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Abstract

Delivering service intelligence to billions of connected devices is the next step in edge computing. Wi-Fi, as the de
facto standard for high-throughput wireless connectivity, is highly vulnerable to packet-injection-based identity
spoofing attacks (PI-ISAs). An attacker can spoof as the legitimate edge coordinator and perform denial of service
(DoS) or even man-in-the-middle (MITM) attacks with merely a laptop. Such vulnerability leads to serious systematic
risks, especially for the core edge/cloud backbone network.
In this paper, we propose PHYAlert, an identity spoofing attack alert system designed to protect a Wi-Fi-based edge
network. PHYAlert profiles the wireless link with the rich dimensional Wi-Fi PHY layer information and enables
real-time authentication for Wi-Fi frames. We prototype PHYAlert with commercial off-the-shelf (COTS) devices and
perform extensive experiments in different scenarios. The experiments verify the feasibility of spoofing detection
based on PHY layer information and show that PHYAlert can achieve an 8x improvement in the false positive rate over
the conventional signal-strength-based solution.
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Introduction
Edge computing is envisioned as a promising technol-
ogy for enabling intelligence for billions of devices in
the future, ranging from a Wi-Fi-connected thermometer
and smartwatch to an edge-computing server. In addition
to the connection, networked intelligence is also impor-
tant. On top of the physical devices and network, edge
computing performs the mission of orchestrating mas-
sively connected devices into single and unified service
intelligence.
A reliable network is a prerequisite for the edge system

to deliver QoS-enabled complex service intelligence [1, 2].
However, various challenges exist in the depth. An IoT
system comprises a connected heterogeneous network,
such as Wi-Fi, Bluetooth, ZigBee, RFID or a wired con-
nection [3, 4]. Except for the wired connection, the above
connectivities are significantly vulnerable to a packet-
injection-based identity spoofing attack (PI-ISA) because
of their in-air broadcast transmission nature. An attacker
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can perform denial of service (DoS) or even man-in-
the-middle (MITM) attacks indiscriminately on the IoT
network using COTS devices. A PI-ISA casts a serious
threat to a network, and the difficulties of detection and
elimination have drawn tremendous academic attention
in ISA detection and prevention for various physical net-
works. Some previous works identify the ISA vulnerability
for BT [5], ZigBee [6], and RFID [7]. From the viewpoint
of the edge network, a PI-ISA targeted to a BT, ZigBee,
or RFID network has a relatively small and limited threat
to the whole edge system integrity, because these types of
networks are usually adopted for the edge nodes and their
failure is noncontagious. However, the scenario changes
remarkably for a Wi-Fi targeted attack. As the de facto
backbone network for billions of IoT devices [8], the Wi-
Fi network is unprecedentedly vulnerable to a PI-ISA [9].
From the attacker’s perspective, launching an attack has
never been as easy as it is today. The network surrounding
or behind a wall can be instantly paralyzed using merely a
laptop or even a smartphone in the attacker’s pocket [10].
In contrast, it is extremely difficult to identify and localize
the attacker [11].
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All these threats exploit a main vulnerability in the
Wi-Fi design whereby management frames (MFs) of the
802.11 standard, which maintain the network operation,
are transmitted in clear text [12]. An attacker can spoof
the identity by forging MFs and use a spoofed identity
as a springboard to initiate various attacks [13], e.g. DoS
attacks, Wi-Fi phishing, password cracking, or even an
MITM attack.
Unfortunately, traditional Wi-Fi anti-spoofing designs

have very limited efficacy. Amendment 802.11w tries to
encrypt several important MFs, However, a new flaw
has been identified [14]. There is growing interest in
exploiting physical layer information for wireless secu-
rity; however, the received signal strength (RSS) is the
only accessible physical layer information provided by
most commercial hardware. The wireless intrusion detec-
tion system (WIDS) [15] based on RSS anomaly detection
can detect most MF spoofing attacks. The WIDS com-
prises many predeployed Wi-Fi sniffers, which monitor
Wi-Fi traffic and detect the anomaly signal strength vari-
ance. Due to privacy issues and the high deployment
costs, most WIDS systems are only deployed in an office
environment. An RSS-based WIDS can be near-perfectly
spoofed by a smart antenna system using the beamform-
ing technique [16].
To protect the Wi-Fi-based backbone network, we shall

devise a single-station-based management frame authen-
tication mechanism. We find that channel state infor-
mation (CSI), 802.11n PHY layer information, is now
available in commercial wireless NICs [17, 18]. Origi-
nally designed to achieve explicit beamforming feedback,
the CSI reflects the channel frequency response (CFR)
for the subcarriers of the underlying 802.11a/g/n OFDM
transmission. Some initial investigations showed that CSI
has some unique advantages over the RSS. First, the CSI
captures the multipath profile for the wireless transmis-
sion rather than the coarse signal strength; therefore, it is

insensitive to the transmit power (Tx-power). An attacker
cannot fool CSI-based detection by optimizing the Tx-
power. Second, since the multipath effect can be generally
modeled as a typical Rayleigh distribution, CSI has rapid
spatial decorrelation characteristics, which makes it quite
difficult to predict the CSI for a given position. Third,
CSI is a high-dimensional fingerprint; it records 30 com-
plex values for each spatial stream. For a typical SIMO
1× 3 connection, the CSI is 90-dimensional and becomes
270-dimensional for a 3 × 3 MIMO connection. It is
extremely difficult for an attacker with a rational attack
ability to penetrate a CSI-based authentication system.
Figure 1 shows an experimental comparison between CSI-
and RSS-based authentication systems. Real-world proof-
of-concept experiments make us believe that a CSI-based
fingerprint is a promising solution for identity spoofing
detection.
Leveraging the above advantages, we propose and pro-

totype PHYAlert, a CSI-based MF authentication system
with COTS hardware. The main idea is intuitive yet
effective: both data frames or management frames are
transmitted in identical wireless channels. Thus, their CSI
should be highly similar. However, for a forged frame
injected by an attacker, the CSI similarity will breakdown,
because the forged frame is transmitted from somewhere
else. Therefore, we can label this frame as suspicious. To
learn the CSI pattern of the legitimate frames, PHYAlert
is based on a security assumption that the encrypted data
frames are difficult to compromise in a short time [19].
Based on this key assumption, we believe that an attacker
with a rational attack ability cannot fabricate legitimate
data frames. Therefore, the CSI of the correctly decrypted
data frames can be regarded as the fingerprint of the legit-
imate stations. To implement this idea, there are three
main challenges.
First, the spoofing detection problem can be formal-

ized into a hypothesis test, whereH0 represents accepting

Fig. 1 a The CSI amplitude remains unchanged when the Tx-power increases, while the Rx-RSS increases by 13 dBm. bWhen the MCS value 1

increases, the CSI remains unchanged, but the Rx-RSS decreases by 10 dBm. cWhen the client is moving, the CSI shows rapid spatial de-correlation,
while the RSS changes slowly along the distance
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the newly arrived frames and H1 represents rejecting
them. However, due to client mobility or a channel dis-
turbance, the probability density functions (PDFs) for both
distributions, denoted by fH0 and fH1 , change frequently.
To address this problem, we have to design a universal
detection mechanism that can work without any prior
knowledge about fH0 and fH1 except that fH0 �= fH1 .
Second, it is difficult to determine the threshold γ for

detection without any prior knowledge about fH0 and
fH1 . Moreover, γ should be adaptively adjusted for dif-
ferent scenarios, i.e. a dynamic threshold scaling (DTS)
mechanism must be carefully designed.
Third, in mobile scenarios, the frames sent even from

legitimate stations may be rejected due to the large CSI
difference, i.e., a false positive (FP). Effectively transmit-
ting management frames is a problem for even legitimate
stations.
The main contributions of this paper are as follows.

We propose and prototype PHYAlert, a CSI-based man-
agement frame authentication and spoof detection sys-
tem. Solely based on on-site CSI data, PHYAlert achieves
single-station-based authentication in both stationary
and mobile environments. We prototype PHYAlert with
COTS hardware, and extensive experiments demonstrate
that PHYAlert has remarkable performance in terms of
accuracy and robustness. In one mobile scenario, the
RSS-based method has a 18% false positive rate, while
PHYAlert has a false positive rate of only 2%. In another
mobile scenario, PHYAlert achieves an 8x improvement in
the false positive rate.over traditional methods.

Background and related work
The vulnerability of a Wi-Fi network
The first major security flaw of 802.11 concerns wired
equivalent privacy (WEP) [20]. An attacker can recover
the passphrase almost immediately after catching the
four-way handshake. The 802.11i amendment, or imple-
mented as WPA2, fixed this flaw. WPA2 is quite difficult
to compromise by brute force and has to this day success-
fully protected Wi-Fi communication [19].
The denial of service (DoS) attack has become the next

major attack technique [21]. Since management frames
(MFs) are transmitted in clear text without integrity pro-
tection, an attacker can easily forge certain MFs, such as a
de-authentication frame, to cut even all wireless connec-
tions [22]. The amendment 802.11w aims to fix the flaw
by encrypting these key MFs. However, an attacker can
bring a victim to an authentication deadlock by carefully
injecting an unexpected de-authentication during hand-
shakes [14]. On the other hand, 802.11w does not protect
all MFs; it cannot prevent a quiet attack and a channel
switch attack [23].
A very serious security flaw has been revealed recently

in the Wi-Fi protected setup (WPS) [24], which is acti-

vated by default in most WPS-supported devices. The
flaw allows an attacker to brute-force attack the WPS PIN
code in a few hours. With the WPS PIN code, an attacker
can recover the WPA2 preshared key and become an
inside attacker. Once receiving the integrity group tempo-
ral key (IGTK) shared by all legitimate clients, the 802.11w
and 802.11i protections are entirely compromised.

Approaches forWi-Fi protection
MAC Layer
In addition to the amendments proposed by the 802.11

task group, in the MAC layer, the sequence number (SN)
is the main element for frame integrity validation. By
detecting the sudden shift in the SN caused by injected
spoofing frames, a spoofing attack may be detected [25].
This protection can be easily compromised when care-
fully following the original SN. An advanced approach is
to pseudorandomize the SN, such that an attacker cannot
correctly follow the underlying pattern [26]. However, a
major problem is that these approaches require a modifi-
cation of both the AP and client, which makes it difficult
to implement these approaches in real applications.
PHY Layer
Various PHY layer approaches can be categorized into

transmitter identification-based and location distinction-
based approaches.
Transmitter Identification: In this category, the main

challenge is to discover the intrinsic transmitter character-
istics [27], such as the temporal transient signature [28],
DAC nonlinearity, frequency offset, phase offset [29], or
slight offset among the spatial streams in the MIMO con-
figuration [30]. The main advantage of these approaches
is that they can model a transmitter precisely and consis-
tently and provide robust source authentication service.
However, these approaches usually require raw passband
or baseband information, which requires expensive hard-
ware, e.g. USRP or a vector network analyzer (VNA), to
capture this low-level information, and also requires a
large amount of computation resources to process these
low-level signals. In addition, the high deployment cost
hinders the practical use of these approaches.
Location Distinction: Recalling the spatial position

diversity, location distinctiveness could be considered as
the location fingerprint for a client [31].
The RSS-based system was vastly researched in early

works. The wireless intrusion detection system (WIDS)
is the initial exploration in this field[15]. The WIDS
usually consists of many wire-connected Wi-Fi sniffers.
An attacker is collaboratively identified by detecting the
anomaly RSS variance for the same MAC address. Com-
bined with an indoor localization system, [32] could find
the attacker for the first time. The WIDS can hardly be
seen in the public environment due to the high deploy-
ment cost, and recent theoretical work [16] also proved
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that an RSS-based anti-spoofing system can be fully com-
promised by beamforming antenna systems.
With the popularity of new COTS hardware and

software-defined radio (SDR) systems, fine-grained phys-
ical layer information is now easy to obtain. SpotFi [33]
provides sub-meter-level spot localization based on CSI.
HuFu [7] exploits the tag imperfection profile to imple-
ment tag authentication in an RFID system.With multiple
linear antenna arrays deployed in an indoor environment,
angle of arrival (AoA)-based approaches [34] can provide
fine-grained indoor localization. Based on the same hard-
ware, SecureArray [35] was proposed, which is very simi-
lar to our system. In this work, the AoA profile is used to
identify different clients and provide intrusion detection
service. Compared to PHYAlert, SecureArray depends
highly on the number of antennas Nl. The number of
clients that SecureArray can identify simultaneously is
Nl − 1, which limits the application in crowd and noise
environments. Moreover, when the distance between an
attack and the victim is less than half the wavelength, the
false positive (FP) rate soon increases rapidly. However,
SecureArray and PHYAlert can have deep cooperation.
With a linear phased array, PHYAlert can reduce the false
negative (FN) rate caused by user mobility, while Secure-
Array can improve the resolution within the coherent
distance by using the PHYAlert approach.

CSI, OFDM, andWi-Fi
CSI usually refers to the channel frequency response
(CFR) h in the model: y = hx+n, where x, y and n are the
transmitted, received and noise signals in the frequency
domain, respectively. CSI is a description of the wireless
link path rather than the RSS; mathematically,

h = |h| ej∠h

where |h| and ∠h denote the channel response in the
amplitude and phase, respectively. In a Wi-Fi network,
the dimension of the CSI increases rapidly along with the
introduction of orthogonal frequency division multiplex-
ing (OFDM) and MIMO-based spatial multiplexing (SM)
technologies [12]. For a typical 3 × 3 MIMO connection,
there are 9 individual Tx-Rx pairs. For each pair, OFDM
modulation splits the 20MHz channel into 64 equal-width
narrowband subcarriers. Eventually, the dimension of the
CSI increases to 576. The CSI is measured in the preamble
stage for each frame. The long training field (LTF) [12] in
the preamble contains a known pilot signal, and the 802.11
protocol uses this known pilot to estimate the CSI [36].

Security analysis for a CSI-based physical layer
fingerprint
As mentioned in the previous section, Wi-Fi OFDM and
MIMO technologies enable one to authenticate the frames
based on the location distinctiveness. In this section,

we investigate the degree of distinctiveness under the
802.11n specification, and provide the theoretical basis for
PHYAlert.
Fading phenomena in a wireless channel can be catego-

rized into three types: path loss, shadowing, andmultipath
fading for large, middle, and small scales, respectively
[37]. Multipath fading contributes most of the location
distinctiveness. In a rich scattering space, e.g. an urban
environment, a sufficiently wide bandwidth and multi-
ple varying antennas could produce significant frequency
selective and spatial selective fading. Fading has rapid
decorrelation characteristics and i.e. strong location dis-
tinctiveness. Here, we analyze the location distinctiveness
provided by multipath fading.
Assuming a wide-sense stationary uncorrelated scat-

tering (WSSUS) channel model, the channel frequency
response (CFR) for a flat-frequency narrow-band channel
can be modeled as a sum ofmp independent paths [37]:

H(f )=F
{ mp∑
n=1

Hnδ(τ − τn)

}
=

mp∑
n=1

Hnexp(−j2π f τn) (1)

where δ(·) is the Dirac delta function and τn and Hn rep-
resent the path delay and channel coefficient for the n-th
multipath, respectively. Then, we evaluate the frequency
domain correlation function:

RH(�f ) = E
[
H(f )H(f − �f )

]
(2)

Assuming the multipath gain is independent and has zero
mean, Eq. 2 can be simplified as

RH(�fc) = E
[ mp∑
n=1

|Hn|2exp
(−j2π�f τn

)]
(3)

This expectation can be further approximated as

RH(�fc) =
∫ ∞

0
SH(τ )exp

(−j2π�f τ
)
dτ (4)

where SH(τ ) is the power delay profile. Equation 4 indi-
cates that in a certain multipath environment with delay
profile SH(τ ), the channel correlation varies according
to �f .
In an urban environment, the coherent bandwidth

is empirically 2 MHz [38] and usually corresponds
to approximately 6 independent channel frequency
responses in a typical 802.11 20-MHz bandwidth. How-
ever, we should note that the channel bonding feature in
802.11ac can provide as much as 160 MHz of bandwidth,
which in turn provides much richer channel estimation.
In the spatial domain, the displacement of a receiver’s

antenna will change Eq. 1 to:

H(�) =
mp∑
n=1

Hnexp
[
−j2π cosαn

�

λc

]
(5)
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where � is the relative displacement and αn is the angle of
arrival of the n-th path. We still use a correlation function
to investigate the spatial correlation property.

RH(�) = E
[
H(f )H(f − �fc)

]
(6)

Assuming that the multipath gain is independent and has
zero mean and that the multipath gains are constant as a
function of the angle of arrival, Eq. 6 can be simplified as

RH(�) = E

⎡
⎣2σ 2

H
mp

exp

⎡
⎣ j2π� cos

(
β − 2π(n−1)

mp

)
λc

⎤
⎦

⎤
⎦ (7)

When mp is large, this correlation function will converge
to

RH(�)=2σ 2
H

2π

∫ π

−π

exp
[
j2π� cos(θ)

λc

]
dθ=2σ 2

HJ0
(
2π�

λc

)
(8)

where J0(x) is the zeroth-order Bessel function of the first
kind. Note that elementary functions cannot represent
the general solution of the Bessel function. We use two
adjacent asymptotic forms [39] to approximate the Bessel
function J0(x), as shown below.

J0(x) =
{

aXT 0 < x < π√
2

πx cos
(
x − π

4
)

x ≥ π
(9)

Considering the situation in which an eavesdropper is
more than half a wavelength away from the legitimate AP,
� ≥ λc

2 (i.e., 2π�
λc

≥ π ), we have

RH(�) = 2σ 2
HJ0

(
2π�

λc

)

= 2σ 2
H
1
π

√
λc
�

cos
(
2π�

λc
− π

4

)

≤ 2σ 2
H
1
π

√
λc
�

(10)

Equation (10) clarifies that the channel estimation of
two antennas will rapidly decorrelate in a rich scattering
environment once they are spaced more than half a wave-
length; i.e., it will be very difficult for an attacker to forge
the victims’ CSI, which is even more difficult in MIMO
situations. For a 3×3 MIMO connection, there are 9 inde-
pendent Tx-Rx spatial streams. In such a configuration,
it is extremely difficult to perform physical layer spoof-
ing. In this way, we theoretically prove the physical layer
anti-clone property of CSI.

PHYAlert design
In this section, some observations on the characteristics
of CSI are presented first. Then, we present the design of
PHYAlert.

CSI as a fingerprint for packet authentication
CSI, as a fine-grain description for a wireless channel, has
the unique property of spatial decorrelation. This prop-
erty means that the CSI vectors measured from very close
positions are highly similar; i.e. their correlation efficiency
is ρ ≈ 1. However, ρ will soon decrease to 0 once sep-
arated by only half a wavelength. In addition, the CSI
captures the channel response for each of the 802.11 sub-
carriers; thus, it is rich in dimension and can withstand a
transmission power scanning attack, which can fool tra-
ditional RSS-based approaches. The CSI dimensionality is
very rich. In 3x3 MIMO transmission, the dimensionality
can reach 270 by Intel 5300 NIC or even 1026 by Atheros
9300 NIC. Apparently, an attacker with high coopera-
tion cannot estimate the victim’s CSI or fool CSI-based
detection.
We carry out a proof of concept (PoC) experiment to

assess CSI-based spoofing detection. An edge backbone
coordinator, as the victim machine, receives 3000 frames.
The second half of the received frames include the attack-
ing ones, which are injected by a laptop only 20 cm away.
Figure 2a shows the per-packet CSI amplitude. It is appar-
ent that the CSI amplitude of the injected frames is so
distinct from the rest that we can visually identify them
at a glance. Figure 2b and c show the CSI distribution of
the 20th subcarrier of the first half and second half of the
received frames, respectively. We see that, due to the car-
rier frequency offset (CFO) and sampling frequency offset
(SFO), the phase distribution is roughly uniform [18],i.e.
providing no discrimination. However, the CSI amplitude
is stable and sensitive to the wireless channel. Based on the
above observations, we decide to use the amplitude values
to perform CSI-based spoofing detection.

PHYAlert architecture
Our system comprises two parts: the PHYAlert detector
and PHYAlert transmission improvement. The PHYAlert
detector incorporates both the CSI amplitude and time
to characterize the distance between receiver frames. The
detector then attempts to identify the suspicious man-
agement frames via a CSI distance-based hypothesis test.
However, the rigorous test may lead to a certain false neg-
ative rate, which harms the network performance. The
PHYAlert transmission improvement (PTI) is employed
to remedy these issues. A linear time-varying (LTV) chan-
nel, i.e. a wireless channel under mobility, can be seen as
a quasi-linear time-invariant (quasi-LTI) channel within
the period of the channel coherent time. Leveraging this
property, the PTI transmits management frames immedi-
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Fig. 2 a CSI amplitude graph of 3000 received frames including frames injected by an attack. b and c CSI distribution I/Q view for the 20th subcarrier
of the first and second half of the frames, respectively

ately after a train of empty data frames. In this way, the
management frames can pass the PHYAlert detector.

PHYAlert detector
The PHYAlert detector implements the CSI-based
hypothesis test. Given a train of recently received (and
correctly decrypted) data frames Sd, the PHYAlert detec-
tor extracts the CSI fingerprint from the frame train.
Then, for the latest received management frame M, the
PHYAlert detector calculates how closely M’s CSI follows
the CSI fingerprint learned from Sd . If the distance is
below τ , an adaptively adjusted threshold, M is labeled as
legitimate; otherwise,M is labeled as suspicious if the dis-
tance is above the threshold. In addition to the general
goal, two technical preferences must also be satisfied: a
low computational overhead and biased receiver operat-
ing characteristic (ROC). First, the network performance
and energy consumption are critical for the edge back-
bone network; thus, an unoptimized computation for the
per-packet CSI vector is unacceptable. Second, for the
PHYAlert detector, a low false positive error (FPE) rate
is much more preferred than a low false negative error
(FNE) rate, because the FPE, i.e. the chance to accept the
attacking frames, is the primary threat to the edge back-
bone network. However, the FNE, i.e. the chance to reject
a frame, is acceptable with some degradation in exchange
for network security.
Deep-learning-based classifiers are ideal solutions [40,

41]. However, regarding the performance preference, we
formalize the hypothesis test into an online anomaly
detection problem [42]. More specifically, we adopt the K-
nearest-neighbor algorithm [43] to solve this problem. To
further reduce the computational overhead, we reduce the
CSI vector dimension. First, we remove the phase value
for the complex-numbered CSI vector leaving only the
amplitude vector, because the phase with a near-uniform
distribution provides no discrimination. Second, in typi-

cal open-space urban or indoor office environments, the
coherent channel bandwidth is approximately 1 MHz; i.e.,
the adjacent subcarriers are highly correlated, also provid-
ing no discrimination . Therefore, we reduce the dimen-
sion of the amplitude vector by merging the adjacent 2 or
3 values.
Now, we present the detailed design of the PHYAlert

detector. To support the recent CSI fingerprint, each
receiver maintains a fixed length FIFO amplitude vec-
tor buffer Bam with length LW , which buffers the latest
received CSI. Given a latest received management frame,
we use a metric called the trend following factor (TFF) to
reflect its trend-following characteristic.
The TFF is based on a joint distance metric: the

amplitude-time distance (ATD).We first present the TGD
design and then the TFF calculation. We define the ampli-
tude space distance between two amplitude vectors as
their L2 norm, i.e. dam(A,B) = ‖A − B‖2. Then, to char-
acterize the time gap between two frames, we define the
time distance as dt(A,B) = eλ(|tA−tB|). By jointing these
two distances, we have the ATD as

datd = dam · dt
Let Natd

k (F) = {A1,A2,A3} be the top k-nearest neigh-
bor of frame F in the amplitude buffer Bam under the ATD.
Then, we define the TFF of F as

TFF(F) =
k∑

i=1
datd(F ,Ai),Pi ∈ Natd

k (M)

With the above definitions, the PHYAlert detector uses
the threshold τ to perform the hypothesis test as

Determination for F is
{
legitimate, TFF(F) ≤ τ

suspicious, TFF(F) < τ
(11)

Adaptive Threshold Adjustment (ATA) Recalling the
biased ROC preference of PHYAlert, we focus on how τ
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should adapt to the channel dynamics, or more specifi-
cally, how to adjust τ based on the TFF values of the pre-
viously accepted frames. When the channel dynamics are
relatively low, i.e. in a relatively stationary environment,
the TFF values of the previous frames have a relatively
small variance. In contrast, the TFF value for a spoofing
frame should be quite distant. In a mobile environment,
since the TFF values of the previous frames have large
variance, the TFF value for a spoofing frame appears not
to be that distant. In this case, the risk of FPE increases.
Based on the above analysis, we conclude that τ should be
negatively related to the TFF values of previous frames.
As shown in the following equation, we correlate τ with

the percentile i of the latest TFF values.

τ = pi({TTFb(Bam)}), 1 ≤ b ≤ Lw

, where pi(·) is the i-th percentile function. To reflect the
negative correlation, we further adapt i with respect to a
metric of the channel dynamics, σW , which is defined as

σW = (stdn(|Pj − Pj+1|)), j ∈[ 1, Lw − 1]

Then, we define an effective negative correlation between
i and σW , i = i0

σW /σ r
W
, where i = 75 is the default value and

σ r
W is the initial value measured at the startup.

PHYAlert transmission improvement
Due to the bias ROC preference, PHYAlert has a higher
chance to label a legitimate frame under weak confidence
as suspicious, especially in mobile scenarios. To guar-
antee that the network operation and performance are
not severely affected by the PHYAlert detector, a spe-
cific design is required to guarantee transmission from a
legitimate sender.
As previously discussed, a mobile wireless channel,

i.e. an LTV-type channel, can be seen as a quasi-LTI-
type channel if the transmissions are within the channel
coherent time. In other words, the shorter the inter-
frame interval, the more invariance the CSI exhibits. A
PoC experiment is shown in Fig. 3 to validate this phe-
nomenon. In the experiment, file transmission with a high
frame rate is performed between a pair of fast moving sta-

tions. Figure 3a shows the amplitude graph during 3 s of
transmission, which exhibits strong and frequent multi-
path fading. However, if we gradually focus on the shorter
period each time, the invariance emerges in the amplitude
graph, showing the quasi-LTI characteristics.
Based on quasi-LTI theory, we propose the PHYAlert

transmission improvement (PTI) method to ensure the
delivery of management frames. The idea is intuitive: the
management frame is not transmitted directly but imme-
diately after a fast train of short data frames or precursor
frames. The fast frame stream will create a temporary
quasi-LTI moment. Thus, the highly similar amplitudes of
the data frames will create stable channel dynamics, which
help the following management frame pass the PHYAlert
detector.
Despite the intuitive solution, there are two problems

that we should consider. The first problem is whether the
frequency of the “precursor” data frames is high enough
and whether there are sufficient “precursor” data frames.
For each management frame F, we create a frame stream
Sd = {D0,D1, ...,Dlj , F}, where Di is the short data frame
stream.We need to determine the transmission frequency
fp and length lj for Sd.
Suppose that the radial moving velocity of the legiti-

mate station is vo. Then, the displacement per frame�will
be vo

fp . According to Eq. 8, RH(�) = 2σ 2
HJ0

(
2πvo
λcfp

)
. Since

the displacement is very small, the Bessel function can
be approximated as J0(x) = aXT , 0 < x < π according to
Eq. 9. This asymptotic form provides a sufficient accurate
solution in this case. To satisfy J0(x) < η, where η is the
channel correlation threshold, we have to solve the func-
tion aXT ≥ η. Typically, we set vo = 1.5m/s, λc = 0.12m,
and η = 0.8, and we can obtain fp > 30. Empirically, we
use fp = 60, which is a relatively low value and will satisfy
most moving scenarios and avoid jamming the channel.
For the second problem, i.e. whether the stream is long

enough, we design a simple strategy for lj:

lj=2j×
(
δ

(
LW

(
1− i

75

))
+1

)
, j ∈ (2, 3...,N), lj ≤ LW (12)

where δ(·) is the integer rounding function.

Fig. 3 A highly dynamic LTV channel can become a quasi-LTI channel with a higher sampling rate. a 1x zoomed, b 3.75x zoomed, c 15x zoomed,
d 60x zoomed
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Parameters settings
As shown in the above text, PHYAlert embraces several
parameters, λ, k, and the percentile i. Ideally, these param-
eters could be globally optimized; however, the real-world
network-wide configurations and constraints are tightly
coupled with the parameters, which makes it very difficult
to even model their interactions. In the current version of
PHYAlert, according to our extensive evaluations, which
are detailed in “Prototype and evaluation” section, we
employ empirically optimized settings of k = 5, λ = 1,
Lw = 40 and i = 75. Definitely, part of our future work
will aim to further reduce the number of parameters and
adaptively optimize the more essential parameters.

Prototype and evaluation
In this section, we briefly describe the system prototyping
and detail the threat detection evaluation from “Threat
settings” section to “PHYAlert transmission improve-
ment” section and the performance evaluation in “Perfor-
mance evaluation” section.

System prototyping
We prototype the PHYAlert alert system using off-the-
shelf hardware. A mini-PC equipped with an Intel 5300
Wi-Fi card is used as an AP.We also use themodified 5300
driver [17] to collect the CSI data. In the software settings,
we temporarily disable the threshold scaling function and
retain the other parameters by default to identify the
impacts of various parameters.

Threat settings
To evaluate the threat detection accuracy of PHYAlert,
seven attack scenarios are designed as described in
Table 1. In each test case, three laptops, Alice, Bob,
and Eve, represent the legitimate AP, victim client, and
attacker, respectively. Briefly speaking, Alice, the legiti-
mate AP, is not moving in all scenarios; in scenarios A to
C, the victim client Bob is not moving; and in scenarios D
to F, Bob walks with different speeds. In scenario G, both
Bob and Eve move quickly.
For each scenario, we run a 5 min test. In the test, Alice

and Bob continuously transmit to each other an ICMP
echo request using the ping command, which forms the

Table 1 Description of the Attack Scenarios

A Alice, Bob, and Eve are motionless in a silent environment.

B Same as A, but with some crowd flow.

C Same as A, but Eve moves slowly.

D Same as A, but Bob walks with a normal speed.

E Slower version of D

F Faster version of D

G Both Bob and Eve walk with a normal speed.

encrypted data frame stream Sen. In addition to the data
frame stream, Bob periodically injects 20 probe request (a
management frame) frames to Alice and replies immedi-
ately by 20 probe responses (also a management frame).
These probe request/response frames form the unen-
crypted stream Su. Eve initiates the DoS attack and wishes
to disconnect Bob from Alice. He continuously injects a
forged deauthentication frame to Bob with Alice’s MAC
address wishing to impersonate Alice. To increase the
attacking success rate, Eve scans the Tx-power from 1 to
15 dBm.
We mainly focus on two error rates measured on Bob’s

side: the FP error (FPE) rate and the FN error (FNE)
rate. Specifically, the FPE rate is the number of forge
deauthentication frames that are wrongfully accepted by
Bob over the total number of received deauthentication
frames. Similarly, the FNE rate is the number of wrong-
fully rejected frames over the total number of frames
received by Bob.

Comparison with traditional solutions
For each scenario, we compare PHYAlert and RSS-based
spoofing detection. Figure 4 shows a comparison of the
CSI and RSS views for the same group of received frames
in scenario A, i.e. motionless in a quiet environment. In
Fig. 4a, the periodically anomalous red lines appearing on
the relatively stable background are obviously the CSI for
Eve. As described in “Security analysis for a CSI-based
physical layer fingerprint” section, the rapid spatial decor-
relation characteristic highlights Eve’s signal in the spec-
trum view. Moreover, the insensitivity of CSI to Tx-power
makes it tolerable to Tx-power scanning spoofing. On the
other hand, the RSS view in Fig. 4b unfortunately fails to
recognize the attacking frames when Eve’s signal is indis-
tinguishable from the background level around the 800th
frame.
Figure 5 shows the error rates of the CSI-based and RSS-

based approaches. First, a significant error reduction is
achieved by PHYAlert in relatively quiet scenarios. In the
stationary scenarios, PHYAlert achieves a 0% FPE, while
the RSS-based approach has a 6% FPE. In the moving
scenarios, these numbers are 2% and 17%, respectively.
PHYAlert achieves an error reduction of more than 8x
compared to RSS-based detection.

Impacts of parameter tuning
CSI update frequency fs
During the test, we scale the CSI sampling rate fs from 1 to
400 Hz. Figure 6 shows the corresponding FPE and FNE in
all test scenarios. In the stationary scenarios, both the FPE
and FNE are near 0 when fs > 10 Hz. In the moving sce-
nario, a higher fs is required to suppress the FPE and FNE.
Specifically, the FPE is below 5% if fs ≥ 100 Hz in all sce-
narios and lower than 3% in the highlymobile scenario G if
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Fig. 4 The CSI amplitude (a) and RSS (b) for the received frames. The attacker injects the attacking frames every 300 frames with gradually increasing
Tx-power

fs ≥ 400Hz. However, we should recall that the DTT func-
tion is temporarily disabled during the parameter tuning
tests.

KNN number k
In this test, we scale k and fs individually, and Fig. 7 shows
the joint error rate. According to the PHYAlert detec-
tor algorithm, k and fs determine the number of accepted
frames used for detection. In the stationary scenarios, as
shown in Fig. 7a and b, both the FPE and FNE decrease
to a lower level when k > 7 In the moving senario, how-
ever, a lower k is preferred. The reason is that a higher
k includes more relatively old samples in the computa-
tion, which deviate more from the recently received ones.
Based on the evaluation, in a real application, k is set to 5
to cover both the stationary and moving cases.

Impacts of adaptive threshold tuning
In this test, we scale the CSI update frequency fs and
inspect the changes in the channel stability metric σW
and percentile value i. The results are shown in Fig. 8. In
Fig. 8a, we see a significant channel stability improvement
when fs > 100. Meanwhile, the percentile value i increases

adaptively according to σW , as shown in Fig. 8b. Figure 8c
and d show the FPE and FNE with adaptive threshold tun-
ing. We see that, in scenario A, the FPE decreases to 0
when fs is merely 5 Hz, and when fs > 100 Hz, the FPE is
0 for all scenarios. On the other hand, it requires a higher
fs to suppress the FNE.

PHYAlert transmission improvement
We evaluate the PTI performance for different update fre-
quencies and numbers of precursor frames. Figure 9a and
b show the PTI performance in most stationary and mov-
ing scenarios. We can see that a low update frequency fs
leads to a large number of transmission failures even in
most stationary scenarios. The precursor frames signifi-
cantly improve the transmission. In the 5 Hz case, 90%
and 78.5% transmission success rates can be achieved with
Lw precursor frames in scenarios A and G, respectively.
When fs = 40Hz, the PTI improves the success rate to
97.3% and 90.1%, respectively.

Performance evaluation
We deploy PHYAlert in two typical network structures
to evaluate the computational cost in a simulated edge

Fig. 5 PHYAlert has better performance than the RSS-based approach in terms of both FPE and FNE
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Fig. 6 Both the FPE (a) and FNE (b) decrease when fs increases

network. In the first structure, we assume a centralized
detection system. In this case, the CSI data collected at the
AP are all forwarded to a dedicate threat detection server.
In the second structure, we employ a distributed structure,
in which we push forward the threat detection computa-
tion to the local AP. We use a mini-PC with a 1.6-GHz
single-core CPU and 4 GB of memory to host the AP func-
tionality. We use an Intel 5300 Wi-Fi card with a modified
driver [17] to collect the CSI. For the dedicated server,
we run the threat detection algorithm on a 16-core server
with 64 GB of memory. In both evaluations, more than 50
real mobile devices generate various Wi-Fi traffic to cover
a wide range of common uses. In addition to the routine
functionality, the AP forwards the CSI measurement to
the server or performs the computation locally.
According to the test, each CSI measurement is 163

bytes on average, and the CSI measurement data rate is
14.3 Mbps per 1000 Mbps of data traffic. In other words,
the CSI measurement forwarding increases approximately
1/7 of the total Wi-Fi traffic.
For the centralized setup, we duplicate the total traffic

100 times to simulate a threat detection range covering
50 APs or 2500 client users. Figure 10a shows the sys-
tem response graph. We can see that the response time
remains under 20 ms when there are more than 1500

clients. The factor k shows a strong influence on the com-
putational cost; when k = 9, the response time is nearly
twice that of k = 5. On the AP end, the response time
graph shown in Fig. 10b is very impressive. Performing the
threat computation while maintaining high-throughput
network traffic, the response time is smaller than 20 ms
when k = 7. In addition, the response is so linear that the
response time is highly predictable.

Security analysis
Detection of a Man-In-The-Middle Attack: The spoofing
detection of PHYAlert is based on the authenticity of
the 802.11 data frame. If the data frames are replayed,
a man-in-the-middle (MITM) attack may succeed. How-
ever, there are few possibilities to perform such attacks.
For an attacker with a reasonable attacking ability, it is
quite difficult to forge any encrypted data frames that
could successfully pass the layer-by-layer format check at
the victim. Therefore, the only effective attack strategy
is to replay any unmodified data frames. This limitation
makes the attack easy to recognize. The intuitive pro-
tection is to compute the message signature for the data
frames and check if this signature has appeared once dur-
ing the same Wi-Fi session. A slight modification to the
Wi-Fi driver could achieve this goal.

Fig. 7 The joint impact of k and the sampling rate fs in scenarios A and G. a FPE in A, b FNE in A, c FPE in G, d FNE in G
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Fig. 8 a shows the average window stability σW of 7 scenarios for different fs . b shows the percentile i according to σW . c and d present the
corresponding FP and FN error rates using the percentile i shown in b

Fig. 9 The success rate with a different number of precursor frames in scenarios A and G

Fig. 10 The average response time of threat detection deployed on a dedicated server (a) and an AP frontend (b)
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Limitations
Vulnerability Under a Wireless Protection Setup (WPS)
Attack: As briefly reviewed in “Background and related
work” section, brute-force WPSs are currently the most
threatening attack to a Wi-Fi network. An attacker can
recover the WPA/AES plain text passphrase in a few
hours. Once Eve cracks the passphrase, Eve could initiate
various MAC layer attacks. Obviously, the defense against
this attack is not a part of the PHYAlert design.
However, PHYAlert could still protect clients who have

already connected to the AP before Eve breaks in. For
each device, WPA2 uses the EAPOL protocol to generate
a unique transmission password based on the pre-shared
key. For the clients that have already connected, Eve can-
not catch the complete 4-way handshake. Therefore, Eve
cannot decrypt and forge data frames.
Inability to detect rogue APs: The protection scope

of PHYAlert starts from a successful association to a
WPA2/AES protected AP and ends with a legitimate dis-
connection. In PHYAlert, the ability to detect spoofing
MFs lies in the a priori physical layer knowledge of the
legitimate AP. Without the training phrase, PHYAlert
cannot work; i.e. it is unable to detect rogue APs.

Conclusion
The identity spoofing attack in a Wi-Fi network presents
severe threats to the edge network. In this work, we pro-
pose PHYAlert, a distributed identity spoofing attack alert
system. PHYAlert profiles client users with a physical
layer fingerprint and uses the fingerprint to authenti-
cate the Wi-Fi management frames that are transmitted
in clear text. Regarding the large network traffic vari-
ation, the detection algorithm is shaped with a linear
yet efficient core and can even harness traffic burstiness
to enhance the detection accuracy in a mobile scenario.
Since client profiling and threat detection do not require
multiparty collaboration, PHYAlert can be deployed at
the IoT AP frontend, which is usually the edge coordi-
nator. We prototype PHYAlert, and extensive evaluations
show that our design significantly outperforms traditional
solutions.
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