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Abstract

The image classification based on cloud computing suffers from difficult deployment as the network depth and data
volume increase. Due to the depth of the model and the convolution process of each layer will produce a great
amount of calculation, the GPU and storage performance of the device are extremely demanding, and the GPU and
storage devices equipped on the embedded and mobile terminals cannot support large models. So it is necessary to
compress the model so that the model can be deployed on these devices. Meanwhile, traditional compression based
methods often miss many global features during the compression process, resulting in low classification accuracy. To
solve the problem, this paper proposes a lightweight neural network model based on dilated convolution and
depthwise separable convolution with twenty-nine layers for image classification. The proposed model employs the
dilated convolution to expand the receptive field during the convolution process while maintaining the number of
convolution parameters, which can extract more high-level global semantic features to improve the classification
accuracy. Also, the depthwise separable convolution is applied to reduce the network parameters and computational
complexity in convolution operations, which reduces the size of the network. The proposed model introduces three

Lightweight neural network

hyperparameters: width multiplier, image resolution, and dilated rate, to compress the network on the premise of
ensuring accuracy. The experimental results show that compared with GoogleNet, the network proposed in this
paper improves the classification accuracy by nearly 1%, and the number of parameters is reduced by 3.7 million.
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Introduction

In recent years, deep networks have made significant
progress in many fields, such as image processing, object
detection, and semantic segmentation. Krizhevsky, et al.
[1] first adopted deep learning algorithm and the AlexNet
and won the champion of ImageNet Large Scale Visual
Recognition Challenge in 2012, which improved the
recognition accuracy by 10% compared to the tradi-
tional machine learning algorithm. Since then, various
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convolutional neural network models have been proposed
in the computer vision community, including the VGGNet
proposed by the Visual Geometry Group at the Uni-
versity of Oxford [2] in 2014, the GoogLeNet [3, 4] by
Google researchers, and the ResNet by He et al. [5, 6]
in 2015. These networks are superior to AlexNet [7, 8].
The trend of improvement is using deeper and more com-
plex networks for higher accuracy. With a higher precision
for computer vision tasks, the model depth and parame-
ters are also increasing exponentially, making these mod-
els dependent more on computationally-powerful GPUs
[4, 9]. As a consequence, existing deep neural net-
work models cannot be deployed on resource-constrained
devices [10, 11], such as smart-phones and in-vehicle
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devices, due to their limited computing power. The
emerging cloud computing has the potential to solve this
challenge [12].

Cloud computing technology, which combines the char-
acteristics of distributed computing, parallel computing
and grid computing, provides users with scalable comput-
ing resources and storage space by using massive comput-
ing clusters built by ordinary servers and storage clusters
built by a large number of low-cost devices. At present,
a large number of enterprises have enterprise-level cloud
computing platforms: amazon cloud computing, alibaba
cloud computing, baidu cloud computing, and so on.
Compared with the traditional application platform, cloud
computing platform has many fine characteristics, such
as strong computing capacity, infinite storage capacity,
convenient and fast virtual service and so on. However,
renting the cloud computing servers need extra cost for
individuals and small companies. For example,The model
training in this article can be run on an NVIDIA P4 cloud
server with 8g memory. This server is the most basic
server and costs $335 per month. Although the cost is
not too expensive for a company, it is a huge expendi-
ture for students without salary. Therefore, there is the
need to design a lightweight network to reduce the model’s
dependence on high-performance devices [13, 14].

To reduce the network’s dependence on high perfor-
mance servers and reduce the cost of cloud computing.
various new lightweight networks are proposed for object
detection. By compressing the model, the size of neu-
ral network is reduced [15, 16]. Typical strategies involve
avoiding full connection in the network, reducing the
number of channels and the size of convolution ker-
nel, as well as optimizing down-sampled, weight pruning,
weight discretization, model representation and coding
[17, 18]. For example, GoogleNet [3, 19] increased the
width of the network to reduce the network complexity;
the subsequent Xception network extended the depth-
wise separable filter to overcome the shortcomings in the
InceptionV3 network [5, 20]. The article MobileNet [21]
proposes a deep separable convolution, which shows great
potential for decomposing networks. However, the clas-
sification accuracy of these models cannot be guaranteed
during the compression due to omitting excessive image
features for simplified convolution operation [22, 23].

Aimed to address the above issues, this paper proposes
a lightweight neural network combining dilated convo-
lution and depthwise separable convolution. Inspired by
the MobileNet, this paper adopts a depthwise separa-
ble convolution architecture and hyperparameters, width
multiplier, and resolution multiplier to obtain a small net-
work model that can be applied to resource-constrained
devices such as smartphones [24, 25]. The convolution
process is divided into two processes by depthwise separa-
ble convolution to reduce network computation. Because
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the depthwise separation convolution cannot guarantee
the classification accuracy of the model [26], the pro-
posed model integrates the dilated convolution into the
depthwise separable convolution architecture. The dilated
convolution can increase the receptive field of the network
in the convolution process without increasing convolution
parameters, which can extract more global features and
higher-level semantic features, thus improving the clas-
sification accuracy of the network [27, 28]. Finally, the
proposed model is further compressed by reducing the
number of input channels and the resolution of input
image using hyperparameter strategy. Compared with
other networks, the network proposed in this paper can
ensure higher classification accuracy while using fewer
resources. In addition, the joint dilated convolution and
depthwise separable convolution method proposed in this
paper effectively solves the problem that model size and
classification accuracy cannot coexist.

Related work

In the current state-of-the-art, deep neural network com-
pression can be conducted in two approaches: i) com-
pressing the trained models by optimizing the network
parameters and ii) designing and training small network
models directly [29].

For the first approach, Han introduced compression
methods such as cropping, weight sharing, quantization,
and coding to deep network model in 2015. In general, a
complex network has good performance, but its parame-
ters may also be redundant [20]. Therefore, for a network
that has already been trained, unimportant hierarchical
connections or filters can be tailored to reduce model
parameters and redundancy. In the training process, a
weight update strategy is introduced to make it sparser,
but the commonly used sparse matrix operation is not
efficient on the hard-ware platform and is susceptible to
hardware devices [30].

The second approach has become popular with the
introduction of lightweight models such as SqueezeNet
[31], ShuffleNet [32], and MobileNet [21]. The Squeeze-
Net proposed by Landola et al. applies a convolution
kernel to convolve and dimension the upper features
and a feature convolution to perform feature stacking,
which greatly reduces the number of parameters of con-
volution layers. SqueezeNet uses a bottleneck method to
design a small network that greatly reduces the param-
eters and computational complexity while maintaining
accuracy [19]. Zhang et al. [32] proposed the ShuffleNet,
which groups multi-channel feature lines and then per-
forms convolution to avoid unsmooth information flow.
ShuffleNet [32] network reduces the amount of network
computation through channel shuffling and point-group
convolution. Howard et al. [21] proposed the depthwise
separable convolution model, named MobileNet, where
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the features of each channel convolved separately and then
uses 1 x 1 convolution to splice all features of different
channels. These lightweight models reduce the number
of network parameters and computational cost. However,
during the compression process, the classification accu-
racy of the model cannot be guaranteed because only local
information of the image is utilized [33-35].

Aimed to achieve a lightweight model while ensur-
ing the classification accuracy, this paper combines the
above two methods. Firstly, directly design and train a
small network model by combining depthwise separable
convolution and dilated convolution. The depthwise sepa-
rable convolution is used to reduce the parameter number
and computation burden, and the dilated convolution
improves the accuracy of the model. Secondly, inspired by
the MobileNet, the proposed model applies the hyperpa-
rameters to further compress the trained model, thereby
making the model to adapt to source-constrained devices.

Approach

This paper uses dilated convolution as a filter to extract
image features. Compared to the traditional filters, the
dilated convolution yields more full-image information
without increasing the number of network parameters,
where the dilated rate § controls the size of each con-
volution dilation. Then, we apply depthwise separable
convolution instead of traditional convolution to reduce
the computational complexity. To compress the model
further, we introduce two hyperparameters proposed in
MobileNet: width multiplier & and resolution multiplier p,
to evenly reduce the computational burden of each layer
of the network [30, 36]. This paper combines the dilated
convolution and the depthwise separable convolution to
ensure the classification accuracy while maintaining the
model to be lightweight by adjusting hyperparameters.
This section first presents the idea of building a joint mod-
ule of dilated convolution and depthwise separable convo-
lution, which is then used to build the deep convolution
network.

Joint module

As shown in Fig. 1, the proposed model dilates each fil-
ter to obtain more image information without increasing
the computation burden and the number of channels. The
dilated filter is then used to convolve each input channel,
and the final filter is used filter to combine the output of
different convolution channels.

Figure 2 illustrates the dilation process of the 3 x 3 filter
for the dilated convolution process in Fig. 1. The position
of the node without the dot mark in Fig. 2 indicates that
there is a zero weight, and the node with the dot mark
represents non-zero weight to that position. It represents
filters having different dilated rates, respectively, in Fig. 2a,
b, and c. The parameters of the convolution layer remain
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Fig. 1 Joint module

the same, so the amount of convolution process remains
the same too. The fields of the filters (a), (b), and (c) are
definedas3x3 =9,7x7 = 49,and 11x11 = 121, respec-
tively. Filter (c) has the largest receptive field, indicating
that each node on the feature map corresponds to more
feature information. With the increase of the receptive
field, it means that each node contains higher semantic
features, which can improve the classification accuracy of
the network. To factor the influence of different dilated
convolution on model accuracy, we apply hyperparame-
ter § to control the size of each dilated convolution. As
illustrated by Fig. 2, the relationship between the receptive
field and the original filter size can be represented as:

C=( x5+ —1)% (1)

where C denotes the size of the receptive field, S rep-
resents the size of the initial filter, and § represents the
dilated rate.

The separable convolution operation is carried out on
the obtained dilated convolution filter. The size of the dila-
tion filter is Ly x Li with Ly = +/C. Figure 3 shows the
process of constructing a L; x L; x H feature map and a
L; x L; x N feature map. This process shows how to reduce
the number of parameters in the model.

Figure 3a, b, and c represent the traditional convolution
filter, depthwise convolution filter, and pointwise convolu-
tion filter, respectively. Figure 3b and c together represent
a separable convolution process, where L; x L; is the width
and height of the input feature map, N is the number of
filters, Ly x Ly is the width and height of the dilated fil-
ter, and H is the number of channels. For example, a single
dilated filter of Ly x Ly is firstly used to carry out the con-
volution operation on each channel. If the number of the
feature map channels is H here are H filters with the same
size to participate in the convolution operation, and the
number of channels of each filter is 1. The image is then
convolved by N filters with 1 x 1 size and convolution
channels. Figure 3 shows that the traditional convolution



Sun et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:55 Page 4 of 12

H H H H
Ly Ly Ly Ly
Ly Ly Ly Ly

N

(a) Traditional convolution filters

olofo = = ! —
Ly Ly Ly S
. . . Ly Ly Ly Ly
o0|® Yy
H
(a) 3 x 3 Standard filter § = 1 (b) Depthwise convolution filters
H H H H

1 1 1 1

(c) Pointwise convolution filters

Fig. 3 Dilated convolution process

® layer takes a L; x L; x H feature map as the input and pro-
duces a L; x L; x N feature map, in which L; x L; is the
width and height of input feature map, H is the number of
(b) Filter with § = 2 input channels, N is the number of output channel, Ly x Lg
is the width and height of the dilated filter. G; represents
the amount of parameters in the traditional convolution
process.

-7_7_3!‘
_1_1_+
.

Gy =Lg XLy xHXN xL; xLj. (2)

G, is the number of parameters of the depthwise sepa-
rable convolution process.

Gyi=LiyxLyxHxL;jxLi+HXxXN xL; xL;. (3)

Therefore, the ratio of separable convolution to the
CHNCNND traditional convolution can be represented by:
A Gy 1 1
=4 4 4
11 1 Gt N L12< ( )

(c) Filter with & = 3 Equation (4) shows that the calculation can be reduced
Fig. 2 Dilated convolution process to % + Liz compared to the conventional convolution
k

process, which lowers computational complexity.
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Network architecture

To avoid the gradient disappearance problem and speed
up the network training, we apply the BN layer (Batch
Normalization) and the ReLU layer to make the gradient
larger [37, 38] after introducing the joint module above.
We call the process presented as a basic network structure,
shown in Fig. 4.

Using only one basic structure is not enough to form
a usable neural network, because we cannot receive deep
information about the image if the network is too shal-
low. Therefore, there is the need to construct a lightweight
neural network based on Fig. 4. As shown in Fig. 5, several
basic network structures are combined with the average
pooling layer, the full connection layer, and the Softmax
layer to form the overall network structure. Table 1 shows
the entire composition of this lightweight neural network
in detail. Class represents the category of the dataset in
the table. In total, the model includes one average pooling
layer and one fully connected layer, nine dilated convolu-
tion layers, nine depthwise separable convolution layers,
and nine BN layers.

The model dilates the 3 x 3 convolution kernel before
implementing each depthwise separable convolution.
Through the dilated rate to obtain a convolution kernel
with a larger receptive field. The obtained 3 x 3 dilated
convolution is applied to each channel of the feature map,
and then 1 x 1 convolution is used to combine the out-
put of the channel convolution. Adding a BN layer and a
Relu linear activation function after each 1 x 1 convolu-
tion operation can accelerate training speed and improve
the generalization capability of the network [39, 40].

Hyperparameters

This study adjusts the dilated rate § to change the size of
the dilated convolution. The specific experimental results
will be introduced in the next section. Different devices

3*3 Dilated Conv

v

3*3 Depthwise Conv ReLu

¥ 3

BatchNormalization BatchNormalization
ReLu —> 1*1 Conv

Fig. 4 Basic structure
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Fig. 5 Structural flow chart

require smaller and faster models. Therefore, this paper
refers to two hyperparameters, the width multiplier & and
resolution multiplier p , to obtain a smaller model. The
two hyperparameters reduce the computational complex-
ity of the entire network by reducing the computational
complexity of the depthwise separable convolution pro-
cess. The role of the width multiplier is to thin a network
uniformly at each layer. The number of input channels
changes from H to aH , and the number of output chan-
nels becomes aN from N. As a result, the complexity of
the depthwise separable convolution is:

Gy =L xLgxaH X L;xLi+aH xaN x L; x L;. (5)
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Table 1 Overall architecture

Type Filter shape Stride Input size
Dilated Conv 3x3x32 1 224 x 224 x 3
Depthwise 3x3x32 2 224 x 224 x 32
Separable Conv Tx1x64 1 112 x 112 x 32
Dilated Conv 3x3x64 1 112 x 112 x 64
Depthwise 3x 3 x64 2 56 x 56 x 64
Separable Conv Tx1x128 1 56 x 56 x 64
Dilated Conv 3x3x128 1 1Tx1x128
Depthwise 3x3x128 1 56 x 56 x 128
Separable Conv Tx1x128 1 56 x 56 x 128
Dilated Conv 3x3x128 1 56 x 56 x 128
Depthwise 3x3x128 2 28 x 28 x 128
Separable Conv 1Tx1x 256 1 28 x 28 x 128
Dilated Conv 3 x3x256 1 28 x 28 x 256
Depthwise 3 x 3 x 256 1 28 x 28 x 256
Separable Conv T x 1 x 256 1 28 x 28 x 256
Dilated Conv 3 x 3 x 256 1 28 x 28 x 256
Depthwise 3 x 3 x 256 2 14 x 14 x 256
Separable Conv Tx1x512 1 14 x 14 x 256
Dilated Conv 3x3x512 1 14 x 14 x 512
Depthwise 3x3x512 1 14 x 14 x 512
Separable Conv Tx1x512 1 14 x 14 x 512
Dilated Conv 3x3x512 1 14 x 14 x 512
Depthwise 3x3x512 2 14 x 14 x 512
Separable Conv Tx1x1024 1 7x7x512
Dilated Conv 3 x3x 1024 1 7 x 7 x 1024
Depthwise 3 x 3 x 1024 1 7 x 7 x 1024
Separable Conv 1Tx1x1024 1 7 x7x 1024
Avg Pool 7x7 1 7 x 7 x 1024
FC 1024 xclass 1 1x1x1024
softmax Classifier 1 1 x 1xclass

where G, indicates the amount of calculation, where @ €
(0, 1] with a typical value of 1, 0.75, or 0.5 [23]. It repre-
sents compression factor. Note that « < 1 represents a
narrow network. The second hyperparameter p is a res-
olution multiplier. By applying this strategy to the input
image, the internal representation of every layer is subse-
quently reduced. For example, the size of the feature map
of each layer of the convolution becomes p? compared to
the original input image. The computational complexity
of the depthwise separable convolution is:

Gp =Lgx Ly xHxpL;x pLi+H xN x pL; x pL;. (6)

where p € (0,1] which is set implicitly so that the input
resolution of the network is 224, 192, or 160 [23]. It repre-
sents the size of input images. When p < 1 itis named the
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reduced computation network. We use p to further com-
press the trained model. Accordingly, the computational
complexity of two hyperparameters is shown as follows:

Gup =L xLyxaHXxpLixpLi+aH xaN x pL; x pL;.
(7)

The computational complexity of the model is reduced
by adopting these two hyperparameters, which can be
applied to various source-constrained devices. Mean-
while, to ensure the classification accuracy, we need to
compromise the hyperparameters «, p, § to get the best
model in sections experiments.

Loss function and optimization

We adopt cross-entropy as the loss function of neural net-
work, using Adam as the network optimizer [41]. The
formula for cross-entropy is as follows:

1
W(p,q) = ) s log [ —— 8
®: 9 Xi:p(t)* og(q(l.)) (8)

where W (p, q) represents cross-entropy, p represents the
distribution of the true mark, g is the predicted mark
distribution of the trained model, and cross-entropy loss
function can measure the similarity between p and q.
Adam is considered to be robust in selecting hyperpa-
rameters [11]. Therefore, this paper adopts an adaptive
Adam learning rate to optimize the proposed model. In
Adam, momentum is incorporated directly as an estimate
of the first-order moment (with exponential weighting)
of the gradient. Meanwhile, Adam includes bias correc-
tions to the estimates of both the first-order moments
(the momentum term) and the (uncentered) second-order
moments to account for their initialization at the origin
[41]. The optimization steps are presented in Table 2.

Experiments
To verify the effectiveness of the proposed method, we
constructed an experimental platform and selected a typ-
ical dataset. The proposed network model was compared
with other models to verify its effectiveness. Further-
more, we investigated the influence of the dilated con-
volution size on the classification accuracy of the model
and verified the classification accuracy. We also veri-
fied the compression effect and accuracy of the pro-
posed model through hyperparameters. All experiments
were carried out on a computer with Intel Core i7-7700k
CPU, 4.20Ghzx8 frequency, and GTX 1080Ti graphics
card. CUDA version 9.0 and cuDNN version 7.3.1 were
installed. The proposed model and algorithm were com-
piled and operated on TensorFlow 1.12.2.

There are many datasets available on the Internet. We
select the CIFAR-10 dataset to verify the proposed model,
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Table 2 Optimization algorithm

Algorithm: The optimization with the improved loss function

Input: Sample a minibatch of m examples from the training set
(M, x(M} with corresponding targets y@.

Initialization: Step size ¢ = 0.001, exponential decay rates for moment
estimates p; = 0.9, p» = 0.999 and small constant § used for numerical
stabilization § = 1078,

Output: Network parameters 6.

1. Initialize: Network parameters 6, 1st and 2nd moment variables s = 0,
r=0andtimestept=0.

2. While stopping criterion not met do.
Compute gradient: g <« %V@) S LED;6),yD).
t=t+1

Update biased first moment estimate:

s < p1s+ (0 —p1)g.

Update biased second moment estimate:

r<—pr+Q0-p)gQOg.

Correct bias in first moment: 5 < 7(1_5#)-
1

Correct bias in second moment: 7 < ﬁ.
2

5

NZTH

Compute update: A0 = —¢

Apply update: 6 = 6 + A6.

3.end while.

4. Return 6.

because it applies recognition to ubiquitous objects and
applies to multiple classifications and the dataset size
is also suitable for most classifier training. In addition,
according to experimental requirements, the experiment
requires different-resolution pictures. CIFAR-10 dataset
contains 60,000 color images, all of which are 32 x 32
pixels. The dataset has been divided into 10 categories,
each of which includes 6000 images. We selected 50000
images from the dataset as the training set. The train-
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ing set constitutes five training batches, and each batch
includes 10,000 images. Another 10,000 images are used
for testing, forming a separate batch. In the test batch,
1000 images are randomly selected from each of the 10
categories, and the rest are randomly arranged to form
the training batch again. The number of images with dif-
ferent categories in each training batch is not necessarily
the same. Meanwhile, The Tiny ImageNet dataset is used
to verify the generalization capability of the proposed
net-work. The dataset spans 200 image classes with 500
training examples per class. The dataset also has 50 val-
idation and 50 test examples per class. The images are
down-sampled to 64 x 64 pixels.

Training results and optimal selection

As shown above, the complete network structure has been
set up and the dataset has been selected. Next, we need
to train the built model. In the training of the network,
the best training result is selected by observing the change
of the loss function to test the classification accuracy of
the model. The change of the loss function on different
datasets is shown in Fig. 6.

The abscissa in Fig. 6 represents the epoch, and the ordi-
nate represents the cross-entropy, which is regarded as
the loss function. The whole picture shows the change in
cross-entropy after each epoch training. It can be seen
from the Fig. 6a that on the CIFAR-10 dataset, as the
training progresses, the value of the loss function contin-
uously decreases. The loss function stabilizes and reaches
a minimum at 13 epoch. But epoch is greater than 13, the
value of the loss function becomes larger and no longer
decreases. This is because the model may be overfitting.
In order to get better accuracy, this paper chooses the
model parameters when the epoch is 12 for testing. On
the Tiny Image dataset, Fig. 6b shows that the loss func-
tion decreased steadily in the first few epochs. Although
there are some slight fluctuations, the loss function is still
converging towards the optimal solution. After the epoch
is 10, the loss function is nearly unchanged and does not
increase, which indicates that the model has reached the
optimal solution. This article chose the training results
at epoch 15 as the parameters of the model on the Tiny
Image dataset.

Comparison of the proposed network with other networks
To demonstrate the performance of the proposed model
in network compression while ensuring accuracy of clas-
sification, we compare the proposed network to other
mainstream networks and illustrate their classification
accuracy based on the dataset CIFAR - 10. The param-
eters of the proposed network are specified as follows:
the dilated rate § = 3, width multiplier « = 1.0, and
resolution multiplier p = 1. The results are shown in
Table 3.
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Fig. 6 Loss function change in different dataset
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Table 3 shows that, compared to mainstream networks,
the proposed network model is more accurate on the
CIFAR-10 dataset. With the same width factor and the
input image resolution of the MobileNet network, the pro-
posed network retains a high accuracy while reducing the
number of network parameters compared to MobileNet
and GoogleNet. The SqueezeNet model typical acquires
fewer parameters, however, at the cost of low accuracy.

Table 3 The proposed network vs popular networks in CIFAR-10

Model Classification Parameters
Accuracy (Million)

3 x 1.0 224 this paper 84.25% 4.1

1.0 MobileNet 224 83.91% 4.2

GoogleNet 83.84% 6.8

SqueezeNet 69.83% 1.25

VGG 16 86.17% 138

Although the proposed network requires more parame-
ters than SqueezeNet, it is much better in terms of classi-
fication accuracy. Because SqueezeNet sacrifices classifi-
cation accuracy, it is not suitable for practical applications
requiring high accuracy. Therefore, in the compromise
of classification accuracy and model size, the proposed
network is superior to SqueezeNet model. By contrast,
although the VGG16 network has slightly higher classi-
fication accuracy than the proposed network, its model
size is dozens more than the proposed model, result-
ing in computational difficulty when computing power is
limited. Due to fewer network parameters, the proposed
network can be easily transplanted on mobile devices
with less storage capacity while having better classification
accuracy.

Different dilated rate

This study applies the dilated rate to control the size of the
dilated convolution, which affects the size of the recep-
tive field, and the receptive field will lead to the change of
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Table 4 Classification accuracy of different dilated rates

Dilated Width Resolution Classification
Rate Multiplier Multiplier Accuracy

1 1.0 224 82.04%

2 1.0 224 83.32%

3 1.0 224 84.25%

4 1.0 224 83.56%

classification accuracy. Therefore, we compared the net-
work classification accuracy under different dilated rates,
as summarized in Table 4.

Table 4 shows the classification accuracy changes with
the dilated rate given the width multiplier « = 1.0,
and resolution multiplier p = 1. It shows that the joint
dilated convolution and the depthwise separable con-
volution improve classification accuracy by two percent
compared to networks without joint convolutions on the
dataset CIFAR-10. It also shows that the maximum clas-
sification accuracy is achieved when the dilated rate is
3. Note that the classification accuracy of the network
decreases slightly as the dilated rate increases continue.
As the dilated rate increases, the receptive field becomes
larger, which may contain more global and semantic fea-
tures. However, blindly expanding its receptive field will
lose alot of local and detailed information during the con-
volution process, affecting the classification accuracy of
small targets and distant objects.

Accuracy after hyperparameter compression

This section is aimed to verify the classification accuracy
when applying the width multiplier and the input reso-
lution to compress the model after adding dilated rate.
Figure 7 compares the classification accuracy of the pro-
posed model with different width multiplier and input
image resolution.
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Figure 7 presents the classification accuracy of the pro-
posed model under different dilated rates after further
compression with hyperparameters. The triangle label
indicates the change of network classification accuracy
when @« = 1.0, p = 1; the square label indicates the
change of the compression network classification accu-
racy when « = 1.0 and p = 0.8571; the diamond
label indicates the network classification accuracy when
0.75 and p = 1. Figure 7 shows that the pro-
posed network has improved the classification accuracy
with the increasing of the dilated rate and using compres-
sion parameters to further compress the model will not
affect the effectiveness of the proposed model. Compar-
ing the results with different input resolutions when the
width multiplier is constant, we can see that the increas-
ing trend of the classification accuracy is not affected by
the resolution of the input image. When the input image
resolution is unchanged, the square label polyline and the
diamond label polyline are compared. When the dilated
rate increases from 1 to 3, we can see that the network
reaches the maximum classification accuracy when the
dilated rate is 3. In addition, the model accuracy of the
width multiplier « = 1.0 is increased from 82.04% to
84.25%, and the model accuracy of the width multiplier
a = 0.75 is improved from 78.75% to 80.35%. When the
dilated rate is greater than 3, the network classification
accuracy slightly decreases, but it is still better than the
original network. Therefore, in order to make the net-
work more effective, we have selected a dilated ratio of
3 in subsequent experiments. The classification accuracy
has also improved. In summary, even if the model is fur-
ther compressed by the width multiplier and the input
picture resolution, the proposed method can improve the
classification accuracy.

o =

Result on different dataset
The results in previous sections show that the proposed
network performs well on the CIFAR-10 dataset. To
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Fig. 7 Accuracy after hyperparameter compression
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Table 5 Compare this paper network with popular networks in
Tiny ImageNet dataset

Model Accuracy
3 x 1.0 224 this paper 85.01%
1.0 MobileNet 224 83.81%
GoogleNet 82.94%

investigate the transferability of the proposed model, we
conducted training and testing on Tiny ImageNet dataset.

Table 5 shows that the proposed network has good
accuracy on Tiny ImageNet Dataset. Compared to the
MobileNet with width multiplier « = 1.0 and the pic-
ture size is 224 x 224, the proposed network improves
the accuracy of both datasets. Compared to GoogleNet,
the proposed network enhances the accuracy rate on Tiny
ImageNet dataset from 82.94% to 85.01%. These compar-
isons demonstrate that the proposed network can consis-
tently improve classification accuracy, indicating a good
generalization ability. The proposed model also reduces
the size under the premise of ensuring accuracy, which
makes it possible to achieve better classification accuracy
on mobile devices.

Table 6 shows the influence of different dilated rates on
the classification accuracy of the model in the Tiny Ima-
geNet dataset. As the dilated rate increases, the model
accuracy increases from 81.73% to 85.01%. It shows that
the proposed network improve classification accuracy by
close to four percent compared to without dilated convo-
lution on the dataset Tiny ImageNet. In addition, the best
classification accuracy can be obtained when the dilated
rate reaches 3. The results are the same as network in the
CIFAR-10 dataset. Therefore, when use the proposed net-
work in this article for testing or training, set the dilated
rate to 3 to get the best classification accuracy. What is
more, Fig. 7 shows that different dilated rate can effec-
tively increase the robustness of the model. The proposed
network in this paper can also improve the classification
accuracy of the model on the different dataset and the pro-
posed network has good generalization ability and good
accuracy in different datasets.

Table 6 Classification accuracy of different dilated rates in Tiny
ImageNet dataset

Dilated Width Resolution Classification
Rate Multiplier Multiplier Accuracy

1 1.0 224 81.73%

2 1.0 224 83.12%

3 1.0 224 85.01%

4 1.0 224 84.65%
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Discussion

The model proposed is mainly used for image classifica-
tion, aiming at balancing the network size and classifica-
tion accuracy for a lightweight and efficient model. The
experimental results on different datasets demonstrate
that the proposed model has a good generalization abil-
ity and classification accuracy. In addition, the network
proposed in this paper can be used as the basic network
of SSD or YOLO models to realize pedestrian detection,
or it can be transplanted to different devices to realize
real-time pedestrian detection in portable devices [42, 43].
Applications developed on the basis of this model can
convey additional practical values.

Conclusion

This paper proposes a lightweight neural network model
combining dilated convolution and depthwise separable
convolution. This joint module reduces the computational
burden with depthwise separable convolution, making it
possible to apply the network model to resources or com-
putationally constrained devices. Meanwhile, the dilated
convolution is used to increase the receptive field in the
process of convolution without increasing the number of
convolution parameters. It extracts global features and
higher semantic level features in the convolution process,
which improves classification accuracy. The hyperparam-
eters (i.e., width multiplier and resolution multiplier) are
used to further compress the model to be lightweight so
that the proposed model can be applied to devices with
limited computational power. Compared with the previ-
ous network, this paper combines dilated convolution and
deepthwise separable convolution, which not only solves
the problem that the calculation amount is too large to
apply to resource-constrained equipment, but also solves
the problem that model size and model classification
accuracy cannot coexist. Experimental results demon-
strate that the proposed model makes a good compromise
between the classification accuracy and the model size
while maintaining the classification accuracy when the
network is compressed. Moreover, it uses hyperparame-
ters and dilated rate to further compress the trained model
effectively. The proposed network can greatly reduce the
size and computation of the network, making it easier
to transplant to devices. For example, the network can
be transplanted in Android mobile devices, embedded
devices such as MCU or FPGA [44, 45]. In addition, com-
panies or individuals using the network proposed in this
paper can reduce the performance of cloud computing
servers and reduce the cost of renting cloud computing
servers. At the same time, it can be seen from experi-
ments that the amount of calculation and parameters of
the lightweight network proposed in this article are quite
small, which allows some companies to train on personal
servers, which has better security.
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GraphicsProcessing unit; 2 x 1.0224 this paper: Width multiplier o = 2,
resolution multiplier p = 1 and the input picture size is 224 x 224

Acknowledgements
Authors thank editor and reviewers for their time and consideration.

Authors’ contributions
All authors have participated in conception, drafting the article or revising it
critically for important intellectual content, approval of the final version.

Authors’ information
Not applicable.

Funding

This work is supported in part by the National Nature Science Foundation of
China (No. 61304205, 61502240), Natural Science Foundation of Jiangsu
Province (BK20191401), and Innovation and Entrepreneurship Training Project
of College Students (2019103000507, 201910300222).

Availability of data and materials
Not applicable.

Competing interests

This manuscript has not been submitted to, nor is under review at, another
journal or other publishing venue. The authors declare that they have no
competing interests among authors.

Author details

'School of Automation, Nanjing University of Information Science and
Technology, 210044 Nanjing, China. 2Jiangsu Collaborative Innovation Center
of Atmospheric Environment and Equipment Technology, 210044 Nanjing,
China. 3 Jiangsu Engineering Center of Network Monitoring, 210044 Nanjing,
China. #Department of Civil and Environmental Engineering, Rensselaer
Polytechnic Institute, 12180 Troy, USA.

Received: 15 February 2020 Accepted: 11 September 2020
Published online: 23 September 2020

References

1. krizhevsky A, Sutskever |, Hinton G (2012) Imagenet classification with
deep convolutional neural networks. In: Advances in Neural Information
Processing Systems. pp 1097-1105

2. Simonyan K, Zisserman A (2014) Very deep convolutional networks for
large-scale image recognition. In: International Conference on Learning
Representations. IEEE, USA. pp 1-14

3. Szegedy C, LiuW, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, USA. pp 1-12

4. XuX, HeC XuZ Qil, Wan S, Bhuiyan M (2020) Joint optimization of
offloading utility and privacy for edge computing enabled iot. IEEE
Internet Things J 7(4):2622-2629. https://doi.org/10.1109/JI0T.2019.
2944007

5. HeK, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual
networks. In: European Conference on Computer Vision. Springer,
German. pp 630-645

6. XieS, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual
transformations for deep neural networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, USA.
pp 1492-1500

7. ZhouJ,Hu X, Ma, Sun J, Wei T, Hu S (2019) Improving availability of
multicore real-time systems suffering both permanent and transient
faults. IEEE Trans Comput 68(12):1785-1801

8. landola F, Han S, Moskewicz M, Ashraf K, Dally W, Keutzer K (2017)
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5.
In: International Conference on Learning Representations. IEEE, USA.
pp 1-13

9. ZhouJ, Sun J, Zhou X, Wei T, Chen M, Hu S, Hu X (2018) IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems
38(12):2215-2228

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

(2020) 9:55 Page 11 of 12

Xu X, Cai Q, Zhang G, Zhang J, Tian W, Zhang X, Liu A (2018) An incentive
mechanism for crowdsourcing markets with social welfare maximization
in cloud-edge computing. Concurrency Comput: Pract Experience:4961.
https://doi.org/10.1002/cpe.4961

LiJ, Cai T, Deng K, Wang X, Sellis T, Xia F (2020) Community-diversified
influence maximization in social networks. Information Systems 92:1-12
Zhou J, Sun J, Cong P, Liu Z, Zhou X, Wei T, Hu S (2020) Security-critical
energy-aware task scheduling for heterogeneous real-time mpsocs in iot.
|EEE Trans Serv Comput 13(4):745-758. https://doi.org/10.1109/TSC.2019.
2963301

Guo Y, Wang J, Peeta S, Anastasopoulos P (2020) Personal and societal
impacts of motorcycle ban policy on motorcyclists’ home-to-work
morning commute in china. Travel Behav Soc 19:137-150

Guo 'Y, Peeta S (2020) Impacts of personalized accessibility information on
residential location choice and travel behavior. Travel Behav Soc 19:99-111
Ramlatchan A, Yang M, Liu Q, Li M, Wang J, Li Y (2018) A survey of matrix
completion methods for recommendation systems. Big Data Mining and
Analytics 1(4):308-323

Zhang C, Yang M, Lv J, Yang W (2018) An improved hybrid collaborative
filtering algorithm based on tags and time factor. Big Data Mining and
Analytics 1(2):128-136

Han'S, Mao H, Dally W (2016) Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
In: International Conference on Learning Representations. IEEE, USA.

pp 1-14

Han'S, Pool J, Tran J, Dally W (2015) Learning both weights and
connections for efficient neural network. In: Advances in Neural
Information Processing Systems. Springer, German. pp 1135-1143
Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. In:
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. IEEE, USA. pp 29-43

Chollet F (2017) Xception: Deep learning with depthwise separable
convolutions. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. [EEE, USA. pp 1251-1258

Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T,
Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural
networks for mobile vision applications. In: International Conference on
Learning Representations. IEEE, USA. pp 1-9

Kumar S, Singh M (2018) Big data analytics for healthcare industry: impact,
applications, and tools. Big Data Mining and Analytics 2(1):48-57

Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Burrows M, Chandra T,
Fikes A, Gruber R (2008) Bigtable: A distributed storage system for
structured data. ACM Trans Comput Syst (TOCS) 26(2):1-26

Liu'Y, Wang S, Khan M, He J (2018) A novel deep hybrid recommender
system based on auto-encoder with neural collaborative filtering. Big
Data Mining and Analytics 1(3):211-221

Xu X, Mo R, Dai F, Lin W, Wan S, Dou W (2019) Dynamic resource
provisioning with fault tolerance for data-intensive meteorological
workflows in cloud. IEEE Trans Ind Inform. https://doi.org/10.1109/TlI.
2019.2959258

Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on
large clusters. Commun ACM 51(1):107-113

Xu X, Liu X, Xu Z, Wang C, Wan S, Yang X (2019) Joint optimization of
resource utilization and load balance with privacy preservation for edge
services in 5g networks. Mobile Netw Appl:1-12. https://doi.org/10.1007/
s11036-019-01448-8

Yu F, Koltun V (2016) Multi-scale context aggregation by dilated
convolutions. In: International Conference on Learning Representations.
IEEE, USA. pp 1-13

Wang L, Zhang X, Wang R, Yan C, Kou H, Qi L (2020) Diversified service
recommendation with high accuracy and efficiency. Knowledge-Based
Systems:106196. https://doi.org/10.1016/j.knosys.2020.106196

Xu X, Zhang X, Khan M, Dou W, Xue S, Yu S (2020) A balanced virtual
machine scheduling method for energy-performance trade-offs in
cyber-physical cloud systems. Futur Gener Comput Syst 105:789-799

Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, USA. pp 7132-7141

Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, USA.

pp 6848-6856


https://doi.org/10.1109/JIOT.2019.2944007
https://doi.org/10.1109/JIOT.2019.2944007
https://doi.org/10.1002/cpe.4961
https://doi.org/10.1109/TSC.2019.2963301
https://doi.org/10.1109/TSC.2019.2963301
https://doi.org/10.1109/TII.2019.2959258
https://doi.org/10.1109/TII.2019.2959258
https://doi.org/10.1007/s11036-019-01448-8
https://doi.org/10.1007/s11036-019-01448-8
https://doi.org/10.1016/j.knosys.2020.106196

Sun et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:55

33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

Guo Y, Wang J, Peeta S, Anastasopoulos P (2018) Impacts of internal
migration, household registration system, and family planning policy on
travel mode choice in china. Travel Behav Soc 13:128-143

Chen'Y, Zhang N, Zhang Y, Chen X, Wu W, Shen X (2019) Energy efficient
dynamic offloading in mobile edge computing for internet of things.
Trans Cloud Comput. https://doi.org/10.1109/TCC.2019.2898657

Zhong W, Yin X, Zhang X, Li S, Dou W, Wang R, Qi L (2020)
Multi-dimensional quality-driven service recommendation with
privacy-preservation in mobile edge environment. Comput Commun
157:116-123. https://doi.org/10.1016/j.comcom.2020.04.018

Qi L, He Q, Chen F, Zhang X, Dou W, Ni Q (2020) Data-driven web apis
recommendation for building web applications[j]. IEEE Trans Big Data.
https://doi.org/10.1109/TBDATA.2020.2975587

Han'S, Mao H, Dally W (2015) Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149

loffe S, Szegedy C (2015) Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In: Proceedings of the 32nd
International Conference on Machine Learning. IEEE, USA. pp 448-456
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G,
Cai J, et al (2018) Recent advances in convolutional neural networks.
Pattern Recog 77:354-377

Liu H, Kou H, Yan C, Qi L (2020) Keywords-driven and popularity-aware
paper recommendation based on undirected paper citation graphl[jl.
Complexity:1-15. https://doi.org/10.1155/2020/2085638

Kingma D, Ba J (2015) Adam: A method for stochastic optimization. In:
International Conference on Learning Representations. IEEE, USA. pp 1-15
Liu H, Kou H, Yan C, Qi L (2019) Link prediction in paper citation network
to construct paper correlation graph. EURASIP J Wirel Commun Netw
233:1-12. https://doi.org/10.1186/513638-019-1561-7

Hu H, Peng R, Tai Y-W, Tang C-K (2016) Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. In:
International Conference on Learning Representations. IEEE, USA. pp 1-9
Qiu J,Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang T, Xu N, Song S, et al.
(2016) Going deeper with embedded fpga platform for convolutional
neural network. In: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. [EEE, USA. pp 26-35
Wu J, Leng C, Wang Y, Hu Q, Cheng J (2016) Quantized convolutional
neural networks for mobile devices. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. [EEE, USA.

pp 4820-4828

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 12 of 12

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://doi.org/10.1109/TCC.2019.2898657
https://doi.org/10.1016/j.comcom.2020.04.018
https://doi.org/10.1109/TBDATA.2020.2975587
https://doi.org/10.1155/2020/2085638
https://doi.org/10.1186/s13638-019-1561-7

	Abstract
	Keywords

	Introduction
	Related work
	Approach
	Joint module
	Network architecture
	Hyperparameters
	Loss function and optimization

	Experiments
	Training results and optimal selection
	Comparison of the proposed network with other networks
	Different dilated rate
	Accuracy after hyperparameter compression
	Result on different dataset

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

