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Abstract

As edge computing paradigm achieves great popularity in recent years, there remain some technical challenges that
must be addressed to guarantee smart device security in Internet of Things (IoT) environment. Generally, smart
devices transmit individual data across the loT for various purposes nowadays, and it will cause losses and impose a
huge threat to users since malware may steal and damage these data. To improve malware detection performance on
loT smart devices, we conduct a malware categorization analysis based on the Kaggle competition of Microsoft
Malware Classification Challenge (BIG 2015) dataset in this article. Practically speaking, motivated by temporal
convolutional network (TCN) structure, we propose a malware categorization scheme mainly using Word2Vec
pre-trained model. Considering that the popular one-hot encoding converts input names from malicious files to
high-dimensional vectors since each name is represented as one dimension in one-hot vector space, more compact
vectors with fewer dimensions are obtained through the use of Word2Vec pre-training strategy, and then it can lead
to fewer parameters and stronger malware feature representation. Moreover, compared with long short-term
memory (LSTM), TCN demonstrates better performance with longer effective memory and faster training speed in
sequence modeling tasks. The experimental comparisons on this malware dataset reveal better categorization
performance with less memory usage and training time. Especially, through the performance comparison between
our scheme and the state-of-the-art Word2Vec-based LSTM approach, our scheme shows approximately 1.3% higher
predicted accuracy than the latter on this malware categorization task. Additionally, it also demonstrates that our
scheme reduces about 90 thousand parameters and more than 1 hour on the model training time in this comparison.
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Introduction

Recent developments in the field of edge computing have
led to extensive attention on smart device security in
the Internet of Things (IoT) environment [1]. Nowadays,
smart devices interact with networks for various pur-
poses. A mass of personal information, including health
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condition, motion record, position data, is collected by
smartphones and wearable devices and uploaded to ser-
vice providers [2]. Meanwhile, with the continued increase
in adoption, smart devices attract considerable attention
from malware developers, and it poses great threats to IoT
security [3]. For instance, it will cause information disclo-
sure provided that inbuilt cameras and microphones in
edge devices are taken over by malicious programs. More
seriously, as smart chips in autonomous cars can navi-
gate routes automatically, personal safety is hardly even
guaranteed if the chips are attacked [4]. Hence, research
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on malware detection and categorization on IoT remains
imperative and promising.

Malware detection and analysis have received exten-
sive discussion, yet traditional approaches are not fully
available on edge devices in the IoT environment. Certain
traditional defend techniques applied to general desk-
top computing environments rely on pre-defined rule
libraries. However, the portability of smart devices causes
that they are not always connected to fixed and trusted
networks, and thus perimeter-based defenses, includ-
ing firewalls and intrusion detection, are not available
for edge devices [5]. Moreover, as smart devices put
more emphasis on real-time interaction, the correspond-
ing malware identification requires faster response speed
than on traditional platforms. Current malware identi-
fication for edge devices mainly relies on the malware
signature databases from software distributors, yet this
approach can not meet the demand of detecting the ongo-
ing number of malware in edge computing paradigm.
Research on automatic malware analysis techniques in the
IoT environment is exceptionally urgent. In our previous
works, to measure the stability of cyber-physical systems
(CPSs) under malicious attacks, we developed a finite-
time observer to estimate the state of the CPSs [6]. Then,
we proposed a kernel learning algorithm to improve the
malware detection performance on complex datasets with
noise [7]. In addition to detection performance, mem-
ory footprint and response speed are also of enormous
importance for current smart devices on IoT, and this
poses higher requirements for edge malware analysis. In
this article, we are committed to improving edge malware
identification performance with low memory footprint
and fast response speed.

As one of the most energetic technology companies,
Microsoft has paid great enthusiasm into the IoT field, and
Windows-based applications have been well-developed
via their Azure IoT platform services [8]. Focused on
the Windows-based malware invasion problem on the
IoT platform, this article proposes a malware categoriza-
tion scheme for attributing malware into different families
through a Word2Vec-based temporal convolutional net-
work (TCN). The model performance is evaluated by
comparing with several representative works, i.e., Naive
Bayes Classifier, OneHot-based TCN, Word2Vec-based
long short-term memory (LSTM), on the Microsoft Mal-
ware Classification Challenge (BIG 2015) dataset.

In this research, opcode and application programming
interface (API) call name sequences are extracted from
the malware assembly files firstly. Then, in considera-
tion of the benefits of pre-training strategy for achieving
better performance, a Word2Vec model, which encodes
textual data with distributed representation by consid-
ering the context, is implemented for input name vec-
torization. Compared with one-hot encoding approach,
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Word2Vec encodes the input names into more compact
numeric vectors by training a language model, and it leads
to lower memory footprint and better representational
ability. Finally, a TCN, as an advanced convolutional net-
work structure for sequence modeling tasks, is developed
to attribute the malware. Compared with other recur-
rent neural networks (RNNs), e.g., gated recurrent unit
(GRU) and LSTM, TCN is easy to implement in par-
allel because of its convolutional structure. In addition,
TCN demonstrates significant advantage of lower mem-
ory requirement than canonical recurrent networks due
to the shared filters across the convolutional layers. Our
contributions in this article are summarized as follows.

e A Word2Vec model is pre-trained to vectorize the
input names. Word2Vec model vectorizes the names
in extracted sequences by training a language model.
In this article, we demonstrate the better performance
and lower memory footprint of WordVec on
malware categorization task by comparing with the
popular one-hot encoding approach.

e A TCN is developed to attribute the malware. TCN is
a specific convolutional network structure for
sequence modeling tasks. In this article, by comparing
with the LSTM sequence modeling structure, the
performance of TCN computing paradigm on IoT
software safety is explored, and it reveals that TCN
has better performance with less training time.

e Specifically, the effectiveness of our Word2Vec-based
TCN scheme is validated on the Microsoft Malware
Classification Challenge (BIG 2015) dataset. Our
experimental results have been compared with some
other similar methods and recent works citing the
same dataset, and then the comparisons show better
performance of our scheme.

The remainder of this article is organized as follows. The
next section gives a summary of the background consist-
ing of Word2Vec model, TCN structure, and recent works
on IoT malware classification and categorization. Follow-
ing that, the proposed scheme and the time complexity are
elaborated and analyzed. Then, the next part describes the
experimental settings and results for model evaluation.
The final section includes a conclusion of the proposed
scheme and a promising direction for further research.

Background

Word2Vec model

Input name sequences from malware samples are tex-
tual data that should be encoded into numeric vectors
for feature representation. Word embeddings are gen-
eral approaches to map primitive representation of words
into high-dimensional numeric vectors in an embedding
space with maintaining word distances. Nowadays, word
embeddings have gained an incresed research interest,
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and among which Word2Vec is one of the most significant
text representation models [9, 10]. Word2Vec assumes
that the contexts in the natural language are of high cor-
relation, and hence words can be vectorized according
to the contexts [11]. Then, word vectors can be obtained
from training corpus to measure the semantic similarities
between words in natural language. Note that word vec-
tors are generally generated from the weights of trained
language models rather than the direct training targets
in Word2Vec. Generally, Word2Vec includes two kinds of
architectures, i.e., contextual bag-of-words (CBOW) and
skip-gram (SG), to learn distributed representation [12—
14]. A simple skip-gram model architecture is shown in
Fig. 1 [10].

A large and growing body of literature has studied the
effectiveness of Word2Vec model in various areas. In
[15], Word2Vec technique was applied to social relation-
ship mining in a multimedia recommendation method.
This method recommended users multimedia based on a
trust relationship, and Word2Vec here was used to encode
the sentiment words in related comments into word vec-
tors. In [16], a Word2Vec-based music modeling method
adopted skip-gram to model slices of music from a large
music corpus. Word2Vec was proved a useful embed-
ding technique to capture meaningful tonal and harmonic
relationships in music according to their experimental
results. Word2Vec has also shown powerful representa-
tion ability for inverse virtual screening in the early stage
of drug discovery process. In [17], Word2Vec was com-
bined with a dense fully connected neural network algo-
rithm to perform a binary classification on input protein
candidates. In addition, several recent studies investi-
gating Word2Vec in the areas of malware classification
and detection have been carried out. In [18], a malware
detection method named DroidVecDeep was designed to
detect unknown malicious applications on the Android
platform. Here, features were extracted by static analysis
and ranked by mean decrease impurity firstly, and then
were transformed into compact vectors to train a deep
classifier according to Word2Vec model. In [19], a LeNet5
structure was developed for malware classification based

(2020) 9:53 Page 3 of 14

on the multi-channel feature matrixes, which were con-
verted from malware binary files and assembly files via
Word2Vec technique.

Temporal convolutional network

RNNs are considered the general methods for sequence
modeling tasks. However, certain convolutional structures
show state-of-the-art performance in some sequence
modeling tasks, such as audio synthesis, machine trans-
lation, and language modeling [20-22]. Then, to verify
whether convolutional structures are subject to some spe-
cific sequence modeling applications, TCN structure was
developed and compared with common RNNSs, such as
GRU and LSTM, on a comprehensive set of sequence
modeling tasks. The comparison results on these tasks
indicate better performance and longer effective memory
of TCN structure [23].

TCN uses a specific 1D convolutional structure for
sequence information representation. Assuming x =
(x1,-..,%¢...,x7) is the input sequence, [ denotes the
input sequence length, x; denotes the input at time step
t, g € R represents n convolutional filters with ker-
nel size s, “x” denotes convolution operator, and then
a canonical 1D convolutional operation can be formed
as [24]:

h—1

G =(xxg) (&) =Y xrgl> (1)
k=0

However, 1D convolutional networks are facing infor-
mation leakage and output shrink problems. To overcome
these limitations, TCN combines 1D fully-convolutional
network (FCN) and casual convolutions [25]. In 1D FCN,
hidden layers have the identical length as input sequence
to prevent output length shrink. In casual convolutions,
output at time step ¢ is convolved only with the neural
nodes at time ¢ and the earlier ones in the previous layer.
Moreover, considering the receptive field of 1D FCN is
linear to the number of convolutional layers, dilated con-
volution technique is integrated into TCN structure for

Fig. 1 The architecture of skip-gram model
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longer effective memory. Then, the dilated convolutional
layer can be defined as:
h—1
G(x) = (x%a8) () = ) xe-aigi, 2
k=0
where “x;” denotes the convolution operation with dila-
tion factor d.

Residual connection is another important ingredient of
TCN [26]. According to residual connection, the output of
a branch which contains a series of transformations G is
added to the input of the block. Assuming the input of the
residual block is z, and the output of the block is o, then
the residual block can be defined as:

0=z+G(2). (3)

Compared with canonical RNNs, such as LSTM and
GRU, TCN always has longer effective memory and bet-
ter performance. Additionally, two other advantages are
determined by the particular TCN structure. The fact that
neural nodes in each hidden layer are not sequentially
connected enables parallel computation for higher com-
putational efficiency, and the shared filters across each
layer lead to fewer parameters in TCN. A common TCN
structure is illustrated in Fig. 2 [27].

Machine learning methods on edge malware detection
and categorization

With the rapid development of 10T, smart devices have
suffered various attacks in edge computing paradigm.
For instance, in the distributed denial-of-service (DDoS)
attack on October 21, 2016, large amounts of IoT devices,
such as digital video recorders (DVRs) and internet pro-
tocol (IP) cameras, were infected by Mirai to participate
in this attack [28]. Therefore, research on malware cate-
gorization and analysis in the IoT environment is of great
significance. As machine learning methods, such as sup-
port vector machine (SVM), extreme learning machine
(ELM), neural network (NN), have shown good achieve-
ments on classification tasks, there has been a surge
of interest in machine learning methods on edge mal-
ware detection in recent years. In [29], Sagar developed
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a three-stage malware detection model to improve detec-
tion performance. Term frequency-inverse document fre-
quency (TF-IDF) and information gain (IG) features were
extracted in the first stage, and then principal compo-
nent analysis (PCA) technique was brought in for feature
extraction. Finally, a deep belief network (DBN) with opti-
mized activation function was constructed to attribute the
malware. In [4], Niu et al. combined static analysis and
extreme gradient boosting (XGBoost) method to over-
come the low accuracy of static analysis and high resource
overhead of dynamic analysis on X86-based IoT devices in
an autonomous driving application. In [30], the opcodes of
IoT applications were transmuted into a vector space, and
then fuzzy and fast fuzzy tree methods were developed to
detect and classify the malware. In addition, control flow
graph (CFG) was another common choice for malware
classification. In [31], a CFG-based deep learning model
was constructed to identify malware and benignware IoT
disassembled samples.

The proposed malware categorization scheme

In this section, a brief introduction to the malware dataset
for this work are described firstly. Then, pre-processing
to filter the input sequences is analysed. Furthermore,
a Word2Vec-based TCN for malware categorization is
elaborated. Through the employment of a pre-trained
Word2Vec model, the input name sequences are embed-
ded into a vector space, and then a TCN structure is
developed for malware categorization. The whole pro-
cess is illustrated in Fig. 3. The comparison between the
state-of-the-art Word2Vec-based LSTM approach (left)
and our proposed scheme (right) is illustrated in Fig. 4.
The comparison in Fig. 4 shows that the main differ-
ences between our proposed scheme and this Word2Vec-
based LSTM are pre-processing and categorization net-
work. In pre-processing, we apply extra useful tricks for
feature extraction. Continuously repeated names repre-
senting repeat processes in program execution provide
no additional information for malware categorization.
Therefore, the strategy to remove the repeat is designed
here. In addition, too short sequences, which provide

delayed one time step

Fig. 2 A general TCN structure with causal operation. Dilation factors are equal to {1, 2, 4}, and filter size is 3. The dashed lines represent the network
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Fig. 3 The whole process of our proposed scheme. The whole process consists of input, output, preprocessing and test set validation process, and
three network modules Word2Vec pre-trained model, input embedding module and TCN categorization module
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inadequate information for family classification and lead
in much noise for feature representation, are eliminated
in our scheme. Considering the categorization network,
TCN in our scheme has longer effective memory due
to the dilated convolution structure. Moreover, residual
structure is another reason that our scheme performs

better than Word2Vec-based LSTM. More details about
the proposed scheme are described in the following parts.

Dataset
In this article, experiments on the Kaggle competition of
Microsoft Malware Classification Challenge (BIG 2015)
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Fig. 4 Comparison between the state-of-the-art Word2Vec-based LSTM and our proposed scheme. The main different parts are shaded light grey
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dataset [32] are performed to evaluate the proposed
scheme. The original dataset with approximately 500GB
consists of more than 20K malware samples belonging
to nine malware families. In this work, considering the
test data with no labels are unavailable for supervised
tasks, only labeled training data in the whole competition
dataset are utilized. The corresponding assembly source
file of every malicious program is produced from binary
file through interactive disassembler pro (http://www.
hex-rays.com/products/ida/). Then the opcode and API
call name sequences are extracted from the corresponding
assembly source files.

Pre-processing

Input name sequences are roughly extracted from assem-
bly source files, and therefore further data processing
is an essential and primary step before feature repre-
sentation [33]. Some extracted sequences contain many
consecutive duplicate opcode and API call names which
supply no more information for modeling. Then reducing
consecutive repeated names is an imperative procedure.
Meanwhile, extracted sequences from assembly source
files have unequal lengths so that unifying the length of
the sequences is another consideration. As a whole, main
data pre-processing techniques in this work are as follows:

e Filter consecutive duplicate opcode and API call
names: Remove the consecutive and identical names
in input sequences to avoid redundant information.

e Filter short sequences: Some sequences from
assembly source files which just consist of several
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opcode and API call names may contain insufficient
information to identify the corresponding programs,
and these sequences will be removed from the dataset.

e Unify the sequence length: Samples with various
length are tricky for neural networks, and therefore
unifying the sequence length is imperative for
malware categorization. In this work, a sequence
length L is pre-set to equalize the lengths [34]. The
sequences with length longer than L retain the first L
names, and those shorter than L are unified via
zero-padding.

After the data pre-processing, the sample size in dataset
reaches 10868 and the vocabulary contains 1121 unique
opcode and API call names. In the experiments, the
extracted sequences are split into training set, validation
set, and test set with the proportion of 0.64, 0.16, and 0.2,
respectively. The statistical information of each category
is shown in Fig. 5 and data samples are shown in Fig. 6.

Word2Vec-based TCN structure

Word2Vec-based TCN mainly consists of a Word2Vec
and a TCN sequence analysis model. In this structure,
input sequences are transmitted to Word2Vec model in
the first step, and then the embedding layer weights are
initialized with the numeric vectors from the trained
Word2Vec model. Subsequently, a specific TCN for mal-
ware categorization is trained. Finally, the Word2Vec-
based TCN model is automatically evaluated on the
test set. The algorithm description is presented in
Algorithm 1.
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Fig. 5 Data statistics of the malware dataset for each category. The number above the bar is the total number of the corresponding category
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dec push  dec sub cmp  dec
push movzx push  mov push mov
sub push call GetWindowsDirectoryA test  pop
dd retf db mov push pop
include push call GetFileAttributesW Xor  cmp
include mov  add mov lea mov
inc retn Xor retn push  xor
dd mov  push mov sub  lea
include align push mov push call
mov push mov  sub lea adc
dd dw dd align dd align
align  push call RegisterWindowMessageW  retn  align
align  mov  push mov sub  push
popa xlat bound popa mov daa
include align push mov push call
pop xor call push db retn
include align push mov push call
include push call LoadLibraryA push call
Fig. 6 A part of malware opcode and API call name sequence samples

mov dec mov dec mov
push mov push add mov
add retn mov push call
push pop retn  mov push
setnz mov retn  push mov
imul mov sub  mov sub
test Xxor pop retn push
push add pop push pop
add mov pop retn align
push add pop push retn
dd align dw  align unicode
call RegisterWindowMessageW  retn  align retn
xor cmp mov cmp mov
arpl inc stosd out  or
add mov pop retn align
push pop xor call push
add mov pop retn align
GetProcAddress call retn  push mov

Algorithm 1: Word2Vec-based TCN
Input:
training set, test set, number of filters, batch size,
embedding size, number of hidden layers, dropout
rate, number of stacks, kernel size.
Output:
The output matrix.
(a) Train a Word2Vec model using the input
sequences in training set.
(b) Construct the TCN model.
(c) Train the TCN model:

(c-1) Use the trained Word2Vec weights to initialize
the weights in embedding layer;

(c-2) Process forward propagation based on training
set, and calculate the categorical cross-entropy loss
according to the loss function in “Loss function and
optimization” section;

(c-3) Process back propagation to obtain gradients,
and update model parameters by the gradients;

(c-4) Step out if model reaches convergence, else
jump to (c-2).

(d) Evaluate model performance. Feed the input
sequences in test set into trained TCN model, and
output the predicted malware class matrix.

TCN, which consists of several specific convolutional
strutures, is an advanced sequence modeling structure.
Compared with common RNNs, such as LSTM and GRU,
TCN is characterized by fewer network parameters and
faster training speed with better performance on sequence
modeling tasks. In this article, a TCN structure as illus-
trated in Fig. 7 is developed for malware categorization. In
Fig. 7, the TCN is constructed by stacked residual blocks
where the dilation factor is exponentially grown as the
blocks are stacked. In addition, each residual block con-
tains two dilated causal convolutional layers and all the
convolutional layers contain 32 filters in this TCN. Finally,

in the last layer, “fc” which is a fully connected layer with 9
hidden neurons and softmax activation function outputs
the predicted family probabilities.

Loss function and optimization

Considering malware categorization on the Microsoft
Malware Classification Challenge (Big 2015) dataset is
affiliated with multi-class problems, categorical cross-
entropy loss function is adopted in this article.

Assuming y; denotes the true probability of the ith
sample belonging to malware family j, y;; denotes the pre-
dicted probability of the ith sample belonging to family
J, N denotes the sample size, M denotes the number of
malware families, and then categorical cross-entropy loss
function is defined as:

N M
Lijoss = — Z Zj'\l} logyi/"

i=1 j=1

(4)

Adam optimizer, which combines the first moment esti-
mation and the second moment estimation of the gra-
dient, is a common optimizer in neural networks [35].
Hence Adam optimizer is employed in this work.

Time complexity

When 1D convolutional structure is used for sequence
modeling in natural language processing, the input
sequences are always encoded into numeric vectors firstly.
Then, assuming ¥ € R” is an input sequence where [
denotes the length of the input sequence and m denotes
the dimensionality of embedding space, n denotes the
number of convolutional filters, # denotes the length of
the 1D convolutional filter kernel (I > k), and then the
time complexity of the 1D convolutional layer is:

O(mhn). (5)

Assuming d is the dilation factor of the dilated convo-
lutional layer in TCN, the time complexity of this dilated
convolutional layer is:
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Moreover, the mathematical form of a residual connec-
tion is:

0=2z+G(2), (7)

where o denotes the residual block output, z denotes the

input of the block and G denotes a series of transforma-

tions. It can be seen that the residual connection is linear,

assuming G in a residual block contains two dilated con-

volutional layers which is the general case, then the time
complexity of this TCN structure can be approximately

estimated as:
2
@ (dlmhn) .

From (5) and (8), the time complexity between TCN
residual block and 1D convolutional structure is roughly
comparable. Considering the input data are determinate
after pre-processing and embedding space construction,
the number of convolutional filters and the length of filter
kernels is the main variable parameters in convolutional
structure for time consumption. Moreover, since dilated
convolutions are potent tricks in TCN structure for a large
receptive field, TCN residual blocks enable less comput-
ing time with the growth of the dilation factor. Finally,
the TCN will achieve good performance with less time
consumption by stacking with several residual blocks.

(8)

Experiments

To evaluate the performance of our proposed malware
categorization scheme, the classical Naive Bayes Classifier
for N-gram model (Ngram NBC, for short) is the base-
line in our experiments [36]. In addition, to verify that
the numeric vectors from pre-trained Word2Vec model
are capable to represent the malware feature sequences
more precisely, the current popular one-hot encoding
technique combined with TCN (OneHotTCN, for short)
is compared in our experiments. Then, our proposed
scheme (Word2VecTCN, for short) is compared with
the state-of-the-art malware categorization model in [34]
(Word2VecLSTM, for short). Finally, our scheme is com-
pared with some other recent works on the same malware
dataset.

Experimental environment

Our experiments are conducted on the Kaggle competi-
tion of Microsoft Malware Classification Challenge (BIG
2015) dataset to evaluate the malware categorization per-
formance on the [oT malware recognition task. Consider-
ing the samples in each category are different in quantity,
we divide the dataset into training, validation, and test set
in a stratified fashion to ensure the same relative propor-
tion in each set. More dataset statistical information is in
the previous section.

Here, our experiments are implemented by Python with
some additional libraries, such as TensorFlow, Keras, and
some others, while the training and evaluation processes
are conducted on Tesla K80 GPU in Google Colabora-
tory system, which is a Google cloud service supporting
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Table 1 Parameters selection

Parameter TCN LSTM
max sequence length 600 600
batch size 64 64
learning rate Te-3 Te-3
embedding size 300 300
number of layers 1 2
dropout rate 0.5 0.2
hidden layer neuron - 128
number of filters 32 -
number of stacks 1 -
dilations 20 .. 28 -
kernel size 10

artificial intelligence research [37]. In addition, early stop-
ping and learning rate schedule are extra strategies in the
training phase. The learning rate is initially 0.001, and then
reduced to 10% of the original value if the validation loss
stops declining for 5 epochs.

Metrics

The following basic criteria are universally defined for per-
formance evaluation of machine learning techniques: true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN). Here, to evaluate the performance of
the malware categorization models, some metrics based
on the above criteria such as true positive rate (TPR), false
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positive rate (FPR), positive predictive value (PPV), F-
measure (F-M), accuracy (ACC) are calculated and com-
pared [38]. In the experiment, the metrics of each malware
family are computed firstly. Then, considering class imbal-
ance problem in this dataset, further weighted results of
the nine malware families are also calculated in this article.
The metrics are defined as:

TPR = ——— x 100%,
TP + FEN
FPR = ——— x 100%,
FP + TN
PPV = ——— x 100%,
TP + FP
2 x TP
F-M = x 100%,
2 x TP+ FP + EN
TP + TN
ACC = + x 100%.

TP + TN + FP + FN
Additionally, total training time, test time, and training
time per epoch are other important indexes to be used for
time consumption evaluation in this article.

Parameter selection

The parameters in our proposed scheme and compar-
ison methods are elaborated in this section. As shown
in Table 1, TCN and LSTM have some similar parame-
ters. Here, “max sequence length” is the maximum length
of the opcode and API call name sequences. Then, the
sequences whose lengths are longer than the threshold are
clipped to “max sequence length’, and the shorter ones are
padded with 0 to reach the fixed “max sequence length”.
The parameter “batch size” is the number of samples fed
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60%

Accuracy

40%

20%

0%

Fig. 8 The accuracy comparison between TCN-based methods
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Loss Value
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Fig. 9 The loss comparison between TCN-based methods

—— Train_Word2VecTCN
Valid_Word2VecTCN

—— Train_OneHotTCN

——— Valid_OneHotTCN

into the models in each iteration. The parameter “learning
rate” is the learning rate in the optimization procedure.
Malware opcode and API call names should be mapped
into numeric vectors before feature representation, and
“embedding size” is the dimension of embedding space.
The parameter “number of layers” points out the num-
ber of the network layers. For example, two LSTMs are
stacked in this article. The parameter “dropout rate” is the
dropout proportion of the network nodes in the training

phase. The parameter “hidden layer neuron” represents
the number of neural neurons in LSTM hidden layers.
The parameter “number of filters” is the filter size in the
convolutional layers. The parameter “number of stacks” is
the number of stacked convolutional structures in resid-
ual blocks. Considering dilated convolution used in TCN,
“dilations” is a list of dilation factors in dilated convolu-
tion. The parameter “kernel size” is the filter kernel size
in the convolutional layers. There is no need to tune all
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Fig. 10 The accuracy comparison between the state-of-the-art approach and our proposed scheme
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Fig. 11 The loss comparison between the state-of-the-art approach and our proposed scheme
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Fig. 12 Confusion matrix for malware categorization with the Word2Vec-based TCN scheme
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Table 2 Performance for malware categorization with the
Word2Vec-based TCN structure

Family TPR FPR PPV F-M

Ramnit 97.00% 1.80% 90.20% 93.50%
Lollipop 98.80% 0.10% 99.80% 99.30%
Kelihos_ver3 100.00% 0.10% 99.80% 99.90%
Vundo 98.90% 0.20% 96.70% 97.80%
Simda 85.70% 0.10% 85.70% 85.70%
Tracur 88.10% 0.20% 94.50% 91.20%
Kelihos_ver1 93.50% 0.00% 100.00% 96.60%
Obfuscator. ACY 93.20% 0.40% 96.90% 95.00%
Gatak 97.00% 0.20% 98.50% 97.80%

parameters in both networks, and “-” represents the cor-
responding parameter is inexistent in current network.
Moreover, the parameters in OneHot-based method are
basically identical with those in Word2Vec-based TCN,
except that there is no “embedding size” in OneHot-
based TCN.

Results

Experimental results are shown in this section. Figures 8
and 9 reveal the accuracy and loss comparisons between
our scheme and OneHot-based TCN in the training phase.
Figures 10 and 11 reveal the accuracy and loss compar-
isons between our scheme and Word2Vec-based LSTM in
the training phase. The confusion matrix on the test set
of our scheme is illustrated in Fig. 12. Then the metrics
on each family of our scheme are computed in Table 2.
The weighted evaluation metrics and the time consump-
tion comparisons on this malware categorization task are
presented in Tables 3 and 4, separately. Finally, accuracy
comparison between our scheme and other works on this
dataset is conducted in Table 5.

The comparisons between our proposed Word2Vec-
based scheme and OneHot-based one are shown in Figs. 8
and 9. From Fig. 8, the validation accuracy of our scheme
is initially 29.8% and increases to a final value of 97.9%,
while the validation accuracy of OneHot-based TCN
method is initially 11.4% and grows to a final accuracy
of 96.5%. From Fig. 9, the validation loss is initially 5.88
and decreases to 0.12 finally of our scheme, while the val-
idation loss of OneHot-based TCN is initially 2.34 and

Table 3 Performance comparisons of malware categorization
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decreases to 0.21 finally. The two figures reveal Word2Vec
owns stronger feature representation ability than the one-
hot encoding on this malware category dataset. Specif-
ically, in terms of the embedding layer, the dimension
of numeric vectors generated from one-hot encoding
reaches 1121 which is the number of unique opcode and
API call names, while the dimension of numeric vectors
trained from Word2Vec is 300. It can reduce large mem-
ory footprint in edge devices.

The comparisons between our proposed scheme and
the state-of-the-art Word2Vec-based LSTM model are
shown in Figs. 10 and 11. From these two figures, con-
sidering that the “dropout rate” in our scheme is higher
than that in Word2Vec-based LSTM, our scheme is a
bit behind Word2Vec-based LSTM model at the begin-
ning of the training phase. Still, with the powerful feature
representation ability, our scheme achieves higher accu-
racy and lower loss than Word2Vec-based LSTM model
both on the training set and validation set finally. Fur-
thermore, Word2Vec-based model needs to train about
672 thousand parameters while our scheme just requires
approximately 582 thousand parameters, and the results
show that Word2Vec-based TCN has better representa-
tion ability and lower running memory in the training
phase.

Figure 12 presents the predicted results on test set of
our scheme visually, and Table 2 computes the metrics
on each malware family. The result combining Fig. 12
and Table 2 reveals that FPR of “Ramnit” is the highest
among the nine families, and therefore how to identify
the malware samples which are conceived as “Ramnit”
more accurately is the bottleneck to enhance the perfor-
mance of Word2Vec-based TCN scheme. When applying
this scheme to the practical IoT environment, the samples
recognized as “Ramnit” need to be paid more attention.

Tables 3, 4, and 5 show the comparisons of our
scheme and some representative methods. From Table 3,
the weighted metrics are computed and compared. The
results show that the weighted F-measure and the accu-
racy of our scheme are approximately 1.2% and 1.3%
higher than those of the Word2Vec-based LSTM, and the
weighted FPR of our scheme is approximately 0.3% lower.
Among all these metrics, Word2Vec-based TCN achieves
the best performance. In Table 4, “Training time” is the
runtime in the whole training phase, “Test time” is the

Method weighted TPR weighted FPR weighted PPV weighted F-M ACC
Ngram NBC 84.50% 1.80% 87.50% 85.30% 84.50%
OneHotTCN 96.00% 0.50% 96.20% 95.90% 96.00%
Word2VeclLSTM 96.20% 0.70% 96.40% 96.30% 96.20%
Word2VecTCN 97.50% 0.40% 97.60% 97.50% 97.50%

The values in boldface show the best results among the comparisons
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Table 4 Computing time comparisons of malware
categorization (second)

Method Training time Test time Training time
(per epoch)

Ngram NBC 0.244 9.016 -

OneHotTCN 571.356 22.568 14.650

Word2VecLSTM 4712.674 11.935 130.908

Word2VecTCN 732.179 16.442 17432

execution time on the test set, and “Training time (per
epoch)” counts average time per epoch in the training
phase. Considering the convolutional structure is easy to
be trained in parallel and the parameters of our scheme are
fewer than those in LSTM, TCN takes much less training
time than LSTM. In addition, our proposed scheme has
been compared with the other three recent works which
are also on the same Microsoft malware dataset in Table 5.
The comparison also verifies the good performance of our
scheme.

Conclusion
In this article, a Word2Vec-based TCN scheme is pro-
posed for malware categorization in consideration of edge
computing security. Opcode and API call name sequences
are extracted from malicious samples firstly, and then
the pre-processing is conducted for data cleaning. Subse-
quently, through the Word2Vec pre-training on the fea-
ture sequences, numeric vectors of the input names are
generated. Additionally, the malware feature sequences
represented by numeric vectors are fed into TCN to fit an
IoT malware categorization model. Finally, the model per-
formance is evaluated on the test set. The comparisons
with other representative works verify that our proposed
scheme can achieve decent performance while requiring
a small quantity of memory and training time. From
the occupancy of resources point-of-view, the benefits
of combining Word2Vec model and TCN structure are
noticeable.

Considering the low occupancy of resources and good
computing performance of our scheme, it has potential
applications on smart devices for security. As a universal

Table 5 Performance comparison with recently similar works
citing the Microsoft dataset

Method Accuracy
Word2VecTCN (proposed) 97.52%
Rahul, RK et al. [39] 94.91%
Cho, Y. [40] 96.00%
Sung, VY. etal. [41] 96.76%

The entries in boldface show the highest accuracy and the corresponding method
among this performance comparison
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malware categorization scheme, our scheme suggests its
promising applications in multiple fields of edge com-
puting security, such as intelligent transportation system
security control, smart factory protection and some oth-
ers. The applications of our scheme on these edge com-
puting fields will be considered in future work.
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