in the period of window-
increasing. Thus, we get

acw, wm-dCcw, 1 dCw, dCw, 1
* + — % * =—-. (1)

n2i n 2 nk n p

Then, the total congestion window CW,, of n subflows is

2ni

CW,=n|——.
n="n 2n —d)pd

(2)
Therefore, the average congestion window size for each
subflow is

W 2ni 3

N @un—dpd ®)

For each subflow, the timeout probability can be cal-

culated as the probability that the subflow loses all the

packets in its congestion window W, that is p". Then for a

MPTCP flow with n subflows, the probability that at least
one subflow has a full window loss is

Pro=1-— (1 —pW)n. (4)

Table 1 Symbols

Symbol Definition

n The number of subflows

Wiy Total congestion window size of n subflows

w Average congestion window size of one subflow
d Window-decreasing factor, default is 0.5

i Window-increasing factor, default is 1

p Packet loss rate

RTT Round trip time

T Average throughput of n subflows

Pro Timeout probability
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Fig. 5 Total congestion window of concurrent subflows

Substituting formula (3) into formula (4), we have
2ni
Pro=1—(1—pV =iy, (5)

Taking into account the impact of timeout, the total
throughput T of n subflows can be obtained as

(1/p)  MSS

T = 1 — Prp). 6
@cw, i ¥ rrr * P10 (©)
Substituting formula (2) and (5) into formula (6), we
have
. i n
T — ni(2n — d) *MSS>‘< 1_p/(2n§7d)pd ' )
2pd RTT

Figure 6 shows the change of throughput as the num-
ber of subflows increases under different packet loss rate.
The modeling result shows that, under the small number
of subflows, more subflows are beneficial in improving
throughput due to higher link utilization. On the con-
trary, when the number of subflows is large, the small
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congestion window of each subflow leads to high timeout
probability and throughput degradation.

Therefore, it is clear that we can obtain the optimal
number of subflows n* to achieve the maximum through-
put and the minimum flow completion time. To simplify
the calculation, we use symbol 4 to denote

L Mss
V2pdRTT

We calculate the derivative of T as

n
4n 4n
‘;%:a[log (l—p P(Zn%)) (l—p p(ZW%))

| 4n I \/ 4n T
np\/pmj) 10%(1?){ = ]<lfp Py

4 s
pe1=3)  [pen- b
- - 2 ] % n(2n—%)
2*\/7"

pen-1)
4n
a(an—1) (1_,,\ #(2-3) )

2*\/}1(2;17%)

(@)

n—1

+

)

Since ,/2n — % and +/2# are similar within the range of
n, formula (9) can be reduced to

san (1~ ,ﬁ)

V2a [log <1 —P/g) (1_1” %>n] T Jaen

dn

(10)

When Z—Z; is equal to 0, we get the optimal number of

subflows #* as
2
lambertw <0, p\/; — 1)

g (1 - pﬁ)

n* = abs
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Fig. 6 Throughput with varying number of subflows
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lambertw is a Lambert W function, which is the inverse
relation of function f(x) = xe*, where €” is the exponen-
tial function, and x is any complex number. And abs is a
function which uses to calculate the complex magnitude.

In order to reduce the computational complexity and
increase the feasibility of protocol deployment, we first
perform offline calculations by enumerating the packet
loss rate and solving the corresponding result of #*. Then,
in the online phase, we can use a table to search #* accord-
ing to packet loss rate. Figure 7 shows the relationship
between the packet loss rate and #n*. The granularity of
packet loss rate is 0.01. Due to the constraint of the OS
kernel [11], the maximum number of n™* is 32.

Traffic shifting

In production data center, there widely exists a series of
uncertainties, such as link failures, traffic dynamic, and
heterogeneous switching equipments. These uncertain-
ties can make some links slow or unavailable. If some
unlucky subflows are scheduled on these bad paths, the
flow completion time is enlarged [12]. To mitigate the
high tail latency problem caused by the dynamic network
uncertainties, we propose a Traffic Shifting mechanism,
which quickly detects the bad paths and moves the traffic
to the good paths.

Specifically, MPTCP_OPN leverages the information of
ACK packets to detect the link failures and traffic conges-
tions. The sender maintains a timer to periodically detect
the path status. If the sender has not received any ACK
packets on a path when the timer expires, we consider that
link failures and traffic congestions occur on that path. By
this way, we classify all the available paths into two cate-
gories: FAST and SLOW. The SLOW path means that link
failures and traffic congestions have occurred on it. Oth-
erwise, it is identified as a FAST path. Moreover, to avoid
the long tail latency, the sender employs the FAST path
to retransmit the unacknowledged packets on the SLOW
path.

Figure 8 depicts the design of the traffic shifting strat-
egy. Figure 8a shows that, when the multiple paths are
symmetric, the MPTCP sender quickly transmits data on
three good paths. As shown in Fig. 8b, however, if path
1 becomes congested, although each subflow utilizes the
window-based congestion control algorithm to achieve
load balancing between paths, a few packets are still trans-
mitted on path 1, causing the long tail delay of overall
transmission. In our design, MPTCP_OPN scheme com-
pletely avoids the congested path. As shown in Fig. 8c,
when the MPTCP_OPN sender detects the slow path, it
will no longer use the slow path to send subflow. More-
over, the on-flight data packets whose corresponding ACK
packets have not arrived at the sender within a period of
time (i.e., 2RTTs) are retransmitted immediately to other
good paths. Therefore, the receiver need not wait for
the stalled on-flight packets, thus mitigating the long tail
latency of subflow on congested path.

To quickly obtain the global link status and maintain
high network utilization, we set the initial number of
subflows as the number of spine switches. Then, the num-
ber of subflows varies according to the measured packet
loss rate. To explicitly depict the procedure of subflow
adjustment, we draw the diagram as shown in Fig. 9.

The initial number of subflows is set as the number of
spine switches m to quickly obtain the global link status
and maintain high network utilization. Then, the sender
assigns different five-tuples to all the subflows for hash-
ing them on available paths with ECMP. We use s and /
to respectively record the number of packets have been
sent and the number of dropped packets periodically. The
duration time of the period is determined by a timer
timer_3 to periodically calculate packet loss rate 7. In our
design, timer_3 is set to 10ms based on Ref. [13]. When
timer_3 is expired, the packet loss rate n is calculated by
n = [/s. Then, the optimal number of subflows n* is
obtained based on 7 through looking up the precomputed
table.
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Fig. 8 Traffic Shifting Mechanism. a MPTCP under path symmetry; b MPTCP under path asymmetry; ¢ MPTCP OPN under path asymmetry

The main operations of MPTCP_OPN are shown in
Algorithm 1. First, the sender periodically detects the path
status. As shown in lines 2-4, if the sender has not received
an ACK packet on a path until the status-monitoring timer

Algorithm 1

Initialization: Vp;. mode<—FAST; path[ ] «<—all paths;
8 < 200us; e <—200ms;
: When the timer_1 expires after §:
. for each path p; epath[] do
if none ACKs are received on p; then
pi-mode<SLOW;
retransmit the unacknowledged packets on
fast paths;
end if;
: reset the timer_1;

Qo Wy

R

: When the timer_2 expires after ¢:

10: for each path p; epath[] do

11: pi-mode<«FAST;

12: reset the timer_2;

13:

14: On receiving a new flow from the upon layer:

15: Obtain the optimal number of subflows n*;

16: if n* < the number of fast paths then

17: transmit the flow on randomly selected n* fast
paths;

18: else

19: transmit the flow on all fast paths;

20: end if;

timer_1 expires, the path is marked as SLOW. Secondly,
in order to avoid the long tail latency due to the blocked
on-flight packets on slow path, when the sender detects a
slow path, it will quickly retransmit the unacknowledged
packets to other fast paths as shown in line 5. Finally,
as shown in lines 15-20, the sender obtains the optimal
number of subflows n* based on the real-time network
status. If n* is smaller than the current number of fast
paths, the flow from the upper layer is cut into n* sub-
flows. Otherwise, the flow uses all fast paths to transfer
data. In the path detection, the timeout value § of status-
monitoring timer timer_1 is set as 2 times of the average
round trip time. According to the previous studies, such
as Ref. [14, 15], traffic in data center is highly dynamic.
Congestion can promptly happen when a few high-rate
flows start, and it can disappear as they finish. Therefore,
we periodically reset the status of all the paths when timer
2 expires after . According to the default TCP timeout
period in the current operating system, the timeout value
¢ of state-resetting timer timer_2 is set to 200ms.

Performance evaluation

We evaluate the performances of MPTCP_OPN, ECMP,
RPS, MPTCP, and MMPTCP through large-scale NS2
simulation tests.

e MPTCP_OPN: To balance traffic over parallel links
and achieve high throughput, MPTCP_OPN
adaptively adjusts the number of subflows according
to network status.

e ECMP: As the de facto multipath load balancing
mechanism, ECMP is broadly deployed on
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Fig. 9 Subflow adjustment

commodity switches in data center networks. It
randomly hashes each flow to one of the available
paths based on the five-tuple of TCP packet header.

e RPS: RPS is a packet-level mechanism which
randomly sprays packets to all available paths
between any pairs of source and destination hosts.

o MPTCP: MPTCP uses fixed number of subflows to
achieve better link utilization and alleviate packet
reordering.

e MMPTCP: MMPTCP adopts different policies for
long and short flows. MMPTCP utilizes stationary
number of subflows to provide high throughput for
long flows. Meanwhile, to reduce the flow completion
time of short flows, RPS is employed to swiftly utilize
available link resources.

As shown in Fig. 1, the tests use the Leaf-Spine topol-
ogy with 40 ToR and 20 Core switches. There are 50
hosts under each ToR switch and 20 available equivalent
paths between each pair of hosts. The switch buffer size is

W & S
< W W

Fig. 10 AFCT of homogenous flows

256 packets. The link bandwidth and latency are respec-
tively 1Gbps and 100us, and RTO is set to 200ms. For
ECMP and RPS, DCTCP is chosen as the transport pro-
tocol [16]. The experiments use flow completion time and
throughput as performance metrics.

Basic performances

First, we test the basic performance of 1000 flows with
same size between each pair of hosts. The flow size is set
to 200 packets with 1.5 KB packet size. Figure 9 shows the
test results of average flow completion time.

As shown in Fig. 10, ECMP experiences the largest flow
completion time. The reason is that, ECMP uses the flow
as the path-switching granularity, without making full use
of the available multiple paths. Moreover, the hash colli-
sion easily leads to congestion hot spots, which increase
the flow completion time. RPS chooses the next hop
for each packet to leverage multiple paths, thus greatly
improving link utilization. However, RPS easily causes
packet reordering problem. Once receiving three or more
duplicate ACKs due to disordered packets, the sender trig-
gers unnecessary retransmission and mistakenly reduces
its congestion window, resulting in suboptimal flow com-
pletion time. Both MPTCP and MMPTCP use all paths
to send subflows to achieve high link utilization and mit-
igate packet reordering. However, when some subflows
experience the heavy packet loss (i.e., full window loss)
on congested paths, the overall transmission efficiency is
reduced. Compared with the other schemes, based on the
real-time network status, MPTCP_OPN adjusts the num-
ber of subflows to tackle the serious congestion, effectively
reducing the flow completion time.

Next, we change the flow size to test the performance
under heterogeneous traffic, which is mixture of long and
short flows subjected to heavy-tailed distribution. The
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sizes of 200 long flows and 800 short flows are randomly
set in the range of [600, 800] and [40, 60] packets, respec-
tively. The average and 99 percentile flow completion
time of short flows, and the throughput of long flows are
shown in Fig. 11.

Figure 11a shows the average flow completion time
of short flows. Compared with the MPTCP protocol,
MPTCP_OPN reduces AFCT by 60%, showing the perfor-
mance improvement by adjusting the number of subflows.
Figure 11b shows the 99 percentile flow completion time
of short flows. MPTCP_OPN achieves the best perfor-
mance in reducing the tail latency, because it avoids the
impact of congested path by traffic shifting. Figure 11c
shows the throughput of long flows. MPTCP_OPN
achieves the similar performance of MPTCP. This result
shows that, although MPTCP_OPN reduces the number
of subflows, it still obtains good performance of long flows
by rapidly transferring traffic and avoiding timeout.

Fairness performance

To evaluate the fairness between MPTCP_OPN and tra-
ditional TCP when coexisted in the same network, we
employ LIA [17] and OLIA [18] as the congestion con-
trol algorithms. In the scenario, the MPTCP_OPN flows

and 100 background traditional TCP flows are transmit-
ted on each path. We vary the number of MPTCP_OPN
flows and measure the throughputs of MPTCP_OPN and
TCP flows on the last hop to the receiver. Figure 12 shows
the Jain’s fairness index [19] between MPTCP_OPN and
traditional TCP flows.

As shown in Fig. 12, the values of Jain’s Fairness Indexes
between the MPTCP_OPN throughput and the average
throughput of background TCP flows are higher than
0.9 under different number of MPTCP_OPN flows. This
results show that, when coexist with the traditional TCP
flows at the last hop, MPTCP_OPN with the congestion
algorithms OLIA and LIA can successfully couple the sub-
flows which share the common bottleneck link, therefore
achieving good fairness between MPTCP_OPN and TCP
flows.

Performance under realistic workload

Different data center applications have different traffic
workloads. To test the performance under realistic work-
loads, we choose four typical applications, including Data
Mining, Web Search, Cache Follower and Web Server.
The traffic distributions of four workloads are shown in
Table 2 [20]. The experiment generates network traffic
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according to Table 2. The arrival time of realistic workload
flows follows the Poisson distribution. Figure 13 shows the
experimental results under realistic workloads.

Figure 13a shows the average flow completion time of
short flows. Compared with other workloads, the five
schemes perform the worst in Data Mining, because the
short-flow proportion is the largest in this workload, lead-
ing to more full window losses. Although MMPTCP has
the advantages of RPS and MPTCP, it does not com-
pletely avoid the disadvantages of both: when the network
status is not good, it is easy to occur packet reordering
problems in RPS phase, and timeout problem in MPTCP
phase. Therefore, the performance of MMPTCP is not
greatly improved compared with RPS and MPTCP. Over-
all, MPTCP_OPN effectively avoids timeout events and
greatly reduces the average completion time of short
flows.

Figure 13b shows the 997 percentile FCT of short
flows. ECMP, RPS, MPTCP and MMPTCP all experience
severe tail latency, while MPTCP_OPN avoids the impact
of timeout events and trailing subflows through traffic
shifting and more reasonable subflow cutting, therefore
effectively reducing the 99" percentile FCT of short flows.
Figure 13c shows the throughput of long flows. For long

Table 2 Flow size distributions of real workload

Data Web Search Cache Web Server
Mining Follower
0-10KB (S) 78% 49% 50% 63%
10KB-100KB (M) 5% 3% 3% 18%
100KB-1TMB (L) 8% 18% 18% 19%
TMB- (XL) 9% 20% 29%

flows, MPTCP_OPN achieves the similar performance
of MPTCP and MMPTCP. Figure 13d shows the over-
all throughput. MPTCP_OPN effectively avoids timeout
events and swiftly shifts the unacknowledged packets to
fast paths, thus obtain the highest overall throughput.

Performance in asymmetric scenario

The traffic dynamic and switch failure may make the
original symmetric network topology into an asymmet-
ric one in production data centers [14]. To MPTCP, link
failures and congestions will lead to the degradation of
overall throughput, greatly impairing the performance of
short flows. The reason is that MPTCP transfers traffic
with a fixed number of subflows without considering the
link conditions, thus easily suffering from severe through-
put degradation from timeout events induced by full
window losses, especially for those short flows. Instead,
MPTCP_OPN adaptively adjusts the number of subflows
according to the real-time network status, and balances
traffic based on the dynamic link condition. Therefore,
MPTCP_OPN can significantly avoid the timeout events,
thus greatly improving the performance of short flows.
Besides, the throughput of long flows is not adversely
impacted due to its better network adaptability.

In this experiment, we test if MPTCP_OPN is resilient
to network asymmetry. Figure 14 shows a typical asym-
metric Leaf-Spine topology with 20 available paths
between each pair of hosts. However, some links in the
dashed lines are not well working, resulting in the uneven
bandwidths of 20 paths between the sender and receiver.

First, we test protocol performance in asymmetric net-
work topology. According to the statistics in [15], the
maximum number of failed paths is 40% of the total num-
ber of paths. We reduce the bandwidth of 8 paths to 100
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Mbps, and the other 12 paths still have the bandwidth of 1
Gbps. When 50 hosts send data through 20 paths, the ToR
switch connected to the sending hosts is overloaded.

The experimental results of protocol performance
under asymmetric network topology are shown in Fig. 15.
As shown in Fig. 15a and b, under four kinds of work-
loads, MPTCP_OPN achieves the minimum AFCT and
99 percentile FCT of short flows, because it transfers
traffic from the failed path to good ones in asymmetric
topology and quickly retransmits the unacknowledged on-
flight packets. In Fig. 15c, MPTCP_OPN also achieves the
highest throughput of long flows. Since RPS, MPTCP, and
MMPTCP transmit data on all paths, the tailing pack-
ets and subflows transmitted on the failed path greatly
increase the overall flow completion time. Due to its
inflexibility, ECMP does not fully utilize the multiple
paths. Moreover, when some unlucky flows are transmit-
ted on the failed path by ECMP, the overall transmission is
blocked. In Fig. 15d, MPTCP_OPN obtains the maximum
overall throughput. MPTCP_OPN adjusts the number of
subflows according to network status flexibly and diverts
traffic from the failed paths to good ones, thus greatly
improve the overall throughput.

Next, we change the bandwidth and number of failed
paths to test the average completion time of short flows
under different protocols. In the first test, we set the

number of failed paths as 8, and increase their bandwidths
from 100 Mbps to 1 Gbps. In the second test, the band-
width of failed path is 100 Mbps, but the number of failed
paths is increased from 1 to 8. The experiment gener-
ates traffic according to Data Mining and Web Search
applications.

Figure 16 shows the protocol performances with failed
paths at different bandwidths. When the link bandwidth
of failed paths increases, AFCT of short flows gradually
decreases. Compared with other schemes, MPTCP_OPN
reduces AFCT of short flows by about 50%. Figure 17
shows the protocol performance for different number of
failed paths. As the number of failed paths increases,
AFCT of short flows gradually increases. In general, since
MPTCP_OPN can quickly transfer traffic, it obtains the
lowest AFCT of short flows in both application scenarios,
showing great resilience to network asymmetry.

Related works

To leverage multipath resources in the multi-rooted tree
topologies in data center, many load balancing schemes
are proposed in recent years. As the standard load bal-
ancing scheme in today’s data center, ECMP uses random
hashing to assigns flows to different paths, but suffers
from the hash collision and under-utilization problem.
Freeway [21] adopts different scheduling methods for long
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and short flows in order to meet the different applica-
tion requirements. Under the condition that the delay-
sensitive short flows can be completed within their dead-
line requirements, the remaining paths are assigned to the
long flows.

Unlike ECMP and Freeway using the flow as the switch-
ing granularity, RPS randomly sprays each packet onto
all available paths to maximize the usage of multipath
resources. However, RPS easily leads to packet reordering
[22] and unnecessary reduction of transmission rate at the
sender. To aviod packet reordering, CAPS [23] encodes
the short flows and spreads the packets of short flows to
all path. To mitigate the micro-burst at the switch, DRILL
[24] picks path for each packet flexibly based on the local
queue information. To avoid vigorous rerouting, Hermes
[15] reroutes packets in a timely yet cautious manner to
good paths only when it will be beneficial.

Compared with the flow-based and packet-based load
balancing designs, MPTCP transmits data in unit of sub-
flow to make good use of multipath resources and mean-
while avoid packet reordering in subflows. To improve
the MPTCP performance in data center networks, a rich
body of work [2, 6, 25-29] has thus emerged. In order
to understand the performance of MPTCP protocol bet-
ter, the literature [30, 31] tests the influence of different

topologies and traffic distributions on MPTCP. The exper-
imental results show that MPTCP protocol can effectively
utilize the available bandwidth to provide higher through-
put, better fairness and stronger robustness than TCP
protocol.

In order to assign each subflow of MPTCP on differ-
ent idle paths, Dual-NAT [26] uses NAT technology to
dynamically construct disjoint paths for each subflow of
MPTCP, thus making full use of the path diversity of data
center network and improve total throughput. FUSO [32]
improves the retransmission mechanism of MPTCP sub-
flow. When the sender suspects that a packet is lost, it will
use the remaining congestion windows of other less con-
gested subflows to quickly retransmit the lost data pack-
ets, thereby avoiding the influence of the trailing subflows
and reducing the total completion time of subflows.

MPTCP achieves full link utilization by exhausting
the link buffer, thus causing considerable queueing delay
and packet loss. This affects the performance of the
delay-sensitive short flows under the overwhelm data of
throughput-sensitive long flows. To solve this problem,
XMP [33] uses the ECN mechanism to control the occu-
pancy of switch buffer and reduce the impact of long
flows on short ones. MMPTCP [34] distinguishes the long
and short flows according to the number of bytes that
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have been sent, and adopts different transmission strate-
gies for long and short flows. For the short flows, RPS is
used to quickly utilize available path resources and reduce
flow completion time. For the long flows, MPTCP subflow
transmission strategy is still used to ensure high through-
put. To avoid packet reordering at a receiver, Promenade
[35] utilizes random network coding. With random net-
work coding, packets belonging to the same flow are
split into multiple subflows, and then forwarded along
different paths. With the prevalent of RDMA, literature
[36] proposes a multi-path transport for RDMA named
MP-RDMA. MP-RDMA employs novel multi-path ACK-
clocking and out-of-order aware path selection to choose
the best paths and forward packets in a congestion-aware
fashion.

In order to avoid the asymmetry problem caused
by the latency difference, STMS [37] scheduler sends
packets with smaller sequence number to a fast path
while sending packets with larger sequence number to
a slow path, allowing packets sent over different paths
to arrive simultaneously. Considering the continuously
increasing demand for mobile communication, litera-
ture [38] presents two novel scheduling schemes which
are the block estimation (BLEST) scheduler and the
shortest transmission time first (STTF) scheduler to
guarantee low-latency communication of MPTCP. To
improve the performance of latency-sensitive applica-
tions over MPTCP in high-delay and lossy networks,
literature [39] proposes a new framework using a
XOR-based dynamic FEC scheme to reduce the flow
completion time.

To improve the performance of MPTCP for rack-
local or many-to-one traffic, DCMPTCP [40] recognizes
rack-local traffic and eliminates unnecessary subflows to
reduce the overhead. Then it estimates the length of flow
and establishes subflows in an intelligent way. In addition,
DCMPTCP enhances explicit congestion notification to
improve the performance of congestion control on inter-
rack many-to-one short flows.

In order to reduce the energy consumption of multipath
transmission, MPTCP_D [41] checks whether multiple
subflows share a common link. In order to prevent mul-
tiple subflows from being transmitted on the same path
and reduce energy consumption, the literature [42] estab-
lishes the MPTCP energy consumption model and shifts
the traffic to paths with low energy consumption.

MPTCP protocol and its enhanced mechanisms use all
available paths to speed up data transmission, while ignor-
ing the negative impact of excessive number of subflows
on transmission efficiency. In fact, too many subflows
shrink flow size of each subflow, resulting in large timeout
probability and low transmission efficiency. Compared
with these schemes, our design MPTCP_OPN adjusts the
number of subflows and uses traffic shifting to achieve
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the good tradeoff between link utilization and tail latency
under network dynamic.

Conclusion

This work presents MPTCP_OPN for highly dynamic
traffic in data center networks. We adjust the number of
subflows to mitigate the full window loss according to
network status. Moreover, we design the traffic shifting
to quickly retransmit the blocked packets on congested
paths. MPTCP_OPN is deployed only at the sender side,
which avoids modifying switches. To test MPTCP_OPN’s
broad applicability and effectiveness, we evaluate our
design on large-scale simulation test under realistic traffic
workloads. The results indicate that with MPTCP_OPN,
we remarkably reduce the flow completion time by up
to 50% compared with the state-of-the-art load balancing
designs, such as RPS, MPTCP and MMPTCP.
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