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Abstract

In recent years, computing workloads have shifted from the cloud to the fog, and IoT devices are becoming powerful
enough to run containerized services. While the combination of IoT devices and fog computing has many
advantages, such as increased efficiency, reduced network traffic and better end user experience, the scale and
volatility of the fog and edge also present new problems for service deployment scheduling.
Fog and edge networks contain orders of magnitude more devices than cloud data centers, and they are often less
stable and slower. Additionally, frequent changes in network topology and the number of connected devices are the
norm in edge networks, rather than the exception as in cloud data centers.
This article presents a service scheduling algorithm, labeled “Swirly”, for fog and edge networks containing hundreds
of thousands of devices, which is capable of incorporating changes in network conditions and connected devices.
The theoretical performance is explored, and a model of the behaviour and limits of fog nodes is constructed. An
evaluation of Swirly is performed, showing that it is capable of managing service meshes for at least 300.000 devices
in near real-time.
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Introduction
In recent years, the rise of technologies such as contain-
ers [1] and more recently unikernels [2] has triggered a
wave of research into edge and cloud offloading. This has
resulted in a move from purely cloud-centered service
deployments to fog computing and edge computing [3, 4],
in which services are deployed close to their consumers
instead of in monolithic data centers.
Simultaneously, there has been a move to deploy con-

tainerized services, which in turn often rely on cloud
services, ever closer to consumers such a IoT devices.
Between several initiatives for smart cities [5, 6] and a
rapidly increasing variety of IoT devices, this ensures a
continuing growth of cloud-connected devices.
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While the combination of IoT and fog computing offers
a wide array of advantages, such as improvements in effi-
ciency and user experience, it also exacerbates some of the
service deployment scheduling challenges already present
in the cloud, such as taking network bandwidth, network
reliability and distances between nodes into account.
Instead of being located in centralized data centers, the

fog and edge are spread over a large physical area, con-
taining hundreds of thousands of devices. This means that
network grade and quality can vary by orders of magni-
tude, from DSL lines to fiber optics, while the distances
involved result in much higher latencies between nodes
than in cloud data centers. A widespread and heteroge-
neous network also results in a larger variety of network
conditions and problems. Therefore, a scheduling solution
should not only be able to handle changing network con-
ditions, but also slow or broken lines of communication.
The decentralized nature of the fog and the edge is also
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an important factor. In the cloud, a service can simply be
scaled up if demand suddenly spikes. In the fog however, it
is not always possible or useful to simply scale in place. In
order to minimize access times for the edge and provide
the right amount of capacity for each service, the entire
fog topology must be taken into account. Because of this,
any change in the fog topology can trigger migrations of or
extra service instances, as can edge nodes coming online,
going offline, or moving to a different location.
On the other hand, there are also some challenges that

remain mostly unchanged from cloud deployments. A
deployment scheduler still has to take into account the
limited resources of the nodes it can deploy services on,
whether those are hardware resources (CPU, memory,
network saturation) or calculated load metrics. Further-
more, although the solution should strive for an optimal
placement of service instances in the fog to minimize
access times for consumers, it should do so efficiently by
using a minimal number of service instances. To guaran-
tee a certain level of responsiveness to consumers, one
or more metrics and thresholds can be defined on fog
nodes1, for example latency, uptime, etc.
To summarize, the requirements for a good algorithm

for fog service scheduling are:

• Req. 1 It should work on the scale of hundreds of
thousands of edge devices

• Req. 2 It should be able to handle changing network
conditions and topologies in near real-time

• Req. 3 It must take fog node resource limits and
distance metrics between nodes into account

• Req. 4 It should minimize the number of instances
required for any fog service deployment

This article proposes Swirly as a solution to these
requirements. Swirly is an algorithm that runs in the cloud
or fog, which plans fog service deployment with a mini-
mal number of instances, while optimizing the distance to
edge consumers according to any measurable metric. Fur-
thermore, it can incorporate changes to the network and
topology almost in real-time.
“Related work” section presents existing research

related to optimizing service deployments.
“Swirly” section explains how the proposed algo-
rithm works and how to choose a good metric, while
“Theoretical properties” section analyzes its theoreti-
cal performance and the shape of the resulting service
topologies. In “Evaluation methodology” section, an
evaluation setup and methodology are presented to ver-
ify various performance aspects of the algorithm. The
results of the evaluations are presented and discussed

1A fog node can be a single device or server, or a decentralized micro data
center. Anything that allows the deployment of services outside the cloud
proper.

in “Results” section, with suggestions for future work in
“Future work” section. Finally, “Conclusion” section gives
a short overview of the goals stated in this introduction,
and how the algorithm and its properties meet them.

Related work
Shifting workloads between the cloud and edge hardware
has been extensively researched, with studies on edge
offloading [7], cloud offloading [8], and osmotic comput-
ing [9].
Many strategies exist for fog container deployment

scheduling, ranging from simple but effective resource
requests and grants [10], to using deep learning for alloca-
tion and real-time adjustments [11].
Initial research into fog computing and service schedul-

ing dates from before the concept of the fog, for example
Oppenheimer et al. [12], who studied migrating services
in federated networks over large physical areas. This work
takes into account available resources, network condi-
tions, and the cost of migrating services between locations
in terms of resources and latency.
Zhang et al. [13] present an algorithm for service place-

ment in geographically distributed clouds. Rather than
focusing on resources as such, their algorithm makes
placement decisions based on changing resource pricing
of cloud providers.
Aazam et al. provide a solution for fog data center

resource allocation based on customer type, service prop-
erties and pricing [14], which is also extended to a com-
plete framework for fog resource management [15].
In more recent research, Santos et al. [16] present a

Kubernetes-oriented approach for container deployments
in the fog in the context of Smart Cities. Their solu-
tion is implemented as an extension to the Kubernetes
scheduler and takes network properties of the fog into
account.
Artificial intelligence is also making headway into fog

scheduling research. For example, Canali et al. [17] tackle
fog data preprocessing with a solution based on genetic
algorithms. Their solution distributes data sources in the
fog, whileminimizing communication latency and consid-
ering fog node resources.
Zaker et al. [18] propose a distributed look ahead mech-

anism for cloud resource planning. Rather than provision-
ing more resources to counter network load, they attempt
to optimize bandwidth use through the configuration of
overlay networks. The predictive look ahead part is imple-
mented by using the IBK2 algorithm. This is different
from the approach in this article, which does not consider
network load by itself, and attempts to migrate service
deployments to manage resources.
Finally, Bourhim et al. [19] propose a method of

fog deployment planning that takes into account inter-
container communication. Their goal is to optimize com-
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munication latencies between fog-deployed containers,
which is obtained through a genetic algorithm.
Most of these approaches are centered on the cloud

or small scale fog networks, and use a large number of
parameters to construct an optimal, but static solution. In
some cases, they may also rely on historical data for train-
ing. The algorithm discussed in this article however aims
to quickly construct solutions using an edge-centered
approach, taking into account node resources and generic
heuristic. The speed of the algorithm allows it to process
node updates in near-realtime for fog and edge networks
orders of magnitude larger than those commonly found in
proofs of concept in related work. An additional benefit
is that the heavy lifting of calculating the heuristic value
is offloaded to edge devices, where it has far less impact
due to being spread out. Finally, the solution is meant
for dynamically evolving networks for which historical
training data may be hard or impossible to acquire.

Swirly
Contrary to the fog deployment solutions discussed in the
previous sections, Swirly works under the assumption that
some fog services will be used by most, if not all, devices
in the edge. This allows for a simple but flexible approach
which is very suited to building large service topologies.
Throughout the remainder of this article, a fog network

(including the edge) with frequent changes to its network
and nodes will be referred to as a swirl. This term refers
to the swirly motion which fog makes when it stirs and
moves. Hence the name of the algorithm, Swirly, which
attempts to build an optimal service topology in a swirl.
Additionally, edge nodes are devices at the network edge
which act as consumers of fog services, while fog nodes
are service providers hosting fog services. Therefore, edge
nodes are assigned fog nodes as service providers, or are
serviced by fog nodes. Finally, a (service) topology refers
to the result of the algorithm, in which all edge nodes are
assigned a fog node. When referring to the physical lay-
out of the input nodes, the term node topology is used.
Table 1 defines all the symbols used in algorithms in this
section.
Figure 1 illustrates how Swirly forms a service topol-

ogy from a collection of edge nodes E and fog nodes F.
The algorithm starts with a number of unassigned edge
nodes. It then determines that these nodes are all within
an acceptable distance of two fog nodes, which are initial-
ized and used as service providers. The line indicates how
the service topology is divided between these two nodes.
As more edge nodes join the service topology, it becomes
necessary to initialize the third fog node, further dividing
the service topology. Finally, an edge node pops up which
should be serviced by the green fog node, which is already
full. Therefore, this last edge node is serviced by the blue
fog node.

Table 1 Definitions of symbols used in algorithms 1, 2 and 3

Symbol Definition

E all edge nodes in the service topology

F all fog nodes in the swirl

Ex an edge node in the service topology

|E| the number of items in E

Fx a fog node in the service topology

|F| the number of items in F

e an edge node without a service provider

F(e) fog nodes ordered by distance from e

E(Fx) edge nodes serviced by Fx

A set of active fog nodes

De,f distance between edge node e and fog node f

De distances of edge node e to all fog nodes

d a distance according to the chosen metric

dmax maximum distance between an edge node and fog node

Rx,f current level of resource x on fog node f

RLx,f limit for resource x on fog node f

LLx,f lower limit for resource x on fog node f

RDx default resource x increase for a service client

Figure 2 shows the result of Swirly on a large scale. Edge
nodes have been colored according to the fog node which
acts as their service provider, while fog nodes themselves
are shown as red dots (inactive) or green dots (active).
When Swirly is started, it has a collection of fog nodes

and their available resources. No further information is
needed, apart from an IP address or another effective
method of reaching them.
The rest of this section will describe how the described

functionality is implemented by specific functions of
Swirly. The add operation is meant only to assign a ser-
vice provider to newly detected edge nodes, while the
updatemethod is used to receive updates from edge nodes
and potentially assign them a different service provider.
Finally, the delete method removes nodes from the topol-
ogy altogether. Fog node add, update and delete opera-
tions are also discussed in the relevant sections.
Throughout all these operations a distance met-

ric is required to determine which fog node is the
best service provider for an edge node. The effects
of the choice of a distance metric are discussed in
“Impact of distance metric” section.

Adding new nodes
In order to build a service topology, all edge nodes E that
require a certain service are added to the topology one by
one as per Algorithm 1. Generally, the algorithm attempts
to find the active fog node Fa closest to the given edge
node e using the list of distances De. If successful, the fog
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Fig. 1 Different stages of building a service topology with Swirly

node Fa is assigned to the edge node as service provider.
If there is no active fog node yet (A = ∅), or there is no fog
node with free resources (Fa = ∅), Swirly finds the clos-
est inactive fog node Fi instead. That fog node then gets
activated and assigned as a service provider to the edge
node e. There is a single caveat here; if the closest available
fog node is beyond the maximum distance (De,Fa > dmax
and Fi = Fa), the algorithm has no choice but to assign it
as service provider for an edge node. The support func-
tion ClosestFogNode returns the fog node Fc with free
resources closest to an edge node e. A parameter active
can be supplied to indicate if active only active fog nodes
should be considered.
This operation ensures that Req. 3 and Req. 4 for a

useful deployment scheduler are met within a reasonable
amount of processing time.

Fig. 2 Visualization of a service topology generated by Swirly. Big red dots are inactive fog nodes, big green dots are active fog nodes servicing
nearby edge nodes
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Note that during an add operation, the resource use
Rx,i of the selected fog node is increased by a config-
urable amount. This is to avoid assigning it to too many
edge nodes simultaneously, and is periodically corrected
by updates from the fog nodes containing their actual free
resources.
Adding additional fog nodes to the topology is also

supported, but this does not trigger a reorganization of
currently assigned edge nodes. Rather, newly added fog
nodes will only provide services to edges nodes that are
added or updated after they were initialized.

Node updates
In order to fulfill Req. 2, Swirly must support topol-
ogy updates. As a requirement for these updates,
all edge nodes must periodically report the distances
between them and every fog node to Swirly. Exactly
how they do this is left to implementation, although
some suggestions and their impacts are given in the
next subsection. For this subsection, it is important
to note that these lists of distances to fog nodes
are pre-sorted by increasing distance, so Swirly can
always find the closest fog node in constant time. This
is also the case for the ClosestFogNode function in
Algorithm 1.
To keep a service topology up to date in a swirl, the

algorithm needs operations to update edge nodes (Algo-
rithm 2) and remove them from the service topology
(Algorithm 3).
The Remove operation starts by removing the edge

node e from its fog node Fe. After that, it checks if any
of the resources of the fog node are below the lower
limit, in which case it attempts to move all remaining
edge nodes E(Fe) it services to other nearby fog nodes
by removing them from Fe and calling the Add oper-
ation. This process fails if any edge node Ex would be
assigned a new fog node Falt which is more than the
maximum distance dmax away, unless that is already the
case for the current fog node (DEx,Falt > dmax). To
support reverting this operation in case of failure, each
reassignment is kept in the map altNodes. Upon failure,
the algorithm iterates over each pair Ei, Fi in altNodes,
removing Ei from Fi and reassigning it to Fe. On suc-
cess, the fog node Fe is torn down and removed from the
topology.
The Remove operation makes use of a support method

ClosestFogNodeExcept, which is essentially the same as
the ClosestFogNode method, but the fog node Fexcept can
not be returned as a result.
Note that this process produces the same result as if the

exact subset of nodes that absolutely required a specific
fog node as service provider had never been in the original
set of edge nodes, so it remains consistent with the Add
operation.

The Update operation updates the set of distances of an
edge node e to each fog node in F. In case the new dis-
tance dnew from the edge node to its service provider Fe
increases beyond the maximum distance dmax, the algo-
rithm calls the Remove and Add operations for e, in an
attempt to assign it a better service provider.
Note that the total performance of the update method

is dependent on how efficiently the set of distances can
be updated. However, this can happen in constant time,
which is implicitly assumed in “Processing” section.
The distance metric, combined with the Update and

Remove operations not only enables Swirly to act on topo-
logical changes, but also to implicitly avoid fog nodes
which are experiencing load spikes and network issues.
As with adding fog nodes, fog node updates only change

the available resources for further edge node assignments.
Removing a fog node will attempt to assign new fog
nodes to the edge nodes that depend on it. Reassign-
ing edge nodes if their service provider suddenly runs
out of resources is not currently implemented. Instead,
it can be argued that it is optimal to rebuild the entire
service topology when fog nodes are added or their avail-
able resources change drastically, since these cases require
examining every edge node to find its optimal service
provider considering the new information. Therefore, no
further implementation is needed.

Swirly can not directly detect fog node failures, so it can
not actively react to service availability issues. However, its
design allows for two methods to make it more resilient to
hardware failures. The first is choosing a distance metric
that can reflect imminent node failures, which passively
forces the algorithm to choose more suitable fog nodes
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to host services on, as shown in “Impact of distance met-
ric” section. The second option is to actively remove a fog
node from the algorithm when its failure is detected by
external components. While this method requires some
extra computation, it can react to hardware failures in less
than a second.
So far, this article has not touched on the actions

required to redirect service requests from edge nodes to
the correct fog nodes. While such functionality is beyond
the scope of this article, the network addresses of all nodes
are known, along with the topology generated by Swirly.
Therefore, it should not be overly difficult to propagate
changes to a DNS server, a distributed DNS plugin (e.g. for
Kubernetes), or a webservice on edge nodes that redirects
requests at the source.

Impact of distance metric
While the performance and inner logic of the algorithm
are unaffected by the choice of distance metric between
edge nodes and fog nodes, a goodmetric can improve effi-
ciency and responsiveness to changes. On the other hand,
some of the more useful metrics may cause a lot of pro-
cessing and network overhead between the nodes and the
algorithm. In this section, some ideas are discussed for
useful metrics.
The simplest metric that can be used depends only on

geographical coordinates. While it requires a reasonably
accurate location for each node, it does not usually change
unpredictably or rapidly. The downside of this metric is
that any changes in network or fog node performance
can not be detected in order to avoid availability prob-
lems. The advantage is that the algorithm can keep track
of all node locations by receiving regular updates from
edge nodes, and calculate distances as required. Thus, the
network overhead will be minimal using this approach.
Another possible metric is the latency between edge

nodes and fog nodes. The values of this metric can be
easily measured using the ping command, but this results
in an overhead that grows linearly with both edge nodes
and fog nodes. Additionally, the ping command is often
blocked on servers or routers, in which case it is use-
less. The biggest advantage of this metric is that it can
detect network and fog node issues in real-time, so edge
nodes can be assigned a different fog node as service
provider.
A third metric, which also aims to determine network

latency, uses a very lightweight web service on both edge
nodes and fog nodes to determine the latency between
software service endpoints. The disadvantages of this
approach are that the packet sizes are larger than those
of a simple ping, and that it requires slightly more pro-
cessing time. However, [20] shows that even a reasonably
simple server can easily handle millions such requests per
minute.

The last two metrics require that all edge nodes peri-
odically determine their distance to each fog node, and
report the results to the algorithm so it can adjust the ser-
vice topology. In order to show that this does not result
in an unacceptably high network overhead, the following
numbers have been determined:

• The example assumes 200000 edge nodes, using 200
fog nodes as service providers

• Each edge node will attempt to determine its distance
to fog nodes once every minute

• The size of a ping packet is 56 bytes on Unix
• wget shows that a suitable web service request is 159

bytes and a response is 202 bytes

Using these numbers, each fog node has to process
about 3333 ping requests per second for a total of
1.5Mbps, both incoming and outgoing. In the case of a
webservice, the traffic increases to 4Mbps incoming and
5Mbps outgoing.
Additionally, to avoid overloading nodes that are already

under heavy load and to avoid frequent distance measur-
ing to nodes that are too far away, the frequency can be
reduced by an order of magnitude for fog nodesmore than
two or three times the maximum distance away. For larger
networks, this should reduce total traffic considerably.
However, no concrete numbers for this can be determined
since they are fully dependent on the network topology.
Finally, a quick calculation can determine the network

overhead for the server hosting Swirly using:

T = 8S · |E| · |F|
P

(1)

Where P is the measuring period in seconds and S is the
message size in bytes (15 for IP address + 4 for an integer
number). The result is 98Mbps, which is significant but
not insurmountable. Some actions can be taken to reduce
this number significantly, such as not reporting distances
that have not changed bymore than 30%, unless they cross
the maximum distance. For geographically widespread
topologies, this could likely reduce traffic by an order
of magnitude or more, but again concrete numbers can
not be determined as they rely on the specific network
topology.

Theoretical properties
To fulfill part of Req. 1 put forth in the introduction, this
section discusses the theoretical properties of the algo-
rithm. The processing power and memory requirements
are analyzed in-depth, and for a full understanding of
the output of the algorithm, a theoretical model for the
resulting service topologies is constructed.



Goethals et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:34 Page 7 of 17

Processing
Adding an edge node to the topology can result in several
cases. In all cases, the sorted list of fog node distances for
the edge node is consulted to determine its optimal service
provider at that time.
In the most common case, the selected fog node has

enough free resources for additional service clients, and
the edge node is simply directed to that fog node. The
resulting performance is O(1).
In the worst case, there is a chance that the optimal fog

node is already full and the algorithm has to search for
the next best fog node with free resources. Let there be a
chance p that any node is already full, such that

p = c
|E|
|F| = cLF (2)

where LF is the average load of edge nodes assigned to fog
nodes and c is a constant that normalizes LF . If there are
enough edge nodes E and fog nodes F, then the expected
number of iterations to find a suitable fog node is

r = 1
1 − p

= 1
1 − c |E|

|F|
(3)

and worst case performance is O(1/(1 − |E|/|F|)), with
a maximum of O(|F|) because there can never be more
iterations than there are fog nodes.
Note that both cases depend on the node topology of

the swirl. When there are not enough fog nodes in areas
with a high edge node density, the worst case performance
will occur more often. The influence of the node topology
on performance is further examined under “Generated
topology” section.
Like the Add operation, deleting an edge node has sev-

eral possible cases. In the best case, it is removed from its
fog node for O(1).
In some cases, the fog node will be underutilized after a

remove, so the algorithm attempts to migrate the remain-
ing edge nodes of that fog node to other fog nodes.
Since the utilization threshold is independent of E and
F, this operation is O(1), albeit with an unusually large
impact. This heavy operation is amortized overO(|E|/|F|)
removes and uses the add operation when moving edge
nodes, resulting in a worst case performance of O(F/(1 −
|E|/|F|)).
Finally, the update operation can cause a different fog

node being assigned to an edge node. When this happens,
both a remove and add operation are executed. This can
lead to the worst case scenario for both, in which case per-
formance is O(|F|/(1 − |E|/|F|)). Most updates however
will only be a simple status update for O(1).
Table 2 summarizes the performance for all operations.

Table 2 Summary of algorithm operation complexity. Most
common cases are marked in bold

Best Worst

Add O(1) O(1/(1 − |E|/|F|))
Remove O(1) O(|F|/(1 − |E|/|F|))
Update O(1) O(|F|/(1 − |E|/|F|))

Memory
Swirly requires a number of maps and lists to support the
processing performance described above, but the greatest
impact on memory is that for each edge node, the algo-
rithmmust keep a sorted list of distances to each fog node
in the topology. Therefore, the predictedmemory require-
ment for the node hosting the algorithm isO(|E| · |F|). For
edge nodes, the memory requirement is O(F).

Generated topology
To verify that the algorithm can satisfy the requirements
for a good fog service topology and to identify edge cases
and possible problems, it is important to first construct a
theoretical model of the expected output given the node
topology of the swirl.
While fog and edge networks are intrinsically discrete,

they can be described analytically if they are large and
dense enough. As a first step, the densities of edge nodes
and fog nodes in any network are

ρF = f (x, y), ρE = g(x, y) (4)

where both f and g are functions that give the amount
of nodes per surface area at x, y. While Cartesian coordi-
nates are used here, it would be better to use densities in
the coordinate system that describes distances in the cho-
sen metric. However, the coordinate transformation may
be unknown and impossible to construct, so Cartesian is
used for illustrative purposes.
For the next step, the servicing area of every active fog

node can be modeled using three different parameters:

• aE , circumscribed by rE , is the capacity area of a fog
node, which determines how many edge nodes it can
service based on its capacity Ce

• aF , bounded by rF , is the responsibility area of a fog
node. All edge nodes within this area should be
serviced by the fog node, since it is either the closest
fog node or no other fog node can be used.

• ap, bounded by rp, is the proximity area of a fog node.
All edge nodes within this area are close enough that
they can be serviced by the fog node without going
over the maximum metric value.

In some cases rE , rF and rp will have only a single value,
such as in Fig. 3a. In others, only their maximum value is
relevant, such as in Fig. 3b where rF > rE . In these cases
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Fig. 3 Graphic representation of idealized and realistic fog node service areas

they will be treated as scalars to simplify notation. Other
cases will specifically show them as functions with their
required parameters.
rp can be determined using the following equation,

which in most cases will resemble a circular shape:

rp(x, y) =
√

(x2 + y2),∀x, y : h(x, y) = Mm (5)

or, for a more intuitive approach using polar coordinates,
where r can be substituted for metric distances

rp(θ) = r,∀r : h(r, θ) = Mm (6)

Where h(x, y) gives the distance metric value at any
given location x, y andMm is themaximum distance value.
Note that in both cases, points at various distances from
the origin can be mapped onto the same metric distance,
making a transform back to the original coordinate system
impossible. In the case of certain basic distance met-
rics, in which metric distance between points divided by
their geographical distance is more or less constant, the
equation reduces to

rp = CpMm (7)

rF and rE can be naively described as circle radii using

rF = 1√
πρF

, rE =
√

Ce
πρE

(8)

However, the equation for rE is not accurate when ρE
varies a lot over its entire area. A more accurate solution
would be solving the following equation for r to find rE :∫

2πrρE(r) · dr = Ce (9)

This formula takes into account that only r is known
by measuring the metric distance between nodes and not
θ , so only the integration over r is performed. It is worth
noting that in many cases the density of edge nodes is
relatively constant over most geographical areas that can
be covered by a single (group of) fog node(s), although it

may vary over time. Therefore Eq. 8 can be used if it is
re-evaluated periodically.
Finally, rF is unlikely to vary significantly at the scales

used in this section. When plotted, these three radii
resemble Fig. 3a. Note that rp is quite fuzzy because as
mentioned, h(x, y) can map physically different points
on significantly different values of the distance metric.
Figure 3a represents the ideal case for the relative sizes of
the radii. There are 5 other permutations, all of which can
be problematic for the following reasons:

• If rF > rE , the fog node will not have enough capacity
to handle its entire responsibility area. This means
there are not enough active fog nodes, or they are not
in the right places.

• If rF > rP , the fog node will have to support some
nodes that fall outside its proximity area, so that
some edge nodes will have a greater metric value than
technically allowed. Again, this points to not enough
active fog nodes or erroneously placed fog nodes.

• If rp > rE , the fog node has sufficient capacity to
handle its responsibility area, but can not handle a
changing topology where it has to start servicing
extra edge nodes that fall between rE and rP . This
means the fog nodes are not sufficiently powerful to
support the maximum metric value.

Assuming a basic metric, two requirements for the
proper formation of a fog service network can be con-
structed from these cases by substituting rp, rF and rE with
their definitions from Eqs. 7 and 8:

M2
mρF(x, y) ≥ 1

πC2
p

(10)

CeρF(x, y) ≥ ρE(x, y) (11)

The left sides of these requirements represent the fac-
tors that can be easily controlled or tuned, while the right
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sides represent factors that are unpredictable or unavoid-
able. Since everything in Eq. 10 except ρF(x, y) is con-
stant under the assumptions, it can be used to determine
a proper minimum value for ρF , with Eq. 11 indicat-
ing where more fog nodes or better hardware should be
provided.
A final topic of discussion concerns the shape of aF . In

reality, rF will not be a single number describing the radius
of a circle. Because the algorithm attempts to assign edge
nodes their closest fog node, the responsibility area of fog
nodes will look like pieces of a Voronoi diagram. This
effect is also visible in Figs. 1c and 2. As Fig. 3b shows, it
is possible that the responsibility area aF has sections that
lie outside ap or aE . The algorithm only allows sections
outside ap when there is no closer fog node, and it never
allows sections outside aE , even if there is no alternative.
In general, it will attempt to create responsibility areas as
shown in Fig. 3c.
Note that the shapes of aF depend entirely on the node

topology of the swirl and the amount of required fog nodes
to service all edge nodes, so any further discussion of the
service topology is reserved for the results section.

Evaluationmethodology
To fully verify that Swirly fulfills the Req. 1, its per-
formance must be evaluated. This chapter describes the
physical hardware setup used to evaluate Swirly, as well as
implementation details for the evaluated version. It also
details how the theoretical model constructed in the pre-
vious section can be evaluated and validated, and how to
determine the practical performance of the algorithm.
Swirly is evaluated on a single machine with 48GiB

RAM and a Xeon E5-2650 CPU at 2.6GHz. In all cases,
the algorithm is the only process running apart from the
operating system. Each evaluation was run with 50000
to 400000 edge nodes in steps of 50000, and 50 to 550
fog nodes in steps of 50. However, because the algo-
rithm considers resource limitations, some results series
start at a higher number of fog nodes. For example, it
is not possible to service 300000 edge nodes with less
than 400 fog nodes. For every parameter set, 20 itera-
tions of Swirly are run on a uniquely generated swirl.
The maximum distance between edge nodes and fog
nodes is set to 100. It is entirely possible that edge
nodes are generated which do not have a fog node
within the maximum distance, so the evaluations and
results are entirely focused on average distance as an
indicator.

Algorithm implementation
The topology visualization in Fig. 2 was made with a
.NET implementation of Swirly. For the evaluations in
this section, Swirly is implemented in Golang. Because
the goal is to measure the impact of the algorithm

itself, there are no integrations with any sort of DNS or
service/container scheduling software.
Edge nodes and fog nodes are generated randomly over

an area of 1200 by 800 “units”. In order to simulate urban-
ized areas, edge nodes are generated in circles of varying
sizes, which are slightly denser in the center. These cir-
cles may overlap and often form more complex shapes,
as in Fig. 2. Fog nodes are generated without regard for
edge node density, to evaluate the ability of Swirly to pick
exactly the right nodes to service any area. The chosen dis-
tance metric is latency. For simplicity, latency is defined
so that one unit generally equals 1ms. However, because
latency is inherently fuzzy, this distance is randomized
between 80% and 120% of the unit distance.
Because the sets of generated nodes are completely ran-

domized, some cases will work well with Swirly and others
will be adversarial. A range of possibilities is explored and
discussed in “Results” section.
The Golang implementation of Swirly and the evalua-

tion code are made available on Github2.

Processing time
To accurately measure the exact time it takes Swirly to
perform operations, a swirl is generated up front and the
Golang time library is used to determine how long an
operation using that swirl takes. For the add operation,
the evaluation measures how long it takes to build an
entire service topology from scratch, which is then aver-
aged to the time it would take to add 10000 nodes. For the
remove operation, it is simply measured how long it takes
to remove 10000 nodes from a completed service topol-
ogy. The performance of the update operation ismeasured
similarly to the delete operation. 10000 nodes are physi-
cally moved far away from their original fog node and it is
measured how long it takes the algorithm to assign them
another one.

Memory requirement
The evaluation of memory requirement starts with having
Swirly build a service topology from a swirl with a certain
amount of nodes. Memory consumption is then read from
/proc/< pid >/statm and printed to stdout, where it is
collected by a batch script.

Topology efficiency
Throughout the processing evaluations, some statistics
are kept on how many fog nodes are required to build
any service topology and what the minimum, average and
maximum distances between edge nodes and fog nodes
are. These statistics are used to attempt to determine
how close Swirly comes to constructing a perfect service
topology. Using edge node to fog node distances, Swirly

2https://github.com/togoetha/swirly

https://github.com/togoetha/swirly
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is compared to a random selection of fog nodes (e.g. the
default Kubernetes scheduler [21, 22]), and to the best
possible theoretical solution if fog node resources are infi-
nite. Additionally, the amount of fog nodes used by Swirly
is compared to an optimal solution where each fog node
is exactly at maximum capacity, although admittedly this
optimal solution would not have any space left for extra
nodes or unexpected load. Finally, two extreme topology
types are compared to see how Swirly reacts to certain
geographical features. The first is a perfectly equal distri-
bution of edge nodes, while in the second the edge nodes
are split into 4 circular, non-overlapping clusters, one in
each corner of the topology.

Results
This section contains the results for the evaluations
described in “Evaluation methodology” section, along
with a discussion of the results. Most charts have whiskers
to indicate extreme values, but in some cases they have
been cut off to keep the charts readable.

Processing
Figure 4 shows the average time required to add 10000
nodes of swirls of various sizes to a service topology.
The results mostly adhere to the computational complex-
ity calculated in “Processing” section. As the number of
edge nodes increases the operation gets slower, and it
gets faster again with more fog nodes available, eventually

leveling out at a constant time per edge node. However,
for higher numbers of edge nodes the constant time never
quite reaches that of smaller topologies, putting real per-
formance somewhere between the best and worst cases,
increasing sublinearly with the amount of edge nodes.
It should be noted that ρE is an important factor here;

if the physical size of the swirl were to expand with the
number of edge nodes, the time required would remain
almost constant. In terms of the model constructed in
“Generated topology” section, this is because rE shrinks
as edge node density increases but rp and aF remain the
same, so eventually rE will become smaller than rp and aF .
This means the fog nodes no longer have enough capac-
ity to handle their service areas properly, so the algorithm
requires ever more time to find a suitable fog node.
The result of this is that Swirly is suitable for construct-

ing large service topologies, but it requires a large amount
of high capacity fog nodes in densely populated areas to
keep performance up.
Finally, the whiskers indicate that depending on the

node topology of the swirl, the time required to add edge
nodes can vary from 50% to 300% of the average with a
high |E|/|F| ratio, but it stabilizes as the number of fog
nodes increases.
Figure 5 shows the time required to remove 10000

edge nodes from service topologies of various sizes. The
performance of this operation is almost ideal, showing a
slight decrease with the number of fog nodes and only

Fig. 4 Time required to add 10000 edge nodes to service topologies of varying sizes. Legend numbers represent thousands of edge nodes
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Fig. 5 Time required to remove 10000 edge nodes from service topologies of varying sizes. Legend numbers represent thousands of edge nodes

marginally increasing with the number of edge nodes.
Since the edge node density effect is also present here, the
results imply that individual remove operations only rarely
trigger a worst case performance scenario.
As with the add operation, performance can vary wildly

from around 50% to 200% of the average.
The performance of the update operation is shown in

Fig. 6. Again, this mostly adheres with the theoretical
performance, which is the sum of the delete and add
operations. The relatively constant performance of the
delete operation reduces the curves of the add operation,
resulting in a mostly constant time to update edge nodes.
However, the performance features of the add operation
still apply, as performance decreases slightly with edge
node density, and addingmore fog nodes improves perfor-
mance up to a certain point. Note that the update method
is forced into worst-case behaviour for this evaluation;
every edge node is moved to another fog node, whereas
in reality this will not always be the case and performance
will be more constant. Finally, the numbers of Fig. 6 are
not exactly the sum of the add and delete operations, but
this is due to certain effects of the evaluation code which
can not be subtracted from the measured time.
Predicting a maximum number of devices from these

numbers is difficult, since the amount of required node
updates in a real-life topology depends on many factors,
for example the volatility of the clients, choice of distance

metric and update period. Under the extreme condi-
tions that an update is sent by every node every second,
and extrapolating from the results, a maximum num-
ber of nodes around 200.000 to 300.000 edge nodes can
be supported when running single-threaded on the test
hardware.

Memory
The memory requirements of Swirly are shown in Fig. 7
for swirls of varying sizes. The first observation here
is that memory use jumps up in distinct steps here.
This is caused by the specific implementation of the
algorithm in Golang. Golang arrays and maps double
in size each time they reach their full capacity, and
for each edge node the algorithm keeps a list of dis-
tances to fog nodes. Therefore, all these maps double
in size at the exact same time, causing the jumps in
the chart.
Apart from this peculiar effect, memory use adheres

perfectly to the theoretical predictions, and despite the
randomly generated swirls there is almost no difference in
memory use between iterations.
Considering these results, the product of the number of

edge and fog nodes should remain below 1.500.000.000 on
a common cloud server with 64GiBmemory. For example,
1.000.000 edge nodes can be assigned to 1.500 fog nodes,
or 3.000.000 edge nodes to 500 fog nodes.
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Fig. 6 Time required to move 10000 edge nodes to another fog node in service topologies of varying sizes. Legend numbers represent thousands
of edge nodes

Fig. 7Memory required for service topologies of varying sizes. Legend numbers represent thousands of edge nodes
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Topology
Figure 8 compares the average edge to fog distances of
topologies generated by Swirly (100k, 150k) to theoreti-
cally ideal service topologies (100kmin, 150kmin) and ser-
vice topologies achieved by choosing fog nodes at random
(e.g. Kubernetes scheduler, 100krnd, 150krnd). The ideal
topologies do not consider resource use on fog nodes,
therefore they can never really be achieved. However,
since calculating actual ideal solutions is NP-hard, this is
the only comparison which can be practically achieved.
The random topologies are achieved by selecting the same
number of fog nodes required by each iteration of Swirly,
but at random.
For low numbers of fog nodes, and thus a high |E|/|F|

ratio, the output of Swirly is very close to randomized
topologies, but still below it. This is because the algorithm
has very little choice of fog nodes; most of them have to be
used due to resource constraints and only about 10% are
free to optimize the topology. This is further elaborated
by Fig. 9. As the number of available fog nodes increases,
Swirly starts to generate topologies that come closer to the
ideal cases, but it eventually levels out at about twice the
average distance of the theoretical ideal topologies.
Note that the 150k series topologies, despite a 50%

increase in edge nodes over the 100k series, eventu-
ally have average distances which are only about 1-2%
higher, which is neglegible considering the range of the

whiskers. The average distances of Swirly topologies are
twice as high as those of the ideal cases, apart from the
case of 150 fog nodes, likely indicating that they can-
not be reduced much further without removing fog node
resource requirements.
A final observation concerns the maximum distance,

which was set at 100. Swirly clearly struggles to stay below
it when the |E|/|F| ratio is high, and even fails at times.
However, as the number of edge nodes increases, even the
worst topologies generated by the algorithm have average
distances well below the maximum distance. On aver-
age, the random topologies have average distances slightly
above the maximum distance, and even the best random
topologies barely outperform the worst Swirly topologies.
The observed results can be explained through the

model of servicing areas. In cases where there are few fog
nodes, aF will have sections beyond rP and possibly rE for
most fog nodes, which means they have to service a lot of
edge nodes that are technically too far away, as in Fig. 3b.
As the number of fog nodes increases, aF will grow smaller
since the physical area remains constant, reducing aver-
age distance by removing the extremes. Figure 3c is an
example of this.
Finally, Fig. 9 shows the number of fog nodes used by

Swirly topologies compared to the absolute minimum of
fog nodes that could be used. It is important to note
that these numbers are averaged over all topologies with

Fig. 8 Average distance for different types of service topologies. Legend numbers represent thousands of edge nodes, min denotes theoretical
ideal service topologies, while rnd indicates service topologies where the fog nodes are randomly chosen
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Fig. 9 Number of fog nodes activated by varying number of edge nodes

the same number of edge nodes, but with varying num-
bers of fog nodes. This indicates that even if Swirly has
more choice of fog nodes, it primarily tries to fill acti-
vated fog nodes to capacity first, and uses very few to
optimize edge to fog distances when needed. On average,
Swirly uses about 30% to 10% more nodes than strictly
required, leaving some fog nodes with free capacity in case
the topology expands. This confirms that Swirly fulfills the
fourth requirement for a useful service scheduler.
Again, this can be explained in terms of the service area

model. Swirly will always attempt to generate a topology
in which fog nodes have responsibility areas as shown
in Fig. 3c. Once aF fits inside rp and rE is unchanged,
Swirly will not activate anymore fog nodes, nomatter how
many are available. However, if the algorithm has more
fog nodes available from the start, it will construct slightly
better service topologies by activating the ones closest to
larger clusters of edge nodes. The rise in fog nodes seen
in Fig. 9 is the result of rE reducing as the number of
edge nodes increases, and Swirly reacting by activating fog
nodes to shrink aF .
Figure 10 shows how Swirly performs with physical

topologies with different organizations. The tendency of
the add operation to be slower when |E|/|F| is higher is
exaggerated when edge nodes are clustered together in
remote groups, whereas the effect is all but gone in a per-
fectly equal distribution. With few available fog nodes, it

takes 2.5 times as long to set up a service topology when
edge nodes are clustered as it does with an equal distribu-
tion of edge nodes. This can be mostly attributed to the
fact that the fog nodes distribution was not modified and
thus Swirly has to search longer to find suitable fog nodes
once the nearby ones are full. However, when both types
of physical topology are given an unnecessarily high num-
ber of fog nodes, Swirly still needs about 40%more time to
set up a service topology with clustered edge nodes. This
confirms, as indicated by Eqs. 10 and 11, that overall per-
formance is significantly impacted not only by global node
density, but also by local node density.

Future work
The presented Swirly algorithm could easily be adapted to
work with the Kubernetes scheduler by managing fog ser-
vice deployments through the Kubernetes API. In order
to redirect service requests to the correct fog nodes, it
could interact with distributed DNS plugins deployed on
the cluster, override them, or deploy a separate system.
When implementing Swirly for a specific orchestra-

tor, it may be advantageous to split the data structures
so that topologies for several services can be generated
from the same nodes and distance data. With minimal
changes, it is possible to keep track of which services
should be deployed to any fog node, based on edge node
requirements.
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Fig. 10 Effect of equal distribution of edge nodes versus clustered edge nodes in a topology with 100.000 edge nodes. In the clustered series, edge
nodes are distributed over 4 equally sized circles at the corners of the topology

Swirly does not yet fully support dynamic fog node
updates. When fog nodes send updates to Swirly with
their free resources, the algorithm only uses this to
determine if edge nodes can be placed on those fog
nodes in the future. Ideally, the algorithm would act on
the resource updates by detecting critically low levels
of free resources on certain fog nodes and reassigning
edge nodes.
The results section shows that while Swirly scales very

well in terms of processing time, its memory requirements
will quickly grow beyond the reach of all but the most
powerful servers. Since the algorithm relies on having a
distance from each edge node to each fog node, there is no
easy solution to this. However, geofencing or some type
of partitioning may be able to help. In “Swirly” section
some options were discussed to reduce the required
bandwidth of periodic node updates to Swirly. If this
mechanism is changed to cut off fog nodes altogether
based on metric distance or geographical distance, mem-
ory requirements should go down drastically. Another
option is to simply split the topology into parts based
on logical or geographical regions, but this may result
in a significantly worse result at the borders between
partitions.
For these reasons, it may be better to switch to a fully

distributed approach, in which the cloud algorithm is
eliminated and each edge node becomes responsible for
finding its own optimal service provider.

Conclusion
In the introduction, a number of requirements are pre-
sented for a useful large-scale fog service scheduler. It
should work on a scale of hundreds of thousands of
edge devices while being able to handle changing network
conditions on topologies. Simultaneously, it should take
resource limits of fog nodes and distance metrics between
fog nodes and edge nodes into account. Finally, it must
also minimize the number of fog nodes required for any
fog service deployment required by a set of edge nodes.
Swirly is proposed as a solution to these requirements,

and “Swirly” and “Theoretical properties” sections show
that it fulfills these requirements in theory. Different met-
rics are discussed, along with their advantages and dis-
advantages in terms of network overhead and reliability.
The theoretical performance of Swirly is explored, and
the fog servicing area model is constructed to explain the
behaviour and capacity of fog nodes in a service topology.
To verify its performance, Swirly is evaluated in terms

of memory use and processing power. While the results
mostly confirm the theoretical performance, they showed
that the algorithm tends to slow down sublinearly as the
density of edge nodes increases. This effect is explained
through the service area model. An important prediction
is that for service topologies that grow in physical size
rather than density, Swirly will require constant process-
ing time. If edge node density does increase, fog node
density and algorithm parameters need to change as well.
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As discussed, the upper limit for the amount of nodes will
most likely be dictated by memory consumption.
Further evaluations show that service topologies gen-

erated by Swirly converge towards a minimal average
distance between edge nodes and fog nodes, which is
well below the defined maximum value the algorithm
needs to consider. Furthermore, the results show that
average distances under Swirly are 30% to 55% lower than
for randomly selected fog nodes (e.g. the default Kuber-
netes scheduler). While solutions based on heuristics (e.g.
genetic algorithms) are likely to generate better solutions,
they will also require more time to do so, and they do not
allow for real-time updates.
Some topics for future work are discussed, for exam-

ple better metrics, reducing metric network overhead,
and reducing memory use. It is likely that a distributed
approach to Swirly would be the best solution to tackle the
last two challenges.
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