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Abstract

Feature discretization is an important preprocessing technology for massive data in industrial control. It improves
the efficiency of edge-cloud computing by transforming continuous features into discrete ones, so as to meet the
requirements of high-quality cloud services. Compared with other discretization methods, the discretization based
on rough set has achieved good results in many applications because it can make full use of the known
knowledge base without any prior information. However, the equivalence class of rough set is an ordinary set,
which is difficult to describe the fuzzy components in the data, and the accuracy is low in some complex data
types in big data environment. Therefore, we propose a rough fuzzy model based discretization algorithm (RFMD).
Firstly, we use fuzzy c-means clustering to get the membership of each sample to each category. Then, we fuzzify
the equivalence class of rough set by the obtained membership, and establish the fitness function of genetic
algorithm based on rough fuzzy model to select the optimal discrete breakpoints on the continuous features.
Finally, we compare the proposed method with the discretization algorithm based on rough set, the discretization
algorithm based on information entropy, and the discretization algorithm based on chi-square test on remote
sensing datasets. The experimental results verify the effectiveness of our method.

Keywords: Feature discretization, Preprocessing technology, Edge-cloud computing, Fuzzy c-means, Rough fuzzy
model

Introduction
Edge-cloud computing is based on the core of cloud
computing and the capability of edge computing, form-
ing an elastic cloud platform built on the edge infra-
structure [1–3]. As an extension of the centralized
cloud, the edge cloud provides low-latency, self-
organizing, and schedulable distributed cloud services
for terminals [4, 5]. As shown in Fig. 1, the edge cloud,
the centralized cloud and the terminals of Internet of
things constitute an end-to-end technical architecture of
“cloud-edge-terminal collaboration”. By allocating com-
puting, network forwarding, storage, and other work to
the edges for intelligent data preprocessing, the cloud
pressure, response delay and bandwidth cost can be

reduced [6, 7]. Feature discretization is an important re-
duction technology for mass data in industrial control
[8, 9]. It can filter abnormal data, reduce system load,
and improve the performance of intelligent algorithm
[10] by transforming continuous features into discrete
ones that are easier to understand, use, and interpret, so
as to improve the efficiency of edge-cloud computing
and prevent network attacks to a certain extent [11, 12].
In recent years, feature discretization has gradually be-

come a key technology of intelligent data preprocessing,
which has attracted extensive attention all over the
world and achieved fruitful research results [13]. Obtain-
ing the optimal discretization scheme has been proved
to be an NP complete problem [14]. Most of the current
methods are based on specific partition criteria to realize
the discretization of continuous features, such as the
equal width algorithm [15], the equal frequency algo-
rithm [15], the discretization algorithm based on infor-
mation entropy [16], the discretization algorithm based
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on chi-square test [17]. However, due to the complex
correlation between features, the relatively fixed parti-
tion criteria cannot comprehensively measure the
discrete interval. In addition, the distribution of sample
attribute values in a dataset is often difficult to learn.
Therefore, the discretization results obtained by these al-
gorithms are often not the optimal scheme in specific
application scenarios, and even fail to meet the accuracy
requirements of the system [18].
Compared with the above discretization methods,

discretization based on rough set [19] has achieved good
results in many applications because it can make full use
of the known knowledge base without any prior informa-
tion. On the other hand, since feature discretization is a
complex constrained optimization problem [13], it is very
difficult to solve this kind of problem by traditional
methods, and the genetic algorithm is more effective than
traditional methods because of its group search strategy
and calculation method that is not dependent on gradient
information [20]. Through crossover and mutation opera-
tions, genetic algorithm takes into account the global and
local equilibrium search ability. Compared with other
swarm intelligence optimization algorithms, genetic algo-
rithm can use more mature analysis methods to estimate
the convergence rate [21]. Therefore, the combination of
rough set and genetic algorithm can obtain better results

than other methods. Chen et al. propose a genetic algo-
rithm for discretization [22]. They conduct experiments
on several datasets in UCI machine learning library. In the
experimental process, they use some optimization strat-
egies to continuously optimize the genetic algorithm. The
experimental results show that the genetic algorithm is ef-
fective in both time complexity and accuracy. Ren et al.
propose a heuristic genetic algorithm to discretize con-
tinuous attributes of decision table [23]. The algorithm
takes the importance of continuous cut sets as heuristic
information, and constructs a new operator, which not
only keeps the identifiability of the selected cut sets, but
also improves the local search ability of the algorithm. Dai
uses the rough set model to construct the individual fit-
ness function of genetic algorithm to evaluate the uncer-
tainty of information system, so as to handle the
consistency and minimum [24]. With the advantage of
rough set in dealing with incomplete information, the
above methods can use the strong search ability of genetic
algorithm to obtain the minimum number of breakpoints
while ensuring that the compatibility of the system is not
destroyed. However, in big data environment, there are
often a large number of complex types of data, and the
uncertainty in decision-making is caused by the unclear
classification of categories. The equivalence class of rough
set is an ordinary set, which is difficult to describe the

Fig. 1 Edge-cloud computing framework
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fuzzy components in the data, and the accuracy obtained
in these complex data types is low. Fuzzy set is a mathem-
atical tool used to describe fuzziness, and the combination
of fuzzy set and rough set can better deal with the uncer-
tainty of data [25].
For this reason, we propose a rough fuzzy model based

discretization algorithm (RFMD). The main contributions
of this article are as follows: (1) we create a fuzzy set for
each category in the dataset, and use fuzzy c-means [26]
to get the membership function of each category; (2) we
use the membership function to fuzzify the equivalence
relationship of rough set, and establish the fitness function
of genetic algorithm [18] based on rough fuzzy model [27]
to select the best breakpoints on continuous features.
The rest of this paper is arranged as follows: the second

part introduces the basic concepts of feature discretization,
rough set, and fuzzy set; the third part describes the
discretization algorithm based on rough fuzzy model; the
fourth part introduces the experimental environment and
datasets, and analyzes and discusses the experimental re-
sults; the fifth part summarizes the full text.

Background
We inntroduce the basic process of feature discretization,
and the binary coding of feature discretization in genetic
algorithm. Then, we explain the related definitions of

rough sets and fuzzy sets, and lead to the rough fuzzy
model.

Feature discretization and genetic coding
Discretization is to divide the continuous features (also
known as continuous attributes) into a finite number of
subintervals by some specific method, and associate
these subintervals with a group of discrete values (also
known as breakpoints) [28]. Through discretization, the
data scale can be greatly reduced, thus improving the ef-
ficiency of massive data processing at the edge nodes of
edge-cloud computing, and greatly relieving the pressure
of transmitting data back to the centralized cloud [11].
The basic process of feature discretization is shown in
Fig. 2.
In the beginning, the values of continuous attributes

are sorted and the duplicate values are deleted to get a
set of candidate breakpoints; then, the partition break-
points of the continuous attributes are selected from the
candidate breakpoints set, and decide whether to divide
the interval or merge adjacent subintervals according to
the judgment criteria of the discretization algorithm; if
the termination condition is satisfied, the discretization
result is output; otherwise, the remaining breakpoints
are selected from the candidate breakpoints set to per-
form discretization of attributes.

Fig. 2 Feature discretization process
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Genetic algorithm is a probabilistic evolutionary algo-
rithm for global optimization [29], which has achieved
good performance in many optimization problems [30].
Genetic algorithms use fitness function to evaluate the
quality of individuals in population, and transform the
problem-solving process into a process which is similar
to the crossover and mutation of chromosomal genes in
biological evolution. In many complex combinatorial
optimization problems, genetic algorithm can quickly
obtain better optimization result than some conventional
optimization algorithms [20, 21]. However, genetic al-
gorithm cannot directly deal with the parameters of
the problem space, so the problem to be solved must
be expressed as a chromosome or individual in gen-
etic space by coding. This conversion is called gen-
etic coding [30]. Genetic coding adopts the following
criteria [18]: (1) completeness: all candidate solutions
in the problem space can be represented as chromo-
somes in genetic space; (2) soundness: chromosomes
in genetic space can correspond to all candidate so-
lutions in the problem space; (3) non-redundancy:
chromosomes and candidate solutions are one-to-one
correspondence.
The discretization problem can be seen as the selec-

tion of candidate breakpoints [30]. Each chromosome in
the population represents a possible discretization
scheme. The length of chromosome is equal to the num-
ber of candidate breakpoints. We use binary coding to
encode the candidate breakpoints. Each bit in the binary
code corresponds to a candidate breakpoint. The values
of ‘1’ and ‘0’ represent that the corresponding breakpoint
is selected and not selected, respectively. The set of se-
lected candidate breakpoints is a possible discretization
scheme.

Rough sets
Rough set is a mathematical theory proposed by Pawlak
to solve the problem of data uncertainty [31]. Rough set
regards knowledge as the ability to classify objects in the
universe. An equivalence relation on the universe repre-
sents a knowledge.

Definition 2.1
The two-tuple K = (U,ℝ) is a knowledge base, where, U
is the universe, and ℝ is the cluster of equivalence rela-
tions on U.

Definition 2.2
For x ∈U, R ∈ℝ, the equivalent class of x under R is
[x]R = {y ∈U| (x, y) ∈ R}. The quotient set U/R = {[x]R| x ∈
U} is called a knowledge.

Definition 2.3
Suppose U is a non-empty finite universe, and R is a bin-
ary equivalence relation on U. For any X ⊆U, the lower
and upper approximations of X with respect to R are:

R − X ¼ x∈U j x½ �R⊆X
� � ð1Þ

R − X ¼ x∈U j x½ �R∩X≠∅
� � ð2Þ

Discretization based on rough set evaluates the result
of discretization according to the degree of dependence
of X on R. The degree of dependence of X on R is:

γR Xð Þ ¼ j R − X j
j U j ð3Þ

Where, ∣ · ∣ is the cardinality of the set. It is easy to
see that discretization based on rough set can make full
use of the known knowledge base without any prior in-
formation. However, [x]R is an ordinary set, which is dif-
ficult to describe the fuzzy components in data.

Rough fuzzy-model
Fuzzy set is a mathematical theory proposed by Zadeh
to describe the fuzziness of data [32]. Compared with
the ordinary set which can only express crisp concepts,
fuzzy sets can represent not only crisp concepts, but also
fuzzy concepts.

Definition 2.4
Let A be a mapping from set X to [0, 1], call A the fuzzy
set on X, and function A(x) is the membership of x to
the fuzzy set A. The fuzzy set A is expressed as follows
when X is a finite set and when X is an infinite set:

A ¼
Xn

i¼1
A xið Þ=xi ð4Þ

A ¼
Z

X
A xð Þ=x ð5Þ

Through the membership function A(x), the equivalent
classes of rough sets can be fuzzified to obtain the rough
fuzzy model [33]. If X is a finite set, then the cardinality
of fuzzy set A is:

j A j¼
X
x∈X

A xð Þ ð6Þ

Definition 2.5
Let U be the non-empty finite universe, R is the binary
equivalence relation on U, and A is the fuzzy set on U.
For any x ∈U, the lower and upper approximations of x
in the rough fuzzy model established by R and A are:

R − A xð Þ ¼ inf
y∈U

A yð Þj x; yð Þ∈Rf g ð7Þ
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R − A xð Þ ¼ sup
y∈U

A yð Þj x; yð Þ∈Rf g ð8Þ

Accordingly, the approximate accuracy of the above
rough fuzzy model is:

η ¼ j R − A j
j R − A j ð9Þ

Since R−A(x) ≤ R
−A(x), 0 ≤ η ≤ 1. The closer the value

of η to 1, the higher the overall approximation accuracy.
In the application process of edge-cloud computing, the
massive data collected often have incomplete, fuzzy, and
other uncertain information. Rough fuzzy model has the
advantages of both rough set and fuzzy set. It can make
full use of the known knowledge base without any prior
information, and use membership function to fuzzify the
equivalent relationship to describe the fuzzy components
inside the data, so as to improve the accuracy of the
massive data processing at the edge node of edge-cloud
computing [27, 34].

Rough fuzzy model based discretization algorithm
We introduce the process of calculating membership by
fuzzy c-means clustering. Then, we detail the fitness
function based on rough fuzzy model. Finally, we de-
scribe the whole process of the proposed method.

Membership calculated by fuzzy c-means clustering
Fuzzy c-means integrates the essence of fuzzy theory
[35]. Compared with the hard clustering of k-means,
fuzzy c-means provides more flexible clustering results
[36]. In most cases, the objects in the dataset cannot be
divided into crisp clusters. It is hard to assign an object
to a specific cluster, and errors may occur. Therefore, it
is necessary to assign a weight between each object and
each cluster to indicate the degree to which the object
belongs to the cluster. Certainly, probability-based
methods can also give such weights. But it is difficult for
us to determine an appropriate statistical model. There-
fore, it is a better choice to use the fuzzy c-means with
natural and non-probabilistic characteristics [37].
The dataset can be represented by information table

S = (U, R,V, f). Where, U is the non-empty finite uni-
verse, R is the set of the attributes, V is the range of at-
tribute values, and f is the mapping function from the
object to the range of attribute values. Suppose that U
contains N samples, C categories, M attributes, xih is the
value of sample xi on the h-th attribute, 1 ≤ i ≤N, 1 ≤ h ≤
M, and the class center cj of the j-th class is initialized to
c0j , 1 ≤ j ≤ C, then the membership of xi to the j-th class

is initialized as follows:

u0ij ¼ 1=
XC

k¼1

PM
h¼1 xih − cjh
� �2PM

h¼1 xih − ckhð Þ2
 !

ð10Þ

Where, cjh is the value of the current class center cj on
the h-th attribute. After the current membership is ob-
tained, the class center cj is updated to:

c1j ¼
XN

i¼1
u0ij
� �2

� xi

� 	
=
XN

i¼1
u0ij
� �2

ð11Þ

uij and cj are updated iteratively until the following ter-
mination condition is met:

maxij jutþ1
ij − utijj

n o
< ε ð12Þ

Where, t is the number of iterations, and ε is the error
threshold. In this way, the membership of each sample
in U is obtained, as shown in Algorithm 1.

Fitness function based on rough fuzzy model
After obtaining the membership of each sample in U to
each category, we create a fuzzy set for each category:

Aj xið Þ ¼ uij; 1≤ i≤N ; 1≤ j≤C ð13Þ

Where, Aj is the corresponding fuzzy set of the j–th
class. According to (7) and (8), we can calculate the
lower and upper approximations of xi in the rough fuzzy
model established by attribute set R and Aj:

R − Aj xið Þ ¼ inf
y∈U

Aj yð Þj xi; yð Þ∈R� � ð14Þ

R − Aj xið Þ ¼ sup
y∈U

Aj yð Þj xi; yð Þ∈R� � ð15Þ

Accordingly, the average approximation accuracy of
the rough fuzzy sets of all classes is:

�η ¼ 1
C

XC

j¼1

j R − Aj j
j R − Aj j ð16Þ

Since the optimal discretization scheme is the best
trade-off between data consistency and the number of
breakpoints [38]. Therefore, the fitness function should
be determined by the average approximation accuracy
and the number of breakpoints. Assuming that ∣D∣ is
the number of breakpoints reduced by discretization
scheme D, the fitness function is as follows:
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Fit ¼ α� j D j þβ� �η
where α≥0; β≥0; and αþ β ¼ 1

ð17Þ

Where, α and β are weight coefficients. The selection
of the mentioned parameters is an open problem, as no
specific selection can adapt to all datasets. Generally, the
rationality of parameters is judged according to the char-
acteristics of datasets and experimental observation [39].
∣D∣ determines the magnitude of the reduction in the
number of breakpoints, while �η controls the accuracy of
data. If α is much greater than β, the accuracy of data
will be very low. If α is far less than β, the number of
breakpoints will be large, so the purpose of discretization
cannot be achieved. Generally, in order to obtain as few
breakpoints as possible while ensuring the accuracy of
data, 0.1 ≤ α ≤ 0.5, i.e., 0.5 ≤ β ≤ 0.9. The purpose of this
paper is to improve classification accuracy after
discretization, and classification accuracy is directly re-
lated to the average approximation accuracy of rough
fuzzy sets. Therefore, we set β to be larger than α (α =
0.1, β = 0.9), and achieve good results in the experiment.
Based on this fitness function, we iteratively perform

genetic operation to find the optimal breakpoint set on
continuous features. The whole process is shown in
Algorithm 2. At first the membership function of each
category is obtained through Algorithm 1, and the fitness
function based on rough fuzzy model is established. Then,
for each individual in the population, the average approxi-
mation accuracy of the corresponding discretization
scheme is obtained by calculating the upper and lower ap-
proximations of all samples. Finally, in each genetic oper-
ation, the fitness of all individuals in the population is
calculated by the number of breakpoints and the average
approximation accuracy of the discretization scheme, and
the global variable is updated by the individual with the
highest fitness. When the accuracy requirement of the sys-
tem is met or the set number of iterations is exceeded, the

program is stopped and the optimal discretization scheme
is output. Otherwise, the genetic algorithm will continue
to be executed until the termination conditions are met.

Rough fuzzy model versus rough model
Fuzzification and rough set in RFMD enable reasoning
uncertainty problems. Figure 3 is a simple example to il-
lustrate the advantages of RFMD over the discretization
methods based on rough set. Suppose that the dataset
contains three samples (x1, x2, and x3), the correspond-
ing attribute values are v1, v2 and v3, and the corre-
sponding categories are C1, C1, and C2. Through fuzzy c-
means, the membership degree of three samples to C1

and C2 are: C1(x1) = 0.8, C1(x2) = 0.5, C1(x3) = 0.4,
C2(x1) = 0.2, C2(x2) = 0.5, C2(x3) = 0.6. When the dataset
needs to be divided into two intervals, there are two
discretization schemes to choose from, shown in Fig. 3b
and c. We can see that the membership of x2 is quite
different from that of x1. In comparison, the member-
ship of x2 is closer to that of x3. Obviously, the division
in Fig. 3c looks more reasonable.
We use RFMD and rough set-based discretization

methods to discretize the original information table in
Fig. 3a, and verify the effectiveness of RFMD by compar-
ing the discretization results:
(1) RFMD selects the best discretization scheme by

comparing the average approximation accuracy η1 and
η2 of Fig. 3b and c. In Fig. 3b, the equivalence classes
under Attribute are {x1, x2} and {x3}. According to (14)

Fig. 3 A simple example illustrating that RFMD has advantages over rough set-based discretization methods
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and (15), Attribute−C1(x1) = inf {0.8, 0.5} = 0.5, Attribute

−C1(x2) = inf {0.8, 0.5} = 0.5, Attribute−C1(x3) = inf {0.4} =
0.4, Attribute−C2(x1) = inf {0.2, 0.5} = 0.2, Attribute
−C2(x2) = inf {0.2, 0.5} = 0.2, Attribute−C2(x3) = inf {0.6} =
0.6, Attribute−C1(x1) = sup {0.8, 0.5} = 0.8, Attribute−C1(x2) =
sup {0.8, 0.5} = 0.8, Attribute−C1(x3) = sup {0.4} = 0.4, Attri-
bute−C2(x1) = sup {0.2, 0.5} = 0.5, Attribute−C2(x2) = sup {0.2,
0.5} = 0.5, Attribute−C2(x3) = sup {0.6} = 0.6, then ∣Attri-
bute−C1 ∣ = 0.5 + 0.5 + 0.4 = 1.4, ∣Attribute−C2 ∣ = 0.2 +
0.2 + 0.6 = 1.0, ∣Attribute−C1 ∣ = 0.8 + 0.8 + 0.4 = 2.0,
∣Attribute−C2 ∣ = 0.5 + 0.5 + 0.6 = 1.6. According to (16),
η1 = (1.4/2.0 + 1.0/1.6)/2 = 0.6625. Similarly, in Fig. 3c, the
equivalence classes under Attribute are {x1} and {x2, x3},
then ∣Attribute−C1 ∣ = 0.8 + 0.4 + 0.4 = 1.6, ∣Attribute
−C2∣ = 0.2 + 0.5 + 0.5 = 1.2, ∣Attribute−C1 ∣ = 0.8 + 0.5 +
0.5 = 1.8, ∣Attribute−C2 ∣ = 0.2 + 0.6 + 0.6 = 1.4. According
to (16), η2 = (1.6/1.8 + 1.2/1.4)/2 = 0.8730. It can be seen
that η2 > η1, that is, the accuracy of discretization scheme in
Fig. 3c is higher than that in Fig. 3b, which is consistent
with the conclusion drawn from the previous analysis.
(2) Rough set-based discretization methods use (3) as

the evaluation standard of the system compatibility after
discretization. In Fig. 3b, ∣Attribute−C1 ∣ = ∣ {x1,
x2} ∣ = 2, ∣Attribute−C2 ∣ = ∣ {x3} ∣ = 1, then γ1 = γAttri-
bute(C1) + γAttribute(C2) = (2 + 1)/3 = 1. Similarly, in Fig. 3c,

∣Attribute−C1 ∣ = ∣ {x1} ∣ = 1, ∣Attribute−C2 ∣ = ∣
∅ ∣ = 0, then γ2 = γAttribute(C1) + γAttribute(C2) = (1 + 0)/
3 = 0.3333. Since γ1 > γ2, the discretization methods
based on rough set will choose the discretization scheme
in Fig. 3b, so the best discretization scheme cannot be
obtained.
In summary, RFMD not only makes full use of the

known knowledge base to generate rules as well as
rough set-based discretization methods, but also fully
considers the uncertainty caused by the fuzzy compo-
nents in the data, so the samples with large internal
component differences will not be classified into the
same interval in the process of discretization, thereby
obtaining a discretization scheme with higher precision.

Experiments
We introduce the experimental environment and data-
sets. Then, we compare the optimal breakpoint set ob-
tained by RFMD algorithm with the discretization
results of the current mainstream methods, mainly from
the number of intervals, data consistency and classifica-
tion accuracy.

Data source
The datasets used in this paper are as follows: (1) a
Landsat 8 image from the northwestern region of

Table 2 Number of data errors in Landsat 8 image

Method Inconsistencies Discrete intervals

RFMD 0 487

RS-GA 5 570

EDiRa 13 520

CVD 17 504

RLGA 2 493

Table 1 Number of discrete intervals in each band of Landsat 8
image

Method B1 B2 B3 B4 B5 B6 B7

RFMD 109 67 58 64 63 55 71

RS-GA 153 69 56 52 76 103 61

EDiRa 135 71 86 45 52 58 73

CVD 98 73 65 67 72 58 71

RLGA 120 67 65 52 63 55 71

Fig. 4 Area used for study
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Zhejiang Province, China, and a GF-2 image from Ling-
shui County, Hainan Province, China, as shown in Fig. 4.
Where, Landsat 8 satellite data contains seven bands,
while GF-2 satellite data contains four bands [40]. In the
experiment, the objects on Landsat 8 image were divided
into seven categories: broadleaf, town, needles, farmland,
lei bamboo, water, and moso bamboo; the objects on
GF-2 image were divided into five categories: construc-
tion, bare land, farmland, vegetation, and water. (2) Two
methylation datasets, including N6-methyladenine (6
mA) and N4-methylacytosine (4mC) [41, 42]. The three
attributes of the first methylation dataset are: mean,
model prediction, and interpulse duration ratio; the
three attributes of the second methylation dataset are
error, model prediction, and interpulse duration ratio.
(3) The banknote authentication dataset extracted from
banknote-like images [43] is divided into genuine bank-
note and forged banknote, and contains four attributes,
namely variance, skewness, kurtosis, and entropy.

Configuration of experimental environment
In order to verify the effectiveness of the proposed
method, all four algorithms were executed on a com-
puter with Intel(R) Core (TM) i5-5200U CPU@2.20GHz
processor, 12G RAM, and 512 g hard disk. Visualization,
programming, simulation, testing and numerical calcula-
tion processing of this experiment were implemented in
MATLAB (R2016a version) environment. Radiometric
calibration of images, atmospheric correction, and com-
parison of results before and after discretization were
performed under ENVI 5.3 environment.

Datasets
The ground reflection or emission spectral signal ob-
tained by remote sensor is recorded by pixel. The

interior of a pixel contains only one type, which is
called pure pixel. However, in most cases, the interior
of a pixel often contains many kinds of surface fea-
tures, and this kind of pixel is called mixed pixel.
The mixed pixel records the comprehensive spectral
information of various types of ground objects. Sev-
eral areas covering seven categories were randomly
selected from Landsat 8 image and labeled. After in-
tegration, they were used as training samples to be
discretized, with a total of 2621 samples. Among
them, 308 cases were broadleaf, 245 were town, 322
were needles, 675 were farmland, 296 were lei bam-
boo, 262 were water, and 513 were moso bamboo.
We used another group of samples with the same
number of training samples as the test set. In the test
set, 308 cases were broadleaf, 245 were town, 322
were needles, 675 were farmland, 296 were lei bam-
boo, 262 were water, and 513 were moso bamboo.
Let N be the number of samples, and C be the num-
ber of categories, then the initial fuzzy segmentation
matrix of the training set is:

PM0 ¼

f 1 x1ð Þ f 1 x2ð Þ : : : f 1 xNð Þ
f 2 x1ð Þ f 2 x2ð Þ : : : f 2 xNð Þ

: : : : : :
: : : : : :
: : : : : :

f C x1ð Þ f C x2ð Þ : : : f C xNð Þ

2
6666664

3
7777775

ð18Þ

Where,

f j xið Þ ¼ 1; xi belongs to class j
0; otherwise



where 1≤ i≤N and 1≤ j≤C

ð19Þ

Table 4 Number of data errors in GF-2 image

Method Inconsistencies Discrete intervals

RFMD 0 1035

RS-GA 14 1391

EDiRa 25 1307

CVD 30 1153

RLGA 7 1078

Table 5 Number of discrete intervals in each attribute of the
first methylation dataset

Method Mean Model prediction Interpulse duration ratio

RFMD 210 189 138

RS-GA 244 269 156

EDiRa 241 296 34

CVD 205 229 129

RLGA 225 260 71

Table 6 Number of data errors in the first methylation dataset

Method Inconsistencies Discrete intervals

RFMD 12 537

RS-GA 80 669

EDiRa 113 571

CVD 259 563

RLGA 71 556

Table 3 Number of discrete intervals in each band of GF-2
image

Method B1 B2 B3 B4

RFMD 267 458 207 103

RS-GA 389 502 397 103

EDiRa 405 517 253 132

CVD 299 461 278 115

RLGA 267 461 247 103
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In the beginning, the above segmentation matrix is
substituted into (11) to initialize the cluster center of
each category. Then, all the pixels contained in each
band were sorted and de duplicated according to the
brightness value, and the initial breakpoints of seven
bands were 1314, 1517, 1056, 1211, 1086, 1920, and
1832, totaling 9936.
Similarly, in GF-2 image, there were 7554 training

samples to be discretized. Among them, 2094 cases were
construction, 775 cases were bare land, 1478 cases were
farmland, 2251 cases were vegetation, and 956 cases
were water. We used another group of samples with the
same number of training samples as the test set. In the
test set, 2094 cases were construction, 775 cases were
bare land, 1478 cases were farmland, 2251 cases were
vegetation, and 956 cases were water. All the pixels con-
tained in each band were sorted and de duplicated ac-
cording to the brightness value. The initial breakpoints
of four bands were 3685, 3769, 2535, and 757, totaling
10,746. In the methylation datasets, there were 3709
training samples to be discretized. Among them, 1290
cases were 6mA and 2419 cases were 4mC. A total of
1500 samples were tested. Among them, 500 cases were
6 mA and 1000 cases were 4mC. All the values con-
tained in each attribute of the first methylation training
set were sorted and de duplicated, and the initial break-
points of three attributes were 1718, 1748, 960, totaling
4426. All the values contained in each attribute of the
second methylation training set were sorted and de du-
plicated, and the initial breakpoints of three attributes
were 564, 1748, 960, totaling 3272. In the banknote au-
thentication dataset, there were 1072 training samples to
be discretized. Among them, 562 cases were genuine
banknotes and 510 cases were forged banknotes. A total

of 300 samples were tested. Among them, there were
200 genuine banknotes and 100 forged banknotes. All
the values contained in each attribute were sorted and
de duplicated, and the initial breakpoints of four attri-
butes were 1052, 996, 1015, 940, totaling 4003.
Our method was compared with RS-GA [24], EDiRa

[16], CVD [17], and RLGA [18] mainly from the data
consistency and the number of intervals. Finally, we
trained the neural network classifier with the discretized
samples of the above methods respectively, and verified
the effectiveness of the proposed method by comparing
the classification accuracy obtained by each method.

Data consistency and number of breakpoints
The discretization results obtained on Landsat 8 image
by RFMD, RS-GA, EDiRa, CVD, and RLGA are shown
in Table 1 and Table 2.
It can be seen that the number of intervals obtained

by RFMD algorithm is 487, which is the least in all algo-
rithms, and there is no data error. The number of inter-
vals in RS-GA algorithm is the largest in all algorithms,
reaching 570, followed by EDiRa algorithm with 520.
The number of data errors of these two algorithms are 5
and 13 respectively. The number of intervals of CVD al-
gorithm is only 17 more than that of RFMD algorithm,
but the number of data errors is the largest in all algo-
rithms, with 17 errors. The number of intervals of RLGA
is 493, and the number of data errors is 2, which is sec-
ond only to RFMD. Table 3 and Table 4 show the results
of the number of intervals in each band and data incon-
sistency obtained by RFMD, RS-GA, EDiRa, CVD, and
RLGA on GF-2 image.
It can be seen that the number of intervals obtained

by RFMD algorithm is 1035, which is the least in all

Table 8 Number of data errors in the second methylation
dataset

Method Inconsistencies Discrete intervals

RFMD 0 715

RS-GA 6 871

EDiRa 11 782

CVD 15 751

RLGA 3 722

Table 10 Number of data errors in the banknote authentication
dataset

Method Inconsistencies Discrete intervals

RFMD 0 27

RS-GA 1 39

EDiRa 2 37

CVD 3 35

RLGA 0 30

Table 9 Number of discrete intervals in each attribute of the
banknote authentication dataset

Method Variance Skewness Kurtosis Entropy

RFMD 6 7 7 7

RS-GA 11 11 13 4

EDiRa 14 8 12 3

CVD 10 10 12 3

RLGA 6 8 8 8

Table 7 Number of discrete intervals in each attribute of the
second methylation dataset

Method Error Model prediction Interpulse duration ratio

RFMD 141 332 242

RS-GA 180 448 243

EDiRa 148 415 219

CVD 150 373 228

RLGA 143 363 216
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algorithms, and there is no data error. The number of
intervals in RS-GA algorithm is the largest in all algo-
rithms, reaching 1391, followed by EDiRa algorithm with
1307. The number of data errors of these two algorithms
are 14 and 25 respectively. The number of intervals in
CVD algorithm is 118 more than that in RFMD algo-
rithm, and the number of data errors is the most in all
algorithms, which is 30. RLGA has 1078 intervals and 7
data errors, which is second only to RFMD. Table 5 and
Table 6 show the results of the number of intervals in
each attribute and data inconsistency obtained by
RFMD, RS-GA, EDiRa, CVD, and RLGA on the first
methylation dataset.
It can be seen that the number of intervals obtained

by RFMD algorithm is 537, which is the least in all algo-
rithms, and the number of data errors is also the least in
all algorithms, with 12. The number of intervals in RS-
GA algorithm is the largest in all algorithms, reaching
669, followed by EDiRa algorithm with 571. The number
of data errors of these two algorithms are 80 and 113 re-
spectively. The number of intervals in CVD algorithm is
26 more than that in RFMD algorithm, and the number
of data errors is the most in all algorithms, which is 259.
RLGA has 556 intervals and 71 data errors, which is sec-
ond only to RFMD. Table 7 and Table 8 show the results
of the number of intervals in each attribute and data in-
consistency obtained by RFMD, RS-GA, EDiRa, CVD,
and RLGA on the second methylation dataset.
It can be seen that the number of intervals obtained

by RFMD algorithm is 715, which is the least in all algo-
rithms, and there is no data error. The number of inter-
vals in RS-GA algorithm is the largest in all algorithms,
reaching 871, followed by EDiRa algorithm with 782.
The number of data errors of these two algorithms are 6
and 11 respectively. The number of intervals in CVD

algorithm is 36 more than that in RFMD algorithm, and
the number of data errors is the most in all algorithms,
which is 15. RLGA has 722 intervals and 3 data errors,
which is second only to RFMD. Table 9 and Table 10
show the results of the number of intervals in each attri-
bute and data inconsistency obtained by RFMD, RS-GA,
EDiRa, CVD, and RLGA on the banknote authentication
dataset.
It can be seen that the number of intervals obtained

by RFMD algorithm is 27, which is the least in all algo-
rithms, and there is no data error. The number of inter-
vals in RS-GA algorithm is the largest in all algorithms,
reaching 39, followed by EDiRa algorithm with 37. The
number of data errors of these two algorithms are 1 and
2 respectively. The number of intervals in CVD algo-
rithm is 8 more than that in RFMD algorithm, and the
number of data errors is the most in all algorithms,
which is 3. RLGA has 30 intervals and no data error,
which is second only to RFMD.
Although the discretization standards adopted by

EDiRa and CVD have certain rationality, the relatively
fixed partition criteria cannot comprehensively measure
the discrete intervals. In addition, both EDiRa and CVD
require the distribution information of sample attribute
values in the dataset to improve the accuracy of interval
partition. RS-GA adopts the discretization standard
based on rough set, so it can achieve better results with-
out any prior information. However, RS-GA lacks the
ability to describe fuzzy components in the data, and its
performance is often poor in the datasets with complex
types. RLGA introduces reinforcement learning mechan-
ism in crossover and mutation operations to improve
the search efficiency of genetic algorithm. It keeps the
data error at a low level and constantly seeks solutions
with the least number of intervals. However, like RS-GA,

Table 11 Key differences among the mentioned discretization methods

Method Direction Attributes Prior-knowledge Uncertainty

RFMD Evolutionary search Multivariate No need Incompleteness & Fuzziness

RS-GA Evolutionary search Multivariate No need Incompleteness

EDiRa Top-Down Univariate Need Incompleteness

CVD Bottom-Up Univariate Need Incompleteness

RLGA Evolutionary search Multivariate No need Incompleteness

Table 12 Classification results in Landsat 8 image

Method Overall accuracy Kappa coefficient

RFMD 0.9428 0.9314

RS-GA 0.9275 0.9131

EDiRa 0.9222 0.9067

CVD 0.8993 0.8793

RLGA 0.9351 0.9223

Table 13 Classification results in GF-2 image

Method Overall accuracy Kappa coefficient

RFMD 0.9734 0.9655

RS-GA 0.9297 0.9083

EDiRa 0.9076 0.8795

CVD 0.8752 0.8385

RLGA 0.9314 0.9106
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the fitness function adopted by RLGA is only based on
rough set and lacks the ability to describe the fuzzy com-
ponents in the data. RFMD combines the advantages of
rough set and fuzzy set, fully considers the fuzziness of
data and the correlation among attributes, and deter-
mines the breakpoints in multiple continuous variables
through evolutionary search. In this way, the perform-
ance of RFMD has been greatly improved and can adapt
to most datasets with complex types. Therefore, the
discretization result obtained by RFMD is the best in the
five algorithms. The key differences among them are
shown in Table 11.

Classification accuracy
We trained the neural network classifier with the discre-
tized samples of these five algorithms, and obtained the
classification results of Landsat 8 image and GF-2 image,
as shown in Table 12 and Table 13.

It can be seen that the classification accuracy of RFMD
is the best among the five algorithms. RS-GA, EDiRa,
and RLGA have fewer data errors than CVD. Accord-
ingly, RS-GA, EDiRa, and RLGA have higher classifica-
tion accuracy than CVD. Figure 5 is a classification
effect map of Landsat 8 image obtained by RFMD. It can
be seen that the texture of the feature information in the
figure is clear, the boundaries of different types of ob-
jects are more obvious, and there are almost no noise
spots. The seven categories of broadleaf, town, needles,
farmland, lei bamboo, water, and moso bamboo on the
image can be effectively identified. Figure 6 is a classifi-
cation effect map of GF-2 image obtained by RFMD.
The texture of the feature information in the figure is
clear, and the boundaries of different types of objects are
very obvious. The five categories of construction, bare
land, farmland, vegetation, and water on the image can
be effectively identified.

Fig. 5 Classification effect map of Landsat 8 image obtained by RFMD

Fig. 6 Classification effect map of GF-2 image obtained by RFMD
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Tables 14, 15, and 16 show the classification results of
the five algorithms on the first methylation dataset, the
second methylation dataset, and the banknote authenti-
cation dataset, respectively. It can be seen that the classi-
fication accuracy of RFMD is the best in all algorithms.
Therefore, the discretization scheme obtained by RFMD
can achieve good results in classification accuracy.

Conclusion and future work
The data collected by edge nodes are often large in scale,
complex in type, with incomplete, fuzzy, and other un-
certain information. In order to lighten the system load,
decrease the data inconsistency, and relieve the pressure
on the centralized cloud, a discretization algorithm
based on rough fuzzy model (RFMD) is proposed for in-
telligent data preprocessing of edge-cloud computing.
The work of this paper mainly comes from the following
aspects: (1) we create a fuzzy set for each category, and
initialize all cluster centers according to the attribute
values of the samples and the initial fuzzy segmentation
matrix; (2) we use fuzzy c-means to obtain the member-
ship function of each category, and establish the fitness
function of genetic algorithm based on rough fuzzy
model; (3) for each individual in the population, the
average approximation accuracy of the corresponding
discretization scheme is obtained by calculating the
upper and lower approximations of all samples; (4) in
each genetic operation, the fitness of all individuals in
the population is calculated by the number of break-
points and the average approximation accuracy of the
discretization scheme, and the global variable is used to
reserve the individual with the highest fitness, so as to
obtain the optimal discretization scheme; (5) simulation
experiments on real remote sensing datasets show that

the proposed method can achieve good results in the
number of discrete intervals, data consistency, and clas-
sification accuracy.
The future research work includes: (1) compare the

performance of the proposed method on multiple classi-
fiers to optimize the algorithm model, and further im-
prove the efficiency of edge-cloud computing; (2) test
and improve the proposed method in different datasets
to expand its application scope, and further reduce the
cost of data analysis and security management of edge
cloud.
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