
Journal of Cloud Computing:
Advances, Systems and Applications

Nelson et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:44
https://doi.org/10.1186/s13677-020-00191-w

RESEARCH Open Access

Parallel acceleration of CPU and GPU
range queries over large data sets
Mitchell Nelson1†, Zachary Sorenson1†, Joseph M. Myre1†, Jason Sawin1*† and David Chiu2†

Abstract

Data management systems commonly use bitmap indices to increase the efficiency of querying scientific data.
Bitmaps are usually highly compressible and can be queried directly using fast hardware-supported bitwise logical
operations. The processing of bitmap queries is inherently parallel in structure, which suggests they could benefit from
concurrent computer systems. In particular, bitmap-range queries offer a highly parallel computational problem, and
the hardware features of graphics processing units (GPUs) offer an alluring platform for accelerating their execution.
In this paper, we present four GPU algorithms and two CPU-based algorithms for the parallel execution of bitmap-
range queries. We show that in 98.8% of our tests, using real and synthetic data, the GPU algorithms greatly outperform
the parallel CPU algorithms. For these tests, the GPU algorithms provide up to 54.1× speedup and an average
speedup of 11.5× over the parallel CPU algorithms. In addition to enhancing performance, augmenting traditional
bitmap query systems with GPUs to offload bitmap query processing allows the CPU to process other requests.

Keywords: Bitmap indices, WAH compression, Range queries, GPU

Introduction
Contemporary applications are generating a staggering
amount of data. For example, the Square Kilometre Array
Pathfinders are a collection of radio telescopes can gen-
erate 70 PB per year [1]. Efficient querying of massive
data repositories relies on advanced indexing techniques
that can make full use of modern computing hardware.
Though many indexing options exist, bitmap indices in
particular are commonly used for read-only scientific data
[2, 3]. A bitmap index produces a coarse representation of
the data in the form of a binary matrix. This representa-
tion has two significant advantages: it can be compressed
using run-length encoding and it can be queried directly
using fast primitive CPU logic operations. This paper
explores algorithmic designs that enable common bitmap-
index queries to execute on computational accelerators,
graphics processing units (GPUs), in particular.

*Correspondence: jason.sawin@stthomas.edu
†Mitchell Nelson, Zachary Sorenson, Joseph M. Myre, Jason Sawin and David
Chiu contributed equally to this work.
1Department of Computer and Information Sciences, University of St. Thomas,
2115 Summit Ave., 55105 Saint Paul, Minnesota, USA
Full list of author information is available at the end of the article

A bitmap index is created by discretizing a relation’s
attributes into a series of bins that represent either value
ranges or distinct values. Consider the example shown
in Table 1. The Produce relation records the quantity of
particular fruits available at a market. A potential bitmap
index that could be built from Produce is shown below it.
The f bitmap bins under the Fruit attribute represent the
distinct fruit items that can be referred to in the relation: f0
encodesApple, f1 representsOrange, and so on.Where the
f bins represent discrete values, the q bins underQuantity
represent value ranges. Specifically, q0 represents [0, 100),
q1 is [100, 200), q2 is [200, 300), q3 is [300, 400), and q4
is [400,∞). Each row in the bitmap represents a tuple
from the relation. The specific bit pattern of each row in
the bitmap is generated by analyzing the attributes of the
corresponding tuple. For each attribute in a tuple, a value
of 1 is placed in the bin that encodes that value and a
value of 0 is placed in the remaining bins for that attribute.
For example, consider tuple t1 from Produce. Its Fruit
attribute is Apple, so a 1 is placed in f0 and the remaining f
bins in that row are assigned a 0. TheQuantity of t1 is 548,

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00191-w&domain=pdf
http://orcid.org/0000-0003-0022-6192
mailto: jason.sawin@stthomas.edu
http://creativecommons.org/licenses/by/4.0/

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 2 of 21

Table 1 Example relation and corresponding bitmap

Produce

ID Fruit Quantity

t1 Apple 548

t2 Orange 233

t3 Kiwi 257

t4 Durian 3

Bitmap of Produce

ID Fruit Quantity

f0 f1 f2 f3 q0 q1 q2 q3 q4

t1 1 0 0 0 0 0 0 0 1

t2 0 1 0 0 0 0 1 0 0

t3 0 0 1 0 0 0 1 0 0

t4 0 0 0 1 1 0 0 0 0

this value falls into the [400,∞) range represented by bin
q4, so that bin is assigned a 1 and all other q bins get a 0.
Bitmap indices are typically sparse, which makes them

amenable to compression using hybrid run-length encod-
ing schemes. Numerous such schemes have been devel-
oped (e.g. [4–8]), and among these, one of the most
prominent is theWord-Aligned Hybrid code (WAH) [9]. It
has been shown that WAH can compress a bitmap to just
a small fraction of its original size [10].
One major benefit of bitmap indices is that they can

be queried directly, greatly reducing the number of tuples
that must be retrieved from disk. Considering the exam-
ple from Table 1, suppose a user executes a range query of
the form:
SELECT * FROM Produce

WHERE Quantity >= 100;

This query can be processed by executing the following
bitmap formula q1 ∨ q2 ∨ q3 ∨ q4 = r where r is the result
column of a bitwise OR between the q1, q2, q3, and q4
bins. Every row in r that contains a 1 corresponds with a
tuple in Produce that has aQuantity in the desired range.
Moreover, a WAH compressed bitmap can be queried
directly without first being decompressed in a very similar
manner.
Notice that the above range query example could easily

be executed in parallel. For example, one process could be
execute r1 = q1 ∨ q3, another could perform r2 = q2 ∨ q4,
and the final result could be computed by r = r1 ∨ r2. It
is clear that the more bins that are needed to be processed
to answer a range query, the more speedup a parallel
approach could realize. This describes a classic parallel
reduction, requiring log2(n) rounds to obtain a result.
In the past decade, the applicability of graphics pro-

cessing units (GPUs) has expanded beyond graphics to

general-purpose computing. GPUs are massively paral-
lel computational accelerators that augment the capabil-
ities of traditional computing systems. For example, an
NVIDIA Titan X GPU is capable of executing 57,344 con-
current threads. Coupled with high-bandwidth memory,
GPUs are a natural fit for throughput focused parallel
computing and may be able to increase the efficiency of
data management systems. Previous works have shown
that WAH-style compression, decompression, and point
queries can be processed efficiently on GPUs [11, 12]. We
have built upon these efforts to create several algorithms
exploiting various GPU architectural features to accelerate
WAH range query processing [13].
The specific contributions of this paper are:

• We present two parallel CPU algorithms and four
parallel GPU algorithms for executing WAH range
queries.

• We present refinements to the GPU algorithms that
exploit hardware features to improve performance.

• We present an empirical study on both real-world
and synthetic data. The results of our study show:

– The highest performing parallel CPU
algorithm provides an average of 2.18×
speedup over the alternative parallel CPU
algorithm.

– The GPU algorithms are capable of
outperforming the CPU algorithms by up to
54.1× and by 11.5× on average.

– When compared to only the best performing
CPU tests, the GPU algorithms still provide up
to 5.64× speedup for queries of 64 bins and
6.44× for queries of 4, 8, 16, 32, and 64 bins.

The remainder of the paper is organized as follows. We
provide overviews of WAH algorithms and GPUs as com-
putational accelerators in the “Background” section. We
describe our parallelWAH query algorithms in the “Paral-
lel range queries” section. Our experimental methodol-
ogy is presented in the “Evaluation methodology” section.
The “Results” section presents the results of our empir-
ical study with discussion in the “Discussion of results”
section. We describe related works in the “Related work”
section before presenting conclusions and plans for future
work in the “Conclusion and future work” section.

Background
Word-Aligned hybrid compression (WAH)
WAH compresses bitmap bins (bit vectors) individu-
ally. During compression, WAH chunks a bit vector into
groups of 63 consecutive bits. Figure 1 shows an exam-
ple bit vector. This vector consists of 189 bits, implying
the relation it is taken from contained that many tuples.
In the example, the first chunk contains both ones and

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 3 of 21

Fig. 1 An example of WAH compression using one literal and two fills

zeros, making it heterogeneous. The last two chunks are
homogeneous, containing only zeros.
Heterogeneous chunks are encoded in WAH literal

atoms. For efficient query processing,WAH atoms are tai-
lored to the system word size. Literal atoms have the form
(flag, lit), where the most-significant-bit (MSB) or flag is
set to 0, indicating the atom is a literal. The remaining 63
bits, lit, record verbatim the heterogeneous chunk of the
original bit vector.
WAH groups sequences of homogeneous chunks and

encodes them in fill atoms. Fill atoms have the form
(flag, value, len). The flag, or MSB, is set to 1 designat-
ing the atom as a fill. The second-MSB is value and
records the value of the run being encoded: 1s or 0s. The
remaining 62 bits are len, which records the number of
homogeneous chunks that have been clustered together.
In Fig. 1, the last two chunks are homogeneous, so they
are grouped into a fill. The chunks are a run of 0’s so the
value bit is set to 0 and len is set to two since the group is
made of two chunks.
One of the advantages of WAH is that the compressed

bit vectors can be queried directly without decompres-
sion. For example, let X and Y be compressed bit vectors
and Z = X ◦ Y where ◦ is a bitwise logical operation,
and Z is the resulting bit vector. The standard query algo-
rithm for compressed bit vectors treats X and Y as stacks
of atoms. Processing starts by popping the first atom off
each vector. The atoms are then analyzed until they are
fully processed, or exhausted.When an atom is exhausted,
the next atom from that vector is popped.
There are three possible atom-type pairings during pro-

cessing:
1 (literal,literal): Let ai and aj be the current literals

being processed from X and Y respectively. In this
case, a result literal atom is added to Z, where

Z.result.lit = X.ai.lit ◦ Y .aj.lit.
After this operation, a new atom is popped from both
X and Y as both operand literal atoms have been
exhausted.

2 (fill,fill): In this case, a fill atom result is added to Z
of the form,
Z.result.value = X.ai.value ◦ Y .aj.value and
Z.result.len = Min(X.ai.len,Y .aj.len).
Processing fills produces side effects for the operand
atoms. Specifically,
ai.len = ai.len − result.len and
aj.len = aj.len − result.len.
This will exhaust the atom with the shorter len or
both if they are the same.

3 (fill,literal): in this case result is a literal. Assume
X.ai is the fill word. If X.ai.value is 1 then
Z.result.lit = Y .aj.lit, else Z.result.lit = 0. This will
exhaust Y .aj and result in X.ai.len = X.ai.len − 1.

When applied to bit-vector pairs, the above approach
handles point queries. This can easily be extended to apply
to range queries. Range queries seek tuples with values
that fall between an upper and lower bound. A bitmap
index can be used to process such queries in the follow-
ing manner: R = A1 ∨ A2 ∨ ...An where Ai is a bitmap
bin that encodes attributes within the desired range. The
resulting bit vector Rwill indicate the tuples that should be
retrieved from disk. A simple iterative algorithm is often
employed to solve range queries. First R is initialized toA1,
then R ← R ∨ Aj is repeated for all j such that 2 ≤ j ≤ n.

Graphics processing units (GPUs)
Using NVIDIA’s compute unified device architecture
(CUDA) programming platform for GPUs, thousands of

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 4 of 21

threads can be organized into 1-, 2-, or 3-dimensional
Cartesian structures. This layout naturally maps to many
computational problems. Hierarchically, these structures
comprise thread grids, thread blocks, and threads as
shown in Fig. 2. Threads are executed in groups of 32,
ergo, thread blocks are typically composed of 32m threads,
where m is a positive integer. These groups of 32 threads
are known as warps.
The NVIDIA GPUs memory hierarchy is closely linked

to its organization of threads. The memory hierarchy is
composed of global, shared, and local memory. Global
memory is accessible to all threads. Each thread block
has private access to its own low-latency shared mem-
ory (∼ 100× less than global memory latency) [14]. Each
thread also has its own private local memory.
To fully realize high-bandwidth transfers from global

memory, it is critical to coalesce global-memory accesses.
For a global memory access to be coalesced, it must meet
two criteria: 1) the memory addresses being accessed
are sequential and 2) the memory addresses span the
addresses 32n to 32n + 31, for some integer, n. Coalesced
global memory accesses allow the GPU to batch mem-
ory transactions in order to minimize the total number of
memory transfers.
A classic challenge to ensuring high computational

throughput on a CUDA capable GPU is warp divergence
(sometimes called thread divergence). Warp divergence
is a phenomenon that occurs when threads within the
same warp resolve a branching instruction (commonly
stemming from loops or if-else statements) to different
outcomes. At an architectural level, CUDA GPUs require
all threads within a warp to follow the same execution
pathway. When warp divergence occurs, a CUDA GPU
will execute the multiple execution pathways present in
the warp serially. This makes it important to minimize the
amount of branching instructions in a CUDA program
as the loss in computational throughput can significantly
reduce performance (as seen in [15, 16]).

Parallel range queries
In the “Word-Aligned hybrid compression (WAH)”

section we briefly described how a range query of the
form A1 ∨ . . . ∨ An, where Ai is a bitmap bin can be
solved iteratively. However, the same problem could be
solved in parallel by exploiting independent operations.
For example, R1 = A1 ∨ A2 and R2 = A3 ∨ A4 could be
solved simultaneously. An additional step of R1∨R2 would
yield the final result. This pattern of processing is called
a parallel reduction. Such a reduction transforms a serial
O(n) time process to a O(log n) algorithm, where n is the
number of bins in the query.
Further potential for parallel processing arises from the

fact that row operations are independent of one another
(e.g., the reduction along rowi is independent of the

reduction along rowi+1). In actuality, independent pro-
cessing of rows in compressed bitmaps is very challeng-
ing. The difficulty comes from the variable compression
achieved by fill atoms. In the sequential-query algorithm
this is not a problem as compressed bit vectors are treated
like stacks, where only the top atom on the stack is pro-
cessed and only after all of the represented rows have been
exhausted is it removed from the stack. This approach
ensures row alignment.Without additional information, it
would be impossible to exploit row independence. When
selecting an atom in themiddle of a compressed bit vector,
its row number cannot be known without first examining
the preceding atoms to account for the number of rows
compressed in fills.
In the remainder of this section, we present parallel

algorithms for processingWAH range queries using GPUs
and multi-core CPUs.

GPU decompression strategy
All of our GPU-based range query algorithms rely on the
same preparations stage. In this stage, the CPU sends
compressed columns to the GPU. As concluded in [12],
it is a natural decision to decompress bitmaps on GPUs
when executing queries as it reduces the communication
costs between CPU and GPU. Once the GPU obtains the
compressed columns, it decompresses them in parallel
using Algorithm 1. Once decompressed, the bit vectors
involved in the query are word-aligned. This alignment
makes the bitwise operation on two bit vectors embarrass-
ingly parallel and an excellent fit for the massively parallel
nature of GPUs.

Algorithm 1 Parallel column decompression
1: procedure DECOMPRESSION(Cols)
2: � Cols is a collection of compressed bit vectors
3: for all C ∈ Cols in parallel do
4: dCols ← dCols

⋃
Decomp(C,C_size,C_

decomp_size)
5: end for
6: return dCols
7: end procedure

The procedure Decompression (Algorithm 1) takes, as
input, a set of compressed bit vectors, Cols. This is the set
of bins that have been identified as necessary to answer
a range query. Decompression processes each bit vector
in Cols in parallel, sending each of them to the Decomp
function. Ultimately, Decompression returns a set of fully
decompressed bit vectors.
The Decomp procedure (Algorithm 2) is a slightly mod-

ified version of the decompression algorithm presented

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 5 of 21

Fig. 2 The organizational hierarchy used by NVIDIA’s CUDA to structure groups of threads. Shown is a 2 × 4 2-dimensional thread grid of thread
blocks, where each 1-dimensional thread block is composed of 8 threads along the x-dimension

by Andrzejewski and Wrembel [11]. One notable imple-
mentation difference is that 32-bit words were used in [11,
12], while we use 64-bit words. We also modified their
algorithm to exploit data structure reuse. Algorithm 2
takes a single WAH compressed bit vector, CData. It also
requires, the size of CData in number of 64-bit words,
Csize, and Dsize which is the size number of 64-bit words
required to store the decompressed version of CData.

Algorithm 2 Parallel decompression of data
1: procedure DECOMP(CData,CSize,DSize)
2: for i ← 0 to CSize − 1 in parallel do
3: if CData(i)63 = 0b then
4: DecompSizes[i]← 1
5: else
6: DecompSizes[i]← CData(i)0→61
7: end if
8: end for
9: StartingPoints ← exclusive scan on DecompSizes

10: EndPoints an array of zeroes, size DSize
11: for i ← 1 to CSize − 1 in parallel do
12: EndPoints[StartingPoints[i]−1]← 1
13: end for
14: WordIndex ← exclusive scan on EndPoints
15: for i ← 0 to DSize − 1 in parallel do
16: tempWord ← CData[WordIndex[i]]
17: if tempWord63 = 0b then
18: DecompData[i]← tempWord
19: else
20: if tempWord62 = 0b then
21: DecompData[i]← 064
22: else
23: DecompData[i]← 01 + 163
24: end if
25: end if
26: end for
27: return DecompData
28: end procedure

In Algorithm 2, lines 2 to 8, Decomp generates the
DecompSizes array, which is the same size as CData. For
each WAH atom in Cdata, the DecompSizes element at
the same index will hold the number of words being
represented by that atom. The algorithm does this by
generating a thread for each atom in Cdata. If Cdata[i]
is a literal, then threadi writes a 1 in DecompSizes[i],
as that atom encodes 1 word (line 4). If Cdata[i] holds
a fill atom, which are of the form (flag, value, len) (see
“Background” section), then threadi writes the number of
words compressed by that atom, or len, to DecompSizes[i]
(line 6).
Next, Decomp performs an exclusive scan (parallel ele-

ment summations) on DecompSizes storing the results in
StartingPoints (line 9). StartingPoints[i] contains the total
number of decompressed words represented by CData[0]
to CData[i − 1], inclusive. StartingPoints[i] ∗63 is the
number of the bitmap row first represented in CData[i].
In lines 10 to 13, the EndPoints array is created and

initializes. This array has a length of Dsize and is ini-
tially filled with 0s. Decomp then processes each element
of StartingPoints in parallel. A 1 is assigned to EndPoints
at index StartingPoints[i]−1 for i < |StartingPoints|. In
essence, each 1 in EndPoints represents where a heteroge-
neous chunk was found in the decompressed data by the
WAH compression algorithm. At line 14 another exclusive
scan is performed, this time on EndPoints. The result of
this scan is saved to WordIndex. WordIndex[i] stores the
index to the atom in CData that contains the information
for the ith decompressed word.
The final for-loop (lines 15 - 26) is a parallel process-

ing of every element of WordIndex. For each WordIndex
element, the associated atom is retrieved from CData. If
CData[WordIndex[i]] is a literal atom (designated by a 0
value in the most significant bit (MSB)), then it is placed
directly into DecompData[i]. Otherwise, the atom must
be a fill. If it is a fill of zeroes (second MSB is a zero), then
64 zeroes are assigned into DecompData[i]. If it is a fill
of ones, a word consisting of 1 zero (to account for the
flag bit) and 63 ones is assigned to DecompData[i]. The
resulting DecompData is the fully decompressed bitmap.

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 6 of 21

Figure 3 illustrates a thread access pattern for the final
stage ofDecomp. As shown,CData, theWAH compressed
bit vector, is composed of three literal atoms (L0, L1, and
L2) and two fill atoms (the shaded sectors).
For each literal, Decomp uses a thread that writes the

value portion of the atom to the DecompData bit vec-
tor. Fill atoms need as many threads as the number of
compressed words the fragment represents. For example,
consider the first fill in CData, it encodes a run of three
words of 0. Decomp creates three threads all reading the
same compressed word but writing 0 in the three differ-
ent locations in DecompData. If a run of 1s had been
encoded, a value of 0x3FFF FFFF FFFF FFFF would have
been written instead of 0.

GPU range query execution strategies
Here we present four methods for executing range queries
in parallel on GPUs. These are column-oriented access
(COA), row-oriented access (ROA), hybrid, and ideal
hybrid access approaches. These approaches are anal-
ogous to structure-of-arrays, array-of-structures, and a
blend thereof. Structure-of-arrays and array-of-structures
approaches have been used successfully to accelerate sci-
entific simulations on GPUs [17, 18], but differ in the how
data is organized and accessed which can impact GPU
efficiency.

Column-oriented access (COA)
Our COA approach to range query processing is shown
in Algorithm 3. The COA procedure takes a collection
of decompressed bit vectors needed to answer the query
and performs a column oriented reduction on them. At
each level of the reduction, the bit vectors are divided
into two equal groups: low-order vectors and high-order

Algorithm 3 Column-oriented access query processing
1: procedure COA(Cols)
2: � Cols is a collection of decompressed bit vectors
3: m ← |Cols|� the number of bit vectors in the query
4: n ← |Cols0| � the number of words in a bit vector
5: s ← m/2
6: while s ≥ 1 do
7: for c ← 0 to s − 1 in parallel do
8: c1 ← Colsc
9: c2 ← Colsc+s

10: for t ← 0 to n − 1 in parallel do
11: c1t ← c1t ∨ c2t
12: end for
13: end for
14: s ← s/2
15: end while
16: return Cols0
17: end procedure

vectors. The s variable in Algorithm 3 stores the divide
position (lines 5 and 14). During processing, the first low-
order vector is paired with the first high-order, as are
the seconds of each group and so on (lines 8 and 9).
The bitwise operation is performed between these pairs.
To increase memory efficiency, the result of the query
operation is written back to the low order column (Algo-
rithm 3, line 11). The process is then repeated using only
the low-order half of the bit vectors as input until a sin-
gle decompressed bit vector remains. The final bit-vector
containing the result can then be copied back to the CPU.
Figure 4a shows the COA reduction pattern for a range

query across bit vectors 0 through 3. A 1-dimensional

Fig. 3 Algorithm 2’s thread access pattern

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 7 of 21

Fig. 4 Shown here are (a) the reduction pattern used by the COA method and (b) the mapping of thread blocks within thread grids to the WAH
query data

thread grid is assigned to process each pair of bit vectors.
Note that multiple thread blocks are used within the grid,
as a single GPU thread block cannot span the full length
of a decompressed bit vector. Figure 4b shows how the
thread grid spans two columns and illustrates the inner
workings of a thread block. As shown, a thread block
encompasses 1024 matched 64-bit word pairs from two
columns. A thread is assigned to each pair of words. Each
thread performs the OR operation on its word pair and
writes the result back to the operand word location in the
low ordered column. As each thread block only has access
to a very limited shared memory (96 kB for the GPU used
in this study), and since each round of the COA reduction
requires the complete result of the column pairings, all of
COA memory reads and writes have to be to global mem-
ory. Specifically, given a range query ofm bit vectors, each
with n rows, and a system word size of w bits, the COA
approach performs (2m − 2) nw coalesced global memory

reads and (m − 1) nw coalesced global memory writes on
the GPU.

Row-oriented access (ROA)
Algorithm 4 presents our ROA approach to range query
processing. Because all rows are independent, they can be
processed in parallel. To accomplish this, ROA uses many
1-dimensional thread blocks that are arranged to create
a one-to-one mapping between thread blocks and rows
(Algorithm 4, line 5).
This data access pattern is shown in Fig. 5. The figure

represents the query C0 ∨ C1 ∨ C2 ∨ C3, where Cx
is a decompressed bit vector. As shown, the individual
thread blocks are represented by rectangles with perfo-
rated borders. Unlike COA, where thread blocks only span
two columns, the ROA thread blocks span all columns
of the query (up to 2048, 2× the maximum number of
threads in a thread block.)

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 8 of 21

Fig. 5 The data access pattern and work performed by each ROA thread block

Algorithm 4 Row-oriented access query processing
1: procedure ROA(Cols)
2: � Cols is a collection of decompressed bit vectors
3: m ← |Cols| � the number of bit vectors in the

query
4: n ← |Cols0| � the number of words in a bit vector
5: for t ← 0 to n − 1 in parallel do
6: s ← m/2
7: while s ≥ 1 do
8: for c ← 0 to s − 1 in parallel do
9: c1 ← Colsc

10: c2 ← Colsc+s
11: c1t ← c1t ∨ c2t
12: end for
13: s ← s/2
14: end while
15: end for
16: return Cols0
17: end procedure

Inside any given ROA thread block, the column access
pattern within it is identical to the COA pattern (Algo-
rithm 4 line 8-11). The words of the row are partitioned
into low-order and high-order by column ID. Each thread

performs a bitwise OR on word pairs, where one operand
word is from the low-order columns, and the other is from
the high-order set (shown in the Thread block of Fig. 5).
The results of the operation are written back to the low
order word.
Like COA, a ROA reduction has log2(n) levels, where

n is the number of bit vectors in the query. However, all
of ROA processing is limited in scope to a single row. By
operating along rows, the ROA approach loses coalesced
global memory accesses as row data are not contiguous in
memory. However, for the majority of queries, the num-
ber of bit vectors is significantly less than the number of
words in a bit vector. This means that ROA can use low-
latency GPU shared memory to store the row data (up
to 96 kB) and intermediate results necessary for perform-
ing the reduction. Using shared memory for the reduction
avoids repeated reads and writes to high-latency global
memory (∼ 100× slower than shared memory). Given a
range query of m bins, each with n rows, and a system
word size ofw bits, the ROA approach performs mn

w global
memory reads and n

w global memory writes. A significant
reduction of both relative to COA.

Hybrid
We form the hybrid approach to range query process-
ing by combining the 1-dimensional COA and ROA data

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 9 of 21

access patterns into 2-dimensional thread blocks. These
2D thread blocks are tiled to provide complete coverage
of the query data. An example tiling is shown in Fig. 6.
To accomplish this tiling the hybrid method uses a thread
grid of p × q thread blocks, where p and q are integers.
Each thread block is composed of k × j threads and spans
2k columns and j rows, where k and j are integers. With
this layout, each thread block can use the maximum of
1024 threads.
A single thread block in the hybrid process performs the

same work as multiple ROA thread blocks stacked verti-
cally. A major difference being that thread blocks in the
hybrid process do not span all bit vectors. Using these 2-
dimensional thread blocks provides the hybrid approach
the advantages of both coalesced memory accesses of
COA, and ROA’s use of GPU shared memory to pro-
cess the query along rows. The disadvantage of the hybrid
approach is that the lowest order column of each thread

block along the rows must undergo a second round of the
reduction process to obtain the final result of the range
query. This step combines the answers of the individual
thread block tiles.
The hybrid process is shown in Algorithm 5

where the first round of reductions are on lines 8-
20 and the second round of reductions are on
lines 22-34.
Due to the architectural constraints of NVIDIA GPUs,

the hybrid design is limited to processing range queries
of ≤ 222 bins. This is far beyond the scope of typi-
cal bitmap range queries and GPU memory capacities.
Given a range query of m bins, each with n rows, a
system word size of w, and k thread blocks needed to
span the bins, up to (m + k) nw global memory reads and
(k + 1) nw global memory writes are performed. Although
the hybrid approach requires more global memory reads
and writes than the ROA approach, its use of memory

Fig. 6 The data access pattern and reduction work performed by each hybrid thread block. In standard scenarios, each thread block would
comprise 1024 threads

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 10 of 21

Algorithm 5 Hybrid query processing
1: procedure HYBRID(Cols, p, q)
2: � Cols is a collection of decompressed bit vectors
3: � p is the number of tiles in the x-dimension
4: � q is the number of tiles in the y-dimension
5: m ← |Cols|� the number of bit vectors in the query
6: n ← |Cols0| � the number of words in a bit vector
7: � First set of loops performs reductions within tiles
8: for rb ← 0 to n/q − 1 in parallel do
9: for t ← rb∗n/q to (rb+1)∗n/q−1 in parallel

do
10: s ← m/(2 ∗ p)
11: while s ≥ 1 do
12: for c ← 0 to s − 1 in parallel do
13: c1 ← Colsc
14: c2 ← Colsc+s
15: c1t ← c1t ∨ c2t
16: end for
17: s ← s/2
18: end while
19: end for
20: end for
21: � Second set of loops performs reductions across

tiles
22: for rb ← 0 to n/q − 1 in parallel do
23: for t ← rb∗n/q to (rb+1)∗n/q−1 in parallel

do
24: s ← p/2
25: while s ≥ 1 do
26: for c ← 0 to s − 1 in parallel do
27: c1 ← Colsc
28: c2 ← Colsc+s
29: c1t ← c1t ∨ c2t
30: end for
31: s ← s/2
32: end while
33: end for
34: end for
35: return Cols0
36: end procedure

coalescing can enhance the potential for computational
throughput.

Ideal hybrid
In practice, most WAH range queries involve less than
1024 columns. This mean that in most query scenarios it
is possible to map a single 2-dimensional thread block tile
across multiple rows and all of the columns (bit vectors)
of the query. This purely vertical tiling is shown in Fig. 7.
Such a tiling improves throughput by allowing each thread
block to comprise the maximum of 1024 threads. Like

the hybrid method, each thread block retains the advan-
tages of coalesced memory accesses and the use of GPU
shared memory. Further, this tiling pattern eliminates the
need for a second round of reduction. The result of this
arrangement is the ideal hybrid algorithm as described in
Algorithm 6.

Algorithm 6 Ideal hybrid query processing
1: procedure IDEALHYBRID(Cols, q)
2: � Cols is a collection of decompressed bit vectors
3: � q is the number of tiles in the y-dimension
4: m ← |Cols|� the number of bit vectors in the query
5: n ← |Cols0| � the number of words in a bit vector
6: for rb ← 0 to n/q − 1 in parallel do
7: for t ← rb∗n/q to (rb+1)∗n/q−1 in parallel

do
8: s ← m/2
9: while s ≥ 1 do

10: for c ← 0 to s − 1 in parallel do
11: c1 ← Colsc
12: c2 ← Colsc+s
13: c1t ← c1t ∨ c2t
14: end for
15: s ← s/2
16: end while
17: end for
18: end for
19: return Cols0
20: end procedure

The theoretical expressions for global reads and writes
in the hybrid algorithm agree that an “ideal” hybrid layout
is one where a single thread block of k × j threads spans
all 2k columns. Multiple k × j thread blocks are still used
to span all of the rows. This layout limits the number of
global writes in the first round to 1 and removes the need
to perform the second reduction between thread blocks
along rows. For processing a range query of m bins, each
with n rows, and a system word size of w, the ideal hybrid
layout thereby reduces the total number of global memory
reads and writes to mn

w and n
w , respectively. These are the

same quantities obtained for ROA, but the ideal hybrid
method guarantees a higher computational throughput as
each k × j thread block has 1024 threads.

Multi-core CPUmethods
For an experimental baseline, we created a CPU-based
parallel algorithm for processing range queries. Most
multi-core CPUs cannot support the number of concur-
rent operations needed to fully exploit all of the available
parallelism inWAHbitmap query processing. For this rea-
son, we limited the CPU algorithm to two approaches: 1)

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 11 of 21

Fig. 7 The data access pattern and reduction work performed by each ideal hybrid thread block. In standard scenarios, each thread block would
comprise 1024 threads

a baseline approach that iterates through bit vectors to
execute a query and 2) a COA style reduction approach.
Given an np-core CPU, approach 1 uses OpenMP [19]

to execute up to np parallel bitwise operations on paired
compressed bit vectors. Once a set of paired bit vectors is
processed, the CPU iterates to execute up to np parallel
bitwise operations on the result and the next remaining bit
vector to process.
Approach 2 uses OpenMP to execute up to np paral-

lel bitwise operations on paired compressed bit vectors
for any reduction level. If more than np bit vector pairs
exist in a given reduction level, the CPU must iterate
until all pairs are processed and the reduction level is
complete. The range-query result is obtained once the
final reduction level is processed. The pattern of the CPU
reduction process is similar to the COA pattern shown in
Fig. 4a.

Theoretical analysis
The GPU and CPU algorithms presented earlier in this
section all perform the same amount of work. Perfor-
mance variations between those algorithms come from
data access patterns and the parallelism that the CPU or
GPU architectures are capable of achieving when using
those patterns.
In ideal scenarios (unlimited threads, no resource con-

tention, etc.), all of the GPU algorithms yield the same
run time complexity of O(n log2(m)/t), where m is the
number of bit vectors in the query, n is the number
of system words in a decompressed bit vector, and t
is the number of executing threads. The n/t term cor-
responds to many parallel bitwise operations between
paired bit vectors and the log2(m) term corresponds
to the number of reduction levels required to produce
a result.

Even in ideal scenarios, CPUs are not capable of the
same degree of parallelism as GPUs. Our two CPU algo-
rithms are manifestations of focused application of par-
allelism. The iterative approach (algorithm 1) focuses
parallelism on the bitwise operations between paired bit
vectors. This yields a run time complexity of O(nm/t).
The reduction approach (algorithm 2) focuses parallelism
on performing a reduction, yielding a run time complexity
ofO(nlog2(m)).
It is important to note that the idealized scenarios used

to guide our theoretical analysis of our CPU and GPU
algorithms are not realistic. The behavior of real imple-
mentations of these algorithms will deviate from the the-
oretical descriptions due to the influence of architectural
effects, including finite parallelism, resource contention,
cache effects, and memory usage.

Evaluationmethodology
In this section, we provide the testing methodology that
was used to produce our results. Our tests were executed
on a machine running Ubuntu 16.04.5. It is equipped with
dual 8-core Intel Xeon E5-2609 v4 CPUs (each at 1.70
GHz) and 322 GB of RAM. All CPU tests were written in
C++ and compiled with GCC v5.4.0. All GPU tests were
developed using CUDA v9.0.176 and run on an NVIDIA
GeForce GTX 1080 with 8 GB of memory.
The following data sets were used for our evalua-

tion. They are representative of the type of applications
(e.g., scientific, mostly read-only) that would benefit from
bitmap indexing.

• KDD – this data set was procured from KDD
(knowledge discovery and data mining) Cup’99 and is
network flow traffic. The data set contains 4,898,431
rows and 42 attributes [20]. Continuous attributes

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 12 of 21

were discretized into 25 bins using Lloyd’s Algorithm
[21], resulting in 475 bins.

• linkage – This data set contains 5,749,132 rows
and 12 attributes. The attributes were discretized into
130 bins. The data are anonymized records from the
Epidemiological Cancer Registry of the German state
of North Rhine-Westphalia [22].

• BPA (Bonneville power administration) – this data
set contains measurements reported from 20
synchrophasors deployed over the Pacific Northwest
power grid over approximately one month [23]. Data
from all synchrophasors arrive at a rate of 60
measurements per second and are discretized into
1367 bins. There are 7,273,800 rows in this data set.

• Zipf – we generate three synthetic data sets using a
Zipf distribution. Zipf distributions represent
clustered approaches to discretization and mimic
real-world data [24]. The Zipf distribution generator
assigns each bit a probability of:
p(k, n, skew) = (1/kskew)/

∑n
i=1(1/iskew) where n is

the number of bins determined by cardinality, k is
their rank (bin number: 1 to n), and the parameter
skew characterizes the exponential skew of the
distribution. Increasing skew increases the likelihood
of assigning 1s to bins with lower rank (lower values
of k) and decreases the likelihood of assigning 1s to
bins with higher rank. We set k = 10, n = 10, and
create three different synthetic Zipf data sets using
skew = 0, 1, and 2. These generated data sets each
contain 100 bins (i.e., ten attributes discretized into
ten bins each) and 32 million rows.

For each of these six data sets (three real and three
synthetic), we use the GPU based range-query methods
described in the “GPU decompression strategy” section
(i.e., COA, ROA, hybrid, and ideal hybrid), as well as
the parallel CPU methods described in the “Multi-core
CPU methods” section (processing iteratively and using
a reduction), to execute a range query of 64 random bit
vectors. This query size is sufficiently large that there is
negligible variation in execution time when different bit
vectors are selected. We also conduct a test where query
size is varied. For this test we use the highest perform-
ing CPU and GPU methods to query all data sets using
4,8,16,32, and 64 bins.
For GPU methods, we use the maximum number of

threads per thread block (32 for ROA and 1024 for the
others) and the maximum number of thread blocks per
thread grid required for the problem at hand. When using
the CPU methods, we conduct multiple tests using 1, 2, 4,
8, and 16 cores.
Each experiment was run six times and the execu-

tion time of each trial was recorded. To remove tran-
sient program behavior, the first result was discarded.

The arithmetic mean of the remaining five execution
times is shown in the results. We use the averaged
execution times to calculate our comparison metric,
speedup.

Results
Here we present the results of the experiments described
in the previous Section. We first present a comparison of
GPU performance enhancement over the two CPU meth-
ods organized by data set. We then compare the relative
performance of the two CPU methods. A focused view
of GPU performance relative to the highest performing
CPU scenarios (using 16 cores) for each data set is then
provided. We then examine the relative performance of
only the GPU methods. Finally, we present GPU and CPU
results for queries of varying size.
Results are shown for all GPU tests compared to the

iterative CPUmethod, organized by data set, in Fig. 8. Iter-
ative CPU range query performance typically improves
with additional cores for every data set. The only excep-
tion being the BPA data set when transitioning from 8 to
16 cores. The GPUmethods outperform the iterative CPU
method in 96.2% of these tests with an average speedup
of 14.50×. The GPU methods are capable of providing
a maximum speedup of 54.14× over the iterative CPU
method. On average, the GPU methods provide 1.45×,
20.24×, 11.45×, 17.36×, 18.76×, and 17.72× speedup for
the KDD, linkage, BPA, Zipf (skew = 0), Zipf (skew = 1),
and Zipf (skew = 2) data sets, respectively.
Results for GPU tests compared to the CPU method

using a reduction, organized by data set, are shown in
Fig. 9. The performance of the CPU reduction method
improves with additional cores for every data set. The
GPU methods outperform the parallel reduction CPU
method in 100% of these tests with an average speedup
of 8.50×. The GPU methods are capable of providing a
maximum speedup of 26.01× over the CPU reduction
method. On average, the GPU methods provide 7.03×,
9.47×, 8.60×, 7.57×, 9.46×, and 9.11× speedup for the
KDD, linkage, BPA, Zipf (skew = 0), Zipf (skew = 1), and
Zipf (skew = 2) data sets, respectively.
Speedups provided by the CPU reduction method over

the iterative CPU approach (when using 16 cores) are
shown for each data set in Fig. 10. The CPU reduction
method provides an average of 2.18× speedup over the
iterative CPU approach and a maximum of 3.77×. KDD
is the only data set where the CPU reduction approach is
not beneficial and incurs a 0.44× slowdown.
A comparison of the GPU methods to the highest per-

forming iterative CPU (16 core) tests is shown in Fig. 11a.
On average, the GPU methods provide 4.97× speedup
over the iterative CPU method when using 16 cores. The
KDD data set is the only instance where the GPU meth-
ods do not outperform the CPU method using 16 cores.

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 13 of 21

Fig. 8 Speedups (vertical axes) for the GPU methods compared to the iterative CPU method (using the number of cores shown in the legend)
grouped by the GPU range query method (horizontal axes). The Zipf data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew of 0).
The horizontal dashed line indicates a speedup of 1×. All plots share the same legend

In this scenario, only the ideal hybrid GPU approach
outperforms the iterative CPU method (using 16 cores)
with a speedup that is> 1 (1.002×). Despite this, the aver-
age speedup provided by the ideal hybrid method over the
CPU using 16 cores is 5.69×.
A comparison of the GPU methods to the highest

performing CPU reduction (16 core) tests is shown in
Fig. 11b. The GPU methods outperform the CPU reduc-
tion method (using 16 cores) in all tests. On average, the
GPU methods provide 2.16× speedup over the reduction
CPU method when using 16 cores.
Speedups provided by the COA, hybrid, and ideal

hybrid GPU methods relative to the lowest-performing
GPU method (ROA) are shown in Fig. 12. For these
tests, the COA and hybrid methods always outperform
the ROA method, with the hybrid methods providing the

most significant performance improvement over ROA.
On average, the COA, hybrid, and ideal hybrid methods
provide 25.09%, 38.47%, and 45.23% speedup over the
ROA method, respectively.
The effects that varying query size had on our algo-

rithms are shown in Fig. 13a and b. In Fig. 13a, the solid
lines represent the time required by the iterative CPU
method (using 16 cores) for the given query size which is
shown in number of bit-vectors. The solid lines in Fig. 13b,
show the times required by the CPU reduction method
(using 16 cores) for the given query sizes. For compari-
son, the time required by the ideal hybrid GPU approach
are shown as dashed lines in both figures. GPU execution
times are relatively consistent compared to the CPU times
which grow at a faster rate (seen in Fig. 13a and b). For var-
ied query size, the GPU method outperforms the iterative

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 14 of 21

Fig. 9 Speedups (vertical axes) for the GPU methods compared to the CPU reduction method (using the number of cores shown in the legend)
grouped by the GPU range query method (horizontal axes). The Zipf data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew of 0).
The horizontal dashed line indicates a speedup of 1×. All plots share the same legend

CPU method by a factor of 6.44×, on average, and the
CPU reduction method by 3.06×, on average.

Discussion of results
Using a general (not related to bitmaps) benchmark suite
of optimized GPU and optimized CPU programs, Intel
found that GPUs outperformed CPUs by 3.5× on aver-
age [25]. The ideal hybrid method provides an average
speedup of 4.0× relative to both parallel CPU methods
(using 16 cores). This aligns well with expectations when
comparing optimized GPU and CPU programs.
When compared to the parallel iterative CPU approach,

a major factor determining relative GPU performance is
the degree of the data set’s column compression. This
behavior is shown in Fig. 14. It is most consequential
for tests using the KDD data set, which is the only data
set where the GPU methods do not always outperform

the iterative CPU method. This only occurs when the
CPU method is used with 16 cores. The relatively high-
performance of the CPU method is entirely due to the
highly compressed nature of the KDD data set. The com-
pressibility of the KDD data set is such that compressed
queried bit vectors can be held entirely in cache. Further,
the branch prediction and speculative execution capabil-
ities of the CPU allow enhanced performance over GPUs
when querying highly compressed bit vectors. GPUs have
no such branch predictors and do not benefit from bitmap
compression beyond storage and transmission efficiency.
The remaining data sets did not exhibit the same degree
of compression, thereby reducing CPU performance and
enhancing GPU speedup. When data sets are less com-
pressible, there is greater variance in the relative per-
formance of the GPU methods when compared to the
iterative CPU method. This is apparent in the variation

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 15 of 21

Fig. 10 Speedups provided by the CPU reduction method relative to the iterative CPU method. The Zipf data set skews are appended (e.g., Zipf0
has a skew of 0). The horizontal dashed line indicates a speedup of 1×

in speedup results across the GPU methods in Fig. 14a,
where there is less variation for highly compressible data
sets and more variation for less compressible data sets.
When compared to the parallel reduction CPUmethod,

the effect of compression ratio is greatly reduced. This is
seen in Fig. 14b, where the data look like damped ver-
sions of their counterparts from Fig. 14a. The relative
performance of the GPU methods is reduced (compared

to the relative GPU performance vs the iterative CPU
approach). These features occur because the parallel
reduction approach provides more consistent query exe-
cution behavior. The parallel reduction consecutively
halves the amount data remaining to be processed until
the query is completed. This halving means that the data
of interest can be completely stored in lower latency
CPU caches fairly early in the reduction. The same is not

Fig. 11 Speedups for all GPU methods vs. a the iterative CPU method using 16 cores and vs. b the reduction CPU method using 16 cores. The Zipf
data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew of 0). The horizontal dashed line indicates a speedup of 1×. All plots share
the same legend

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 16 of 21

Fig. 12 Percent speedups for the GPU COA, hybrid, and ideal hybrid
methods relative to the ROA method. The Zipf data set skews are
appended (e.g., Zipf0 has a skew of 0). A speedup of 1× is a percent
speedup of zero

true for the iterative approach which necessitates iterative
loads of bit vectors from memory.
When varying query size, we find the ideal hybrid GPU

method provides a consistent performance enhancement
over the parallel CPU method (Fig. 13). The relatively
consistent results for the GPU in these tests are due
to the massively parallel nature of our algorithms. As
the majority of the processing happens in parallel, the
additional cost of adding columns is negligible. The syn-
thetic data set Zipf skew 0-2 produces the only results
where a variation in GPU execution time can be easily
be observed. This variance is likely due to additional con-
tention for memory resources as Zipf has more than 4×
the number of rows than the largest real-world data set.
The iterative CPU method (Fig. 13a) displays consistent
behavior where execution times appear to be “plateauing”
as query size increases. Conversely, the CPU reduction
method (Fig. 13b) displays an execution time trough for
queries between 8 and 32 (inclusive) bit-vectors in size.
For larger queries, the execution times rise appreciably.
This rise for queries of 64 columns demonstrates the con-
sequences of using a reduction to handling queries that
are beyond the parallelism of which the CPU is capable.
Each of our GPU methods can take advantage of cer-

tain GPU architectural features due to their differing
data access patterns. These differences make each GPU
method suited for particular types of queries. A listing of
architectural advantages, disadvantages, and ideal queries
is provided in Table 2.

An example of query suitability is apparent in our exper-
imental results. In our tests, the ROA method is con-
sistently outperformed by the COA method. This occurs
because we limit our tests to queries of 64 columns,
thereby limiting ROA thread blocks to 32 threads, far
below the potential 1024 thread limit. The consequences
of this are severely limiting the benefits of using shared
memory and reducing the computational throughput of
each thread block. For larger queries (≤2048 columns),
the ROA method could potentially outperform the COA
method due to increased computational throughput.
However, such queries are not commonly encountered in
practice.

Related work
There has been a significant amount of research con-
ducted in the area of bitmap indices and their com-
pression. The work presented in this paper is concerned
with the widely adopted WAH [9] bitmap compression
scheme. However, there are many similar techniques.
One of the first hybrid run-length encoding schemes was
Byte-aligned Bitmap Compression (BBC) [4]. BBC uses
byte-alignment to compress runs and which, in certain
cases, allows it to achieve greater compression than other
compression schemes [9]. This increase in compression is
often achieved at the expense of query times. For this rea-
son many of the recent encoding schemes (e.g., [5–8, 26–
28]) use system word alignment. We believe that many of
the bitmap-compression schemes could realize significant
query speed-up by employing similar parallel algorithms
as presented in this paper.
Previous works have explored parallel algorithms for

bitmaps indices. Chou et al. [29] introduced FastQuery
(and several later augmentations, e.g. [30, 31]) which
provides a parallel indexing solution that uses WAH com-
pressed bitmap indices. Su et al. [32] presented a parallel
indexing system based on two-level bitmap indices. These
works focused on generating the bitmaps in parallel and
not necessarily the parallel processing of actual bitwise
operations, nor did they implement their algorithms for
GPUs.
With CUDA, GPUs have exhibited a meteoric rise in

enhancing the performance of general-purpose comput-
ing problems. Typically, GPUs are used to enhance the
performance of core mathematical routines [33–35] or
parallel programming primitives [36, 37] at the heart of
an algorithm. With these tools, GPUs have been used to
create a variety of high-performance tools, including com-
putational fluid dynamics models [38, 39], finite element
methods [40], and traditional relational databases [41].
Several researchers have explored using hardware sys-

tems other than standard CPUs for bitmap creation and
querying. Fusco, et al. [42] demonstrated that greater
throughout of bitmap creation could be achieved using

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 17 of 21

Fig. 13 Average execution times for the iterative CPU method (a) using 16 cores (solid lines), the CPU reduction method (b) using 16 cores, and the
ideal hybrid GPU method (shown as dashed lines in a and b) by query size. The Zipf data set skews are appended (e.g., Zipf0 has a skew of 0). Both
plots share the same x-axis

GPU implementations over CPU implementations of
WAH, and a related compression scheme, PLWAH (Posi-
tion List Word-Aligned Hybrid) [6]. Nguyen, et al. [43]
showed that field-programmable gate arrays (FPGAs)
could be used to create bitmap indices using significantly
less power than CPUs or GPUs. These works did not
explore querying algorithms. Haas et al. [44] created a
custom instruction set extensions for the processing of
compressed bitmaps. Their study showed that integrat-
ing the extended instruction set in a RISC style processor
could realize more than 1.3× speedup over an Intel i7-
3960X when executing WAH AND queries. Their study
did not investigate parallel solutions.
Other works have developed systems that use GPUs

to answer range queries using non-bitmap based
approaches. Heimel and Markl [45] integrated a GPU-

accelerated estimator into the optimizer of PostgreSQL.
Their experiments showed that their approach could
achieve a speedup of approximately 10× when compared
to a CPU implementation. Gosink et al. [46] created a
parallel indexing data structure that uses bin-based data
clusters. They showed that their system could achieve 3×
speedup over their CPU implementation. Kim et al. [47]
showed that their massively parallel approach to R-tree
traversal outperformed the traditional recursive R-tree
traversals when answering multi-dimensional range
queries. Our work focuses on increasing the efficiency of
systems relying on WAH compressed bitmaps.
Orthogonal to our parallel approach, other works have

investigated non-parallel methods to increase the effi-
ciency of range query processing using bitmap indices.
Wu et al. [48] used a size ordered priority queue to

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 18 of 21

Fig. 14 Average GPU speedup a) relative to the iterative CPU method and B) relative to the reduction CPU method vs. data set compression ratio
(compressed size / uncompressed size, shown below each data set on the x-axis). The data for hybrid and ideal hybrid in (b) are indistinguishable at
the scale of this figure. The Zipf data set skews are appended (e.g., Zipf0 has a skew of 0). The horizontal axis is logarithmically scaled. Both plots
share the same legend and x-axis

sequence the column processing of WAH and BBC com-
pressed bitmap range queries. Their empirical study
showed that this approach requires less core memory and
often performed better than a random sequence of col-
umn processing. Additionally, they explored an in-place
query algorithm, in which the largest column was decom-
pressed and used to start all intermediate results. This
approach was shown to be faster than the priority queue
algorithm but required more memory. Slechta, et al. [49]
explored several similar column ordering techniques for
the range query processing of Variable-Aligned Length
[27] compressed bitmaps. Chmiel et al. [50] proposed a
hierarchically organized bitmap index (HOBI) for dimen-
sional models used in data warehouses. HOBI creates a
bitmap index for each dimensional level. An upper level
bitmap is essentially the aggregation of the lower level

bitmaps. Their experiments showed that the hierarchical
structure of HOBI was able to outperform Oracle’s native
bitmap join index. Similarly, Nagarkar et al. [51] proposed
a compressed spatial hierarchical bitmap (cSHB) index to
support spatial range queries. Their approach converts a
2D space into a 1D space using Z-order traversal. A hierar-
chy is then imposed over the 2D space where each node of
the hierarchy corresponds to a bounded subspace. Their
experimental study showed that cSHB and their bitmap
selection process performed better than alternative index-
ing structures for spatial range queries.
The works of Andrzejewski and Wrembel [11, 12] are

closest to the work presented in this paper. They intro-
duced WAH and PLWAH compression and decompres-
sion algorithms for GPUs. Their decompression work
details a parallel algorithm for decompressing a single

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 19 of 21

Table 2 Advantages, disadvantages, and ideal query application for the GPU methods

Method Advantages Disadvantages Ideal queries

Memory
coalescing

Shared memory Extra global
memory accesses

Limited
throughput

COA � � Point

ROA � � Range, where
2048 ≥ columns
>1024

Hybrid � � � Range, where
columns >2048

Ideal
hybrid

� � Range, where
columns ≤ 1024

WAH compressed bit vector. Our previous work [13] and
this extension builds upon their approach so that multi-
ple WAH compressed bit vectors can be decompressed
in parallel. Their work also examined parallel queries that
were limited to bitwise operations between two bit vec-
tors. While executing bitwise operations between two
decompressed bit vectors is obvious, Andrzejewski and
Wrembel presented a parallel GPU algorithm for such
an operation between two compressed bit vectors [12].
We explored range queries which require bitwise oper-
ations to be performed on sequences of bit vectors. As
demonstrated above, range queries provide an excellent
application for exploiting the highly parallel nature of
GPUs.
It should be noted that in [12], Andrzejewski andWrem-

bel presented a comparison between their GPU-WAH
andGPU-PLWAH implementations. Their results showed
that GPU-PLWAH was slower due to an additional step
needed to decompress PLWAH data. However, after the
data was decompressed, their query algorithms were
essentially the same. The use of our algorithms (COA,
ROA, Hybrid, and Ideal Hybrid) would produce a sim-
ilar result. Our approaches take decompressed columns
as input, so the only timing difference between WAH
and PLWAH would be due to the varying decompression
algorithms.
As mentioned above, this work is an extension of our

previous work [13]. In this paper, we more thoroughly
presented all of our algorithms, including a formal pre-
sentation of Ideal Hybrid and a theoretical analysis of all
our approaches. We also introduced two novel parallel
algorithms for processing bitmap range queries on the
CPU. Additionally, we significantly expanded our empiri-
cal study.

Conclusion and future work
In this paper, we present parallel methods for execut-
ing range queries on CPUs and GPUs. The CPU methods
comprise iterative and reduction based approaches. All
GPU methods perform a reduction across the queried
bitmaps. To extract parallelism, the CPU and COA GPU

methods operate primarily along pairedWAH bit vectors,
the ROA GPU method operates along rows (all of which
are independent), and the hybrid GPU methods operate
along multiple rows at once. The GPU methods exploit
the highly parallel nature of GPUs and their architectural
details to extract additional performance. These include
mechanisms to accelerate memory transfers (coalescing)
and the use of low-latency GPU shared memory.
We conducted an empirical study comparing the GPU

methods to the CPU methods. Of the two CPU methods,
the reduction approach provided greater performance
when querying five of the six data sets. It realized an aver-
age speedup of 2.18× over the iterative CPU approach.
The results of our study showed that the GPU methods
outperform the CPU in 98.8% of our tests, providing a
maximum speedup of 54.1× and an average speedup of
11.5×. When compared to the highest performing iter-
ative CPU tests, the GPU methods provide an average
speedup of 5.69× for queries of 64 bins and 6.44× for
queries of 4, 8, 16, 32, and 64 bins. When compared to the
highest performing CPU reduction tests, the GPU meth-
ods provide an average speedup of 2.16× for queries of 64
bins and 3.06× for queries of 4, 8, 16, 32, and 64 bins.
We plan to pursue additional work analyzing the param-

eter space of the hybrid method and subsequent perfor-
mance. This includes the effect of database character-
istics, varying tile dimension, and distributing tiles and
queries across multiple GPUs. We also intend to con-
tinue exploring means to accelerate bitmap query exe-
cution using computational accelerators. In particular,
we plan to use non-NVIDIA GPUs and future genera-
tions of NVIDIA GPUs to investigate additional means
of enhancing bitmap query throughput. We would also
like to explore the feasibility of refactoring other bitmap
schemes such as roaring bitmaps [52] and byte-aligned
bitmap codes [4] to run on GPUs.

Abbreviations
CPU: Central processing unit; CUDA: Compute unified device architecture;
GPU: Graphics processing unit; MSB: Most significant bit; WAH: Word-aligned
hybrid; COA: Column oriented access; ROA: Row oriented access; BBC:
Byte-aligned bitmap compression; PLWAH: Position list word-aligned hybrid;

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 20 of 21

FPGA: Field programmable gate array; RISC: Reduced instruction set computer;
HOBI: Hierarchically organized bitmap index; cSHB: Compressed spatial
hierarchical bitmap; GB: Gigabyte; RAM: Random access memory; KDD:
Knowledge discovery and data mining; BPA: Bonneville power administration

Acknowledgements
JMM and JS would like to acknowledge the University of St. Thomas College of
Arts and Science Dean’s Office for generously funding some of the
computational resources that made this study possible. We would also like to
thank our anonymous reviewers for their constructive feedback and positive
comments contributing to the improvement of this manuscript.

Author’s contributions
Algorithmic design was primarily done by JMM, JS, and DC with secondary
contributions by MN and ZS. The implementation of all algorithms was
primarily performed by MN and ZS with secondary development by JMM and
JS. All parties played an equal role in manuscript development. The author(s)
read and approved the final manuscript.

Funding
MN and ZS received Undergraduate Research Funding from the University of
St. Thomas.

Availability of data andmaterials
Please contact the corresponding author to obtain the data used in this
manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer and Information Sciences, University of St. Thomas,
2115 Summit Ave., 55105 Saint Paul, Minnesota, USA. 2Department of
Mathematics and Computer Science, University of Puget Sound, 1500 N.
Warner St., 98416 Tacoma, Washington, USA.

Received: 25 March 2020 Accepted: 14 July 2020

References
1. Norris RP (2010) Data challenges for next-generation radio telescopes. In:

Proceedings of the 2010 Sixth IEEE International Conference on e-Science
Workshops. E-SCIENCEW ’10. IEEE. pp 21–24. https://doi.org/10.1109/
esciencew.2010.13

2. Stockinger K (2001) Design and implementation of bitmap indices for
scientific data. In: International Database Engineering and Application
Symposium. pp 47–57. https://doi.org/10.1109/ideas.2001.938070

3. Kesheng W, Koegler W, Chen J, Shoshani A (2003) Using bitmap index for
interactive exploration of large datasets. In: International Conference on
Scientific and Statistical Database Management. pp 65–74. https://doi.
org/10.1109/ssdm.2003.1214955

4. Antoshenkov G (1995) Byte-aligned bitmap compression. In: Proceedings
DCC’95 Data Compression Conference. IEEE. p 476. https://doi.org/10.
1109/dcc.1995.515586

5. Corrales F, Chiu D, Sawin J (2011) Variable length compression for bitmap
indices. In: Hameurlain A, Liddle SW, Schewe K-D, Zhou X (eds). Database
and Expert Systems Applications. Springer, Berlin. pp 381–395

6. Deliège F, Pedersen TB (2010) Position list word aligned hybrid:
Optimizing space and performance for compressed bitmaps. In:
International Conference on Extending Database Technology. EDBT ’10.
pp 228–239. https://doi.org/10.1145/1739041.1739071

7. Fusco F, Stoecklin MP, Vlachos M (2010) Net-fli: On-the-fly compression,
archiving and indexing of streaming network traffic. VLDB 3(2):1382–1393

8. Wu K, Otoo EJ, Shoshani A, Nordberg H (2001) Notes on design and
implementation of compressed bit vectors. Technical Report
LBNL/PUB-3161, Lawrence Berkeley National Laboratory

9. Wu K, Otoo EJ, Shoshani A (2002) Compressing bitmap indexes for faster
search operations. In: Proceedings 14th International Conference on
Scientific and Statistical Database Management. IEEE. pp 99–108. https://
doi.org/10.1109/ssdm.2002.1029710

10. Wu K, Otoo EJ, Shoshani A (2006) Optimizing bitmap indices with efficient
compression. ACM Trans. Database Syst. 31(1):1–38

11. Andrzejewski W, Wrembel R (2010) GPU-WAH: Applying GPUs to
compressing bitmap indexes with word aligned hybrid. In: International
Conference on Database and Expert Systems Applications. Springer,
Berlin. pp 315–329

12. Andrzejewski W, Wrembel R (2011) GPU-PLWAH: GPU-based
implementation of the PLWAH algorithm for compressing bitmaps.
Control Cybern 40:627–650

13. Nelson M, Sorenson Z, Myre JM, Sawin J, Chiu D (2019) Gpu acceleration
of range queries over large data sets. In: Proceedings of the 6th IEEE/ACM
International Conference on Big Data Computing, Applications and
Technologies. BDCAT ’19. Association for Computing Machinery, New
York. pp 11–20

14. CUDA C (2019) Best practice guide. https://docs.nvidia.com/cuda/cuda-
c-best-practices-guide. Accessed 1 Mar 2020

15. Djenouri Y, Bendjoudi A, Mehdi M, Nouali-Taboudjemat N, Habbas Z
(2015) Gpu-based bees swarm optimization for association rules mining.
J Supercomput 71(4):1318–1344

16. Djenouri Y, Bendjoudi A, Habbas Z, Mehdi M, Djenouri D (2017) Reducing
thread divergence in gpu-based bees swarm optimization applied to
association rule mining. Concurr Comput Pract Experience 29(9):3836

17. Tran N-P, Lee M, Choi DH (2015) Memory-efficient parallelization of 3D
lattice Boltzmann flow solver on a GPU. In: 2015 IEEE 22nd International
Conference on High Performance Computing (HiPC). IEEE. pp 315–324.
https://doi.org/10.1109/hipc.2015.49

18. Weber N, Goesele M (2017) MATOG: array layout auto-tuning for CUDA.
ACM Trans Archit Code Optim (TACO) 14(3):28

19. Dagum L, Menon R (1998) OpenMP: An industry-standard API for
shared-memory programming. Comput Sci Eng 5(1):46–55

20. Lichman M (2013) UCI Machine Learning Repository. http://archive.ics.uci.
edu/ml. Accessed 1 Aug 2019

21. Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf Theory
28(2):129–137

22. Sariyar M, Borg A, Pommerening K (2011) Controlling false match rates in
record linkage using extreme value theory. J Biomed Inf 44(4):648–654

23. Bonneville Power Administration, http://www.bpa.gov
24. Newman M (2005) Power laws, pareto distributions and zipf’s law.

Contemp Phys 46(5):323–351
25. Lee VW, Kim C, Chhugani J, Deisher M, Kim D, Nguyen AD, Satish N,

Smelyanskiy M, Chennupaty S, Hammarlund P, et al (2010) Debunking the
100X GPU vs. CPU myth: an evaluation of throughput computing on CPU
and GPU. ACM SIGARCH Comput Archit News 38(3):451–460

26. Colantonio A, Di Pietro R (2010) Concise: Compressed ’n’ composable
integer set. Inf Process Lett 110(16):644–650

27. Guzun G, Canahuate G, Chiu D, Sawin J (2014) A tunable compression
framework for bitmap indices. In: 2014 IEEE 30th International Conference
on Data Engineering. IEEE. pp 484–495. https://doi.org/10.1109/icde.
2014.6816675

28. van Schaik SJ, de Moor O (2011) A memory efficient reachability data
structure through bit vector compression. In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data.
SIGMOD ’11. pp 913–924. https://doi.org/10.1145/1989323.1989419

29. Chou J, Howison M, Austin B, Wu K, Qiang J, Bethel EW, Shoshani A, Rübel
O, Prabhat Ryne RD (2011) Parallel index and query for large scale data
analysis. In: International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’11. pp 30–13011. https://doi.org/
10.1145/2063384.2063424

30. Dong B, Byna S, Wu K (2014) Parallel query evaluation as a scientific data
service. In: 2014 IEEE International Conference on Cluster Computing
(CLUSTER). pp 194–202. https://doi.org/10.1109/cluster.2014.6968765

31. Yildiz B, Wu K, Byna S, Shoshani A (2019) Parallel membership queries on
very large scientific data sets using bitmap indexes. Concurr Comput
Pract Experience:5157. https://doi.org/10.1002/cpe.5157

32. Su Y, Agrawal G, Woodring J (2012) Indexing and parallel query
processing support for visualizing climate datasets. In: 2012 41st
International Conference on Parallel Processing. IEEE. pp 249–258. https://
doi.org/10.1109/icpp.2012.33

33. Dongarra J, Gates M, Haidar A, Kurzak J, Luszczek P, Tomov S, Yamazaki I
(2014) Accelerating numerical dense linear algebra calculations with
GPUs. Numer Comput GPUs:1–26. https://doi.org/10.1007/978-3-319-
06548-9_1

https://doi.org/10.1109/esciencew.2010.13
https://doi.org/10.1109/esciencew.2010.13
https://doi.org/10.1109/ideas.2001.938070
https://doi.org/10.1109/ssdm.2003.1214955
https://doi.org/10.1109/ssdm.2003.1214955
https://doi.org/10.1109/dcc.1995.515586
https://doi.org/10.1109/dcc.1995.515586
https://doi.org/10.1145/1739041.1739071
https://doi.org/10.1109/ssdm.2002.1029710
https://doi.org/10.1109/ssdm.2002.1029710
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide
https://doi.org/10.1109/hipc.2015.49
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.bpa.gov
https://doi.org/10.1109/icde.2014.6816675
https://doi.org/10.1109/icde.2014.6816675
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1145/2063384.2063424
https://doi.org/10.1145/2063384.2063424
https://doi.org/10.1109/cluster.2014.6968765
https://doi.org/10.1002/cpe.5157
https://doi.org/10.1109/icpp.2012.33
https://doi.org/10.1109/icpp.2012.33
https://doi.org/10.1007/978-3-319-06548-9_1
https://doi.org/10.1007/978-3-319-06548-9_1

Nelson et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:44 Page 21 of 21

34. Tomov S, Dongarra J, Baboulin M (2010) Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Comput
36(5-6):232–240

35. Tomov S, Nath R, Ltaief H, Dongarra J (2010) Dense linear algebra solvers
for multicore with GPU accelerators. In: 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW). IEEE. pp 1–8. https://doi.org/10.1109/ipdpsw.2010.
5470941

36. Bell N, Hoberock J (2012) Thrust: A productivity-oriented library for CUDA.
In: GPU Computing Gems Jade Edition. pp 359–371. https://doi.org/10.
1016/b978-0-12-811986-0.00033-9

37. Merrill D (2016) Cub: Cuda unbound. http://nvlabs.github.io/cub.
Accessed 1 Aug 2019

38. Bailey P, Myre J, Walsh SD, Lilja DJ, Saar MO (2009) Accelerating lattice
Boltzmann fluid flow simulations using graphics processors. In: 2009
International Conference on Parallel Processing. IEEE. pp 550–557. https://
doi.org/10.1109/icpp.2009.38

39. Myre J, Walsh SD, Lilja D, Saar MO (2011) Performance analysis of
single-phase, multiphase, and multicomponent lattice-Boltzmann fluid
flow simulations on GPU clusters. Concurr Comput Pract Experience
23(4):332–350

40. Walsh SD, Saar MO, Bailey P, Lilja DJ (2009) Accelerating geoscience and
engineering system simulations on graphics hardware. Comput Geosci
35(12):2353–2364

41. Bakkum P, Skadron K (2010) Accelerating sql database operations on a
gpu with cuda. In: Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. GPGPU-3. ACM, New York.
pp 94–103

42. Fusco F, Vlachos M, Dimitropoulos X, Deri L (2013) Indexing million of
packets per second using gpus. In: Proceedings of the 2013 Conference
on Internet Measurement Conference. IMC ’13. pp 327–332. https://doi.
org/10.1145/2504730.2504756

43. Nguyen X, Hoang T, Nguyen H, Inoue K, Pham C (2018) An FPGA-based
hardware accelerator for energy-efficient bitmap index creation. IEEE
Access 6:16046–16059

44. Haas S, Karnagel T, Arnold O, Laux E, Schlegel B, Fettweis G, Lehner W
(2016) Hw/sw-database-codesign for compressed bitmap index
processing. In: 2016 IEEE 27th International Conference on
Application-specific Systems, Architectures and Processors (ASAP).
pp 50–57. https://doi.org/10.1109/asap.2016.7760772

45. Heimel M, Markl V (2012) A first step towards gpu-assisted query
optimization. In: Bordawekar R, Lang CA (eds). International Workshop on
Accelerating Data Management Systems Using Modern Processor and
Storage Architectures - ADMS. VLDB endowment. pp 33–44

46. Gosink LJ, Wu K, Bethel EW, Owens JD, Joy KI (2009) Data parallel
bin-based indexing for answering queries on multi-core architectures. In:
Winslett M (ed). Scientific and Statistical Database Management.
pp 110–129. https://doi.org/10.1007/978-3-642-02279-1_9

47. Kim J, Kim S-G, Nam B (2013) Parallel multi-dimensional range query
processing with r-trees on gpu. J Parallel Distrib Comput 73(8):1195–1207

48. Wu K, Otoo E, Shoshani A (2004) On the performance of bitmap indices
for high cardinality attributes. In: VLDB’04. pp 24–35. https://doi.org/10.
1016/b978-012088469-8.50006-1

49. Slechta R, Sawin J, McCamish B, Chiu D, Canahuate G (2014) Optimizing
query execution for variable-aligned length compression of bitmap
indices. In: International Database Engineering & Applications
Symposium. pp 217–226. https://doi.org/10.1145/2628194.2628252

50. Chmiel J, Morzy T, Wrembel R (2009) Hobi: Hierarchically organized
bitmap index for indexing dimensional data. In: Data Warehousing and
Knowledge Discovery. pp 87–98. https://doi.org/10.1007/978-3-642-
03730-6_8

51. Nagarkar P, Candan KS, Bhat A (2015) Compressed spatial hierarchical
bitmap (cshb) indexes for efficiently processing spatial range query
workloads. Proc VLDB Endow 8(12):1382–1393

52. Chambi S, Lemire D, Kaser O, Godin R (2016) Better bitmap performance
with roaring bitmaps. Softw Pract Exper 46(5):709–719

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/ipdpsw.2010.5470941
https://doi.org/10.1109/ipdpsw.2010.5470941
https://doi.org/10.1016/b978-0-12-811986-0.00033-9
https://doi.org/10.1016/b978-0-12-811986-0.00033-9
http://nvlabs.github.io/cub
https://doi.org/10.1109/icpp.2009.38
https://doi.org/10.1109/icpp.2009.38
https://doi.org/10.1145/2504730.2504756
https://doi.org/10.1145/2504730.2504756
https://doi.org/10.1109/asap.2016.7760772
https://doi.org/10.1007/978-3-642-02279-1_9
https://doi.org/10.1016/b978-012088469-8.50006-1
https://doi.org/10.1016/b978-012088469-8.50006-1
https://doi.org/10.1145/2628194.2628252
https://doi.org/10.1007/978-3-642-03730-6_8
https://doi.org/10.1007/978-3-642-03730-6_8

	Abstract
	Keywords

	Introduction
	Background
	Word-Aligned hybrid compression (WAH)
	Graphics processing units (GPUs)

	Parallel range queries
	GPU decompression strategy
	GPU range query execution strategies
	Column-oriented access (COA)
	Row-oriented access (ROA)
	Hybrid

	Ideal hybrid
	Multi-core CPU methods

	Theoretical analysis
	Evaluation methodology
	Results
	Discussion of results
	Related work
	Conclusion and future work
	Abbreviations
	Acknowledgements
	Author's contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

