
RESEARCH Open Access

Efficient resourceful mobile cloud
architecture (mRARSA) for resource
demanding applications
Asharul Islam1* , Anoop Kumar1, Khalid Mohiuddin2, Sadaf Yasmin3, Mohammed Abdul Khaleel2 and
Mohammad Rashid Hussain2

Abstract

For mobile clients, sufficient resources with the assurance of efficient performance and energy efficiency are the
core concerns. This article mainly considers this need and proposes a resourceful architecture, called mRARSA that
addresses the critical need in a mobile cloud environment. This architecture consists of cloud resources, mobile
devices, and a set of functional components. The performance efficiency evaluates implementing the proposed
context-aware multi-criteria decision offloading algorithm. This algorithm considers both device context (network
parameters) and application content (task size) at run time when offloading an executable code to allocate the
cloud resources. The appropriate resources select based on offloading decisions and via the wireless
communication channels. The architecture’s remarkable component is the signal strength analyzer that determines
the signal quality (e.g.-60 dBm) and contributes to performance efficiency. The proposed prototype model has
implemented several times to monitor the performance efficiency, mobility, performance at communication
barriers, and the outcomes of resource-demanding application’s execution. Results indicate performance
improvement, such as the algorithm appropriately decides the cloud resources based on device network context,
application content, mobility, and the signal strength quality and range. Moreover, the results also show significant
improvement in achieving performance and energy efficiency. Sufficient resources and performance efficiency are
the most significant features that distinguish this framework from the other existing frameworks.

Keywords: Mobile cloud architecture, wireless communication channel, signal strength analyzer, cloud service
provisioning, energy efficiency, executable code switching

Introduction
Today, energy augmentation and resourceful computa-
tion ability are increasingly the major concerns by the
Smart Mobile Device (SMD) users. Intelligent wireless
communication technologies, such as SMDs, smart-
watches, tablets, and other multipurpose tools, have be-
come an inseparable part of human life [1]. Growing
applications’ execution on resource-limited SMDs deter-
mine the necessity of Mobile Cloud Computing (MCC)
for the resourceful execution environment [2]. SMDs or
mobile devices are limited in computing resources
(CPU, memory size, disk capacity, processing power),
and efficiency-enhancing usability features (battery life,

size, weight) make mobile devices resource-constraint
[3]. Mobile devices integrated with cloud offer a sizeable
virtual environment on a physical layer, i.e., MCC archi-
tecture. Several MCC architectures develop [4] to aug-
ment mobile device’s resources and provide a web-based
efficient platform to execute intensive applications in a
“pay-as-you-consume” model. Cloud resources use to
augment mobile device resources and to overcome re-
source limitations. By using MCC, many intensive appli-
cations discussed in [1, 5], which require augmented
resources (computing speed, RAM, higher disk capacity)
to execute efficiently.
Although many researchers have paid attention to in-

corporate high-performance core processors into mobile
devices to bridge the gap between the device resources’
abilities and increasing usage by executing intensive

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

* Correspondence: ashar.islam@gmail.com
1Banasthali Vidyapith, Niwai, Rajasthan, India
Full list of author information is available at the end of the article

Journal of Cloud Computing:
Advances, Systems and Applications

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications
 (2020) 9:9
https://doi.org/10.1186/s13677-020-0155-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-0155-6&domain=pdf
http://orcid.org/0000-0002-3625-3961
http://creativecommons.org/licenses/by/4.0/
mailto:ashar.islam@gmail.com

applications. They pay attention to different layers of
MCC architecture. At the physical layer, several archi-
tectures (Cloud computing with mobile terminals,
Virtual cloud computing provider, Cloudlet, and Oper-
ator Centric Mobile Cloud Architecture (OCMCA)) [4]
are the state-of-the-art. Moreover, physical layer archi-
tecture takes care to connect the mobile devices to the
cloud network and ensures both user mobility and confi-
dentiality. At the application layer, the aim is to develop
new software solutions that improve application execu-
tion performance in MCC architectures. Further, MCC
architectures consider for controlling and monitoring
the consumption of device resources. Nevertheless, they
shall not be included for the performance measures as
these architectures are complementary to the physical
layer architectures [4].
MCC architectures significantly consume on-demand

cloud services and augment device resources, such as
computation power, shared memory, storage, and net-
work access with various offloading frameworks. These
frameworks are the methods of offloading resource-
intensive portions of running mobile applications to the
cloud, which sends the required results to the mobile
client after performing intensive computations [3]. The
whole process of offloading augments device resources,
and conserves its resources (Dolphin, https://www.dol
phin.com/; CloudMagic). MCC architectures with cloud
associated services design to overcome mobile device
limitations and transformed into augmented mobile plat-
forms. Hence, the architectures and offloading frame-
works widely deployed for resource-intensive mobile
applications. However, offloading mechanisms for mo-
bile applications still inherent own limitations, such as
WAN latency is a big concern in leveraging cloud re-
sources in a mobile environment [6]. WAN links, 4G,
LTE, & Wi-Fi minimize the issues of connectivity, la-
tency, and bandwidth. Even with the introduction of 5G
should optimize connectivity performance and enrich
user experience. The wireless radio link issues such as
signal loss, noise, radio link wake-up delay should be the
concerns in leveraging cloud services.
There are many established offloading schemes, dis-

cussed in [1–3, 7] which considered application parti-
tioning and offloading the resource-intensive tasks to
the cloud is the practical solutions at the application
layer. These offloading schemes alleviate the pressure of
application execution in mobile devices [1]. Generally, in
offloading schemes, the executing application is divided
into two parts: resource-intensive part offloads to a re-
mote cloud via the wireless channel, and the other part
necessarily runs in the local device. These schemes focus
all most all the components of MCC architectures at
both layers. A recent study [3] uses Cloudlet and pro-
vides a taxonomy of solutions at the application layer

within the proximity of mobile devices [7]. focusses on
the performance of mobile applications considering off-
loading adoption algorithms [1]. Proposes the taxonomy
of enabling techniques at the application layer and clas-
sifies various established offloading schemes considering
the physical layer. The offloading schemes augment de-
vice resources and leverage cloud resources efficiently
for the resource-intensive services. The study’s approach
describes in "Contributions and outline".

Contributions and outline
This study aims to provide a resourceful, performance
efficient, and low energy cost mobile cloud architec-
ture. It facilitates a mobile client in executing resource-
demanding applications. In the architecture, the resources
allocated based on multi-criteria such as signal strength
(− 30 dBm to − 80 dBm), application content (task size),
and the communication barriers (signal quality and re-
source constraints). The performance evaluates exe-
cuting resource-demanding applications using physical
implementation. Results and analysis show perform-
ance efficiency, eradicates communication overheads,
minimizes energy consumption, and task execution
turnaround time. Hence, this architecture is a re-
sourceful, performance efficient with low energy cost
mobile cloud architecture for the resource-demanding
applications.
The original contributions of this paper are:

� Architecture’s motivation discusses in
("Motivation").

� Proposed architecture ("Proposed architecture")
and signal strength analyzer (Section "Signal
strength analyzer").

� Architecture service domain ("Architecture’s
service domain"), mobility (Section "Mobility"),
resource-intensive (Section "Resource intensive"),
and barriers in mobile communication (Section
"Barriers in mobile communication").

� Proposed executable task estimation, offloading
decision, and switching algorithms (Section "Offloading
decision algorithm" and "Switching decision algorithm").

� The paper is completed by Section "Introduction",
indicates the importance of efficient mobile cloud
architecture for the resource-demanding applications
and the purpose of the study. Section "Related work"
presents the study’s related work and the idea in the
literature.
Section "Experimental setup" presents the experimental
setup. Results and performance evaluation discusses in
Section "Results and discussions".
Finally, we present the study’s findings, conclusion, and
future research direction.

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 2 of 21

https://www.dolphin.com/;
https://www.dolphin.com/;

Related work
In recent times, the SMD users’ expectations from their
devices and preferences for their computational needs
have changed beyond the intrinsic capabilities of SMDs.
The SMDs’ users expect an efficient resourceful execution
environment for their mobile applications. MCC is a
resourceful distributed computing architecture that aug-
ments SMDs’ resources when the application in execution
and highly scales resources via web-link. MCC architec-
ture integrates different technologies, such as computing,
communication, and Cloud technologies [4]. It leverages
the service advantages such as utility computing [15], grid
computing [16], virtualization, and assures service effi-
ciency by the cloud service providers using service level
agreements (SLAs). Mobile clients (SMDs’ users) expect
service that should be self-customized, reusable, highly
portable [15], and low-cost models such as pay-on-
consumption. Mobile clients intended to access MCC
architecture for executing intensive applications in a
resourceful environment. Partitioning and offloading are
established schemes [1] that support intensive application
execution and enhance performance efficiency by aug-
menting device resources.

Code offloading
Computationally intensive code offloads from resource-
constrained client’s mobile device to remote cloud
resources for computational efficiency and battery perform-
ance [14]. Basically, an application’s user interface (UI) code
executes in the device, and the rest of the code migrates to
the cloud resources. A typical Android application creates a
UI thread with a user interacts [5]; CloneCloud offers a
similar scheme. Generally, many established offloading
schemes offload computation-intensive codes based on
the device intended augmentation (e.g., increasing
battery efficiency) using the mobile cloud augmentation
service-model. The offloading schemes include the
decision-making process and based on computation
augmentation techniques (CAT). The CAT provides
both augmentation model such as (code offloading and
service-oriented task delegation) and augmentation
architecture such as (parallel execution and opportunis-
tic mobile collaboration).Fig 1
The code offloading techniques enable SMDs to offload

computation-intensive application’s part to the resource-
rich service-oriented cloud environment, leveraging the
cloud infrastructure [2] for performance efficiency. In
code offloading, the significant aspects are (1) identify the
computation-intensive code and (2) partitioned the exe-
cutable code, to offload. These are the significant concerns
of application developers while developing programming
models for mobile applications. Usually, code offloading
techniques develop considering computation augmenta-
tion techniques using different programming models.

These techniques are based on the augmentation model
and classified into four categories: partitioned offloading,
virtual machine (VM) migration, mobile agents-based off-
loading, and replication-based offloading [14].
In portioned offloading, a computation-intensive code

from a processing application determines and offloads to
the intended cloud resource, such as a distant cloud.
This offloading augments the device resources and im-
proves performance efficiency while a client executes a
resource-demanding application.
In the VM migration approach, the code offloading

decision is taken, dynamically, during the code execution
in VMs in the remote cloud. Based on the offloading
requirements, a live VM migration considers. A live VM
migration can be costly because of transferring VM
image and the unstable network condition (e.g., commu-
nication barriers). Cloudlet is one of the examples of live
VM; it discusses in the proposed framework [6] and also
considers the latency issue and data access limit. The
other offloading framework, CloneCloud, works at the
MCC application layer discusses in [1], such as
DalvikVM and Microsoft. NET.
In mobile agent-based offloading, the device agent re-

quests application execution to its counterpart in the
cloud. The cloud agent obtains the execution informa-
tion and offloads the required code that needs to execute
in the cloud. This offloading scheme possibly overcomes
network connection instability since the device agent
uses asynchronous communication to get cloud re-
sources. Moreover, it is useful in task offloading when a
method is called in the Java Agent Development
Environment (JADE) [14]. Offloading code movability
and running adaptively are the significant advantages of-
fers by JADE. Whereas application multitenancy, load
balancing, and multi-users energy efficiency via wireless
channel do not consider, and hence affect the Quality of
Service (QoS). Most of these issues investigate and
address by minimizing the number of transmission time
slots on mobile devices, which depend on channel states
[17]. However, the framework did not consider the de-
vice and the task transmission executions efficiency of
the cloud.
Replication Based-offloading: almost all the offloading

techniques based on the augmentation model require the
decision process on application execution code offloading.
The decision is indeed made on the intended benefits and
offloads the code to the cloud resources. Indeed, such a
decision takes for computation-intensive applications, and
light code executes on devices. Network-intensive applica-
tions’ execution still remains unsolved. A framework has
proposed to address this issue and accelerating mobile
application through flip-flop replication [18]. The study
proposed an Android-based framework called Tango, and
it automatically switches execution and output display

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 3 of 21

between a running application and its replica on remote
resources and attempts to reduce application latency. The
framework describes that only one replica handles the
execution and ignores parallel execution. It delays execu-
tion time, overheads of excessive switching, and lack of
access to native resources when non-deterministic events
occur, such as keyboard input, voice input, camera input,
sensors inputs, click of a window button, and more [5].
Our work considers unstable network conditions (i.e.,

frequency range and communication barriers), latency
issues, and data access limits from VM migration. Appli-
cation multitenancy, load balancing, and multi-users
energy efficiency via wireless channels do not consider
mobile agent-based offloading. Parallel execution, execu-
tion time, overheads of excessive switching, and lack of
access to native resources, when non-deterministic
events occur consider from replication based-offloading.

Resourceful architecture
An architecture based on VM technology has developed
to instantiate customized service software on a neighbor-
ing trusted environment swiftly, say Cloudlet, and access-
ible by nearby SMD’s [6]. The architecture exclusively has
designed for device mobility and called cloudlet-based,
resource-rich, mobile computing. Some issues raised in
the study, such as cloudlet providers’ user enrichment pol-
icies and seamless assistance for mobile clients, need to be
improved [6].
A similar inclusive MCC architectures approach has

proposed [13]. It aims to reduce mobile device energy
consumption and maximizes serviceability for mobile cli-
ent users. It considers the multi-criteria decision making
(MCDM) TOPSIS method for making application execu-
tion decisions. Other studies identify ultra-wideband
(UWB), [19] and ZigBee network [20], which provide
energy-efficient services for mobile clients and fail to de-
scribe service efficiency during application execution
handoff among the resources [13].
A context-aware offloading algorithm considering con-

text changes in heterogeneous mobile cloud resources
discusses in [21]. It provides the utilization of MCC
architecture’s decision on wireless medium occurs at
application runtime. It plans to create communication
ability among cloud resources by handover strategy so
the existing system can be more efficient. But, the study
lefts user mobility models in the future investigation.

Motivation
The aforementioned studies discuss MCC architecture
rapid customization, customized services for emerging
diverse mobile applications, seamless assistance for mo-
bile clients, and context-aware offloading algorithms.
Even, one of the studies [21] discusses the decision en-
gine to handoff applications execution from one cloud

resource to another and another based on multi-criteria.
These features are the motivation behind our work.
Our work aims a resourceful architecture, efficient

service availability, and energy and performance
efficiency; provides stable network-communication
scenarios in MCC architectures for mobile clients.
The proposed architecture exclusively has designed to im-
prove client mobility, performance, and energy efficiency.
This also has considered the rapid customization of MCC
architecture for the emerging diverse resource-demanding
applications.
We propose a framework that switches application

execution between cloud resources (collaborative cloud
and distant cloud) via wireless channels (Bluetooth, Wi-
Fi, 3G, etc.), [21]. In order to achieve both efficiencies
service and energy, the framework considers potential
obstacles: mobility, intensive resources, and communica-
tion-barriers (signal strength & quality, mobile traffic
congestion, etc.), [22]. We proposed algorithms that help
to achieve performance efficiency and minimizes energy
consumption. We execute resource-demanding applica-
tions in the experimental setup. Despite our best efforts,
we have not found the study’s idea (resourceful architec-
ture) that links in the literature. This study should be
the first one that discusses the signal strength analyzer
and the potential communication-barriers.

Proposed architecture
Using MCC architecture, a mobile-client exploits cloud
technologies to seamlessly execute its applications on
cloud infrastructures via mobile Web-based services.
With sustained effort by many researchers, several MCC
architectures for mobile application execution proposed.
Improving performance efficiency and minimizing device
resource utilization are the most common purposes of
these architectures. Some issues still are considered at
different levels of MCC architectures to improve mobile
application execution efficiency at minimum cost. Such
as unstable network conditions (e.g., frequency range
and communication barriers), latency, data access limit
inability to access native resources, overheads of exces-
sive switching, etc. [14].
We have designed an alternative resourceful MCC

architecture (i.e., mRARSA =mobile resourceful architec-
ture ready to serve applications) to improve performance
efficiency and minimizes the utilization of device re-
sources. Considering the issues which have mentioned in
the previous paragraph and from several studies listed in
[14]. In the literature, four mobile cloud physical layer ar-
chitectures have discussed, (1) cloud computing with mo-
bile terminals (distant cloud), (2) virtual cloud computing
provider (mobile ad-hoc cloud), (3) Cloudlet, and (4) oper-
ator centric mobile cloud architecture (OCMCA), [4, 23].
Our designed framework exclusively is an integration of

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 4 of 21

the first three architectures. Moreover, Cisco plans to
launch an innovative cloud-native architecture for mobile
network ready for 5G1; it is entirely from radio access to
the core for both network operations and services [24].

Architecture overview
Mobile hardware is resource-poor, whereas computation-
intensive applications require both processing power and
energy efficiency, which far outstrip mobile hardware’s
capabilities. The proposed architecture augments mobile
device resources in a distributed mobile cloud environ-
ment. Figure 2 illustrates the architecture overview that
leverages cloud resources switching between mobile ad-
hoc cloud, cloudlet, and cloud. A mobile device accesses
any of the three types of cloud resources via a mobile
communication network [13].

A mobile ad-hoc cloud is a virtual cloud and form by
peer-to-peer mobile devices. The peer to peer (P2P) de-
vices share resources if found in the vicinity of Wi-Fi
range and interested in the contributing computing
process. A mobile device able to accesses this cloud re-
source via short-range communication technologies such
as Wi-Fi direct/ Bluetooth [21].
A cloudlet is a local resource that considers as multi-

core processors and clusters in a box, where all signifi-
cant computation occurs. A mobile client is allowed to
accesses the cloudlet resource via Wi-Fi/WLAN [6].
A cloud is a most resourceful architecture wherein

the subscribed mobile clients consume the computing
service. The mobile clients connect to the Internet
over a communication channel such as 4G/LTE to
the remote cloud [4]. It is rich in availability, scalabil-
ity, handover, native encryption, location privacy, and
more.
This architecture consists of three core components: a

mobile device, a distant cloud, and a collaborative-cloud
(cloudlet + mobile ad-hoc cloud). In the collaborative-

1https://www.prnewswire.com/news-releases/cisco-breaks-the-record-
books-powering-rakutens-first-of-its-kind-cloud-native-mobile-
network-300800833.html

Fig. 1 Application executable code offloading environment. This schematic illustration shows code offloading in respect of local and remote
execution environment where device agent requests application execution to its counterpart in the cloud. The cloud agent obtains the execution
information and offloads the required code that needs to be executed in the cloud

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 5 of 21

https://www.prnewswire.com/news-releases/cisco-breaks-the-record-books-powering-rakutens-first-of-its-kind-cloud-native-mobile-network-300800833.html
https://www.prnewswire.com/news-releases/cisco-breaks-the-record-books-powering-rakutens-first-of-its-kind-cloud-native-mobile-network-300800833.html
https://www.prnewswire.com/news-releases/cisco-breaks-the-record-books-powering-rakutens-first-of-its-kind-cloud-native-mobile-network-300800833.html

cloud, a requesting mobile device able to share P2P
nodes’ computing resources based on computational re-
quirements and concerning their Wi-Fi signal strength.2

The requesting device based on the signal strength (−
30 dBm to − 80 dBm),3 [25, 26] utilizes participating P2P
resources based on the proposed switching algorithm
decision; it switches either to collaborative-cloud or dis-
tant cloud. Further, it handoffs the executing applica-
tion’s tasks to more resourceful architecture, and utilizes
the resources seamlessly. Moreover, the architecture re-
markably supports mobile devices to switch between
cloud resources based on signal strength analyzer i.e.,
Wi-Fi signal strength. The aspects mentioned above ex-
plain in subsequent sections.

Essential components
This architecture’s physical components distribute into
three layers: SMDs, collaborative-cloud, and remote
cloud (public cloud). However, the proposed framework
components at application layer groups for mobile de-
vices of the cloud resources. The mobile device compo-
nents’ group includes resource monitor, signal strength
analyzer (SSA), decision module, task manager, commu-
nication manager, and failure recovery agent. Whereas,
the cloud resource components group mainly includes
the distant cloud, collaborative-cloud, task handler, and
communication handler.Fig 3

Resource monitor module
In this architecture, the resource monitor provides the
system’s resource information of dynamically profiling
device resources such as the CPU, memory, battery,
graphics, and network. It monitors and correlates differ-
ent information such as battery consumption, IP traffic,
location, and received signal strength [27]. These re-
sources have a significant impact on device performance

2https://support.randomsolutions.nl/827069-Best-dBm-Values-for-Wifi
3https://www.prnewswire.com/news-releases/cisco-breaks-the-record-
books-powering-rakutens-first-of-its-kind-cloud-native-mobile-
network-300800833.html

Fig. 2 Proposed architecture view. This architecture consists of three core components: a mobile device, distant cloud, and collaborative-cloud
(cloudlet + mobile ad-hoc cloud). In the collaborative-cloud, a requesting mobile device able to share P2P nodes’ computing resources based on
computational requirements, and with respect to their Wi-Fi signal strength

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 6 of 21

https://support.randomsolutions.nl/827069-Best-dBm-Values-for-Wifi
https://www.prnewswire.com/news-releases/cisco-breaks-the-record-books-powering-rakutens-first-of-its-kind-cloud-native-mobile-network-300800833.html
https://www.prnewswire.com/news-releases/cisco-breaks-the-record-books-powering-rakutens-first-of-its-kind-cloud-native-mobile-network-300800833.html
https://www.prnewswire.com/news-releases/cisco-breaks-the-record-books-powering-rakutens-first-of-its-kind-cloud-native-mobile-network-300800833.html

during application computation. This resource monitor
also assists the other modules, including the decision en-
gine when requested, and majorly shares in achieving
computational performance efficiency. Application de-
velopers consider profiling is one of the most critical
tasks, and have to deal robustly.
Generally, profilers categorize concerning hardware

(device), software (application), and network (communi-
cation) [1].
Device profiler profiles the device’s physical compo-

nents and represents the components operating condi-
tions. These conditions considered by the decision
engine during the cost estimation. Battery consumption

and the variant of CPU usage monitor to improve per-
formance efficiency.
The program profiler measures the application param-

eters’ performances on the method level. It determines
the types of cloud resources across this architecture and
precisely executes the instructions. It also monitors the
instructions execution time, methods’ call, and memory
allocated for both instructions execution and the data
input.
Network monitor asynchronously records the device

network information at runtime during application exe-
cution. It monitors the network conditions such as the
device-Wi-Fi connection states and bandwidth, device-

Table 1 Architecture comparison

Studies MAHC Cloudlet Cloud Integrated approach Architecture criteria

Mobility RI CB

[6] No Yes No Yes Yes Yes No

[8] No Yes Yes Virtualization Yes Yes No

[9] No No No Distributed mobile setting No Yes No

[10] Yes Yes Yes Service oriented based approach Yes Yes No

[11] No No Yes Dalvik VM (Android) No No No

[12] No No Yes Virtualization No Yes No

[13] Yes Yes Yes MCDM Yes Yes No

[14] Yes Yes Yes Six criteria Yes Yes No

Our work Yes Yes Yes MCDM-TOPOSIS Yes Yes Yes

MAHC Mobile ad-hoc cloud, RI Resource intensive, CB Communication barriers

Fig. 3 Architecture components. The proposed framework components presents at application layer groups for mobile device and of cloud
resources. The mobile device components are; resource monitor, signal strength analyzer (SSA), decision module, task manager, communication
manager, and failure recovery agent. Whereas, the cloud resource components group mainly includes the distant cloud, collaborative-cloud, task
handler, and communication handler

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 7 of 21

Wi-Fi signal strengths, connection congestion level to
utilize the cloud resources, and Bluetooth state. This in-
formation profile passes to the cost estimation model
when requested for the network cost estimation.

Signal strength analyzer
The “signal strength analyzer” component is the novelty
of the proposed architecture. This component included
in the architecture minimizes the mobility issue while
the client is executing the application in the physical
proximity of the architecture. Notably, the mobility issue
rises in a mobile ad-hoc cloud when the executable tasks
distributed to different P2P contributing nodes. The dif-
ferent tasks of executing applications assign based on (1)
Wi-Fi signal strength and (2) task content. The variants
in signal strength (− 30 dBm to − 80 dBm) are reliable to
execute different tasks shown in Table 3 of an executing
application. The executable tasks dynamically assign to
P2P nodes concerning the signal strength and the appli-
cation content. The signal strength analyzer is one of the
core components in the resource monitor module. It co-
ordinates with the network monitor and communication
manager.

Decision module
The decision module produces a significant impact on
performance efficiency and determines the architecture
resource (collaborative-cloud, or cloud) for the required
services. Based on the running information, it decides
the mobile task offloading strategies and dispatches the
task’s package to the intended cloud resource. In this
module, the decision engine and cost estimation agents
are the most significant components. The cost estima-
tion agent calculates the task execution time in eq. (7)
that requires offloads to the intended cloud resources. It
also calculates the device energy consumption in eq. (6)
when the task is running. The decision engine necessar-
ily provides tasks offloading decisions by executing the
algorithm (5.1) and based on the updated information of
coordinating modules. Further, the resource switching
criteria, an application running information, and the two
algorithms discussed in Table 5 and Section 5.1 and 5.2.

Task manager
The task manager collects intend task offloading infor-
mation from the upper layer in the components’ hier-
archy, and passes it to the communication manager.
This information includes about offloading location in
the network, method inputs, and the required libraries
running the offloaded task. Then, the communication
manager receives the information in a precise format
and executes it by the offloading decision. Simultan-
eously, the task manager stores the task results in the

device database. Moreover, the task manager acts as a
middle layer in the components hierarchy.

Communication manager
The communication manager is one of the core com-
ponents of the proposed architecture. It handles the
required connections for communicating its counter
component (of remote cloud) across the architecture.
It is a catalyst to the architecture performance effi-
ciency and based on the effective coordination of
communication handler and discovery service agent.
Dynamically, it receives the decision engine offloading
decision and executes the offloaded task. It also com-
municates the architecture’s failure, and then the re-
covery agent initiates recovery process service for any
failure detection.
The discovery service agent determines architec-

ture’s resources such as P2P nodes, collaborative-
cloud, or the remote cloud for resource utilization.
Further, the agent updates its information on the de-
termined resource and then stores the updated infor-
mation in the device profiler. The running resource
utilization information, such as computation capacity,
IP address, network congestion barrier, and signal
strength, are crucial for the architecture service effi-
ciency. The agent also communicates a signal strength
analyzer to minimize resource searches such as P2P
nodes in the architecture.
A communication handler is a component that com-

municates between the architecture’s resources and
handles the resources running information. It provides
the resource generated communication services of both
client and cloud sides. It also handles the data and in-
formation, such as resource detection and location, fail-
ure detection, client and cloud synchronization states
that have generated the executions. Further, when a
mobile task offloads, then the communication handler
wraps the related information (input, code, needed li-
braries) into the offloading package. As soon as the
package is ready, it dispatches to the designated re-
source address for seamless processing. The resource
location address (cloud server) determines by commu-
nicating the task manager. The communication handler
of the cloud infrastructure unpacks the client package
and synchronizes the missing libraries that execute on
the server. Finally, after the execution completion, the
result communicated to the client device. Effective
communications between both the handlers contribute
to performance efficiency.

Failure recovery agent
The proposed architecture precisely designed to share
the resources and the running components informa-
tion during task execution. In the architecture, the

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 8 of 21

failure recovery agent detects the failures (e.g., in-
accessible node, signal barriers, and more) coordinat-
ing with other components communication manager
and decision module. The agent dynamically detects the
failures and instantly recovers the system execution.

Architecture’s service domain
In this architecture, the resources integrate to achieve
service efficient application execution environment for
mobile clients. The service framework inherits mobile
cloud service-oriented characteristics shown in Table 2
and offers the resourceful services to the clients.

Service metrics
This architecture considers some essential factors
which significantly contribute to both performance ef-
ficiency and energy efficiency. Generally, these factors
categorize as quantifiable (cost, energy-consumption,
& communication-delay) and non-quantifiable (priv-
acy, scalability, multicast, etc.), which represent sub-
jective values [4]. These factors have to evaluate the
desired quality services and performance efficiency.
Usually, the cost is calculated for the executable mo-
bile application, and of the device network usage.
Often, the cost is low for mobile ad-hoc cloud, high
for cloudlet, and low for the distant cloud [4] ser-
vices, respectively.
Generally, client device energy-consumption measured

in Joules (J), when executing applications, the lower en-
ergy consumption is desirable for service efficiency.
The communication-delay dynamically measures (in

seconds-s) while executing applications in the architec-
ture. During the execution, the communication parame-
ters (processing delay, propagation, and transmission)
fluctuate concerning cloud resources in the architecture.
These fluctuations cause processing delays and have to
measure for both in-house processing and offloading
executable applications to the cloud destination.

The factors, as mentioned above, majorly contribute to
performance efficiency, energy efficiency, and architec-
ture’s service performance.

Service policies
The architecture dynamically provides only one of the
cloud resources from (collaborative-cloud, or cloud) to
the requesting mobile client. While allocating the re-
source, this architecture primarily considers three aspects:
mobility, resource-intensive, and signal barriers, which
influence performance efficiency. Essentially, the architec-
ture also considers other criteria shown in Tables 4 and 5.
Moreover, the architecture chooses the resources on the
client’s request and handles the potential obstacles which
influence both performance and energy efficiency.

Mobility
Mobility is one of the essential factors of this architec-
ture and significantly considers seamless execution for
mobile clients. Remarkably, this architecture improves
mobility across the distributed mobile cloud architec-
ture. Furthermore, it supports extended mobility without
affecting the quality of running application execution,
when covering intended distances before disconnecting
from the mobile support station [28].

Mobile ad-hoc cloud
This offers improved mobility, considers resource-
intensive application requirements, and addresses sig-
nal barriers (i.e., signal strength) in the architecture.
These factors improve client connection to resources,
energy efficiency, and service availability. This archi-
tecture applies a one-hop Wi-Fi connection to all the
participating P2P nodes. At present, the architecture
considers only one hop Wi-Fi access point (AP) to
determine the signal strength accuracy using the sig-
nal strength analyzer.

Table 2 Architectures’ characteristic matrix

Cloud
architecture

Characteristics

AR N CE M Mob US O SW S

Mobil ad-
hoc cloud

D Mobile ad hoc
network

Wi-Fi, Wi-Fi dir-
ect, Bluetooth

Self- managed No N specific users Local SOA Only soft
state

Cloudlet D WLAN latency/
bandwidth

WLAN Self- managed, little
professional attention

Yes Community
user at runtime

Local & decentralized SOA Only soft
state

Distant
cloud

D Internet latency
/ bandwidth

4G/LTE Professionally
administrator, service
provider

Yes N of users at all
the time

Centralized & service
centric by service provider

SOA Hard &
soft state

mRARSA D WLAN Wi-Fi Developer Management Solve Yes Developer Ownership SOA Hard &
Soft state

AR Architecture, N Network, CE Communication Environment, M Management, Mob Mobility, US User Support, O Ownership, SW Service framework, S State,
D Distributed

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 9 of 21

Context aware P2P node connection This architecture
provides connections to other participating nodes in
the range of Wi-Fi signal strength. The signal
strength is measured in dBm (decibel milliwatts) and
ranges in between (− 30 dBm to − 89 dBm) [25, 26].
This component signal strength analyzer analyzes the
participating nodes’ signal strength at different loca-
tions in the clients’ signal strength range. It also de-
termines both participating and non-participating
nodes in the access point signal range.

Application execution process (1) the mobile client re-
quests the job to other participating nodes in the signal
range. The client job requester module dynamically di-
vides (based on multi-criteria) the executable code into
tasks, and distributes the tasks among participating
nodes. The job requester sends the tasks, waits for the

processing, and receives the task-reply. Furthermore,
the job requester receives the task reply, consolidates
the reply, and then returns to the participating nodes.
Further, the process repeats for all the executable
tasks and completes the application execution. (2)
Whereas the participating nodes receive the job re-
quests (tasks), process the requested task, and returns
the task’s result to the client’s job requester shown in
Fig. 5. Moreover, the process repeats for each receives
task and shares the nodes’ resources in completing
the client’s execution requirements.

Client and nodes mobility
� This architecture provides mobility as one of the

core characteristics during a client’s job
processing. It significantly improves mobility for
both client devices and the participating nodes.
The remarkable characteristic of this architecture
is that the performance efficiency does not
degrade in mobility during application processing.
The resource allocation Fig. 5 shows the dotted
lines either side (of the frequency range)
represents the specific signal strength (e.g., − 30
to − 89 dBm). Here, mobility does not degrade the
processing performances between dotted lines and
towards access point and continues the sharing of
resources between the devices seamlessly.

Cloudlet
It is the core component of collaborative-cloud. Usu-
ally, cloudlet servers install in thickly dense areas
such as malls, chat areas, cafés, etc. collocated with
Wi-Fi hotspots [4]. In the proposed architecture, a
mobile client consumes cloudlet services as a thin

Table 3 Context vs. content tasks

Wi-Fi signal strength for executing applications’ tasks

Signal strength Expected quality Required for different tasks Service efficiency

−30 dBm Maximum - (nearest to access point) Not typical or desirable in the real world. Excellent

− 50 dBm Anything down to this level can be considered excellent
signal strength.

N/A Good

−60 dBm Good, reliable signal strength Intensive task can be considered Good

− 67 dBm Minimum signal strength for applications that require very
reliable, timely packet delivery.

VoIP/VoWiFi & non –HD video streaming Good

− 69 dBm Minimum signal strength for reliable packet delivery Light browsing & email, web Good

− 79 dBm Minimum signal strength for basic connectivity. Packet
delivery may be unreliable.

Connecting to the network Fair

− 90 dBm Approaching or drowning in the noise floor. Any
functionality is highly unlikely.

Task hasn’t defined yet Average

(−90 to − 99) dBm Functionality hasn’t defined Task hasn’t defined yet Below Average

− 100 dBm N/A Not acceptable Poor

− 110 dBm N/A N/A No signal

Table 4 Offloading decision criteria

Energy consumption (EC) Total turnaround
time (TT)

Offloading decision

L L H

L M H

L H M

M L M

M M M

M H M

H L M

H M L

H H L

Low-L, Medium-M, High-H

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 10 of 21

client via WLAN/Wi-Fi /Wi-Fi direct. This architec-
ture provides one-hop, low latency, high-bandwidth,
real-time interactive response to the nearby resources.
The resources, physical proximity significantly con-
tributes to the client’s application execution perform-
ance. This performance gracefully degrades if the
client moves away from the serving resources. Fur-
ther, this leads to a fallback mode where three pos-
sible scenarios exist (1) continue in the distant cloud
or the worst (2) resumes in the client device or (3)
continue in collaborative-cloud resources in the
architecture.
The client device profiler keeps track of the con-

nection range profile records. Further, the profiler
maintains neighboring resource availability to the

clients. It helps the signal strength analyzer in iden-
tifying the intended resource for the serving client.
During the application execution, this architecture
improves mobility with static resources. Currently,
this architecture does not consider mobile cloudlets
[29] for performance accuracy.

Distant cloud
The proposed architecture inherits cloud computing
mobility characteristics. During the execution of the
application, the client avails mobility freedom in the
entire area covered with subscribed service providers
using network roaming. Mobile clients can also con-
nect through Wi-Fi, but issues, such as network avail-
ability and handover, need to be considered when the
client is nomadic.

Resource intensive
This architecture facilitates an integrated approach
that significantly contributes to the execution of
resource-demanding applications. During the execu-
tion, this architecture fairly improves energy and
performance, the two most crucial mobile client con-
cerns. It also dynamically decides the client’s execut-
able task-sharing resources and strategies (when,
what, where, & how). These strategies correspond to
the task’s specific decision, task’s intensive type,
task’s target location, and tasks’ operations profile,
respectively. Ideally, this architecture emphasizes en-
ergy and performance efficiency wherein mobile de-
vices are resource constraints.

Context vs. content aware resource allocation
� The client’s resource constraint device still needs

resource augmentation during intensive
application execution. This architecture’s design
introduces an application layer component, i.e.,
the signal strength analyzer that analyzes signal
strength. It determines the P2P nodes, their
locations, and the signal strength in the fair
range of one access point Wi-Fi connection.
Based on the signal strength, the client’s applica-
tion tasks assign to the participating nodes. It
shows in Fig. 4 and describes in Table 3. The
signal strength analyzer shown in Fig. 6 coordi-
nates with the decision module, and the network
monitor monitors nodes’ Wi-Fi connection states
and their bandwidths. The network monitor also
monitors the signal strength congestion (commu-
nication barrier) level, and the barrier discusses
in Section 4.5. Ideally, the client’s task manager
coordinates the communication manager, re-
ceives the decisions, and assigns intensive tasks

Table 5 Resource switching criteria

Energy
consumption
(EC)

Resource
connection time
(RCT)

Frequency
range (FR)

Task
workload
(TS)

Switching
decision

L L M M, H M

L, M L H H M

L M M L M

L, M M H M, H M

L H M L, M M

L H H M, H M

M L M M M

M M M L, M M

M H M, H L, M M

H L M, H H M

H M M M, H M

H M, H H H M

H H M M M

L, M, H L, M, H L L, M, H L

L M M M, H L

L, M, H H M H L

M L, M M H L

M H H H L

L, M, H L M L H

L L H L, M H

L, M, H M H L H

L, H H H L H

M, H L H L, M H

H L M M H

H M M L H

H M H M H

H H M L H

H H H M H

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 11 of 21

based on the node’s signal strength (− 30 dBm to
− 79 dBm).

Collaborative and distant cloud
This architecture consists of a collaborative and dis-
tant cloud for executing resource-intensive applica-
tions. Usually, the client device offloads the
application’s executable tasks to cloud resources
based on different offloading criteria during the ap-
plication processing. A recent study [30] discusses
task offloading to (cloudlet or remote cloud) apply-
ing the mathematical concepts, stochastic geometry.
This study analyzes the outage probability of task
offloading between cloudlets and cloud in heteroge-
neous mobile cloud computing. Another study in-
cludes a network-aware offloading algorithm [31].
The proposed architecture applies context and

content-aware task analyzing and task offloading algo-
rithms. These algorithms apply the MCDM-TOPSIS
model to select the potential cloud resource in the
architecture under running context such as signal
strength, task workload, data rate, etc. These factors
significantly contribute to obtaining both performance
and energy efficiency during intensive application exe-
cution. The algorithms discussed in Section 5.

Barriers in mobile communication
In the World Radio communication Conference orga-
nized by ITU Telecom World 2018,4 discusses the
growth in the usage of mobile communication systems
by mobile users [32]. It emphasizes the effective usage of
radiofrequency and spectrum management. Radiofre-
quency barriers are the major obstacles in the efficient
usage of the frequency spectrum.

Barriers In mobile communication, the radio frequency
spectrum that transmits signals from mobile devices
to any other electronic receiver (e.g., TV,) whereas
mobile devices use the lower frequency bands of the
spectrum. The lower frequency bands can be blocked,
reflected, or refracted by physical barriers5 (buildings,
trees, and rain), [33] and attenuated by frequency bar-
riers (signal strength and quality, mobile traffic con-
gestion), [22].

Wi-fi performance efficiency ideally, place wireless ac-
cess point or router high up with a clear line of sight to,

4Itu-r, ITU-R Radio communication Study Groups D IO REGU L A.
2016
5https://www.ic.gc.ca/eic/site/069.nsf/eng/00088.html

Fig. 4 mRARSA architecture. The proposed architecture considers radio frequency barriers. The component signal strength analyzer analyzes the
signal strength of participating nodes during application task execution at a particular frequency (− 30 dBm to − 80 dBm). If the requesting device
encounters barrier (i.e. signal strength is low), then the task execution possibly switches to other cloud resources (collaborative-cloud or cloud) or
to other P2P nodes of higher signal strength depending upon the algorithm criteria

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 12 of 21

https://www.ic.gc.ca/eic/site/069.nsf/eng/00088.html

as considering large parts of the premises and perform-
ance efficiency. Protocol overhead declines signal
strength and effects application throughput. The other
factors, such as power output, receiver sensitivity, and
path loss, have a direct impact and contribute to signal
strength.

mRARSA service design The proposed architecture
considers radiofrequency barriers. The component sig-
nal strength analyzer analyzes the signal strength of
participating nodes during application task execution
at a particular frequency say (− 60 dBm). If the

requesting device encounters a barrier (i.e., signal
strength is low), then the task execution possibly
switches (1) to other cloud resources (collaborative-
cloud or cloud) or (2) to other P2P nodes of higher
signal strength depending upon the criteria.

Architecture algorithms
This architecture focuses on the efficient utilization of
cloud resources accessing through mobile devices via
wireless mediums. The resource’s availability and per-
formance efficiency based on multiple criteria such as
signal strength, device context and application contents,

Fig. 5 Signal strength range and allocated mobile devices. This architecture provides connections to other participating nodes in the range
between (− 30 dBm to -80 dBm) of Wi-Fi signal strength

Fig. 6 Context-aware signal strength analyzer. The figure illustration the coordinates with decision module, and the network monitors nodes, Wi-
Fi connection states and their bandwidths

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 13 of 21

network barriers, and energy consumption. This archi-
tecture includes two algorithms for (1) offloading deci-
sion (5.1) and (2) resource switching algorithm (5.2).

Algorithms’ criteria
This architecture considers offloading decisions based
on Energy consumption (EC) and Total turnaround time
(TT). The executable code offloads when the offloading
task is high, and EC and TT are low. Similarly, the
execution process continues, as shown in offloading de-
cision criteria Table 4.
Table 4 includes two offloading criteria (EC and TT).

The decision module determines the architecture re-
source based on the following priority: (i) Offloading

decision high priority, when the Frequency (FR) (30–
49 dBm), and Task size (TS) (6-10 Mb) are in these
limits. (ii) Offloading decision medium priority, when
FR (50–69 dBm) and TS (3-6 Mb) are in these limits.
(iii) Offloading decision low priority, when FR (70–89
dBm) and TS (0-3 Mb) are in these limits. Moreover,
the cost estimation agent calculates the task execution
total turnaround time and device EC to be offloaded to
the intended cloud resources, and the offloading deci-
sion result depends on the algorithm 5.1.
In Table 5, the resource switching criteria includes

based on the four criteria (EC, RCT, FR, and TS).
Here, the execution process (decision module) finds
the intended resource in the architecture, and esti-
mate connection time and device configuration. Based
on these estimations and switching decision algo-
rithm 5.2, the requesting device gets the preferred
choice, as shown in Table 6.

Offloading decision algorithm
First, this algorithm applies to check the resources in the
vicinity and determines the parameters, such as waiting
time, communication energy, processing energy, and
total connection time required to access the distant re-
sources for the processing device. Here, these values are
inputs to fuzzy-MCDM technique to choose the alterna-
tive cloud resources because the decision making is
fuzzy in nature [34]. These processing parameters dir-
ectly contribute to energy consumption and service

Table 6 Preferred choice criteria

Data requirements Computation requirements Preferred choice

Low Low Mobile device

Medium Collaborative cloud

High Distant cloud

Medium Low Mobile device

Medium Collaborative cloud

High Distant cloud

High Low Collaborative cloud

Medium

High Distant cloud

Fig. 7 Task execution flow diagram. Figure 7 shows the task execution flow: 1. Sending task execution request to the decision module. 2.
Collecting requested parameters from the resource monitor, program profiler, and signal strength analyzer. 3. Get the required information of the
architecture resources. 4. Task manager begins communication once the task offloading decision is made. 5. Communication manager subtasks
the job’s task for parallel processing. 6. The task handler offloads the task to the determined architecture resource. 7. Records parallel execution
results, and store both the execution time and energy consumption in the result profiler. 8. Finally, the result sends back to the requesting
mobile device

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 14 of 21

availability. Here, the executable task offloads when (i)
the offloading criteria are high concerning the following
parameters, waiting time (WGtot), transmitting time
Wtrans, processing time Wproc, and (ii) receiving time
(Wrcv) is less. Likewise, the proposed algorithm calcu-
lates total turnaround time and the energy consumption
for offloading the executable task.
Estimation model:

WGtot ¼ Wtrans þWrcv þWproc ð1Þ

Wtrans ¼ Sdata
∝d

ð2Þ

Wrcv ¼ Sdata
∝d

þ β ð3Þ

Wproc ¼ Pi � CPPI
PIPS

ð4Þ

In eq. (2), (Sdata) is the total data size that requires
transmission, (∝d) is the data rate in the wireless
medium, and β represents the frequency situations
like throughput and data packet loss. Since it is cal-
culated in communication error due to the loss of
path, and its calculation does not consider here.
Moreover, the processing client device owns the
intelligence to determine communication frequency
and estimates the value against β.

Fig. 8 Network latency performance evaluation graph. This graph represents the network latency performance against the utilization of the
running cloud resources for first resource demanding text scanner (OCR) application

Fig. 9 Execution time performance evaluation graph. This graph represents the execution time performance against the utilization of the running
cloud resources for first resource demanding text scanner (OCR) application

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 15 of 21

In eq. 4, (Pi) is the number of instructions where
i = 0 to n and n is the number of tasks, (CPPI) is
clock per instruction, and (PIPS) is packet instruc-
tion per second. Further, (Etot) represents the total
energy consumption in the task execution perform-
ance and (Emob) represents energy consumption in
the mobile device in eqs. (5) and (6). In eq. (7),
(Tmob) represent the device processing capacity dur-
ing the task execution.

Etot ¼ Ertð Þ � Wtrans þ Wrcvð Þ � Wproc
� � ð5Þ

Emob ¼ PWmobð Þ � Tmobð Þ ð6Þ

Tmob ¼ Pi� CPPI
PIPS

ð7Þ

PWmob ¼ V � Ið Þ ð8Þ
Where (Etot) is the total energy consumption in

the processing device (Ert) is roundtrip energy con-
sumption to transmit and receive data from a

processing device to cloud resources. (PWmob) repre-
sent power consumed in the client’s mobile device,
whereas V and I represent voltage and current,
respectively.
The connection time from the requesting device to

the allocating resource measures by (Tconn) shown in
eq. (10). Where (Frange) represents the frequency
range and (DmobS) represents the distance between
the device to the cloud resources. The connection
time and the distance calculates based on the device
mobility (Msp), clock time interval (CCrt), and (Wsp)
represents the standard wave speed. Further, the run-
ning distance calculates using eq. (11).

Wsp ¼ 3� 108m=s ð9Þ

Tconn ¼ Frange−DmobS

Wsp
ð10Þ

Fig. 10 Energy consumption performance evaluation graph. This graph represents the energy consumption performance against the utilization
of the running cloud resources for first resource demanding text scanner (OCR) application

Fig. 11 Network latency performance evaluation graph. This graph represents the network latency performance against the utilization of the
running cloud resources for second resource demanding Eight-Queen problem application

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 16 of 21

DmobS ¼ Msp
� �� CCrtð Þ ð11Þ

Switching decision algorithm
This algorithm considers all the four criteria, as men-
tioned above, for making the tasks switching decisions.

Table 6 includes the resource obtaining criteria, data-
intensive and, computation-intensive based on task re-
quirements. The switching algorithm allocates the re-
source request based on the preferred choice criteria
listed in the table.

Experimental setup
We used three Lenovo K8 Note smartphone with the
same configuration Deca-core (2.3 GHz, Dual core,
Cortex A72 + 1.85 GHz, Quad-core, Cortex A53 + 1.4

GHz, Quad-core, Cortex A53), processor paired with
4 GB of RAM, 64 bit architecture, MediaTek
MT6797D chipset, Mali-T880 MP4 graphics, and
4000 mAh Li-Polymer battery, Wi-Fi 802.11, b/g/n,
v4.2 Bluetooth connectivity and Android v7.1.1 oper-
ating system. For the collaborative-cloud setup, we
use Dell PowerEdge T320 server in the University
computer lab, Saudi Arabia. The configuration such
as Intel Xeon processor E5–1410 processor, total 12
GB RAM in (6 DIMM slots) with Microsoft Windows
Server 2012 operating system. For the distant cloud,
we used Amazon EC2 instance of Asia pacific (Mum-
bai) location with Microsoft Windows 2012 R2 Stand-
ard edition with 64-bit architecture, t3.xlarge type,
and 16 GB RAM. Moreover, we have used PowerTu-
tor 1.56 [35] to analyze the system’s performance and
the application’s power usage. During the implemen-
tation, all unnecessary background services were ter-
minated. Two android applications (OCR and Eight-
Queen problem) of three different tasks’ sizes were
implemented.
Figure 7 shows the task execution flow: 1. Sending

task execution request to the decision module. 2. Col-
lecting requested parameters from the resource moni-
tor, program profiler, and signal strength analyzer. 3.
Get the required information of the architecture re-
sources. 4. Task manager begins communication once
the task offloading decision is made. 5. Communica-
tion manager subtasks the job’s task for parallel pro-
cessing. 6. The task handler offloads the task to the
determined architecture resource. 7. Records parallel
execution results, and store both the execution time
and energy consumption in the result profiler. 8.

Fig. 12 Execution time performance evaluation graph. This graph represents the execution time performance against the utilization of the
running cloud resources for second resource demanding Eight-Queen problem application

6https://www.ic.gc.ca/eic/site/069.nsf/eng/00088.html

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 17 of 21

https://www.ic.gc.ca/eic/site/069.nsf/eng/00088.html

Finally, the result sends back to the requesting mobile
device.

Results and discussions
The prototype testing includes two types of resource-
demanding applications’ execution, one computation-
intensive, and the other one is data-intensive. We
evaluate the architecture’s performance against the
utilization of running cloud resources. Essentially,
performance evaluation considers network latency,
execution time, and total energy consumption; these
have explained through the graphs in figures (Figs. 8,
9, 10, 11, 12 and 13). Whereas, the client’s device
battery power consumption is measured by PowerTu-
tor 1.5. Further, the execution performance discusses
in two scenarios.

Scenario 1 text scanner (OCR) application execution
The nature of OCR-text scanner application is to
recognize any text from an image with (98–100) %
accuracy and support more than 50 languages. This
application is widely used in the Arab World to
translate Arabic text into English. The application’s
execution performance explains in Tables 7, 8 and 9).
And the performance measure also explains through
graphs, shown in Figs. 8, 9 and 10).

Table 7 shows the three task sizes of the applica-
tion. For distant cloud and collaborative-cloud, the la-
tency time is higher. For mRARSA, the latency time
is lesser than the other two. Indeed, the P2P latency
time is much lesser among all, because the participat-
ing devices are in close physical proximity and access
through one hop. The graphical representation shows
through graph Fig. 8.
Note: Similarly, Tables 8 and 9 show the performances

of execution time and energy consumption in the client
device, respectively. Whereas, Figs. 9 and 10 describe the
graphical representation of both tables

Execution analysis (scenario 1)

� For network latency, mRARSA consumes less time
and resources for the three executed task sizes next
to P2P.

� For execution time, mRARSA performs better than
the other two architecture’s clouds.

� For energy efficiency, P2P consumes more energy,
and mRARSA consumes less compare to the distant
cloud.

Scenario-2 eight-queen problem application execution
This problem identifies eight positions to place the
queens on an 8 × 8 chessboard. A robust computation

Table 7 Network latency performance evaluation for OCR

Task
size
(Mb)

Distant
cloud

Collaborative-cloud mRARSA

Lab cloud P2P

Network latency (s) 2.86 7.52 5.86 0.55 4.05

0.69 4.99 3.01 0.14 2.32

1.03 5.62 4.62 0.32 3.14

Table 8 Execution time performance evaluation

Task
size
(Mb)

Distant
cloud

Collaborative-cloud mRARSA

Lab cloud P2P

Execution Time (s) 2.86 3.05 4.16 9.91 2.55

0.69 1.82 1.6 6.48 1.05

1.03 2.86 2.75 8.67 2.02

Fig. 13 Energy consumption performance evaluation graph. This graph represents the energy consumption performance against the utilization
of the running cloud resources for second resource demanding Eight-Queen problem application

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 18 of 21

is required to move between the positions. We have
executed three different tasks’ sizes applications
namely (8-Regina 4.5 Mb, the queens 6.3 Mb and 8
Queens 10Mb). The performance execution describes
in Tables 10, 11 and 12), and the graphical represen-
tation through performance graphs, shown in Figs. 11,
12 and 13).
Table 10 includes three task sizes of the applica-

tion. The nature of the application involves a high
number of iterations during the task executions.
Indeed, the latency time should also be high for the
three sizes. Here, mRARSA takes lesser time than
the other two distant and collaborative-clouds. The
physical proximity of the participating devices
improves P2P latency performance and takes lesser
time compared to all.
Figure 11 shows the network latency performance

inline to the four architectures’ values of Table 10. It
shows the graphical representation of network latency
performance evaluation consumed by the four architec-
tures against the task sizes.
Similarly, execution time Table 11 and energy con-

sumption Table 12 has included the performance evalu-
ation for the client device.
Figure 12 represents the execution time performance

evaluation of the four architectures against three execu-
tion task sizes (10, 6.3, and 4.5) in Mb.
Figure 13 shows the energy consumption performance

evaluation of the four architectures.

Execution analysis (scenario 2)

� The latency performance evaluation for three task
sizes (10, 6.3, and 4.5) in Mb shows the
architecture performances in descending order

(i.e., distance cloud, collaborative-cloud, and
mRARSA).

� For the execution time evaluation, P2P takes the
highest time. Distance and collaborative-cloud
consume almost the same average time of three
sizes. Whereas the performance of mRARSA
much better during the tasks’ execution.

� For energy consumption, P2P consumes the
highest power in ascending order with respect to
task sizes, due to devices are resource constraint
in nature. Here, the distance cloud consumes
high energy if the task size is < 10Mb and low
for > 10Mb, since it is rich in resources.
Collaborative-cloud consumption is just opposite
to distance cloud. mRARSA is the comparatively
better option for <= 10Mb task size due to the
proposed switching algorithm.

Challenges and future work
The integration of cloud computing architectures
with mobile communication for energy-efficient ser-
vices is always challenging: Leveraging the architec-
ture’s resources efficiently during resource-demanding
applications execution on a thin-client. Wireless com-
munication latencies constitute a significant concern
that delays both (1) allocation of needed resources
(2) crispness of system response. Optimizing battery
life during resource-demanding application execution
is critical in achieving performance efficiency. Despite
adequate bandwidth, the application execution
throughput suffers due to a high degree of latency
and round-trip time network latency. The architec-
ture collaborative cloud’s physical proximity impacts
application execution performance. This performance
gracefully degrades, if no resource is available nearby.

Table 9 Energy consumption performance evaluation

Task
size
(Mb)

Distant
cloud

Collaborative-cloud mRARSA

Lab cloud P2P

Energy consumption (mA) 2.86 560 520 1000 420

0.69 310 210 750 110

1.03 400 410 850 230

Table 10 Network latency performance evaluation for Eight-
Queen problem

Task
size
(Mb)

Distant
cloud

Collaborative-cloud mRARSA

Lab cloud P2P

Network latency (s) 10 35.52 25.62 2.75 16.21

6.3 24.99 18.22 1.84 10.48

4.5 15.62 12.08 1.04 6.02

Table 11 Execution time performance evaluation

Task
size
(Mb)

Distant
cloud

Collaborative-cloud mRARSA

Lab cloud P2P

Execution Time (s) 10 3.05 4.16 9.91 2.55

6.3 1.82 1.6 6.48 1.05

4.5 2.86 2.75 8.67 2.02

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 19 of 21

Necessarily, this collaborative-cloud would be self-
managing and required to be grouped into clusters of
computing power, protected in the boxes. An ideal
collaborative-cloud should support any resource-
demanding application while executing with minimal
software constraints.

Deployment challenges
Several mobiles cloud architectural characteristics
must be considered before designing the proposed
architecture. Frequency analyzer and signal strength
determiner are the major components that contribute
to both service and energy efficiency. For effective
performance, several criteria must be considered, such
as interface availability, channel link speed, energy
cost, mobile data cost (on use), signal strength, and
communication barriers.

Conclusion
This is a resourceful architecture that optimizes the cloud
resources for a mobile thin-client. It considers both con-
tent (tasks’ data) and context (signal strength and commu-
nication barriers) when allocating the resources to a
requesting mobile client. It minimizes the communication
overhead between the device and the architecture re-
sources (P2P nodes, collaborative cloud, and cloud). It also
leverages the architecture resources for the execution of
resource-intensive mobile client applications. Essentially,
this study proposes an algorithm that deals with both
context-aware and content-aware decisions. These deci-
sions occur at run time while a mobile client is executing
applications to leverage the architecture’s resources. These
resources allocate via a one-hop access point through
wireless communication. The deployment model supports
any types of resource-intensive applications. The signal
strength analyzer is a remarkable feature that determines
signal strength and forwards the execution request based
on content and tasks’ size. The application classifies into
executable tasks of different sizes. Then, these tasks are
assigned to resources (collaborative-cloud and distant
cloud) based on the signal strength and the task content.
The execution model shows efficient results and pro-
vides quality, efficient decisions based on the current
context. The client device achieves lower energy cost
and execution time.

For execution, mRARSA is the best parameter archi-
tecture for execution and energy efficiency. We define
the applications based on the following criteria: For a
new process, estimate the data size, computation, and
energy requirements (data, computation, and energy re-
quirements: low, medium & high).
In our experiments, we implemented the resource-

demanding applications in two categories: data-intensive
and computation-intensive with different application
sizes with the range between 0.69 to 2.86Mb and 4.5 to
10Mb, and their results are shown graphically.
We plan to execute different application sizes (i.e.

> 10Mb) at each signal strength (e.g. -67 dBm) and
monitors client mobility. The task’s execution contrib-
utes to another participating P2P node. This task
switches to another resource to minimize failure and
efficiently avoid barriers. The intended future work
would monitor the expected barriers which affect
both service efficiency and energy efficiency. More
effective strategies should be developed to minimize
the barrier effects and create the ability to inter-
communicate cloud resources.
Optimistically, this architecture should provide

more mobility with determining signal strength at
the different range and switching task execution
among participating P2P nodes of the architecture.
This has to support the mobile clients’ mobility in
designated physical proximity of this architecture.
Therefore, this should be a remarkable architectural
feature for the aspirant researchers that need to be
investigated in the future.

Abbreviations
AP: Access point; CAT: Computation augmentation techniques;
CB: Communication barriers; CPPI: Clock per instruction; dBm: Decibel
milliwatts; EC: Energy consumption; FR: Frequency range; JADE: Java agent
development environment; MAHC: Mobile ad hoc cloud; MCC: Mobile cloud
computing; MCDM: Multi-criteria decision making; mRARSA: Mobile
resourceful architecture ready to serve applications; OCMCA: Operator centric
mobile cloud architecture; P2P: Peer to peer; PIPS: Packet instruction per
second; QoS: Quality of service; RCT: Resource connection time; RI: Resource
intensive; SMD: Smart mobile device; SSA: Signal strength analyzer;
TT: Turnaround time; UI: User interface; UWB: Ultra-wideband; VM: Virtual
machine

Acknowledgements
The authors would like to express their gratitude to King Khalid University,
Abha, Saudi Arabia for providing administrative and technical support such
as computer lab equipment.

Table 12 Energy consumption performance evaluation

Task size
(Mb)

Distant
cloud

Collaborative-cloud mRARSA

Lab cloud P2P

Energy consumption (mA) 10 560 520 1000 420

6.3 310 210 750 110

4.5 400 410 850 230

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 20 of 21

Authors’ contributions
AI (corresponding author): His contribution includes conceptualization,
methodology design; manage required software, execute experiments and
analyze results. He conducted a research and investigation process.
Importantly, he owned responsibilities for the research activity, planning, and
execution. AK: His contribution includes oversight and leadership
responsibility for the research activity planning and execution, including
mentorship external to the core team. KM: Contribution for this study
includes conceptualization, investigation, methodology, supervision,
validation, visualization, writing-original draft, and writing-review & editing.
SY: Her contribution includes providing resources such as study materials, re-
agents, materials, computing resources. Specifically, critical review, commen-
tary, and revision including prepublication stages are included. MAK: He is
officially holding responsibilities of computer labs in the college. His contri-
bution includes setting and configuring of cloud labs. MRH: He has contrib-
uted in editing and improving diagrams ‘quality. All authors read and
approved the final manuscript.

Funding
The authors extend their appreciation to the Deanship of Scientific Research
at King Khalid University for funding this work through Research Group
Project under grant number R.G.P. 1/166/40.

Availability of data and materials
Not applicable.

Competing interests
This manuscript has not been submitted in any another journal or other
publishing venue.

Author details
1Banasthali Vidyapith, Niwai, Rajasthan, India. 2King Khalid University, Abha,
Saudi Arabia. 3Suresh Giyan Vihar University, Jaipur, Rajasthan, India.

Received: 28 September 2019 Accepted: 19 January 2020

References
1. Gu F, Niu J, Qi Z, Atiquzzaman M (2018) Partitioning and offloading in smart mobile

devices for mobile cloud computing: state of the art and future directions. J Netw
Comput Appl 119:83–96. https://doi.org/10.1016/j.jnca.2018.06.009

2. Wu H, Sun Y, Wolter K (2018) Energy-efficient decision making for Mobile
cloud offloading. IEEE Transactions on Cloud Computing 7161. https://doi.
org/10.1109/TCC.2018.2789446

3. Shaukat U, Ahmed E, Anwar Z, Xia F (2016) Cloudlet deployment in local
wireless networks: motivation, architectures, applications, and open
challenges. J Netw Comput Appl 62:18–40. https://doi.org/10.1016/j.jnca.
2015.11.009

4. Bou Abdo J, Demerjian J (2017) Evaluation of mobile cloud architectures.
Pervasive and Mobile Computing 39:284–303. https://doi.org/10.1016/j.pmcj.
2016.12.003

5. Hung SH, Shih CS, Shieh JP et al (2012) Executing mobile applications on
the cloud: framework and issues. Comput Math Appl 63:573–587. https://
doi.org/10.1016/j.camwa.2011.10.044

6. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based
cloudlets in Mobile computing. IEEE Pervasive Computing 8:14–23. https://
doi.org/10.1109/MPRV.2009.82

7. Bhattacharya A, De P (2017) A survey of adaptation techniques in
computation offloading. J Netw Comput Appl 78:97–115. https://doi.org/10.
1016/j.jnca.2016.10.023

8. Cuervo E, Balasubramanian A, Cho D-K, et al (2010) MAUI: Making
Smartphones Last Longer with Code Offload

9. Dou A, Kalogeraki V, Gunopulos D et al (2010) Misco. 1. https://doi.org/10.
1145/1839294.1839332

10. Akan O, Bellavista P, Cao J, et al (2010) Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering
76 Editorial Board

11. Chun B-G, Ihm S, Maniatis P, et al (2011) CloneCloud: Elastic Execution
between Mobile Device and Cloud

12. Kosta S, Aucinas A, Hui P et al (2012) ThinkAir: dynamic resource allocation
and parallel execution in the cloud for mobile code offloading. Proceedings
- IEEE INFOCOM, pp 945–953. https://doi.org/10.1109/INFCOM.2012.6195845

13. Ravi A, Peddoju SK (2015) Handoff strategy for improving energy efficiency
and cloud service availability for Mobile devices. Wirel Pers Commun 81:
101–132. https://doi.org/10.1007/s11277-014-2119-y

14. Zhou B, Buyya R (2018) Augmentation techniques for Mobile cloud
computing. ACM Comput Surv 51:1–38. https://doi.org/10.1145/3152397

15. Wei Y, Blake MB (2010) Service-oriented computing and cloud computing:
challenges and opportunities. IEEE Internet Comput 14:72–75. https://doi.org/10.
1109/MIC.2010.147

16. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-
degree compared. Grid Computing Environments Workshop, GCE 2008, pp 1–10.
https://doi.org/10.1109/GCE.2008.4738445

17. Liu X, Yuan C, Yang Z, Zhang Z (2016) Mobile-agent-based energy-efficient
scheduling with dynamic channel acquisition in mobile cloud computing. J
Syst Eng Electron 27:712–720. https://doi.org/10.1109/JSEE.2016.00074

18. Gordon MS, Hong DK, Chen PM et al (2015) Accelerating Mobile
applications through Flip-flop replication. Proceedings of the 13th annual
international conference on Mobile systems, applications, and services.
MobiSys 15:137–150. https://doi.org/10.1145/2742647.2742649

19. Merz R, Widmer J, Le Boudec JY, Radunović B (2005) A joint PHY/MAC
architecture for low-radiated power TH-UWB wireless ad hoc networks.
Wirel Commun Mob Comput 5:567–580. https://doi.org/10.1002/wcm.313

20. Nadimi ES, Jørgensen RN, Blanes-Vidal V, Christensen S (2012) Monitoring
and classifying animal behavior using ZigBee-based mobile ad hoc wireless
sensor networks and artificial neural networks. Comput Electron Agric 82:
44–54. https://doi.org/10.1016/j.compag.2011.12.008

21. Dastjerdi AV, Zhou B, Buyya R et al (2015) mCloud: a context-aware
offloading framework for heterogeneous Mobile cloud. IEEE Trans Serv
Comput 10:797–810. https://doi.org/10.1109/tsc.2015.2511002

22. Mohiuddin K, Mohammad AR, Raja AS, Begum SF (2012) Mobile-CLOUD-
mobile: is shifting of load intelligently possible when barriers encounter?
Information science and digital content technology (ICIDT), 2012 8th
international conference on 2, pp 326–332

23. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: a survey. Futur
Gener Comput Syst 29:84–106. https://doi.org/10.1016/j.future.2012.05.023

24. The Network CTNS (2019) Cisco breaks the record books: powering Rakuten’s cloud
native Mobile network | the network. In: The Network, Cisco’s Technology News Site

25. eyesaas.com/wi-fi-signal-strength/ No Title
26. LiveAgent (2016) Best dBm values for Wifi. In: LiveAgent
27. Díaz A, Merino Gomez P, Rivas Tocado F (2010) Mobile application profiling

for connected mobile devices. IEEE Pervasive Computing 9:54–61. https://
doi.org/10.1109/MPRV.2009.63

28. Qi H, Gani A (2012) Research on mobile cloud computing: review, trend
and perspectives. 2012 2nd international conference on digital information
and communication technology and its applications, DICTAP 2012, pp 195–
202. https://doi.org/10.1109/DICTAP.2012.6215350

29. Panigrahi CR, Sarkar JL, Pati B (2018) Transmission in mobile cloudlet
systems with intermittent connectivity in emergency areas. Digit Commun
Netw 4:69–75. https://doi.org/10.1016/j.dcan.2017.09.006

30. Lee H-S, Lee J-W (2018) Task offloading in heterogeneous Mobile cloud
computing: modeling, analysis, and cloudlet deployment. IEEE Access 6:
14908–14925. https://doi.org/10.1109/ACCESS.2018.2812144

31. Sarathchandra Magurawalage CM, Yang K, Hu L, Zhang J (2014) Energy-
efficient and network-aware offloading algorithm for mobile cloud computing.
Comput Netw 74:22–33. https://doi.org/10.1016/j.comnet.2014.06.020

32. Itu-r (2016) ITU-R Radiocommunicati on Study Groups D IO REGU L A
33. Communications Research Center (CRC) C (2018) Breaking the frequency

barrier: using millimetre waves for Mobile services - communications
research Centre Canada. In: Government of Canada

34. Balioti V, Tzimopoulos C, Evangelides C (2018) Multi-criteria decision making
using TOPSIS method under fuzzy environment. Application in Spillway
Selection Proceedings, vol 2, p 637. https://doi.org/10.3390/
proceedings2110637

35. PowerTutor: A Power Monitor for Android-Based Mobile Platforms.
Retrieved from http://ziyang.eecs.umich.edu/projects/powertutor/

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Islam et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:9 Page 21 of 21

https://doi.org/10.1016/j.jnca.2018.06.009
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.1016/j.jnca.2015.11.009
https://doi.org/10.1016/j.jnca.2015.11.009
https://doi.org/10.1016/j.pmcj.2016.12.003
https://doi.org/10.1016/j.pmcj.2016.12.003
https://doi.org/10.1016/j.camwa.2011.10.044
https://doi.org/10.1016/j.camwa.2011.10.044
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1016/j.jnca.2016.10.023
https://doi.org/10.1016/j.jnca.2016.10.023
https://doi.org/10.1145/1839294.1839332
https://doi.org/10.1145/1839294.1839332
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1007/s11277-014-2119-y
https://doi.org/10.1145/3152397
https://doi.org/10.1109/MIC.2010.147
https://doi.org/10.1109/MIC.2010.147
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1109/JSEE.2016.00074
https://doi.org/10.1145/2742647.2742649
https://doi.org/10.1002/wcm.313
https://doi.org/10.1016/j.compag.2011.12.008
https://doi.org/10.1109/tsc.2015.2511002
https://doi.org/10.1016/j.future.2012.05.023
http://eyesaas.com/wi-fi-signal-strength
https://doi.org/10.1109/MPRV.2009.63
https://doi.org/10.1109/MPRV.2009.63
https://doi.org/10.1109/DICTAP.2012.6215350
https://doi.org/10.1016/j.dcan.2017.09.006
https://doi.org/10.1109/ACCESS.2018.2812144
https://doi.org/10.1016/j.comnet.2014.06.020
https://doi.org/10.3390/proceedings2110637
https://doi.org/10.3390/proceedings2110637
http://ziyang.eecs.umich.edu/projects/powertutor/

	Abstract
	Introduction
	Contributions and outline

	Related work
	Code offloading
	Resourceful architecture
	Motivation

	Proposed architecture
	Architecture overview
	Essential components
	Resource monitor module
	Signal strength analyzer
	Decision module
	Task manager
	Communication manager
	Failure recovery agent

	Architecture’s service domain
	Service metrics
	Service policies
	Mobility
	Mobile ad-hoc cloud
	Cloudlet
	Distant cloud

	Resource intensive
	Collaborative and distant cloud

	Barriers in mobile communication

	Architecture algorithms
	Algorithms’ criteria
	Offloading decision algorithm
	Switching decision algorithm
	Experimental setup

	Results and discussions
	Execution analysis (scenario 1)
	Execution analysis (scenario 2)

	Challenges and future work
	Deployment challenges

	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher’s Note

