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Abstract

Cloud computing is a popular emerging computing technology that has revolutionized information technology
through flexible provisioning of computing resources. Therefore, efforts to develop an effective resource
management approach have found that implementing efficient resource sharing among multiple customers that
considers power saving, service-level agreements, and network traffic simultaneously is difficult. This paper proposes a
practical integrated pipeline that can use various algorithms. The performance of each algorithm is evaluated
independently to obtain the combination of algorithms that guarantees a resource-effective cloud data center
framework. This integrated resource management pipeline approach would optimize performance based on several
key performance indicators, such as power saving, network traffic, and service-level agreements, for either the whole
system or the end-user. The performance of the proposed resource management framework was evaluated using a
real testbed. The results demonstrated that the proactive double exponential smoothing algorithm prevents
unnecessary migrations, the MMTMC2 VM selection algorithm improved the quality of service for end-users and
reduced overall energy consumption and network traffic, and the medium-fit placement algorithm provided load
balancing between active servers and decreased service level agreement violations. The performance comparison
illustrated that the combination of these algorithms was considered to be the best solution toward a dynamic
resource-effective cloud data center. Our results showed that energy consumption and the total number of
migrations decreased by 16.64% and 49.44%, respectively.

Keywords: Cloud computing, OpenStack, Resource management, Service-level agreement, SLA violation, Power
saving, Live migration, Cloud data centers

Introduction
Cloud computing has revolutionized resource sharing to
provide several types of e-services to users. Cloud com-
puting provisioning is based on virtualization techniques
that obtain an abstract view of physical resources using
the same interfaces. It provides several benefits, for exam-
ple, the same physical infrastructure can be used for
different runtime environments simultaneously. The rapid
growth in cloud computing has increased the importance
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of cloud data centers (CDCs). Consequently, CDC admin-
istrators exert continuous effort to determine approaches
to improve performance, maximize profit, increase multi-
tenancy capabilities, and enhance infrastructure density.
Thus, resource management (RM) has become a promis-
ing research area for CDCs.
A primary goal of RM is to simultaneously reduce

resource utilization and comply with end-user service-
level agreements (SLA) as much as possible. The
complexity of the RM issue appears in the trade-off
between energy saving and service level agreement vio-
lations (SLAVs), which is associated with the total num-
ber of migrations. For instance, virtual machine (VM)
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consolidation often results in either low energy efficiency
or violations of SLA constraints, depending on the over-
commitment level [1, 2]. Moreover, a VM suffers from
quality of service (QoS) degradation in two cases: (i)
frequent migration and (ii) allocation on an overloaded
server. Therefore, an effective RM must identify the most
suitable solution toward a dynamic resource-effective
CDC. The essential RM challenges are energy efficiency,
SLAVs, load balancing, and network load [3].
Therefore, the principal contribution in this paper is the

presentation of a resource management pipeline (RMP)
approach to guarantee a resource-effective CDC frame-
work. To achieve this, the following algorithms are per-
formed as part of the RMP approach:

(i) The exponential smoothing algorithm [4] is
performed as a proactive overload detection
technique to minimize the number of migrations by
estimating future loads, where the proactive
(pre-overload-detection) method can decrease the
total number of migrations better than the reactive
(post-overload-detection) method. Moreover,
overloaded servers generate a large amount of heat
and thus increase the cost of cooling systems and
CO2 emissions [4, 5]. Therefore, some VMs must be
migrated to comply with end-user SLAs. However, to
reduce energy consumption in CDCs, the number of
servers hosting VMs needs to be limited.

(ii) Two VM selection algorithms [6] are tested using
proactive overload detection algorithms and a robust
local regression (LRR) algorithm, a traditional
predictive algorithm that was used in a previous
study [7], to assess their performance separately and
jointly. These VM selection algorithms improved
end-user QoS by avoiding frequent migration.

(iii) The medium-fit (MF) VM placement algorithm [8] is
used to decrease the SLAVs, improve energy
efficiency, and provide load balancing between active
servers. The MF VM placement algorithm
outperforms the traditional VM placement
algorithm, i.e., the modified best-fit decreasing
(MBFD) algorithm. The goal of the MBFD algorithm
is to minimize the number of active servers. In
addition, the MBFD algorithm is less energy efficient
than the MF algorithm, and it increases SLAVs and
thus increases the number of VM migrations.

Every algorithm is practically implemented and evalu-
ated separately. Then, all RMP stages are integrated to
study the effect of this integration to determine the best
combination. The combination of exponential smoothing
overload detection algorithm, MMTMC 2 VM selection,
and MF placement algorithms is considered the best solu-
tion in terms of the studied algorithms.

The remainder of this paper is organized as follows:
In “Related work” section, related research is reviewed.
In “RMP design” section, the RMP design is explained.
In “Experimental configuration and evaluation method-
ology” section, the experimental design is illustrated,
including experimental configurations, workload input,
and performance metrics. In “Prediction assessment
study” section, the prediction assessment study is pre-
sented. In “Experimental results and discussions” section,
the experimental results and discussions are provided.
Finally, “Conclusion” section concludes the paper.

Related work
RM in cloud environments has been studied extensively.
Various RM studies have proposed methods to evaluate
and improve energy consumption, SLA, network load, and
load balancing in CDCs [4, 9–11].
Live migration is considered an essential component of

any RM framework for CDCs. The VM migration prob-
lem can be divided into three sub-problems: (i) when
to migrate, (ii) which VM to migrate, and (iii) where to
migrate. In general, live migration methods can be catego-
rized as reactive and proactive. However, there is another
taxonomy in which live migration methods can be cat-
egorized as periodical VM placement (no overload or
underload detection) [12, 13], threshold-based heuristics
[14–20], and decisions based on statistical analysis of his-
torical data [4, 21–23]. A taxonomy of VM migration
methods used in RM approaches for CDCs is shown in
Fig. 1. As can be seen, the reactive method is represented
in threshold-based heuristics, and the proactive method is
represented in decisions based on a statistical analysis of
historical data.
First, an early attempt to improve the energy effi-

ciency of a CDC was by periodic workload reallocation
strategy [12, 13]. The authors did not provide an algo-
rithm to determine the suitable time to optimize the VM
placement, but the proposedmethodwas periodically per-
formed. In our study, we did not use this strategy because
it causes a considerable number of migrations, and hence
it will cause SLAVs for end-users.
Then, a fixed threshold-based heuristics strategy

[14–20, 24] is considered an alternative solution by mon-
itors the current behavior through occurring migration
from underloaded or overloaded servers at a certain
threshold value. But, the fixed utilization threshold strat-
egy is based on a current load, and the variations in
resource utilization cannot be supported. Therefore, Bel-
oglazov et al. [23] found that keeping this threshold
constant is not an intelligent solution as the workload
utilization is in continuous change. They proposed an
inter-quartile range (IQR) and median absolute deviation
(MAD) algorithms to determine the utilization threshold
value of a server dynamically. Servers are considered to
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Fig. 1 Taxonomy of VM migration methods used in RM approaches for CDCs. The arrow at the bottom represents the direction of research
depending on the pro-activity classification and represents the increase in complexity and performance improvement as well. (citing to previous
efforts)

be overloaded if their current utilization is larger than
this threshold. According to the dynamic cloud environ-
ment, the adaptive threshold is more efficient than the
fixed threshold. Therefore, [18–20] proposed adaptive
multi thresholds models. Li et al. [18] proposed a unique
dynamic energy effective algorithm for VM consolida-
tion based on multiple resource energy effective models.
This algorithm aimed to reduce energy consumption with
the QoS guarantee. They implemented a double thresh-
old technique with multiple resource use in triggering the
VM migration. The modified swarm optimization strat-
egy (MPSO) avoids falling into the local optima that is a
common problem in traditional heuristic algorithms. The
results showed that the proposed algorithm minimized
energy consumption and the number of VM migrations
compared to the MBFD algorithm. Zhou et al. proposed a
three threshold algorithm for VM consolidation based on
triple and fixed thresholds in [25], in addition to triple and
dynamic thresholds in [19]. Khattar et al. [20] proposed
four adaptive thresholds framework for VM consolidation
that consider energy consumption, SLA violations, mem-
ory, and bandwidth consumption. The results showed that
four thresholds save more number of servers as compared
to three thresholds.
Recently, most researches use decisions based on a sta-

tistical analysis of historical data strategy, because the
migration occurs depending on the current and pre-
dicted utilization. Consequently, these techniques prevent
unnecessary migrations that are initiated because of a
massive spike in workload. Beloglazov and Buyya [23] pro-
posed methods to predict future workloads, such as local
regression (LR) and robust local regression (LRR) algo-
rithms. These techniques predict CPU utilization for a
server, then compared it to a dynamic threshold to detect
overloaded servers.

Shaw and Singh [4] proposed simple and double expo-
nential smoothing (DES) prediction algorithms to min-
imize the number of VM migrations. This algorithm
determines whether migration must be performed and
finds a suitable destination server for the selected VM,
depending on the future load. The results showed that
the proposed algorithm significantly minimized the num-
ber of migrations and energy consumption in addition
to preserving the SLA. The results indicated that the
DES technique performed the best. Energy consump-
tion and SLAVs were decreased by 34.59% and 63.92%,
respectively. Therefore, this study compares between
DES and seasonal exponential smoothing algorithms
where CDCs workloads may have seasonal patterns, such
as intraday, intra-week, intra-month, intra-quarter, and
intra-year.
Most research on VM placement algorithms has used

the best-fit decreasing (BFD) algorithm or a modified
version of this algorithm [23] because these algorithms
achieve high power savings. Recent research has used
the MF algorithm to decrease SLAVs and the num-
ber of migrations for a homogeneous CDC environment
[8], whereas the MF power-efficient decreasing (MFPED)
algorithm is suitable for a heterogeneous data-center envi-
ronment. This paper study the effect of the MF place-
ment algorithm compared to the BFD placement algo-
rithm using several overload detection and VM selection
algorithms.
Table 1 summarizes publications on previous RM

approaches for CDCs. These publications are classi-
fied according to their architecture, target, migration
methods, performance metrics, and main conclusions.
Table 2 illustrates the algorithms used for handling
live migration problems for RM approaches. An analy-
sis of this study concludes that the best RM approach
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Table 1 Comparison of data centre RM approaches

Authors Architecture Target When to migrate Performance Metric Conclusion

Nathuji and Centralized minimize power - Periodic reallocation - Power (W) The overall energy
Schwan [12] consumption

without
consumption could be
reduced significantly, up

performance
penalties

to 34%, without
appreciable losses in
performance.

Verma et al. [13] Centralized minimize power - Periodic reallocation - Power (watts) pMapper was considered
consumption, - Energy (kilojoules) an efficient solution to
considering the - Migration cost minimize power
VM migration - Overall cost consumption (less than
cost - Power savings (%) 0.2% penalty).

Zhu et al. [15] De-centralized improve - Periodic reallocation - Response time The integration of node
- Pod controllers workload - Threshold-based heuristics (seconds) and pod controllers
- Node controllers management to

ensure efficient
use of data
center resources

- Number of
migrations

improved performance by
32% and 23% over fixed
allocation and over non-
integrated controllers, and
reduced migrations for
high priority workloads.

Gmach et al. [16] De-centralized minimize power - Periodic reallocation - Migration overhead The integration between
- workload placement consumption, - Threshold-based heuristics - CPU quality reactive migration

controller taking into violations controller and periodic
- migration controller account the Qos

and the number
of VM migrations

- Power consumption workload placement
controller presented the
best approach for power
and SLA, but needs more
migrations.

VMware Distributed Centralized minimize power - Fixed threshold heuristics Fixed threshold heuristics
Power Management consumption are unsuitable for real
(DPM) [17] systems with dynamic and

unknown workloads.

Li et al. [18] Centralized minimize power - Dynamic threshold heuristics - Energy The double threshold with
consumption
and QoS

- Number of
migrations

multi-resource utilization
with the MPSO algorithm

guarantee - Number of active
physical servers

reduces energy
consumption and

- load balance degree improves the QoS.

Beloglazov et Centralized minimize power - Fixed threshold heuristics - Energy (kWh) It is not a suitable decision
al. [24] consumption, - SLAVs (%) for keeping the utilization

taking into
account QoS

- Number of
migrations

threshold constant as the
workload is in continuous
change.

Beloglazov and De-centralized minimize power - Decision based on statistical - Energy (kWh) The proposed LR
Buyya [23] consumption, analysis of historical data - ESV algorithm remarkably

taking into - SLAVs outperformed other
account QoS - PDM (%) dynamic VM consolidation

- Number of
migrations

algorithms.

Guenter et al. [21] De-centralized minimize power - Decision based on statistical - Power saving Predicting demand was
consumption, analysis of historical data - normalized daily used to switch on servers
considering the energy savings before require and avoid
trade-off
between cost,
performance,

(MWh) switching on unnecessary
servers.

and reliability
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Table 1 Comparison of data centre RM approaches

Authors Architecture Target When to migrate Performance Metric Conclusion

Bobroff et al. [22] Centralized minimize power - Decision based on statistical - Time-averaged The proposed algorithm
consumption analysis of historical data number of servers used decreased the

used number of servers needed
- Capacity of overflow to support a certain SLA

by 50% compared to static
consolidation.

This work De-centralized minimize power - Fixed threshold heuristics - AITF (%) Our combination of DES,
consumption, respect - Decision based on statistical - AOTF (%) MMTMC 2, and MF
overall and end-user’s analysis of historical data - Number of migrations algorithms improved
SLA, and eliminate - Energy saving (%) performance in power
unnecessary migrations saving, QoS, and net-

work traffic. The number
of migrations reduced
by 49.44% compared to
default algorithms.

depends on the trade-off between energy efficiency,
QoS, and network traffic. For instance, the threshold-
based heuristics are the least complex algorithm. It
can be tuned to be more power-saving and more
QoS degrading using its parameter value. A decision
based on a statistical analysis of historical data is more
complex; by contrast, it is considered as a proactive
method.
In this study, an efficient integrated RMP approach is

proposed to obtain a resource-effective CDC framework.

The main differences from the previous efforts are as
follows:

(i) Several overload detection, VM selection, and VM
placement algorithms are implemented and
evaluated separately and integrated experimentally to
determine the best combination in terms of power
saving and SLA for end-users and overall system.

(ii) Partial load balancing between the active server is
provided using the MF algorithm.

Table 2 Comparison of RM techniques

Authors When to migrate Which VM tomigrate Where to migrate

(overload detection technique) (VM selection technique) (VM placement technique)

Nathuji and Schwan [12] - - VirtualPower Management

Verma et al. [13] - - PMaP Algorithm

Beloglazov et al. [24] Fixed threshold - Minimization of migration (MM) Modified best fit decreasing

- Highest potential growth (HPG) (MBFD)

- Random choice (RC)

Beloglazov and Buyya [23] - Inter-quartile range (IQR) - Minimummigration time (MMT) Power aware best fit

- Median absolute deviation (MAD) - Random selection (RS) decreasing (PABFD)

- Local regression (LR) - Maximum correlation (MC)

- Robust local regression (LRR)

Guenter et al. [21] - Short term load forecasting - -

Shaw and Singh [4] - Simple Exponential Smoothing Minimum utilization policy Optimized destination host

- Double exponential smoothing selection

Moges and Abebe [8] local regression - - MF (for homogeneous)

- MFPED (for heterogeneous)

This Work - Fixed threshold - MMTMC - Modified best fit decreasing

- Robust local regression (LRR) - MMTMC 1 (MBFD)

- Double exponential smoothing (DES) - MMTMC 2 - Medium-fit (MF)

- Seasonal holt winter (SHW)
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(iii) A real testbed is performed to evaluate all studied
algorithms experimentally. In contrast, most
presented studies simulated their algorithms using
CloudSim.

RMP design
In this section, the proposed RMP approach realize
a satisfactory dynamic resource-effective CDC frame-
work is introduced. In addition, the RMP algorithms are
described in detail.

RMP stages
Recently, the RM problem was split into four sub-issues
[7]:

(i) Underload detection detects underutilized servers.
All VMs on an underutilized server should be
offloaded, and the server should be switched to sleep
mode.

(ii) Overload detection detects whether a server is
overutilized. If a server is overutilized, some VMs
should be migrated to another active or reactivated
server to avoid SLAVs.

(iii) VM selection selects VMs to be migrated when an
overloaded server is detected.

(iv) VM placement finds suitable servers for the selected
VMs.

Figure 2 shows the RMP approach to achieve a resource-
effective CDC framework. First, underload and overload
detection algorithms are executed periodically. If the
server is underloaded, all VMs are offloaded from it,
then switch it to sleep mode. If the server is overloaded,

the selection algorithm is executed to choose VMs to
migrate from it. Then, the VM placement algorithm is
executed using the VMs list, depending on their resource
utilization.
In this paper, we focus on overload detection, VM selec-

tion, and VM placement algorithms as essential stages of
the RMP approach. We examine the best individual per-
formance of each algorithm and then determine the best
combination of the three algorithms to achieve superior
performance in terms of power saving, SLA, and network
traffic.

RMP algorithms
In this section, overload detection, VM selection, and
placement algorithms are discussed. These algorithms
represent critical phases in the dynamic integrated RMP
framework, where the goal is to improve the overall per-
formance of the RM CDC framework and respect end-
users’ SLA.

Overload detection algorithm
Various overload detection algorithms were presented
in “Related work” section. The simplest algorithm is the
averaging threshold-based (THR) algorithm, which
detects an overloaded server when the average value
of the last CPU utilization is more than a fixed value
[14–20]. The LRR algorithm predicts CPU utilization and
hence decreases SLAVs [23].
Many studies have used conventional DES, which per-

forms better than simple exponential smoothing [26], to
predict cloud workloads; however, conventional DES can-
not model seasonality [27]. The Seasonal Holt-Winters

Fig. 2 RMP approach for resource-effective CDC framework. Red, green, grey, and black servers represent overloaded, underloaded, stable, and
sleep-mode servers, respectively
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(SHW) model can be used to forecast trends and sea-
sonal workloads. SHW can also model workloads with
a multi-seasonal pattern. CDC environments may have
intra-day, intra-week, intra-month, intra-quarter, or intra-
year seasonal patterns. Therefore, in this paper, SHW is
evaluated to determine if it can accommodate intraday
seasonal patterns. A comparative study is performed in
the “Prediction assessment study” section using offline
training used to investigate different distributions and
select the suitable algorithm for a cloud computing envi-
ronment, i.e., DES or SHW. Then, the THR and LRR
algorithms are used as comparative algorithms to evaluate
the suitable exponential smoothing algorithm as a part of
the presented framework.
The exponential smoothing technique was imple-

mented more than 60 years ago to analyze stock
exchanges. This algorithm was developed to fit the sea-
sonal pattern in time-series forecasting. The essential
benefit of this algorithm is reduced memory requirements
during training phase [28]. This scheme is based on the
following equations, which measure the level, trend, and
seasonality terms. Note, Eqs. (4) and (5) compute the
weighted aggregation of the level, trend, and seasonality.
Level:

St = α
(
Xt − It−p

) + (1 − α). (St−1 + Tt−1) (1)

Trend:

Tt = β (St − St−1) + (1 − β).Tt−1 (2)

Seasonality:

It = γ (Xt − St) + (1 − γ ) .It−p (3)

Forecast:

Ŷt,DES(k) = St + k.Tt (4)

Ŷt,SHW (k) = St + k.Tt + It−p+k (5)

Where X1, X2, ..., Xt−1 denotes the CPU utilization his-
tory of the VM during time (t), N is the total number of
samples, k is the index of the forecast samples (k = 1,...,
K), and p is the seasonality length. The smoothing algo-
rithm requires a training phase to adapt the level, trend,
and seasonal smoothing factors (α, β , and γ ).
Several methods can be used to obtain initial values for

the level (St) and trend (Tt). Typically, S1 is equal to X1.
Three valid equations for T1 are as follows:

T1 = S2 − S1 (6)

T1 = [(S2 − S1) + (S3 − S2) + (S4 − S3)] /3 (7)

T1 = (Sn − S1)/(n − 1) (8)

By calculating the rootmean square error (RMSE) using:

RMSE =
√√
√
√1

n

n∑

i=1
(Yi − Xi)

2 (9)

The optimal parameter values (α, β , and γ ) can be
obtained. Then, these values are used in the testing phase
to predict the future CPU utilization of the VM.
A detailed description of DES and SHW implemen-

tation, tuning, and optimization is beyond the scope of
this study. However, details can be found in the literature
[4, 28]. In this paper, these algorithms were performed
to predict the CPU utilization of a server. If the current
and future values (sum of the predicted utilization val-
ues of its VMs) are overloaded, then migration will take
place. Therefore, this method eliminates unnecessary VM
migrations, where each migration is correlated with QoS
degradation, which increases SLAVs.

VM selection algorithm
The VM selection algorithm determines suitable VMs to
migrate from an overloaded server. Beloglazov et al.’s tra-
ditional selection algorithm is minimum migration time
maximumCPU utilization (MMTMC) [7]. This algorithm
first selects VMs with minimummigration time, and then
selects the VM with the top CPU utilization to reduce
overall server utilization as much as possible.
The main disadvantage of the original MMTMC algo-

rithm is that it does not consider the SLA of the end-user
when some VMs suffer from frequent migration, whereas
others are slightly offloaded. Therefore, two VM selection
algorithms have been proposed previously [6]. These algo-
rithms are modified versions of the MMTMC algorithm
[7]. The primary goal of these algorithms is to respect the
end-user SLA, i.e., these algorithms consider all VMs with
equal priority. Figure 3 illustrates the VM selection criteria
of theMMTMC,MMTMC 1, andMMTMC 2 algorithms,
where the added parts are shown in red.
The MMTMC 2 is superior because the threshold value

can be controlled using the rate of growth to obtain the
optimum solution [29].
As shown inAlgorithm (2), it also nominates VMswith a

lower amount of RAM to decrease the live migration time.
Then, it chooses the VM with the maximum CPU utiliza-
tion as long as the number of migrations is not exceeding
a threshold value. This threshold value is incremented
dynamically with time. It is calculated by the Eq. (10)
that used in the neural network learning. Where uthr(t)
is the current threshold value, uinitial is the initial thresh-
old value, λ is the rate of growth (λ > 0), and t is time.
The start value (uinitial) and the rate of growth (λ) can
be controlled to get the best solution [29]. For instance,
the low growth rate decreases the number of migrations
and hence reduces the network traffic; by contrast, the
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Fig. 3 Criteria of VM selection algorithms: aMMTMC, bMMTMC1, and cMMTMC2

low growth rate increases the overload time of the server.
More details about these two algorithms are given in [6].

Algorithm 1:MMTMC 2 [6]
Input : n, vms_cpu_map, vms_ram_map,

vms_number_of _migration,
current_threshold_number_of _migration

Output: a VM to migrate
1 min_ram ← min(values of vms_ram_map)
2 max_cpu ← 0
3 selected_vm ← None
4 foreach vm, cpu in vms_cpu_map do
5 if vms_ram_map[ vm] > min_ram then
6 continue
7 if vms_number_of _migration[ vm] >

current_threshold_number_of _migration then
8 continue
9 vals ← last n values of cpu

10 mean ← sum(vals) / len(vals)
11 ifmax_cpu < mean then
12 max_cpu ← mean
13 min_number_of _migration ←

vms_number_of _migration[ vm]
14 selected_vm ← vm

15 return selected_vm

uthr(t) = ⌈
uinitial expλt⌉ (10)

The results demonstrated that a significant improve-
ment in the end-user SLA was achieved using these two
algorithms. In addition, there was a considerable improve-
ment in energy consumption and network traffic using the
MMTMC2 algorithm [6]. Therefore, in the current study,
the performance of these two algorithms was evaluated
compared to several overload detection and placement
algorithms.

VMplacement algorithm
The third issue for improving CDC performance is the
VM placement algorithm, which selects a server for plac-
ing the selected VMs to be migrated. A traditional frame-
work uses the MBFD placement algorithm [7], which
attempts to minimize the number of active servers. This
heuristic has low energy efficiency and increases SLAVs;
thus, it increases the number of migrations.
Therefore, in this paper, the MF VM placement algo-

rithm is used to reduce SLA violations and the number
of migrations. It is based on bin-packing heuristics [8]. To
evaluate the performance of this algorithm, we performed
experiments using a real homogeneous testbed scenario.
The MF bin-packing rule is defined as follows:

Allocated_Server ≡ minS|LS − LD| (11)

where Ls is the CPU utilization level of server s. LD is the
desired CPU utilization level of a server given by

LD ≡ (Throverload + Thrunderload) /2 (12)

where Throverload and Thrunderload are the overload and
underload CPU utilization threshold values, respectively.
In other words, the MF placement algorithm is based on
the preference of a server whose resource level has a min-
imum distance from LD. If LD =Throverload , then Eq. (12)
is similar to the best-fit algorithm. If LD = Thrunderload ,
then Eq. (12) is equivalent to the worst-fit algorithm. Thus,
Eq. (12) is considered to be the general form of the fit-
decreasing placement algorithm. Therefore, we used this
placement algorithm to improve QoS compared to the
traditional MBFD placement algorithm.

Experimental configuration and evaluation
methodology
In this section, the experimental setup, workload traces,
and key performance indicators (KPIs) to evaluate the
performance of the algorithms in the integrated RMP
approach are presented.
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Table 3 Testbed Specifications

Brand Cores Threads CPU Type RAM RAM Type Bandwidth

FUJITSU ESPRIMO 4 4 Intel� Core™ i5-6600 4 GB DDR4-133 MHz 10G Ethernet

P556/E85+ @ 3.3 GHz

Experimental setup
In this section, the experimental configurations, such as
testbed specifications, algorithm parameters, and exper-
imental sets used to evaluate the performance of the
proposed RMP approach are illustrated. The testbed com-
prised five physical servers. Table 3 shows the specifica-
tions of the physical machines used in our experiments.
One physical server was used as a controller server that
ran all OpenStack core services and the OpenStack Neat
global manager. The other four physical servers were used
as compute servers running OpenStack Nova, as well as
the data collectors and local managers of OpenStack Neat.
Additional details about the testbed configuration can be
found in the literature [6].
All setup parameters of the framework were set to their

default values (with the exception of the setup param-
eters of the tested algorithm) according to each exper-
iment. Table 4 details the parameter values used in all
experiments. The parameters of the overload detection,
VM selection, and VM placement algorithms were var-
ied in each experiment according to Table 4 to facili-
tate a complete comparison of the algorithms. The LRR

algorithm supports a safety parameter to control the
sensitivity of the algorithm to potential overloads [7].
This parameter is equivalent to Throverload in the THR
overload detection algorithm, which detects an over-
loaded server if the mean of the last n CPU utiliza-
tion values is greater than Throverload . Therefore, the
results of the THR algorithm using Throverload = 0.8,
0.9, and 1.0 are comparable to the results of LRR using
a = 0.9, 1.0, and 1.1, respectively, in patterns and not
values.
For the VM selection algorithm, the number of migra-

tion thresholds was calculated over 24 hours. The best
result of the MMTMC 2 algorithm was achieved using
λ equal to 0.001 and 0.0006 with (THR0.8, LRR1.1) and
(THR0.9, LRR1.1); respectively, through trying and tun-
ing. The performance of the MMTMC 2 algorithm was
close to the performance ofMMTMC1 if λwasmore than
these values. Also, the servers will suffer from an over-
loaded workload if λ was less than these values due to the
limited number of migrations.
Each experiment was tested three times to handle the

inconsistencies caused by unpredictable influences of the

Table 4 Experimental parameters

RMP phase Algorithm Parameters Definition Values

Underload THR n last CPU utilization values to be averaged n = 2

detection THRunderload underload CPU utilization threshold THRoverload = 0.5

Overload THR n last CPU utilization values to be averaged n = 2

detection THRoverload overload CPU utilization threshold THRoverload = 0.8, 0.9, 1.0

LRR n last CPU utilization values to be averaged n = 2

α safety parameter α = 0.9, 1.0, 1.1

DES n last CPU utilization values to be averaged n = 2

N Input samples N = 30

K Forecast sample K = 1

SHW n last CPU utilization values to be averaged n = 2

N Input samples N = 30

K Forecast sample K = 1

VM MMTMC n last CPU utilization values to be averaged n = 2

selection MMTMC 1 n last CPU utilization values to be averaged n = 2

MMTMC 2 n last CPU utilization values to be averaged n = 2

uinitial The initial threshold value uinitial = 3

λ The rate of growth λ is an empirical value

VM Modified best fit THRPlacement CPU threshold from total server’s capacity THRPlacement = 80%

placement Medium-fit (MF) THRPlacement CPU threshold from total server’s capacity THRPlacement = 80%
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CDC environment, including the initial VM placement,
latency, and workload trace.
Four sets of experiments were conducted using the

testbed. For the first three experimental sets, one algo-
rithm was evaluated; thus, all other algorithms were set
to their default configurations to determine the effect of
each algorithm. For instance, the first experiment illus-
trated the influence of using the DES overload detection
algorithm. Therefore, all other algorithms were set to their
default configurations [7] (i.e., the MMTMC selection
algorithm and MBFD placement algorithm). In addition,
the fourth experimental set evaluated the integration of
the three presented algorithms together and with the
default algorithms. Table 5 shows the configurations for all
experimental sets. The experimental sets are categorized
as follows:

(i) Overload detection algorithm (Exp. 1):
Experimental sets 1.a and 1.b illustrate the results of
using THR and LRR algorithms as traditional
overload detection algorithms to evaluate the
influence of using the DES overload detection
algorithm through experimental set 1.c. The DES
aims to decrease the number of VM migrations

based on future load. The results and discussion are
presented in “Overload detection algorithm
results” section.

(ii) VM selection algorithms (Exp. 2): Experimental set
2.a and 2.d illustrate the results of using the
MMTMC selection algorithm as a traditional VM
selection algorithm using THR and LRR overload
detection algorithms. In addition, experimental sets
2.b, 2.c, 2.e, and 2.f illustrate the influence of using
the MMTMC1 and MMTMC2 selection algorithms.
These algorithms were proposed in [6], which
evaluated the performance with other overload
detection techniques, such as LRR. This algorithm
aims to reduce frequent migration while respecting
the customer’s SLA. The results and discussion are
presented in “VM selection algorithms results”
section.

(iii) VM placement algorithm (Exp. 3): Experimental
sets 3.a and 3.b illustrate the results of using the
MBFD algorithm as a traditional placement
algorithm using MMTMC and MMTMC 2 selection
algorithms. In addition, experimental sets 3.c and 3.d
illustrate the influence of using the MF placement
algorithm. This algorithm aims to improve the

Table 5 Experimental plan / category

Experimental Set Overload detection algorithms VM selection algorithms VM placement algorithms

Exp. 1 a THR MMTMC MBFD

b LRR MMTMC MBFD

c DES MMTMC MBFD

Exp. 2 a THR MMTMC MBFD

b THR MMTMC 1 MBFD

c THR MMTMC 2 MBFD

d LRR MMTMC MBFD

e LRR MMTMC 1 MBFD

f LRR MMTMC 2 MBFD

Exp. 3 a THR MMTMC MBFD

b THR MMTMC 2 MBFD

c THR MMTMC MF

d THR MMTMC 2 MF

Exp. 4 a THR MMTMC MBFD

b THR MMTMC 2 MBFD

c DES MMTMC MBFD

d DES MMTMC 2 MBFD

e THR MMTMC MF

f THR MMTMC 2 MF

g DES MMTMC MF

h DES MMTMC 2 MF

Note: The bold formatting indicates the presented algorithms as not traditional on the real RM CDC framework
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overall data center SLA. The results and discussion
are presented in “VM placement algorithm results”
section.

(iv) Combination of the different algorithms (Exp. 4):
This experimental set presents the results of using a
combination of all the algorithms. This experimental
set aims to determine the optimum combination that
represents the best possible performance. The results
and discussion are presented in “Combination
results” section.

Workload input
We used workload traces that were proposed as part of
the CoMon project, which is a monitoring infrastructure
for PlanetLab [30]. These traces contained CPU utilization
collected every five minutes from more than 500 places
around the world [31].
A previous study [7] has used PlanetLab’s workload

tracers, where they filtered 33 traces over 24 hours. The
selected traces were used to stress the system to be more
overloaded by satisfying the following situations:(i) CPU
utilization is greater than 80% at least 10% over the 24
hours, and (ii) CPU utilization is less than 20% at least
10% over the 24 hours. Therefore, we used these traces to
simulate a practical workload.

Performance evaluation metrics
In this section, performancemeasurementmetrics used to
evaluate the proposed RMP approach are presented. For
efficient evaluation, metrics were used to analyze the KPIs
(overall energy consumption, QoS, and network traffic).
The evaluation metrics are as follows:

(i) Aggregated idle time fraction (AITF): The AITF is
the sum of idle time of all servers over the total time
of all servers (24 hours), as shown in Eq. (13). An
increase in AITF means saving more energy.

AITF =
∑

sεS ti(s)∑
sεS to(s)

(13)

Where S is all servers, ti(s) is the idle time of the
server s, and to(s) is the overall time of the server s.

(ii) Aggregated overload time fraction (AOTF): The
AOTF is the sum of overloaded time of all servers
over the busy time of all servers (not in sleep mode),
as shown in Eq. (14). A decrease in AOTF means that
the overall system QoS is improved.

AOTF(uthr) =
∑

sεS to(s,uthr)∑
sεS tb(s)

(14)

Where to(s,uthr) is the overload time of the server s
calculated according to the overload threshold uthr
and tb(s) is the overall busy time of the host s.

(iii) Total number of VMmigrations: This reflects the
CDC network overhead.

(iv) User-level performance degradation due to
migration: The User-level PDM is the performance
degradation that occurred in a single VM during
migration over the VM’s total capacity [32].

(v) Performance degradation due to migration
(PDM): The PDM is the mean value of User-level
PDM for all VMs in the system, as shown in Eq. (15).

PDM = 1
M

M∑

j=1

Cdj

Crj
(15)

Where M is the number of VMs, Cdj is the estimate
of the performance degradation of the VM j due to
migrations, Crj is the total CPU capacity required by
the VM j during its lifetime.

(vi) SLA Violations (SLAVs): The SLAVs is the failure of
providing QoS. There are two causes of SLAVs: the
SLAVs due to overloading and migration. Therefore,
it is calculated by multiplying AOTF with PDM [32],
as shown in Eq. (16).

SLAVs = AOTF ∗ PDM (16)

(vii) Energy and SLA violations (ESV): The ESV
measures energy consumption and the SLAVs value,
where the resource management system aims to
minimize both of them. Therefore, it is calculated by
multiplying the SLAVs with the energy consumption
[23], as shown in Eq. (17).

ESV = SLAVs ∗ Energy (17)

(viii) Estimated energy saving percentage: It is
calculated using the AITF and AOTF performance
metrics using an energy estimation model [7].
According to this model, the power consumptions
are 450W , 270W , and 10.4W in the full-utilization,
idle, and sleep states, respectively [33].

Prediction assessment study
In this section, we determine which exponential smooth-
ing technique is suitable for cloud workloads. The pre-
diction technique was performed on the CPU utilization
of the VM rather than the server because users are most
likely to use their VM in a specific period. Three different
PlanetLab workloads were tested as samples.
Figure 4 illustrates the three workload samples used to

evaluate the performance of the DES and SHW exponen-
tial smoothing techniques. These workload samples were
selected because they represent the most common fre-
quent user behaviors regarding the 33 filtered PlanetLab
traces described in “Workload input” section.
First, a training phase was performed using 70% of the

CPU utilization values over 24 hours. Equation (7) is used
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Fig. 4Workload samples

in the initialization phase because it achieves the min-
imum RMSE in all tested workloads using the DES or
SHW. Therefore, we used it in the training, testing, and
operating phases. In the training phase, the prediction
parameters (α and β for the DES algorithm and α, β , and
γ for the SHW algorithm) were obtained, where these
parameters produced the least RMSE.
Figure 5 illustrates the square error values between

the actual and predicted CPU utilizations using the DES
(blue line) and SHW (red line) algorithms for the tested
workloads. As shown, the DES overload detection algo-
rithm outperformed the SHW algorithm according to the
square error values.
Table 6 illustrates the RMSE values calculated using

Eq. (9) over 24 hours while discarding the first 30 val-
ues, where the prediction algorithm depends on historical
data. Therefore, we initially performed the THR algo-
rithm, and then switched to the prediction algorithm
during the experimental phase. As can be seen, the RMSE
value of the DES algorithm is lower for the three workload
samples, which means that seasonality is not suitable for
our case. This result might be because there is no season-
ality during the last 30 historical sample data. Thus, the
DES algorithm was used subsequently to predict CPU uti-
lization in overload detection techniques as a significant
phase in the RMP approach.

Experimental results and discussions
In this section, we present the experimental results and
discussions about the RMP approach. “Overload detec-
tion algorithm results”, “VM selection algorithms results”,
and “VM placement algorithm results” sections illus-
trate the experimental results of the proposed algorithms

compared to traditional algorithms in each stage of the
proposed RMP CDC framework. In addition, in the
“Combination results” section, the results of the combined
proposed RM algorithms are presented.

Overload detection algorithm results
The first RMP stage involves the overload detection algo-
rithm, as explained in the “RMP stages” section. It illus-
trates the influence of using the DES algorithm compared
to the THR and LRR algorithms. Figure 6 shows the AITF,
AOTF, and the number of VM migrations obtained by
these algorithms.
For the THR algorithm, the mean AITF increased sig-

nificantly from 22.54% to 32.94% with increasing mean
AOTF (20.69% to 27.6%) by changing the threshold value
from 0.8 to 1.0, respectively. In addition, the mean num-
ber of VM migrations decreased from 239.33 to 24.33 for
the 80% and 100% thresholds, respectively.
Similarly, with the LRR algorithm, the mean AITF

increased from 25.55% to 34.2% with increasing mean
AOTF (24.98% to 30.65%) and a reduction in the mean
number of VM migrations (198.33 to 29.67) as a result of
changing the value of the safety parameter from 1.1 to 0.9.
Varying the threshold value of the DES algorithm from

0.8 to 0.9 increased the mean AITF value from 26.18%
to 30.2% with increasing mean AOTF (26.92% to 29.77%)
and a decreasing in the mean number of VM migrations
(149 to 81). Clearly, this represents an improvement in
energy savings, where the mean AITF increased from
26.18% to 30.2% for the DES (0.8 and 0.9) threshold values,
respectively, compared to 22.54% to 26.69% and 25.55%
to 29.07% for THR (0.8 and 0.9) and LRR (1.1 and 1.0),
respectively. In addition, network traffic was improved,
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Fig. 5 Square error values between the actual and predicted CPU utilization for the three tested workloads (taking samples every 5 min)

where the mean number of VM migrations decreased
compared to the two other algorithms. Thus, DES is an
efficient algorithm to prevent unnecessary migrations.
Clearly, the DES algorithm achieved more energy sav-

ings than the other two algorithms using all overload
detection algorithms. However, this improvement came at
the expense of QoS degradation, where AOTF increased
from 20.69% and 24.98% to 26.92% for THR 0.8, LRR 1.1,
and DES 0.8, respectively, as shown in Fig. 6.
According to the results, THR 1.0, and LRR 0.9 achieved

the highest estimated energy savings at the cost of sub-

stantial performance degradation (high AOTF). There-
fore, these parameters not suitable for our objective in
this study to obtain a compromise solution between power

Table 6 RMSE for DES and SHW algorithms

DES SHW

Workload #1 11.80 15.90

Workload #2 4.71 6.22

Workload #3 16.48 21.51
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Fig. 6 Results of different overload detection algorithms: Mean values of AITF, AOTF, and the total number of VM migrations using THR, LRR, and
DES overload detection algorithms with the MMTMC VM selection algorithm and MBFD algorithm. For instance, the green bar represents the
parameter that substantially considerate power saving

saving, SLAs, and the number of migrations. As a result,
DES 1.0 was not performed in this experiment set.

VM selection algorithms results
The second RMP stage involves the VM selection algo-
rithm. The influence of using the MMTMC 1 and
MMTMC 2 VM selection algorithms with traditional
overload detection and VM placement techniques is

determined. Figure 7 shows the AITF, AOTF, and the
number of migrations for these algorithms compared to
the MMTMC algorithm using the THR and LRR overload
detection algorithms.
For the MMTMC 1 algorithm, the results demon-

strate that overall performance was convergent to that
of the MMTMC algorithm in terms of energy efficiency,
overall SLA, and the total number of migrations. How-
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Fig. 7 Results of different VM selection algorithms: Mean values of AITF, AOTF, and the total number of VM migrations using different VM selection
algorithms for the THR and LRR overload detection algorithms

ever, with the MMTMC 2 algorithm, there was only a
slight improvement in energy savings and a slight drop
in SLA. In contrast, there was a significant decrease in
network overhead, where the mean number of VMmigra-
tions was reduced. For instance, with THR 0.8, the mean
AITF increased from 22.54% to 26.22%, the mean AOTF
increased from 20.59% to 24.58%, and themean number of
VM migrations decreased from 239.33 for the MMTMC
algorithm to 181.67 with the MMTMC 2 algorithm.
The influence of the MMTMC 1 and MMTMC 2 algo-

rithms was unclear with THR 1.0 and LRR 0.9 because
overload detection occurred rarely, and most VM migra-
tions occurred due to underloaded servers. Therefore, the
contribution of these algorithms improved the framework
in the presence of overloaded servers. THR 1.0 and LRR
0.9 cared slightly about the SLA of end-users while saving
more power than using other overload detection configu-
rations. The AITF increased to 37.06% and 36.96% using

THR 1.0 and LRR 0.9, respectively, which means that the
compute servers were in a low power state for approx-
imately 37% of the overall active time of all compute
servers. This power-saving percentage is considerable,
especially as the testbed was designed to be overloaded.
Figure 8 illustrates the user-level performance degra-

dation due to migration using the MMTMC, MMTMC
1, and MMTMC 2 algorithms with the THR 0.8 over-
load detection algorithm. As can be seen, remarkable
diversity was observed in user-level PDM among VMs
with the MMTMC algorithm. This diversity occurred
due to the variation in the number of migrations per
VMs. For instance, the fourth VM was migrated 31
times, while the 17th VM was migrated only three times.
Thus, the user-level PDM of these VMs was 0.2466%
and 0.0218%, respectively. In addition, convergence was
observed between the user-level PDM with the MMTMC
1 and MMTMC 2 algorithms.
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Fig. 8 User-level performance degradation due to migration (PDM) results: User-level PDM values using the MMTMC, MMTMC 1, and MMTMC 2
algorithms for THR 0.8 overload detection algorithm over 24 hours

Most of the user-level PDM and Number of migrations
values were closed to each other and hence close to the
mean value except the 1st , 2nd, 6th and 15th VMs using
theMMTMC 1 algorithm. It is because this algorithm dis-
cards the zero CPU utilization from the selected list; as
described in [6], due to the useless migration. In addition,
the user-level PDM has decreased using the MMTMC 2
algorithm compared to the MMTMC 1. Even though this
decrease is slight, but it will improve the SLA of the end-
user and will decrease the overhead network traffic in
terms of the system.
Table 7 illustrates the mean results of the MMTMC,

MMTMC 1, and MMTMC 2 VM selection algorithms
using the THR 0.8 overload detection algorithm over a
24 hour period. Despite the fact that the overall PDM
for the three algorithms was convergent, all users were
provided with convergent QoS using the MMTMC 1 and
MMTMC 2, as shown in Fig. 8. The ESV value was
reduced using theMMTMC2 compared to the other algo-
rithms. The goal of the RM system is to reduce energy
and SLAVs significantly; therefore, the ESV metric is
suitable to evaluate both energy consumption and QoS.
This means that the MMTMC2 outperformed other algo-
rithms in terms of the SLA of the end-users and the
system.

VM placement algorithm results
The third RMP stage involves the VM placement algo-
rithm. The influence of using the MF VM placement
algorithm is explained and compared to the MBFD algo-
rithm. Figure 9 illustrates the obtained AITF, AOTF, and
number of migrations for the MBFD and MF placement
algorithms.
Using the MF placement algorithm improved perfor-

mance in terms of both power savings and network traf-
fic, where the mean AITF increased from 22.54% using
the MBFD algorithm to 23.77% using the MF algorithm
for the MMTMC selection algorithm. In addition, the
mean number of VMmigrations was reduced from 239.33
to 177.33. In contrast, there was a slight decrease in
QoS, where the mean AOTF increased from 20.69% to
21.55%. This result was expected because the MF place-
ment algorithm achieves partial load balancing between
the active server, where the selected VMs allocated in the
servers have average utilization. This technique allows an
underloaded server to switch to sleep mode. In addition,
this technique prevents a nearly-overloaded server from
becoming more overloaded, and then the system migrates
VMs from these servers. In contrast, the MBFD algorithm
is based on allocating the selected VMs to the server with
the highest CPU utilization if resources are available.

Table 7 Mean experimental results of the presented VM selection algorithms using THR 0.8 overload detection algorithm over 24 hours

Algorithms PDM AOTF SLAVs Energy consumption ESV No. of

(%) (%) (×10−5) (KWh) (×10−3) migrations

MMTMC 0.1072 20.69 22.19 31.73 7.0404 239.33

MMTMC 1 0.1093 20.83 22.77 31.57 7.1884 232.67

MMTMC 2 0.0907 24.58 22.31 30.43 6.7880 181.67

The bold formatting highlights the improved metrics
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Fig. 9 Results of different VM placement algorithms: Mean values of AITF, AOTF, and the total number of VM migrations using MF placement
algorithms compared with MBFD algorithms using the THR 0.8 algorithm and the MMTMC and MMTMC 2 selection algorithms

In terms of the MMTMC 2 selection algorithm, the
results are consistent with those in the previous section.
This selection algorithm with any overload detection
or placement algorithm improved performance in terms
of power savings, network traffic, and the SLA of the
end-users. The mean AITF increased from 26.22% using
the MBFD algorithm to 27.9% using the MF algorithm
for the MMTMC selection algorithm. In addition, the
mean number of VM migrations decreased from 181.67
to 125.33. Contrary to expectations, there was a slight
improvement in QoS, where the mean AOTF decreased
from 24.58% to 23.84%. Therefore, the MF algorithm was
considered the best placement algorithm compared to the
MBFD algorithm. As a result, the MF algorithm was rec-
ommended to be the candidate algorithm to represent the
third RMP stage to achieve the resource-effective CDC.
In the next section, we present the results of com-

bining the proposed overload detection, VM selection,
and VM placement algorithms as essential stages in the
integrated RMP approach. We found that the best combi-
nation of these algorithms guarantees a resource-effective
CDC framework.

Combination results
In this section, we discuss combining the DES algorithm
with the MMTMC 2 VM selection and MF VM place-
ment algorithms to achieve the best practical integrated
pipeline solution in terms of the proposed algorithms. In
addition, the results are compared to all combinations of
algorithms. Figure 10 illustrates the obtained AITF, AOTF,
and the number of VM migrations for the combination of
the MBFD and MF placement algorithms, MMTMC and
MMTMC 2 VM selection algorithms, and THR 0.8 and
DES 0.8 overload detection algorithms.
First, the MMTMC 2 algorithm demonstrated the best

performance in terms of the VM selection algorithm. In
terms of power savings, DES 0.8 with the MBFD algo-
rithms performed best, where the mean AITF was 28.76%.
This result was expected because the MBFD placement
algorithm is based on only reducing power as much as
possible.

In terms of QoS, it makes sense that the DES algo-
rithm increased SLA violations because it is based on
the decision to migrate VMs if the actual and pre-
dicted CPU utilization values are overloaded. There-
fore, the possibility that the server will stay in an over-
loaded state increased. From the results, it is clear
that the mean AOTF increased from 24.58% to 29.1%
as a result of changing overload detection from the
THR to the DES algorithm. However, the MF place-
ment algorithm contributed to solving this problem by
reducing the mean AOTF values to 23.84% and 24.86%
using the THR and DES overload detection algorithms,
respectively.
In terms of network traffic, the DES algorithm avoids

unnecessary migration, where the mean number of VM
migrations decreased to 120.67 and 121 using the MBFD
and MF placement algorithms, respectively.
However, integration between the DES 0.8 overload

detection and MBFD placement algorithms achieved the
best performance in terms of power savings and network
traffic; however, this integration was considered the worst
in terms of QoS. Therefore, the combination of the DES
0.8 overload detection, MMTMC 2 selection, and MF
placement algorithms provided the best performance in
terms of power savings, QoS, network traffic, and end-
user’s SLA. Thus, we consider that this combination is
suitable for realizing a dynamic resource-effective CDC
framework.
Table 8 illustrates the estimated energy saving percent-

age allowed by our framework using a combination of
overload detection, VM selection, and VM placement
algorithms. In terms of power savings, the best combina-
tion is the DES overload detection algorithm, MMTMC
2 selection algorithm, and MF placement algorithm. This
combination achieved energy savings of 17.23%. How-
ever, as discussed previously, this combination was only
best relative to energy savings and network traffic. The
MF algorithm achieved slightly better energy saving per-
formance than the traditional algorithm using the THR
0.8 overload detection algorithms, where energy savings
increased from 13.38% and 14.21% to 16.03% and 17.08%
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Fig. 10 Combination results: Mean values of AITF, AOTF, and the total number of VM migrations using combinations of overload detection, VM
selection, and VM placement algorithms (The green loop represents the best performance)

for MMTMC and MMTMC 2, respectively. However, it
is better to also respect QoS. In addition, our objective
is to achieve dynamic resource-effective CDC; thus, the
combination of DES and MMTMC 2 with MF comes the
closest to satisfying this goal.

Conclusion
In this paper, an integrated RMP approach was proposed
to achieve a dynamic resource-effective CDC framework.
This framework provides practical solutions for CDC per-
formance bottlenecks by splitting the RM issue into three

Table 8 Estimated energy saving percentage using
combinations of overload detection, VM selection, and VM
placement algorithms

Algorithm MMTMC MMTMC 2

THR 0.8, MBFD 13.38% 15.74%

DES 0.8, MBFD 15.49% 17.23%

THR 0.8, MF 14.21% 17.08%

DES 0.8, MF 15.29% 16.64%

The bold formatting indicates the best combination result in terms of energy saving
(THR 0.8-MMTMC 2-MF)



Hassan et al. Journal of Cloud Computing: Advances, Systems and Applications            (2020) 9:63 Page 19 of 20

stages, i.e., overload detection, VM selection, and VM
placement, where the related algorithms directly affect a
VM’s SLA. The DES overload detection algorithm was
used to eliminate useless migration by making migration
decisions based on the predicted CPU utilization value.
In addition, two algorithms were proposed to improve
the SLA of the end-user in CDCs, and an MF placement
algorithm was employed to improve the overall SLA and
provide load balancing between active servers in CDCs.
The experimental results have demonstrated that the
combination of DES overload detection, MMTMC 2 VM
selection, and MF VM placement algorithms positively
impacted power savings, reduced network bottlenecks,
and improved QoS, where the number of migrations was
reduced by 49.44% compared to the default configuration.
In real-world CDCs, stable and efficient solution algo-

rithms are required to ensure energy saving that maxi-
mizes the service provider’s profit and providing QoS that
satisfies end-user requirements. Although the proposed
framework and algorithms can solve these issues, hetero-
geneous large-scale CDCs were not covered. Thus, in the
future, scalability and diversity will be tested for this sys-
tem using CloudSim, and seasonality will be studied over
10 days of workload traces. In addition, dynamic solution
methods based on machine learning algorithms to predict
workloads will be investigated and developed to form a
multi-objective optimization approach. Finally, a different
priority end-user with multi-levels of SLAs for CDCs will
be investigated and evaluated.
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