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Abstract

The Internet of Things (IoT ) networks have become the infrastructure to enable the detection and reaction of
anomalies in various domains, where an efficient sensory data gathering mechanism is fundamental since IoT nodes
are typically constrained in their energy and computational capacities. Besides, anomalies may occur occasionally in
most applications, while the majority of time durations may reflect a healthy situation. In this setting, the range, rather
than an accurate value of sensory data, should be more interesting to domain applications, and the range is
represented in terms of the category of sensory data. To decrease the energy consumption of IoT networks, this paper
proposes an energy-efficient sensory data gathering mechanism, where the category of sensory data is processed by
adopting the compressed sensing algorithm. The sensory data are forecasted through a data prediction model in the
cloud, and sensory data of an IoT node is necessary to be routed to the cloud for the synchronization purpose, only
when the category provided by this IoT node is different from the category of the forecasted one in the cloud.
Experiments are conducted and evaluation results demonstrate that our approach performs better than
state-of-the-art techniques, in terms of the network traffic and energy consumption.
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Introduction
The Internet of Things (IoT) networks, as a promising and
fast-developing research area in recent years, have been
applied to support various kinds of domain applications,
like traffic flow monitoring in Intelligent Transportation
Systems (ITS) [1], where continuous sensory data gath-
ering is fundamental to support the environmental mon-
itoring and anomaly detection in industrial applications.
Intuitively, smart things in IoT networks, also known as
sensor nodes inWirelessSensor Networks (WSN), are
necessary to periodically sense environment variables,
and gather and route sensory data packets to the cen-
ter, like the sink node inWSN, for anomaly examination
and source determination. Considering the fact that the
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majority of monitoring durations may reflect ahealthysit-
uation for most applications and relatively large energy
consumption of sensor nodes for transmitting sensory
data packets along routing paths, the reduction of sensory
data volume to be transmitted in the network is essential
for prolonging the lifetime of WSN, where sensor nodes
are mostly constrained in their computational capacity,
and their energy is provided by the battery, which is usu-
ally inconvenient to be recharged or replaced. Besides,
to examine whether an anomaly has occurred or not, as
well as the degree of severity of the anomaly, an accurate
value of environmental variables maybe not interesting,
whereas the interval scale that sensory data belong to
is relevant. In fact, an accurate value is necessary only
when an anomaly has occurred, and the details of this
anomaly are to be determined. We argue that the interval
scale of sensory data is sufficient to support the environ-
mental monitoring, especially when domain applications
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are in fact staying in ahealthy situation. This observa-
tion drives to develop an energy-efficient sensory data
gathering mechanism to support environmental monitor-
ing, while without lowering the satisfiability of certain
requirements.

Current techniques have been developed to support
sensory data gathering inWSN andIoT. Specifically, some
researchers propose to adopt the efficient distributed
wake-up scheduling scheme for gathering sensory data
[2, 3]. These methods can save energy by making some
sensor nodes enter the sleep state, while it is hard to design
an efficient routing tree and nodes• activity schedule algo-
rithm, which can simultaneously minimize transmitting
time delays and energy consumption, and a hot spot prob-
lem isn•t the focus of their attention. To solve this prob-
lem, authors [4…6] attempted to integrate mobile nodes
with traditional static nodes, where mobile nodes move
along a specific trajectory to collect data. Due to the low
speed of mobile nodes, this mechanism may lead to a
long time delay or even data loss. Besides, this strategy
may be not adapt to transportation conditions, where it
is inconvenient or even impossible for mobile nodes to
move freely, such as mountain areas. Other researchers
attempted to reduce data transmission by utilizing com-
puting resources of sensor nodes. Generally, data aggrega-
tion methods [7, 8] can extract certain features from data
to reduce the volume of data packets by usingMAX, MIN ,
or other methods [9]. These methods are more suitable
for the monitoring of burst anomalies. However, they may
be unsuitable for continuously environmental monitoring.
Data compression strategies play a vital role in gathering
sensory data, which can reduce the volume of transmit-
ted data by utilizing spatial-temporal correlations of sen-
sory data. Traditional compression algorithms consist of
the complicated compression process and simple decom-
pression process, which makes them inapplicable to our
scenario. However, theCompressedSensing (CS) algo-
rithm [ 10…13] has the characteristics of the simple com-
pression process and complex decompression process, so
it is more suitable for gathering data in edge networks
compared with other compression algorithms. Specifi-
cally, theCSalgorithm is affected by underlying routing
methods, which are divided into tree-based, cluster-based
routing approach and so on. In this paper, theCluster-
basedCompressiveSensing algorithm (CCS) is adopted to
gather binary category data in densely deployed networks.
Especially when sensory data are spatially correlated in
IoT networks, the method can greatly save and balance
the energy consumption of IoT networks. Data prediction
technology [14…16] can also reduce data transmission in
IoT networks by using forecasted values instead of accu-
racy values of sensory data. Since the accuracy of data
prediction models affects the number of sensory data
routed to the cloud, it is crucial to choose appropriate

data prediction models. Note that this method may con-
sume more energy than the approach that sensory data
are directly routed to the cloud if sensory data frequently
vary and sensory data and model parameters need to
be frequently routed to the cloud. These strategies can
obtain good performance in certain cases such as sen-
sor nodes densely deployed, the simple variation trend of
sensory data, and so on, but they aren•t suitable for our
scenario. Therefore, in densely deployed networks, it is a
challenging task to continuously gather sensory data in an
energy-efficient way.

To address this challenge, we propose an energy-
efficient strategy to gather sensory data, leveraging the
cooperation of the cloud, edge nodes, and smart things.
Our contributions are summarized as follows:

• A novel Attention-based Spatial-Temporal Graph
Convolutional Network (ASTGCN) is proposed and
conducted in the cloud to forecast sensory data of
IoT nodes, and sensory data of certain IoT nodes are
necessary to be routed to the cloud for the
synchronization purpose when the category of
sensory data for forecasted and actual ones is
inconsistent.

• CCS algorithm [13] is adopted to encode the category
of sensory data of IoT nodes, which can reduce
network traffic significantly when there are strong
spatial-temporal correlations between sensory data.

Extensive experiments are conducted to evaluate the
energy efficiency of this mechanism and explore influ-
encing factors, including data prediction models in
the cloud, the skewness degree ofIoT nodes distribu-
tion, the number of clusters, and the location of the
cloud. Evaluation results show that our mechanism is
energy-efficient, and the accuracy of data prediction
models is the main influence factor. Compared with
two baseline methods, our technique gets better per-
formance in reducing the energy consumption of the
network.

The rest of this paper is organized as follows.
•PreliminariesŽ section introduces the network model.
•Energy-efficient data gatheringŽ section presents the pro-
cess of data gathering inIoT networks. •Implementation
and evaluationŽ section evaluates our method and com-
pares it with state-of-the-art techniques. •Related workŽ
section reviews and discusses relevant techniques. Finally,
the contents of this paper are summarized in •ConclusionŽ
section.

Preliminaries
This section introduces some important concepts about
IoT networks and the energy model adopted in the follow-
ing sections.
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Network model
Definition 1 IoT Node. A IoT node is a tuple IoTnd=

(id, loc, typ,cr,engy,sv), where:

• id is the unique identifier of the IoTnd.
• loc is the geographical location of the IoTnd,

composed of its latitude and longitude.
• typ is the type of the IoTnd, which may be a smart

thing or edge node.
• cr is the communication radius of the IoTnd, which is

equal for different types of nodes.
• engy is the remaining energy of the IoTnd at the

current time slot. The initial energy of edge nodes is
higher than that of smart things.

• sv is the sensory value of the IoTnd.

An IoT network consists of edge networks and a cloud.
The cloud is responsible for managing edge networks. In
edge networks,IoT nodes are divided into smart things
and edge nodes based on the number of resources, where
edge nodes have more resources than smart things and are
responsible for managing smart things in corresponding
edge networks.

Definition 2 IoT Network. An IoT network is an undi-
rected graph and is represented by a tuple IoT_net=
(ND,LK), where:

• ND consists of a cloud and a set of IoT nodes.
• LK is a set of links between IoT nodes in ND, and

only when their distance is within the
communication radius, there is a link between them.

Definition 3 Skewness Degree. A skewness degree indi-
cates the extent of IoT nodes distribution unevenness,
which is computed using the formula: sd= (dn − sn) ÷
(dn + sn), where dn and sn refer to the number of IoT
nodes in dense and sparse subregions, respectively. Note
that (dn − sn) represents the number of IoT nodes in dense
subregions is more than that in sparse subregions, and
(dn + sn) represents the number of IoT nodes in the IoT
area. Intuitively, the skewness 0% means that IoT nodes are
evenly and randomly distributed in the IoT area.

In IoT networks, network structures consist of tree-
based, cluster-based network structure and so on. As in
this paper, IoT nodes are densely deployed inIoT net-
works. A cluster-based network structure is adopted as
our network model, which is established in the following
steps:

1) Deployment of the IoT network.As introduced in
our previous work [17], IoT nodes are deployed in a
2-dimension rectangular area, which may be deployed
unevenly in theIoT area, and are dense enough to monitor

their surrounding environment collaboratively. Actually,
the scenario of skewed distribution is common in many
real applications, since the number ofIoT nodes may
vary between sub-regions according to the requirements
of certain applications. For example, inITS, smart things
that are deployed at every intersection should be denser.
Because the process of establishing a network model is
similar no matter whether IoT nodes are evenly dis-
tributed in the network, we introduce the process of estab-
lishing a network model by evenly deployingIoT nodes in
the network. Firstly, we deployN IoT nodes evenly and
randomly in a square area, sizedL by L unit 2, and allocate
a unique identifier id to eachIoT node for distinguishing
them.

2) Division of the network area.After IoT nodes are
deployed, the whole area is evenly divided into grid cells.
Here, a grid cell is a square and the length of their sides
(denoted asgSide) must be smaller than

√
2cr/ 2, where

cr represents the communication radius ofIoT nodes.
For simplicity, we assume that theircr are equal. Accord-
ing to their coordinates (x, y), all IoT nodes are divided
into corresponding grid cells (i.e., clusters). Each grid cell
has some smart things and an edge node. Generally, edge
nodes are randomly selected according to the positions of
IoT nodes, the remaining energy, and so on. The cloud is
deployed in the middle or boundary of the area.

Energy model
So far, many energy models have been proposed for com-
puting the energy consumption of data packets trans-
mission in IoT networks. The first-order radio model
[18, 19], as one of the frequently used models, is adopted
to calculate the energy consumption in this paper, and its
parameters are shown in Table1.

Table 1 Parameters in the energy model

Name Description

Eelec Energy consumption constant of the transmit and receiver
electronics.

� amp Energy consumption constant of the transmit amplifier.

k The number of bits in one packet.

d The distance of transmission.

n The attenuation index of transmissions.

r The communication radius of IoT nodes.

ETx−elec The energy consumed for the transmit electronics.

ERx−elec The energy consumed for the receiver electronics.

ETx−amp The energy consumed for the transmit amplifier.

ETx (k,d) The energy consumed to transmit a k bit packet to a distance d.

ERx (k) The energy consumed to receive a k bit packet.

Eij(k) Energy consumption for transmitting a k bit packet from the
IoT node IoTndi to the neighboring IoT node IoTndj .
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Let ETx(k,d) and ERx(k,d) represent the energy con-
sumed by transmitting and receiving ak-bits data packet
with the distanced respectively and they are calculated
using the following formulas:

ETx(k,d) = ETx−elec(k) + ETx−amp(k,d)

= Eelec× k + � amp × k × dn (1)

ERx(k,d) = ERx−elec(k) = Eelec× k (2)

Therefore, the total energy consumption (denoted as
Eij (k)) for transmitting a packet from anIoT node i to its
neighboring IoT node j is calculated using the following
formula:

Eij (k,d) = ETx(k,d) + ERx(k,d) (3)

Note that the total energy consumption for transmit-
ting a packet to anIoT node is different from the cloud. It
is generally assumed that the cloud has unlimited energy,
and thus, the energy consumed by receiving data packets
can be ignored in the cloud. Hence,Eij (k,d) is calculated
using the following formula:

Eij (k,d) =

�
���

���

Eelec× k+
� amp × k × dn if j is the cloud
2 × Eelec× k+
� amp × k × dn otherwise.

(4)

The parametern refers to the value of the transmission
attenuation index, which is determined by the surround-
ing environment. If it is barrier-free that IoT nodes for-
ward data packets inIoT networks, the parametern is set
to 2. Otherwise,n is set to a value within 3 to 5. Without
loss of generality, we assume that the network is deployed
in a barrier-free area in this paper, and thus,n is set to 2
accordingly.

Energy-efficient data gathering
This section introduces our energy-efficient data gath-
ering mechanism. An accurate data prediction model is
adopted in the cloud for forecasting sensory data ofIoT
nodes in edge networks, while the category of sensory
data is compressed, and then routed to the cloud and used
as a criterion for judging the accuracy of predicted val-
ues. Only when forecasted values don•t meet the require-
ments of certain applications are sensory data routed to
the cloud. We describe the procedure of sensory data
gathering as follows.

Sensory data classification and representation
In IoT networks, sensory data are periodically sensed by
IoT nodes, and they are time-series data. Therefore, there
is a strong correlation between sensory data at the cur-
rent moment and that at some previous moments. That
is to say, their category are likely to be equal. In addition,
the category of sensory data is usually very few in domain

applications, and thus, variable-length binary encoding
that represents the category of sensory data has fewer
bits than 8-byte fixed-length binary encoding. Based on
the above analysis, the category of sensory data can be
encoded as sparse binary data by the following strategy.

Firstly, sensory data are divided into the correspond-
ing category according to the numerical interval. Utilizing
the statistical characteristics of historical data, the cate-
gory of sensory data is sparsely encoded. For example, we
assume that there are six numerical intervals (0, 100), (100,
200), (200, 300), (300, 400), (400, 500), (500,+∞), and
their frequencies are 1000000, 100000, 10000, 1000, 100,
10, respectively. According to the number of intervals, the
category of sensory data is encoded as binary data. This
means that binary data are: 000, 001, 010, 100, 011, 101,
110, 111 if the number of intervals (denoted asn) is 6.
Based on the number and frequency of numerical inter-
vals, an interval of high frequency is represented by a
binary data of the large number of 0. Note that the all-0
data (000) represents that the category of sensory data at
the moment and the previous moment are equal. We can
get binary category coding of sensory data based on the
above rules. For instance, the binary category coding of
the interval (0, 100) is 001, similarly, the binary category
coding of the interval (100, 200) is 010, and so on. The
classification results are shown in Table2.

Data compression in edge nodes
After the category of sensory data is sparsely encoded,
there are a lot of sparse binary data inIoT networks, which
facilitates the application of theCCS[13] technique in the
process of data gathering. The main idea is as follows: as
shown in Fig.1, the network is divided into several clus-
ters. The edge node collects category data of smart things
in each cluster and then generates a CS measurement
value, which is routed to the cloud by the shortest path.
The cloud is able to recover all category data by using the
BasisPursuit (BP) algorithm.

We assume thatN IoT nodes are deployed in the
IoT area, and assigned different identifiers, ranging from

Table 2 Mapping table between data interval and binary
category data

Data interval Frequency Binary
category
data

Number of 0 Decimal
category data

(0, 100) 1000000 001 2 1

(100, 200) 100000 010 2 2

(200, 300) 10000 100 2 4

(300, 400) 1000 011 1 3

(400, 500) 100 101 1 5

(500, +∞) 10 110 1 6
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Fig. 1 A Clustered IoT. Black dots represent smart things. Blue towers represent edge nodes. The blue cloud represents a cloud. CS represent
category data are compressed by using CS algorithm

1 to N. The category data of sensory data of these
IoT nodes are written as the column vectorx =
[ x1,x2, · · · ,xi , · · · ,xN ]T , wherexi is the binary category
data of the i-th IoT node and its length isd. For exam-
ple, if xi is 000, its length (d) is 3. The datax is k-sparse
if the number of non-zero elements inx is k in the time
domain. The minimum number of measurementsMmin
can be written as:

Mmin = a ∗ k ∗ log
�

d ∗ N
k

+ b
�

+ c (5)

wherea, b, c andd are constants. According to the values
of M (M ≥ Mmin) andN, the measurement matrix� can
be generated by a certain approach, which can generate a
sparse binary matrix with a fixed number of non-zero ele-
ments in each column. The compressed datay is denoted
as:

y = � x (6)

wherey =[ y1, · · · ,yM ]T , � ∈ RM×N (k < M ≤ N).
In the case that the vectoryand the matrix� are known,

the process of accurately reconstructing sparse binary
data x can be converted into anl1 − norm minimization
problem:

x̂ = argmin‖x‖1, s.t.y = � x (7)

It can be solved using a convex optimization algorithm
such as theBPalgorithm adopted in this paper.

Data prediction model in the cloud
An accurate data prediction model is deployed in the
cloud to forecast future sensory data. For example, in
ITS, there are the dynamic spatial-temporal correlations
between traffic data. As discussed in [20], the ASTGCN
model can simultaneously consider the spatial-temporal
correlations of data, the periodicity and trend of data in
the time dimension to more accurately forecast traffic
flows. As shown in Fig.2, the ASTGCN model mainly
consists of three independent components to respectively
extract recent, daily-periodic and weekly-periodic data
features, each of which contains six major parts:

• Tattention: A temporal attention mechanism, which
can effectively capture the dynamic temporal
correlation of traffic data.

• Sattention: A spatial attention mechanism, which can
effectively capture the dynamic spatial correlation of
traffic data.
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Fig. 2 The framework of ASTGCN. Dhour : Recent training data; Dday : Daily-periodic training data; Dweek : Weekly-periodic training data; D12: The
forecasted values of the next 12 time slots; Tattention : Temporal Attention; Sattention : Spatial Attention; GCN: Graph Convolution Network; Tconv :
Temporal Convolution; Rconv : Residual Convolution; Conv: Common Standard Convolution

• GCN: A graph convolution network, which can
capture spatial features of graph-based data.

• Tconv: A temporal convolution, which can capture
temporal dependencies from nearby time slices.

• Rconv: A residual convolution, which can optimize the
training efficiency of the model.

• Conv: A common standard convolution, which can
guarantee the dimension of the model output is the
same as that of the forecasted target.

Specifically, given the current timet0, the size of fore-
casting windowTp, the historical dataX of all nodes in
the network over past� time slices, the segment of histor-
ical time series directly adjacent to the predicting period
serves as the input of the recent component (denoted as
Dhour). Similarly, the segments in the past few days which
have the same day attributes and time intervals as the
forecasting period serve as the input of the daily-period
component (denoted asDday). The segments in the last
few weeks which have the same week attributes and time
intervals as the forecasting period serve as the input of
the weekly-period component (denoted asDweek). Not-
ing that the length of these three inputs (Dhour, Dday and
Dweek) is integer multiples ofTp. The three independent
components respectively extract recent, daily-periodic

and weekly-periodic data features from input data, and
send them to the final fully connected layer. The final
fully connected layer fuses the outputs of the three com-
ponents based on the weights learned from historical
data to obtain the forecasted value (denoted asD12),
where the weights reflect the influence degrees of the
outputs of the three components on the forecasting
value.

Adaptive sample rate adjustment
Before the system works, a routing tree is constructed,
which is the basis for data gathering. TheASTGCNmodel
is trained by using historical traffic data and model param-
eters are saved in the cloud to forecast future traffic data.
The procedure about adaptive sample rate adjustment is
presented by Algorithm 1.

(i) Data structures in the cloud andIoT nodes.
The parameters of the model and the historical data

of IoT nodes are cached in the cloud. They are denoted
as the following vector:D = 〈para,hdt〉, where para
represents parameters of the model andhdt represents
historical data ofIoT nodes.hdt is represented by the fol-
lowing vector:hdt = �

d(1),d(2), · · · ,d(i) , · · · ,d(N)
	
, where

d(i) =


d(i)

1 ,d(i)
2 , · · · ,d(i)

j , · · · ,d(i)
m

�
represents time-series
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Algorithm 1 Sensory Data Synchronization.
Require:

para: ASTGCNmodel parameters.
hdt: Historical data ofIoT nodes.
d(i)

0 : The sensory data of the i-thIoT node ndi at the
current time slot.
L(i)

0 : The category of sensory data of the i-thIoT node
ndi at the current time slot.
eni .L0: The category data that are sensed by the i-th
edge nodeeni and routed by smart things.
Ni : The length of category data to be compressed in
the i-th cluster.
Mi : The number of rows of the measurement matrix
in the i-th cluster.
csdt: The data compressed by using theCSalgorithm.
ˆd(i)
0 : Current forecasted data of the i-thIoT nodendi .
ˆL(i)
0 : The category of forecasted data of the i-thIoT

nodendi at the current time slot.
Ensure:

Sensory data are gathered to the cloud without lower-
ing the satisfiability of certain requirements.

1: for eachIoT node ndi do
2: L(i)

0 ← value2label
�
d(i)

0



3: UploadL(i)
0 to its corresponding edge node

4: end for
5: for each edge nodeeni do
6: Calculate the sparsityki , according toeni .L0

7: Mi ← a ∗ ki ∗ log
�

d∗Ni
ki

+ b


+ c

8: if Mi < Ni then
9: Calculate theCSmeasurement value (denoted as

csdt) based oneni .L0
10: Uploadcsdtto the cloud through a routing tree
11: The decompressed label dataeni .L0 is obtained

by utilizing the BPalgorithm in the cloud
12: else
13: Uploadeni .L0 to the cloud through a routing tree
14: end if
15: end for
16: astgcn_model← model.load(para)
17: for all IoT nodesndi do

18:
ˆd(i)
0 ← astgcn_model.predict(hdt)

19:
ˆL(i)
0 ← value2label

� ˆd(i)
0

�

20: if ˆL(i)
0 �= L(i)

0 then
21: Inform the i-th IoT node of uploading sensory

datad(i)
0

22: hdt ← updata
�
hdt,d(i)

0



23: else

24: hdt ← updata
�

hdt, ˆd(i)
0

�

25: end if
26: end for

data of the i-th IoT node andd(i)
j represents sensory data

of the IoT node at the j-th time slot, which is routed by
the IoT node or computed in the cloud using the predic-
tion model. Without loss of generally, we assumed that the
cloud has unlimited resources to store historical data and
model parameters. Note that everyIoT node maintains a
record in terms of the following vector:ED = 〈dt, label〉,
wheredt represents sensory data at the current time slot,
label represents the category of sensory data at the current
time slot.

(ii) Edge nodes compressing and routing data to the
cloud.

As presented in Algorithm 1, for eachIoT node, sensory
data are encoded into binary category data through the
strategy (as presented in •Sensory data classification and
representationŽ section), which are routed to its corre-
sponding edge node through a routing tree, when sensory
data are sampled at the current time slot (line 1-4). For
each edge network, category data are compressed in the
edge node by using theCS algorithm (as presented in
•Data compression in edge nodesŽ section) and are routed
to the cloud later through the shortest path. In order to
ensure the validity of theCSalgorithm, whether data are
compressed or not is determined by the sparsity of the
data. If the sparsity of the data satisfies a certain condition,
the data are compressed and routed to the cloud. Other-
wise, the data are directly routed to the cloud through a
routing tree (line 5-15).

(iii) Adaptive sample rate adjustment.
In the cloud, sensory data at the current time slot are

forecasted by using the pre-trainedASTGCN model (as
presented in •Data prediction model in the cloudŽ section)
based on historical data. In order to detect whether the
category of forecasted values in the cloud is consistent
with that of actual ones of sensory data, the category of
sensory data needs to be routed to the cloud from edge
networks. Note that forecasted values in the cloud are
encoded to category data by using the same strategy as
IoT nodes of edge networks (line 16-19). If the category of
a forecasted value is different from the category of actual
one of sensory data, the forecasted value can•t be adopted
instead of the actual one. At this time, the cloud notifies
the IoT node to route sensory data at the current time slot
and updates historical data by using the actual one. Oth-
erwise, historical data are updated by using the forecasted
value (line 20-26).

(iv) Calculate energy consumption.
Our energy consumption is calculated by using the

energy model in •Energy modelŽ section, which is mainly
used for transmitting and receiving data in the following
three processes:

• Smart things send a k bits packet to edge nodes and
edge nodes receive the k bits packet.
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• Edge nodes send a k bits packet to one-hop neighbor
nodes and one-hop neighbor nodes receive the k bits
packet.

• IoT nodes send a k bits packet to the cloud but the
cloud receiving the packet is ignored.

The operation presented in Algorithm 1 shows that
the collaboration between the cloud andIoT nodes can
reduce the volume of data that are routed in the networks.
Thereby, it reduces the energy consumed by data trans-
mission and extends the lifetime of the network. When a
forecasted value meets the requirements of certain appli-
cations, sensory data don•t need to be routed to the cloud.
This strategy can reduce the volume of sensory data to be
routed in the network to a large extent, especially when
the accuracy of the prediction model is greatly high in the
cloud.

Implementation and evaluation
The prototype is implemented in the Python programing
language on a laptop with an Intel(R) Core(TM) i7-7700
CPU at 2.80 GHz, 16 GB memory, and 64-bit Windows
operating system. We evaluate our technique on the
real highway traffic datasetPeMSD4 from California,
which is available in (https://doi.org/https://github.
com/wanhuaiyu/ASTGCN/tree/master/data/PEMS04).
The dataset is collected by the CaltransPerformance
MeasurementSystem (PeMS), and 307 IoT nodes are
deployed in the network. IoT nodes gather sensory data
in real time with an interval as five minutes from January
to February 2018, where eachIoT node provides a total of
16,992 sensory data [20].

Environmental settings
An IoT network with 307 IoT nodes and one cloud is dis-
tributed in a geographical area of 100m×100m, whereIoT
nodes are deployed evenly or unevenly with a skewness
degree (e.g. 0%, 10%, 20%) and the cloud is located in the
center (50m, 50m) or boundary (100m, 50m) of the area.

Once anIoT network is deployed, an appropriate radio
transmission range is chosen according toIoT nodes• den-
sity to make sure that the network is connected. Generally,
IoT nodes can be connected to their neighbors within its
radio transmission range. The communication radius is
set to 35m, and the number of clusters is set to 1, 25,
64 in this paper. Note that the number of clusters is 1,
which means that there is no area division in theIoT
network. In the CS algorithm, the number of measure-
ments is calculated according to the following formula:
Mmin = 1.1∗ k ∗ log(3N/ k + 1.7) + 10, whereN refers
to the number ofIoT nodes andk refers to the data•s spar-
sity. Note that the length of category data in [12] is larger
than that in this paper. Therefore, the value ofMmin is
larger and the accuracy of data recovery is also higher. The

parameter settings used in this experiment are shown in
Table3.

Factors affecting performance evaluation
The following factors should be considered to evaluate the
performance and efficiency of our technique.

1) Different data prediction models in the cloud.Intu-
itively, the higher the accuracy of data prediction models
in the cloud is, the smaller the difference between the
predicted value and sensory value is and thus the greater
the probability that sensory values and prediction values
fall into the same data interval is. In this paper, the con-
sistency rate of data means the probability that sensory
values and prediction values fall into the same data inter-
val. Therefore, as the accuracy of data prediction models
increases, the consistency rate of the data is increasing
and the number of sensory data routed to the cloud is
decreasing. In order to investigate the impact of different
data prediction models on our technique, five data pre-
diction models, namelyHA, ARIMA, LSTM, GRU, and
ASTGCN, are respectively adopted in our experiments for
forecasting future sensory data ofIoT nodes.

2) Whether or not the CCS mechanism is applied to
the category data compression in edge nodes.Generally,
there are the spatial-temporal correlations between sen-
sory data, whose category data are sparse in the time
domain. TheCSalgorithm can compress sparse category
data, which reduces the volume of category data routed to
the cloud and thus reduces the energy consumption of the
network to an extent.

Table 3 Experimental parameter setting

Parameter Name Value

Area size 100m ×100m

Number of IoT nodes 307

cloud location (x, y) (50m, 50m); (100m, 50m)

Skewness degree 0%; 10%; 20%

The number of clusters 1; 25; 64

Communication radius 35m

Number of bits of a label 3

The number of bits of a sensory
data

64

Attenuation index of
transmission(n)

2

Energy consumption constants for
transmitting or receiving
electronics (Eelec)

50nJ/bit

Energy consumption constants for
the transmit amplifier (� amp)

0.1nJ/( bit × m2)

Time interval for IoT nodes
detection

5 minutes

https://doi.org/https://github.com/wanhuaiyu/ASTGCN/tree/master/data/PEMS04
https://doi.org/https://github.com/wanhuaiyu/ASTGCN/tree/master/data/PEMS04
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Fig. 3 Impact of different data prediction models in the cloud on energy consumption

3) The different number of clusters in the network.Intu-
itively, the number of clusters affects the distance between
smart things and edge nodes, the distance and the num-
ber of data transferred between edge nodes and the cloud.
In order to study the impact of the number of clusters on
our technique, the number of clusters is set to 1, 25, 64,
respectively.

4) Various skewness degree of the distribution of IoT
nodes.The distribution of IoT nodes affects the distance of
data transmission ofIoT nodes, and thus, affects the total
energy consumption of the network. In order to study the
impact of the distribution of IoT nodes on our technique,
the skewness degree is set to 0%, 10%, 20%, respectively.

5) Different locations of the cloud.Intuitively, the loca-
tion of the cloud affects the distance between edge nodes
and the cloud. In order to study the impact of the loca-
tion of the cloud on our technique, the cloud is located in
(50m, 50m) and (100m, 50m), respectively.

Figure3 represents the comparison of energy consump-
tion when data prediction models areHA, ARIMA, LSTM,
GRU, andASTGCNin the cloud;IoT nodes are evenly and

randomly deployed in the network; the cloud is located
in the center of the area (50m, 50m). As shown in Fig.3,
the energy consumption is decreased when the data pre-
diction model is changed from classical statistical models
(ARIMA and HR) to machine learning models (LSTM
and GRU) and the energy consumption is the lowest
when the data prediction model is theASTGCNmodel in
the cloud. This is due to the fact that machine learning
models (LSTM and GRU) can extract more useful infor-
mation from historical data than classic statistical models
(ARIMA and HR), and they have better prediction accu-
racy than classical statistical models. However, since they
don•t consider the spatial correlation of sensory data, their
prediction accuracy is not as good as that of theASTGCN
model. As shown in Fig.4, the Root MeanSquare Error
(RMSE) of machine learning models is smaller than that of
classical statistical models and theRMSEof the ASTGCN
model is the smallest. Intuitively, the smaller theRMSEof
the data prediction model is, the higher its accuracy is and
the higher the consistency rate of data between the cloud
and edge networks is. As shown in Fig.5, ASTGGNmodel

Fig. 4 RMSE of HA, ARIMA, LSTM, GRU and ASTGCNmodels
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Fig. 5 Consistency rate of data between the cloud and IoT nodes for different data prediction models

outperforms other techniques with the highest consis-
tency rate in the cloud. Therefore, when theASTGCN
model is adopted to forecast data in the cloud, the number
of sensory data transmitted is the least in the network. In
other words, the model is the most energy-efficient.

Figure6 represents the comparison of energy consump-
tion, where the nodes distribution skewness is set to 0%,
10%, and 20%, and the number of clusters is set to 1, 25 and
64. The energy consumption is reduced to a large extent
when the number of clusters changes from 1 to 25. How-
ever, in contrast, the energy consumption is increased to
a small extent when the number of clusters varies from
25 to 64. In fact, when the number of clusters ranges
from 1 to 25, the data routed by edge nodes to the cloud
change from category data to compressed data. There-
fore, the volume of data transmission is greatly reduced,
and the energy consumption of the network is signifi-
cantly reduced. However, when the number of clusters
ranges from 25 to 64, the number of clusters is the main
influencing factor of energy consumption. Specifically, as

the number of clusters increases, the energy is lightly
decreased that is consumed by data transmission between
smart things and edge nodes, while the energy is obvi-
ously increased that is consumed by routing data between
edge nodes and the cloud. This leads to an increase in total
energy consumption.

Besides, Fig.6 shows, as the number of clusters changes,
the changing trend of energy consumption is similar when
the skewness is 0%, 10%, and 20%. This means that our
mechanism is not only suitable for evenly distributed
networks but also unevenly distributed networks. In other
words, it can reduce energy consumption in networks of
different skewness.

Figures6 and 7 present the energy consumption when
the cloud is located in the center and boundary of the
IoT area respectively. The energy consumption of Fig.7 is
much higher than that of Fig.6 with the same skewness
and number of clusters. It implies that the location of the
cloud has a great impact on the total energy consumption.
When the cloud is located in the boundary of theIoT area,

Fig. 6 The effect of skewness and the number of clusters on energy consumption when the cloud is located in the center of the area (50m, 50m).
NoC represents the number of clusters in the IoT network
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in connected and unconnected networks. To prolong the
network lifetime, authors in [5, 31] proposed the tour
planning strategy based on a mobile sink that can achieve
energy efficiency and balance the load of the network.
However, this method increases data delivery time delay
and data loss due to the failure of (or infrequently) vis-
iting some fields. To decrease the time delay, authors in
[4], proposed a new data gathering mechanism by uti-
lizing multiple mobile sinks. This method can improve
energy efficiency and decrease the time delay by the coop-
eration between multiple mobile sinks, no matter when
the network is a small-scale or large-scale network. How-
ever, since the path and trajectory are pre-existing in real
applications, the optimal trajectory under ideal conditions
sometimes can•t be realized, which leads to increases in
energy consumption, delivery delay, and even packet loss
rate. For continuous monitoring applications, this method
is not applicable under strict time constraints and its tight
cost.

Algorithms for data prediction
Data prediction models have gone through three spe-
cial stages: classical statistical models, machine learning
models, and deep learning models. Besides, data predic-
tion models are generally classified into short-term and
long-term data prediction models. The most universal
statistical methods are able to perform well for simple
and short-term prediction. However, they perform poorly
for the complex and long-term spatial-temporal data
prediction.

In IoT networks, it is usually more simple and conve-
nient to collect and store data. Data-driven data predic-
tion methods are used for forecasting data and able to per-
form well on complex data prediction, in which classical
statistical models and machine learning models are two
kinds of representative models [32]. In time series analy-
sis,AutoRegressiveIntegratedMoving Average (ARIMA)
and its variants are one of the most consolidated classical
statistics approaches [33]. Note that these models are lim-
ited by the stationary assumption of time sequences and
fail to take into account the spatial correlation. Therefore,
their accuracy is often not satisfying for the highly nonlin-
ear spatial-temporal data prediction. However, machine
learning methods (such as k-nearest neighbors algo-
rithm [ 34], tree regression [35], neural networks models
[36], etc.), as more complex models, can extract more
useful information from historical data [37], and thus,
their accuracy is higher than that of classical statistical
models.

Compared with machine learning models, deep learn-
ing models have higher accuracy by utilizing the spatial-
temporal correlations of data. Wu and Tan [38] proposed
a novel deep learning architecture to forecast future traffic
flows, where a one-dimensionCNN is adopted to capture

spatial features of traffic data and twoLSTMs are uti-
lized to get the short-term variability and periodicity of
traffic data, which is the first attempt to forecast traf-
fic data by considering the spatial-temporal correlations
of data. However, the normal convolutional operation
limits that data to be processed must be grid data. Yu
and Yin [32] proposed a novel deep learning framework,
namedSpatio-TemporalGraph Convolutional Networks
(STGCN), to solve time series prediction problems in the
field of transportation. It directly implements convolution
operations on graph-structured data to effectively capture
comprehensive spatial-temporal correlations of the data,
which could greatly improve prediction accuracy. But it
doesn•t consider the inherent characteristics of the period-
icity of traffic data in the time dimension. Yu and Yin [20]
proposed a novelASTGCN model, which can simultane-
ously capture the dynamic spatial-temporal correlations,
the spatial patterns, and the temporal features, and thus,
it has high prediction accuracy on the long-term spatial-
temporal data prediction. Therefore, in this paper, it is
used as a data prediction model in the cloud.

Conclusion
This paper proposes an energy-efficient sensory data
gathering mechanism. Specifically, sensory data are
encoded into binary category data inIoT nodes, and
then they are routed to their corresponding edge nodes
through a routing tree. For each edge network, category
data are compressed using theCS algorithm in its edge
node and routed to the cloud through the shortest path
later. In the cloud, sensory data are forecasted by using an
accurate data prediction model. Only when the category
of forecasted values is different significantly from that of
sensory values, dose the cloud notifyIoT nodes to route
their sensory data. Leveraging this mechanism, sensory
data are continuously gathered to support environmen-
tal monitoring. Experimental evaluation shows that this
technique can reduce the energy consumption ofIoT
networks to an extent without lowering the satisfiability
of certain requirements, especially when network envi-
ronments changes frequently and strong spatial-temporal
correlations exist between sensory data.
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