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Abstract

With the combination of Mobile Edge Computing (MEC) and the next generation cellular networks, computation
requests from end devices can be offloaded promptly and accurately by edge servers equipped on Base Stations
(BSs). However, due to the densified heterogeneous deployment of BSs, the end device may be covered by more than
one BS, which brings new challenges for offloading decision, that is whether and where to offload computing tasks
for low latency and energy cost. This paper formulates a multi-user-to-multi-servers (MUMS) edge computing
problem in ultra-dense cellular networks. The MUMS problem is divided and conquered by two phases, which are
server selection and offloading decision. For the server selection phases, mobile users are grouped to one BS
considering both physical distance and workload. After the grouping, the original problem is divided into parallel
multi-user-to-one-server offloading decision subproblems. To get fast and near-optimal solutions for these
subproblems, a distributed offloading strategy based on a binary-coded genetic algorithm is designed to get an
adaptive offloading decision. Convergence analysis of the genetic algorithm is given and extensive simulations show
that the proposed strategy significantly reduces the average latency and energy consumption of mobile devices.
Compared with the state-of-the-art offloading researches, our strategy reduces the average delay by 56% and total
energy consumption by 14% in the ultra-dense cellular networks.
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Introduction
The development of mobile applications facilitates peo-
ple’s life, such as augmented reality and intelligent inter-
connection, etc. These applications are characterized by
a large amount of computation and a low tolerance for
latency. However, mobile devices are limited in compu-
tation and endurance capacity. Mobile edge computing
(MEC) technology has been regarded as an effective solu-
tion to the above constraints. Mobile devices get powerful
computing capacity and lower energy consumption when
the computing tasks are offloaded to edge servers [1].
Moreover, the integration of the MEC technology and

*Correspondence: jiaweihuang@csu.edu.cn
2School of Computer Science and Engineering, Central South University,
Lushan South Road, 410083 Changsha, China
Full list of author information is available at the end of the article

next generation networks, such as the fifth/sixth genera-
tion networks (5G/6G), can save bandwidth resources and
improve user experience [2, 3].
Though enjoying the super-high data transmission rate

brought by the next generation networks, mobile devices
still face new problems, such as the network densifica-
tion [4] and low signal penetration. Many existing works
formulated the MEC problem in 4G cellular networks as
multi-user to one single-server model [5–7], and their
concern was task local processing or remote offloading
to the base station. Compared with 4G, the frequency of
the 5G network is much higher, which means the faster
its attenuation will be. Considering the development of
antenna technology and the compensation of radio fre-
quency technology, the 5G construction density of China
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Unicom andChina Telecom should be about 1.7 times that
of the 4G base station, and 3.2 times for China Mobile
[8]. The ultra density of base stations means overlapped
coverage of mobile devices, which brings a new challenge
for offloading decisions: which accessible BS is the best
one to offload tasks to achieve low latency and energy
consumption?
In this paper, we formulate the offloading decision prob-

lem in the ultra-dense BSs environment as a nonlinear
integer optimization problem, which is proved to be NP-
Hard [9]. Then a suboptimal algorithm is designed to
solve this problem. First, by considering the preference of
both proximity and workload, mobile users are grouped
to one BS with the highest preference as a destination
to offload tasks. With the result of grouping, the original
problem is decomposed into several distributed 0-1 inte-
ger optimization sub-problems. After that, a binary-coded
Genetic Algorithm Based Distributed Offloading Strat-
egy (GABDOS) is proposed to solve these sub-problems
in parallel. The main contributions of this paper are as
follows:

1 A Multi-User-to-Multi-Servers edge computing
offloading problem, termed as MUMS, is proposed,
which is especially for the ultra-dense 5G cellular
networks.

2 The multi-user-to-multi-servers problem is divided
and conquered by two phases, which are server
selection and offloading decision. For the server
selection phases, mobile users are grouped to the BS
with the highest preference, which fully considers
physical distance and workload of base stations.

3 After the grouping, the original multi-user-to-multi-
servers problem is converted into several parallel
offloading decision subproblems, each of which can
be formulated as a nonlinear integer optimization
problem. To get a fast near-optimal solution, a
binary-coded Genetic Algorithm Based Distributed
Offloading Strategy (GABDOS) is designed to get an
adaptive offloading decision.

4 Convergence analysis of the genetic algorithm is
given and extensive simulations show the
performance of our solution from the impact of user
amount, user device CPU frequency, and trade-off
parameter for offloading latency and energy of users.

The rest part of the paper is organized as follows.
The related works are reviewed in Related works section.
The system model is elaborated in System model section.
Problem formulation and solutions section gives the
problem formulation and detailed solutions. Performance
evaluations are described in Performance evaluation
section, and finally, the paper is concluded in Conclusion
section.

Related works
By deploying servers near users, MEC can provide
additional computing services for mobile devices. Users
can get lower latency and less energy consumption by
offloading their computing tasks to edge servers. In order
to fully realize the convenience of edge computing under
the limitation of channel resources and computing capac-
ity of edge servers, scholars used different excellent meth-
ods to optimize edge computing.
Common methods are primal-dual optimization

[10, 11], nonlinear optimization [7, 12, 13] and mixed-
integer linear programming problem [14, 15]. In [10],
an online truthful mechanism based on the primal-dual
optimization framework integrating computation and
communication resource allocation is proposed . For
multi-user wireless powered mobile edge computing
(WP-MEC) systems, an online computation rate max-
imization (OCRM) algorithm is proposed by jointly
managing the radio, computational resources, allocating
time for energy transfer and data transmission [11].
Qi et al.[7] formulated the offloading decision as a

resource scheduling problem with single or multiple
objective functions and constraints. Bai et al.[12] con-
ceived an energy-efficient computation offloading tech-
nique for UAV-MEC systems and formulated many
energy-efficiency problems, which are then transformed
into convex problems. In [13], Alghamdi et al. tackled
the MEC problem by adopting the principles of opti-
mal stopping theory contributing to two time-optimized
sequential decision-making models. Guo et al. [14] forced
on the problem of assigning resources for offloading the
computationally intensive tasks of mobile applications.
The original static offloading problem was formulated as
a mixed-integer linear programming problem, and then
be solved by an efficient heuristic approach based on
congestion awareness. A cloud-mobile edge computing
collaborative task offloading scheme with service orches-
tration (CTOSO) is proposed in [15]. In [16], a novel
Baseline Data based Verifiable Trust Evaluation (BD-VTE)
scheme is proposed to guarantee credibility at a low cost.
In recent years, optimization methods based on rein-

forcement learning [17–20] and artificial intelligence
[21, 22] have emerged. A reinforcement learning-based
online computation offloading approach for block chain-
empowered mobile edge computing was proposed in [17].
In [18], deep reinforcement learning is first proposed to
solve the offloading problem of multiple service nodes for
the cluster and multiple dependencies for mobile tasks
in large-scale heterogeneous MEC. Gao et al. investi-
gated a DNN based MEC scheme considering multiple
mobile devices and one MEC server in [19]. A Q-learning
based flexible task scheduling with global view (QFTS-
GV) scheme is proposed to improve task scheduling
success rate, reduce delay, and extend lifetime for the
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IoT in [20]. Miao et al. [21] put forward a new intelli-
gent computation offloading based MEC architecture in
combination with artificial intelligence (AI) technology. A
matrix completion-based Sampling Points Selection joint
Intelligent Unmanned Aerial Vehicle (UAVs) Trajectory
Optimization (SPS-IUTO) scheme for data acquisition is
proposed in [22]. With different system models, existing
researches have contributed a lot to solve the above prob-
lems in MEC. However, most of them do not consider
the queuing delay after the task is offloaded to the server,
and also rarely consider the channel interference between
mobile devices.
Genetic algorithm (GA) is a mature optimization algo-

rithm, which is very stable in solving optimization prob-
lems. GA can obtain the global optimal solution which is
independent of the initial conditions. Also, GA has strong
robustness and is suitable for solving complex optimiza-
tion problems. In some researches, GA has been applied
to the optimization of MEC and fog computing.
Xu et al.[23] proposed an energy-aware computation

offloading method for smart edge computing in wireless
metropolitan area networks, which adopt Non-dominated
Sorting Genetic Algorithm II (NSGA-II) to realize multi-
objective optimization to shorten the offloading time of
the computing tasks and reduce the energy consumption
of the ECNs. Goudarzi et al. [24] used GA and adjust it
for the multisite offloading problem. Also, genetic opera-
tors aremodified to reduce ineffective solutions and hence
obtain the best possible solutions in a reasonable time. A
modified GA, named energy sensitive GA, is developed
and integrated to get the optimized task offloading result
in [25], which is critical to most cloud robotic network
applications.
Du et al. [26] minimize the total system overhead of the

MEC system by jointly optimizing computation offloading
decision making and communication channel allocation
with GA. Li et al. solved a cost-minimization problem for
the MEC problem using an improved genetic algorithm
[27], but the offloading latency is not taken into account
and tested. Wu et al. [28] proposed a distributed prior-
ity offloadingmechanismwith joint offloading proportion
and transmission (PROMOT) energy algorithm based on
Genetic Algorithm. PROMOT uses the offloading prob-
ability, which is given by the prior information of past
offloading feedbacks, to determine if a task should be pro-
cessed locally or remotely. Many of the above studies have
cleverly combined GA with MEC. One disadvantage of
GA is its uncertain convergence. The poor parameter set-
ting is easy to lead to local optimum or slow convergence.
However, many of the above works do not consider the
convergence of the genetic algorithm.
Different from existing researches, in this paper, (1)

a user grouping strategy is proposed considering both
geographical distribution and base station load of the

servers. (2) Queuing theory is introduced to analyze the
queueing time of tasks and signal interference between
mobile devices is fully considered. (3) To improve the
scalability of the algorithm, the original multi-user-to
multi-server problem is divided into several indepen-
dent subproblems, which can be processed independently
and in parallel. (4) To optimize the convergence perfor-
mance of GA, the crossover probability(CP) and mutation
probability(MP) are fully analyzed and the optimal value
is recommended. Finally, a genetic algorithm-based dis-
tributed offloading strategy is proposed to obtain the
optimal solution with high efficiency and low deployment
overhead.

Systemmodel
Without loss of generalit, Orthogonal Frequency Division
Multiple Access (OFDMA) technology is adopted for the
5G environment in this work. Each BS is equipped with
an edge server with limited computing capacity. The data
transmission delay between the BS and its edge server is
so small that it can be counted as zero. The geographical
distribution of users follows the Geometric distribution.
On the other hand, each user device generates a comput-
ing task obeying the Poisson distribution in each time slot.
And each computing task can not be divided, i.e., the task
must be processed either locally or offloaded.

Network model
As shown in Fig. 1,m base stations are denoted as set B =
{b1, b2, . . . , bm}, each of which is fixed with an edge server.
The set ofm servers is marked as S = {s1, s2, . . . , sm}. End
users U = {u1,u2, . . . ,un} are distributed in the area with
geometric distribution. The set of computing tasks gener-
ated by all users is denoted as T = {t1, t2, . . . , tn}. Because
of the high density of 5G BSs, the coverage area of servers
will overlap with each other. That is to say, most users will
be covered by more than one BS.
About themobility of end-users. In the area of high pop-

ulation density, users move at 2-3 kilometers per hour and
vehicles run at about 20 kilometers per hour, whose shift
is relatively small for a 5G cellular station with a coverage
radius of 500 to 1000meters. Therefore, it can be assumed
that the end-users’ position is approximately stationary in
each given time slot.

Communication model
As mentioned earlier, user devices transmit data with the
BS through the wireless channel. The data transmission
rate is determined by the general communication model,
Shannon-Hartley theorem [29]:

rui,bj = Wbj
N

log2

(
1 + puigui,bj

ω + ∑N
k=1,k �=i puigui,bj

)
, (1)
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Fig. 1 Network model

whereWbj denotes the bandwidth of BS bj, N denotes the
number of users the BS bj served, pui denotes the trans-
mission power of user ui, gui,bj denotes the channel gain
between user ui and BS bj, and ω denotes background
noise. Because the edge server is equipped on the BS, the
transmission delay between them is very small, which can
be regarded as zero. Therefore, the data transmission rate
between the BS and the user equipment can directly be
used to represent the data transmission rate between the
user equipment and the edge server:

rui,sj = rui,bj . (2)

The notations of this paper are summarized in Table 1.

Computation model
Fsj is used to represent the CPU frequency of the edge
server sj. Wbj is the bandwidth of BS bj. For a task ti, two
indicators are used to describe it, one is the size of input
dataDti , the other is the CPU cycle Cti it needs. Due to the
small amount of data in the calculation result, the latency
of the result back to the user’s device is ignored.

Local processingmodel
If a task ti is processed locally, its energy consumption and
latency can be easily calculated, because the data trans-
mission is not needed to be considered. Its latency will
only be related to the computing capacity of the mobile
device and the CPU cycle needed to calculate the task:

Llti = Cti
Fui

. (3)

Its energy consumption can be calculated by the following
formula:

Elti = Ctiα. (4)

where α represents the energy consumption generated by
the device in each CPU cycle. In this paper, the model in
[30] is used to calculate the value of α:

α = κ
(
Fui

)2 , (5)

where κ is the energy consumption coefficient.

MEC processingmodel
In the model of this work, we assume that it is serial com-
puting rather than parallel computing when the tasks are
offloaded to the edge server, so we should consider the
queuing situation of the tasks. If a task ti is offloaded to
the edge server for processing, its latency includes three
parts: transmission latency, queuing latency, and calcula-
tion latency, and its energy consumption is equal to the
transmission energy consumption. The following formula
can calculate the transmission latency of the task:

Loff ,sjti = Dti
rui,sj

. (6)

We consider an M/M/1 queue on the edge server sj.
Therefore, the queuing latency and calculation latency
mentioned above will be combined as processing latency.
According to queuing theory, average processing delay can
be calculated by the following formula:

Lsoj,sj = 1
μsj − λsj

, (7)

whereμsj represents the task processing rate on the server
sj and λsj is the task arrival rate. In this case, the energy
consumption generated by the equipment only includes
data transmission energy consumption:

Eoff ,sjti = Dti
rui,sj

pui . (8)
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Table 1 Notations

Symbol Definition

S The set of edge services

B The set of BSs

U The set of all users

N The number of users the BS bj served

T The set of all computing tasks

rui ,bj The transmission rate between user i and BS j

Wbj The bandwidth of BS j

pui The transmission power of user i

gui ,bj The channel gain between user i and BS j

ω Background noise

Fbj The CPU frequency of BS j

Dti The input data size of task i

Cti The required Cpu cycles of task i

mti ,sj The offloading decision of task i

Llti The local processing latency of task ti

Elti The local processing energy consumption of task ti

λbj Task arrival rate on BS j

μbj Service rate of BS j

L
off ,sj
ti The transmission latency of task ti from user ui to service sj

Lsoj,sj The average processing delay on service sj

E
off ,sj
ti The transmission energy consumption of task ti from user ui to

service sj

� Time frame length

β Trade-off parameter between latency and energy
consumption

Hti Overhead of task ti

pre
bj
ui The preference from user ui to BS bj

loadbj The load of BS bj

CP The crossover probability of GA

MP The mutation probability of GA

Problem formulation and solutions
In this section, the problem is formulated mathematically
and the proposed solution is described in detail.

Problem formulation
The ultimate optimization goal of this work is to make an
offloading decision for balanced latency and user energy
consumption. For a single user, its possible offload options
include local processing and offloading task to a reach-
able BS server for processing. ki is used to represent
the offloading decision of task ti. If ki is equal to 0, it
indicates that the task is processed locally, otherwise, ki
indicates the BS server index of task offloading. Then, a
set K = {k1, k2, . . . , kn} is used to represent the offloading
decisions of all users.

For a certain offloading decision ki, the latency of task ti
can be calculated according to the following formula:

Lti =
{
Llti if ki = 0;
L
off ,ski
ti + Lsoj,ski if ki �= 0.

(9)

Similarly, the following formula can be used to calculate
the energy consumption of ti:

Eti =
{
Elti if ki = 0;
E
off ,ski
ti if ki �= 0.

(10)

Here, a user overhead Hui is introduced, which is equal
to user task latency plus energy consumption. Since these
two values are of similar magnitude, overhead is not
normalized.

Hti = βLti + (1 − β)Eti , (11)

where β is a trade-off parameter. When β is close to
1, it pays more attention to latency performance. When
β is close to 0, it pays more attention to energy con-
sumption performance. Users can set it according to their
own needs. Thus, the total overhead of all users can be
calculated by following formula:

HT =
∑
ti∈T

Hti . (12)

The optimization objective of this paper is to reduce the
total latency and energy consumption of users, which can
be summarized as the following optimization objective
function:

min objectmin
M

HT

s.t.
{
C1 : mi ∈ {0, 1, . . . ,m},∀mi ∈ M
C2 : λsj < μsj , ∀sj ∈ S

(13)

Constraint (1) indicates that offloading selection is an
integer optimization problem, and constraint (2) indi-
cates that the task arrival rate on the BS server is less
than the processing rate. This problem is a very difficult
nonlinear integer optimization problem [9], which moti-
vates us to explore an efficient scheme to find suboptimal
solutions.

User grouping strategy based on preferences
To reduce the complexity of the original problem, we
first group the users. This means that the user will first
select a specific BS as the destination for task offloading.
Generally speaking, an intuitive solution is to assign
mobile users to the nearest BS since a closer distance
means better communication conditions. However, when
the spatial distribution of mobile users is uneven, this
solution will lead to an overload of BS for high user den-
sity. Therefore, this proposes the strategy of preference
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first to allocate users. prebjui is used to express the pref-
erence from user i to BS j, which is determined by the
following formula:

prebjui = 1
d
bj
ui

Cbj
+ loadbj

n

, (14)

where dbjui is distance between user i and BS j. Cbj rep-
resents the signal coverage of BS j. The user device will
request load data from the base station. Then loadbj indi-
cates the load of BS j, that is, the number of users that have
been allocated to it. n is the total number of users.
We traverse all users and use grouping strategy to decide

where to offload its task, and here is a detailed description
of the user grouping strategy based on preferences.

1 First, the user calculates the distance to all the
reachable BSs and queries the workload of all BSs.

2 Second, the user calculates its preference for all
reachable BSs according to Formula (14).

3 Finally, the user selects a BS offloading task with the
greatest preference value.

Algorithm 1 is the pseudo-code of SPF.

Algorithm 1: User grouping strategy based on prefer-
ences
Input: User set: U

BS set: B
Output: User assignment results A

1 for user in U do
2 Get reachable BS set Breahable;
3 for base in Breahable do
4 Calculate preferences prebaseuser

5 Find the BS with the largest preference bmax
6 A[user] ← bmax

7 return A;

Genetic algorithm based distributed offloading strategy
Mobile users need to select one of the reachable edge
servers for task offloading. To obtain the optimal offload-
ing option is a combinatorial explosion problem. In this
paper, a genetic algorithm based distributed offloading
strategy is proposed. The general idea of the strategy
is as follows and Fig. 2 gives an intuitive flow chart of
process.

• First, according to the user grouping strategy based
on preferences (Algorithm 1), mobile users are
assigned to the BS with the highest preference as a
destination to offload tasks. The preference is

Fig. 2 Flow chart of GABDOS

determined by a tradeoff computation of both
distance and workload. On the one hand, the closer
the distance between the BS and the user, the larger
the preference value is. On the other hand, the smaller
the BS’s workload, the larger the preference value.

• Then, the original problem will be decomposed into
multi-user-to-single-server subproblems, which
means that each BS is responsible for only a few users.
In each group, users either process locally or offload
tasks. So the subproblems are 0-1 selection problems.
Because these subproblems are independent of each
other, they can be processed in a distributed parallel.

• Finally, genetic algorithm (GA) is used on each edge
server to solve the 0-1 selection problems and get
near-optimal offloading decisions.
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The optimization objective of this paper is modeled as a
very complex 0-1 nonlinear optimization problem. More-
over, there is no polynomial-time complexity algorithm
for this problem. Therefore, this paper uses a heuristic
algorithm to reduce the complexity and obtain the approx-
imate solution. GA is a method to search the optimal
solution by simulating the natural evolution process [31],
and it’s widely used in optimization problems.
In this paper, due to the 0-1 selectivity of sub-problems,

the binary coding is adopted to encode genes. Each
chromosome represents the offloading decision of a sub-
problem. If the gene of a user is 0, the task will be
processed locally, and if 1, the task will be offloaded.
In the theory of evolution, fitness refers to the adapt-

ability of an individual to the environment and the ability
of the individual to reproduce. The fitness function of the
GA is also called the evaluation function, which is used to
judge the quality of individuals in the group. It is evaluated
according to the objective function of the problem. The
optimization goal of our model is to make the total latency
and energy consumption of users as small as possible, so
the following fitness function is adopted:

f = 1
HT

. (15)

The formula above shows that, the larger the total over-
head, the lower the fitness.
Three operators in GA are as follows:

1 Selection operator: Roulette wheel selection is used
in this paper. The basic idea is that the probability of
each individual being selected is proportional to its
fitness.

2 Crossover operator: As shown in Fig. 3, a two-point
crossover operator is adopted, which refers to the
random selection of two points in an individual gene,
and then carry out gene exchange. The crossover
probability is denoted as CP . After extensive
preliminary tests and convergence analysis, CP is set
to 0.5.

3 Mutation operator: Uniform mutation is adopted
here, which means every gene is mutated according
to a certain probability. The mutation probability is
denoted asMP .MP is set to 0.001 according to
preliminary test results.

The setting of CP and MP are detailed in Impact of
trade-off parameter on GABDOS section Algorithm 2 is
the pseudo-code of GA.

Time complexity analysis of proposed offloading strategy
Assuming there are N BSs and M users, the proposed
offloading strategy can be divided into two parts. First,
each user needs to traverse all the reachable base sta-
tions to select the base station with the highest preference.
Therefore, the time complexity of this part is O(N×M).
Then, each base station needs to calculate the optimal
offloading decision. Since all base stations can process the
step in parallel, the time complexity of a certain base sta-
tion can represent the time complexity of this part. Since
GA is adopted here, the time complexity of this part is
mainly related to the parameters of GA. G is used to rep-
resent the generation of GA. P is used to represent the
population.The size of the individuals is equal to the num-
ber of users. Therefore, the time complexity in this part
can be summed up as O(G×P×M). The time complexity
of the latter part accounts for the main part of the whole

Fig. 3 Two-point crossover
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Algorithm 2: Genetic Algorithm Based Distributed
Offloading Strategy
Input: Initial population: P0

Population size: N
The largest generation: G
The maximum fitness set of each generation

population: F = {f1, f2, . . . , fN }
Maximum fitness difference threshold: K
Crossover probability: CP
Mutation probability:Mp

Output: Optimal individual O
1 g ← 0;
2 F ← ∅;
3 while g < G do
4 for i = 1 to N do
5 Evaluate fitness of Pg ;
6 fg ← The maximum fitness;
7 O ← Maximum fitness individual;
8 for i = 1 to N do
9 Select operation to Pg ;

10 for i = 1 to N/2 do
11 if random(0,1) < Cp then
12 Crossover operation to Pt ;

13 for i = 1 to N do
14 if random(0,1) < Mp then
15 Mutation operation to Pg ;

16 if g �= 0 && fg − fg−1 < K then
17 break;
18 Pg+1 ← Pg ;
19 g ← g + 1;
20 return O;

algorithm. The convergence of GA has a great impact on
its time complexity, so its convergence described in detail
in the next section.

Performance evaluation
In this section, the impact of various indicators on user
latency and energy consumption is tested, including user
amount, the computing capacity, and the transmission
power of user equipment. At the same time, the influence
of the trade-off parameter β and the convergence of GA is
also evaluated.
The following offloading strategies are used as bench-

marks for this work:

1 All local processing strategy (ALP). In this extreme
case, all tasks of the user are processed locally, which

is the optimal solution for the minimum latency
without considering users’ energy consumption.

2 All offloading strategy (AOS), which means all the
user tasks are offloaded to a random reachable edge
server. Generally, offloading local tasks to the edge
server will help reduce latency and save energy for
users. However, due to the limited channel resources,
if all users’ tasks are offloaded, it is likely to cause
serious signal interference and channel preemption,
thus greatly reducing the efficiency of data
transmission. Eventually, the energy consumption
and latency of AOS will be greatly increased.

3 PROMOT [28], which is based on the Genetic
technology as our work, is a priority offloading
mechanism with joint offloading proportion and
transmission (PROMOT) energy algorithm. It uses
an offloading probability to determine if a task
should be processed locally or remotely. The
probability is computed from the prior information
of past offloading feedbacks.

As shown in Fig. 4, the simulation is set in a 500m ×
500m square area. There are 9 BSs in total, and the plane
positions of all users are randomly distributed. The basic
parameters of the simulation are summarized in Table 2.

Performance for offloading efficiency
The proposed grouping strategy and GABDOS are com-
pared with the ALP (referred to as the optimal solution for
the lowest latency), the AOS and the PROMOT, in terms
of the total overhead, the average latency and the energy
consumption of user devices.

Impact of user amount on offloading efficiency
Figure 5 gives the overhead of different solutions with
different user density. The overhead is a comprehensive
measurement of user task latency plus energy consump-
tion. It can be concluded that GABDOS has minimal
overhead with various user density. This advantage is
more and more obvious with the increase of the user
amount compared with AOS. This is because the GAB-
DOS can split the load of BS, while the PROMOT did
not consider the workload variation of BSs. When the
user amount is too large, AOS will lead to fierce channel
resources and server resources preemption, thus signifi-
cantly improving the latency and energy consumption of
users. Compared to ALP, althoughGABDOSwill cost user
devices’ energy consumption for offloading, it leads to an
effective improvement in latency performance.
Figure 6 gives the latency performance. As expected,

without considering energy consumption, ALP reaches
the optimal latency for processing all tasks locally, which
in practice can be used as the lower bound of latency.
GABDOS performs very close to ALP which has the
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Fig. 4 Simulation setup

best latency performance, PROMOT places in the mid-
dle, while AOS performs the worst. This because when all
users offload the task in AOS, they will interfere with each
other and occupy limited channel resources. This will
inevitably lead to a decrease in data transmission rate, thus

Table 2 Simulation parameters

Parameter value

BS signal coverage 150m [8]

Edge server CPU frequency 10GHz [9]

BS bandwidth 10MHz [9]

User device transmission power 0.5W [32]

Data volume of task [600,1000]Kb [9]

Calculation cycles of task [400,600]MegaCycles [9]

Energy consumption factor 5 × 10−27 [32]

Background noise 100dBm [9]

channel gain 140.7+36.7log10d[km] [33]

Time slot 5s

Trade-off parameter 0.5

Population size 100

The largest generation 500

Maximum fitness difference threshold 0.0001

CP 0.5

MP 0.001

increasing the transmission latency. At the same time,
AOSwill make the edge server overburdened and increase
the task processing latency. PROMOT has two highest
delay points at user amount 60 and 100, respectively.
This may because when the user density exceeds some
threshold, it spends time collecting the prior offloading
information to refresh its offloading probability to make a
further decision.
Figure 7 shows the energy consumption performance of

these strategies. When the user amount is less than 50,
AOS has the best energy performance. Because, in this sit-
uation, the channel resources are relatively abundant, even
if all users offload tasks, they can get a very high trans-
mission rate. However, with the increase of user amount,
the total energy consumption of AOS first exceeds that of
GABDOS and PROMOT, and finally exceeds that of ALP.
Because with the increase of the user amount, AOS will
lead to a sharp decline in the channel transmission rate,
thus greatly increasing the transmission energy consump-
tion. Obviously, when the user amount is large, GABDOS
has the best energy performance.

Impact of user device CPU frequency on offloading efficiency
In this section, the impact of the computing power of
mobile devices on the total latency and energy consump-
tion is tested.
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Fig. 5 Total overhead with different user amount

It can be concluded from Fig. 8 that as the computing
capacity of mobile devices increases, the decreasing effect
of average latency becomes smaller and smaller. The curve
of GABDOS and ALP is very close, which shows that
GABDOS has made full use of the latency performance
gain brought by the increase of device CPU frequency.

PROMOT is more insensitive to the increase of device
CPU frequency since it makes the offloading decision
based on prior probability. The reason why the decreas-
ing effect of average latency becomes smaller with the
computing capacity of mobile devices increasing will be
discussed in our future work.

Fig. 6 Average latency with different user amount
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Fig. 7 Total energy consumption with different user amount

From Fig. 9, it can be told that all the curves except
AOS are almost linear growth. GABDOS has the low-
est energy consumption when the device CPU frequency
is higher than 0.2 GHz. PROMOT consumes the most
energy except AOS when the device CPU frequency
is low. With the increase of device CPU frequency,

PROMOT’s energy consumption exceeds ALP. That’s
because the higher the device CPU frequency is, the
higher the energy consumption of local processing tasks
is. The above simulation results show that it is uneconom-
ical to blindly increase the computing capacity of mobile
devices.

Fig. 8 Impact of user device CPU frequency on average latency
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Fig. 9 Impact of user device CPU frequency on total energy consumption

Impact of trade-off parameter on GABDOS
The trade-off parameter β can be used to adjust the
user’s optimization preference. If the optimization latency
is focused on, the β value can be set closer to 1. If
the energy consumption optimization is focused on, the
β value can be set closer to 0. For example, when the

remaining power of the user’s equipment is small and
the task is not sensitive to latency, like image recogni-
tion, then the value of β can be set closer to 0. On the
contrary, if the user’s device is fully charged and many
tasks are delay-sensitive, such as online games, β can
be set closer to 1, so that the user can get a better

Fig. 10 Impact of β on average latency
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experience. It can be concluded that the proposed GAB-
DOS is flexible.
It can be concluded from Fig. 10 that with an increase

of β , the average latency of users has a significant decline.
From Fig. 11, it can be concluded that the total energy
consumption of users increases with an increase of β .
This means that adjusting β can effectively control the
objective of the optimization.

Convergence analysis of GABDOS
Convergence is a matter of concern in GA. Since
the proposed GABDOS is based on genetic algorithm,
it is necessary to analyze the convergence of the
algorithm.

Impact of crossover andmutation probability
It is known that the crossover probability CP and the
mutation probabilityMP have a direct impact on the con-
vergence of the genetic algorithm. The larger CP is, the
faster the new individuals will be generated. However,
excessive CP will lead to the destruction of the genetic
model. On the contrary, if CP is too small, the search pro-
cess will be slow or even stagnant. For MP, a small value
will lead to the slow generation of new individuals, and
it is easy for the algorithm to fall into the local optimum.
A too-large MP will make the algorithm become a pure
random search algorithm.
To derive the optimal setting of CP and MP , the con-

vergent generation and maximum fitness of the algorithm
under different crossover andMP are tested. As shown in

Fig. 12, the algorithm converges extraordinary fast when
MP is small. However, through Fig. 13, it can be found
out that the maximum fitness of the population is not
optimal. It shows that the algorithm does not converge to
the optimal solution, but falls into the local optimum. On
the other hand, it is almost difficult for the algorithm to
converge whenMP is set to a large number since the algo-
rithm is close to random search. In the same way, we can
see from Fig. 12 that the convergence of the algorithm is
very slow whenMP is set very largely. Finally, according to
Figs. 12 and 13 we confirm that the optimal crossover and
MP are 0.5 and 0.001 respectively.

Convergence of GA
In this subsection, we analyzed the maximum fitness in
each generation whenCP andMP were set to 0.5 and 0.001
respectively. The x-axis of Fig. 14 represents the genera-
tion of algorithm iteration, and the y-axis is maximum fit-
ness in each generation of the population. The maximum
fitness individual in the population corresponds to a spe-
cific offloading strategy. The larger its value is, the smaller
the user’s overhead is. Also, it can be concluded that
the algorithm converges in the 50th generation. More-
over, according to the analysis of CP and MP , we can
make sure that the algorithm has converged to the global
optimum.

Evaluation summary
Among all the simulation benchmarks, the proposed
GABDOS has the best performance in terms of delay and

Fig. 11 Impact of β on total energy consumption
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Fig. 12 Impact of CP andMP on convergent generation

energy consumption. In a 120-users network, compared
with PROMOT, GABDOS reduces latency by 78% and
energy consumption by 11%.

Conclusion
In this paper, a multi-user-to-multi-servers offloading
decision (MUMS) problem is proposed for edge com-
puting in ultra-dense 5G cellular networks. The MUMS
problem is divided into two phases and conquered one

by one. The first phase is to group users to BS accord-
ing to a preference metric that considers both proximity
and workload of the BS. After that, the original prob-
lem is decomposed into several sub-problems with 0-1
selectivity, and then a genetic algorithm named as GAB-
DOS is designed to solve these sub-problems in parallel.
It is verified that the proposed scheme can give a bal-
anced offloading decision for low latency and user energy
consumption.

Fig. 13 Impact of CP andMP on maximum fitness
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Fig. 14 Convergence curve of GA
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