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Abstract

Vehicular fog computing (VFC) provisions computing services at the edge of networks by fully exploiting the idle
resources of vehicle loaded computer systems. Task scheduling and resource allocation revolved around VFC have
gained tremendous attention recently. Currently, most of these works in VFC have focused on response time
optimization or energy reduction. Computing services are provisioned in a pay-as-you-go model and vehicles as
resource contributors are stimulated by the benefits obtained by leasing these resources. How to maximize their own
benefits is one of big concerns but few of current works have recognized its importance in VFC. We in this paper
introduce the notion of resource pooling into VFC where the computing resources of vehicles are pooled together to
jointly provision computational services in a community. A genetic algorithm based strategy is proposed to solve the
optimization problem for the sake of benefit maximization. Extensive experiments have been carried out to evaluate
the approach and the numeric results have demonstrated that our strategy outstands other approaches with regards
to the optimization objective.
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Introduction
The Internet of Things (IoTs) defines a connection
paradigm, where people and things are able to con-
nect and communicate anytime, anyplace with anything
and anyone, ideally using any network and any services
[1, 2]. The development of information and communica-
tion technology (ICT) and IoT give rise to great revolution
of the way of life for urban residents, e.g., humanized
services are available and living standards are further
improved. With the development of IoTs, the concept of
smart city is then proposed to cater for the demanding of
making an instrumented, interconnected, and intelligent
city. Against this background, a vast amount of data is gen-
erated by IoT devices which needs real-time analysis and
processing. Although the remote cloud center is efficient
at mining and extracting valuable knowledge from these
data, task execution in cloud usually brings about long
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response latency, owing to the transmission delay caused
by data transmission via the backhual links. Task process-
ing in this way is not appropriate for explosively increasing
applications featured by strict latency requirement. As a
result, new computing paradigms are urgently needed to
support such applications which are generated either from
IoT devices or mobile terminals [3].
In this context, vehicular fog computing (VFC) [4–6] is

proposed to provision computing services at the logical
edge of networks, e.g., by fully exploiting the idle resources
of vehicle loaded computer systems. The rationale behind
VFC is that vehicles have evolved to the point where they
are capable of data processing, analysis, and reasoning
with the aid of powerful computing and communica-
tion facilities. Specifically, VFC usually consists of mobile
vehicles and immobile infrastructures such as road side
unit (RSU). Usually RSU has more powerful computing
capabilities than vehicles. Task scheduling and resource
allocation revolved around VFC have gained tremendous
attention in the past few years [7–12].
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Most of these works focus on energy-aware and time-
saving task offloading and resource allocation in VFC. On
one hand, data generated by IoT devices can be offloaded
and analyzed in VFC for the sake of response latency
optimization; on the other hand, owing to the inherent
defects of smart mobile terminals such as limited com-
putational resources and constrained battery energy, tasks
from these smart terminals (e.g., smart watches, smart
phones, and PDAs) can also be outsourced to VFC for
execution. In terms of the second case, VFC is simi-
lar to the mobile cloud computing (MCC) [13–15] that
offloads tasks hosted at these terminals to the cloud for
execution in hope to mitigate the energy consumption of
mobile devices. However, compared to MCC, VFC has
much shorter response latency owing to the distribution
of computing resources at the edge.
Although task offloading and resource allocation in VFC

have been studied extensively, we have observed that
few of these works have investigated this problem from
the perspective of resource providers (e.g., vehicles). In
VFC, computing services are provisioned in a pay-as-you-
go model, which means consumers need to pay for the
requested resources. Accordingly, as resource contribu-
tors, vehicles in VFC are always stimulated by these con-
siderable benefits. How to maximize their own benefits is
one of big concerns when vehicles provision computing
services.
On another hand, in VFC, large numbers of resource

requests are sent to the fog nodes, which needs frequent
interactions between requestors and fog vehicles. And
it may incur tremendous stress over the communication
resources. In addition, it is the responsibility of requesters
for deciding which fog vehicle to offload the tasks, and
the offloading decision may not be globally optimal
due to lack of global information upon the fog vehicles
in VFC.
To tackle these issues, we in this paper introduce the

notion of resource pooling into VFC where the computing
resources of vehicles are pooled together to jointly provi-
sion computational services in a community [16]. A com-
munity can be sponsored by an immobile infrastructure
(e.g., RSU). Generally speaking, RSU can serve as a fog
server with multiple functionalities. For instance, it can
recruit nearby vehicles to join the community by broad-
casting the beacon information. The beacon information
includes the information about its vehicle members, the
available resources, and the benefits for contributing the
resources. Vehicles can join or leave the community for
free. Second, RSU holds the global information about its
members and separates the control flow and data flow,
following the principle of service-oriented architecture
(SOA). To be specific, RSU receives and processes the
resource requests, and makes decisions on task offload-
ing for these requests. Then, tasks are offloaded to the

designated fog vehicles directly. Thus, each entity in the
community is dedicated to its own business.
Resource pooling in VFC can boost the efficiency, flexi-

bility and reliability of the VFC systems. The deployment
of RSUs especially in the densely populated area increases
the probability that one vehicle can be covered by mul-
tiple RSUs. In such a situation, from the perspective of
fog vehicles, how to select a community to join is really
a big concern to them, as vehicles expect more benefits
by joining the community. Considering the high dynam-
ics of network topology, limited wireless communication
range, and different pricing in different communities, the
decision making on community selection is not trivial.
The rest of paper is organized as follows. We have

studied the related works in “Related works” section.
Some preliminaries are given in “Preliminaries” section.
In “System model and problem formlation” section, sys-
tem model is introduced and the optimization prob-
lem is mathematically formulated. A genetic algorithm
based strategy on decision making is put forward in
“Proposed solution” section and experimental evaluation
is reported in “Numeric evaluation and results analysis”
section. Finally, the conclusion comes in “Conclusion”
section.

Related works
Fog computing constitutes one of the key enablers for
smart cities, by endowing edge devices with certain com-
puting and storing abilities. VFC is derived from fog
computing where the edge devices are themobile vehicles.
Considering the mobility of vehicles, task offloading and
resource allocation are characterized by limited service
time in VFC. As a result, task offloading and execution
in vehicle fogs are important and complicated, which has
attracted extensive attention recently.
In the previous works [5, 7, 16], VFC has been investi-

gated frommultiple viewpoints, e.g., latency optimization,
utility maximization and so on. To be specific, intelli-
gent transportation system has been developing rapidly
recently, with the purpose of providing drivers with a con-
venient, economical and environmentally friendly envi-
ronment. Explosive growth in the number of vehicular
applications causes tremendous stress over the limited
computing capabilities of vehicles. To cope with compu-
tationally intensive and time sensitive in-car applications,
a resource allocation algorithm is put forward in order to
optimize the utility [7].
In [16], an application scenario in VFC is considered, in

which vehicles try to get their own benefits by contribut-
ing their idle computing resources. RSU is responsible
for decision making for task scheduling. Meanwhile, an
algorithm is proposed following the principle of service
oriented architecture. The numeric results have revealed
enormous advantage in comparison with other strategies.
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Furthermore, edge services (e.g., RSUs in the context of
VFC) and cloud center can also cooperatively provision
computing services to the requestors such as vehicles in
vicinity for multiple purposes. In [5], vehicular requests
will be served at RSUs at the beginning and they are for-
warded to the cloud center if the service of quality (QoS)
at RSU is no longer qualified. For example, explosive num-
ber of vehicular requests sometimes causes RSU resource
shortage in short time.
VFC is characterized by the high mobility of vehicles in

road, so vehicles sometimes may leave the communica-
tion range before the offloaded tasks are accomplished. It
will incur the inefficiency and low success rate of VFC and
yet few of works have considered it in existing works. To
tackle this problem, authors in [17] investigate the offload-
ing scheme in VFC system with consideration of the
departure of vehicles with offloaded tasks. They formulate
it as a semi-Markov decision process that is solved by a
designed value iteration algorithm targeted at optimizing
the total reward of the system.
Owing to the limited computing capabilities of vehi-

cles in VFC, on one hand, moving vehicles are busy with
service provisioning; on the other hand, they also are
supposed to provide real-time responses for traffic and
accident warnings in a real-time fashion. Against this
background, computing resources may be in short supply
sometimes. Therefore, authors in [18] propose to utilize
the computing resources of parked vehicles to supplement
VFC. A heuristic algorithm combined with reinforcement
learning is put forward to solve the formulated problem,
e.g., by learning the vehicles’ movement and parking sta-
tus in smart city. Similar works on resource allocation can
also be found in [19, 20].
Shortcomings in VFC such as limited communication

bandwidth, high mobility, huge data transmission, and
overwhelming computation overhead make it difficult for
vehicles to deliver the services according to the declared

QoS [21]. Thus, authors in [21] propose a VFC architec-
ture to exploring possibility of working together among
the cloud, static fog and mobile fog. They introduce the
system model in this architecture to quantitatively ana-
lyze its characteristics. On another hand, considering the
information of uncertainty, to make task offloading reli-
able is still an important yet challenging issue. Authors in
[22] propose a task offloading algorithm based on match-
ing learning to tackle this problem. They try to optimize
the response latency using the pricing-based matching,
and design a matching-learning-based algorithm for task
offloading in VFC.
Several application scenarios can also be found in

[23–25] where vehicles as fog nodes realize multiple func-
tionalities such as real-time traffic management, conges-
tion detection and so on. For instance, massive efforts
are dedicated to the congestion handling on the road.
Leveraging connected vehicles for congestion control has
proved to be practically feasible. To be specific, conges-
tion detection and handing with an aid of connected
vehicles technology is investigated in [25], in order to
detect congestion while satisfying traffic management
requirements.
Different from the aforementioned works, we in this

paper consider VFC with a pay-as-you-go feature and
strive to stimulate resource contributors (i.e., vehicle)
by maximizing their own benefits. Specifically, to real-
ize resource pooling at community, efficient algorithm is
designed for deciding which community for vehicles to
join.

Preliminaries
We motivate our work by an example in the follow-
ing. Suppose that there are four communities as shown
in Fig. 1, where four RSUs have sponsored their own
communities to attract the nearby vehicles. Several vehi-
cles under the coverage of communities want to join the

Fig. 1 Architecture of task scheduling in community
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community such that they can obtain benefits by con-
tributing the computing resources in the communities.
Then a question is posed naturally concerning which com-
munity can deliver the greatest benefits for the vehicles.
Several factors which affect the benefits of vehicles can be
outlined as follows:

• Dwell time. It denotes the time vehicles can stay
within the communication range of community. It is
an important metric to evaluate the service time of
vehicles. Intuitively, the longer the service time, the
more the benefits.

• Available resources. Vehicles can obtain benefits by
contributing their idle resources. It is one of the most
important metrics which affect the benefits of
vehicles. The more the amount of available resources
they contribute, the more the benefits they can earn.

• Unit price. The pricing for unit resource in different
communities may be different. Vehicles tend to join
the community with higher pricing. Higher pricing
brings about more benefits for vehicles.

• Strategy of competitors. Given a vehicle v, its benefits
in the community can be affected by other vehicles in
the same community. The task scheduling and
resource allocation in the community follows the
principle of SOA and RSU is responsible for decision
making on which community member (i.e., fog
vehicle) is designated to respond to the request and
perform the corresponding task. If the number of fog
vehicles in the community becomes large, the
probability that v is chosen to perform the task is also
decreased. As a consequence, the decisions of other
fog vehicles on whether or not to join the community
will affect the benefits of v.

• Number of task requests. The arrival rate of task
requests at each community may be different.
Generally speaking, high arrival rate brings about
high frequency of task allocation, which increases the
benefits of fog vehicles within the same community
to some extent.

Before joining the community, vehicles should take into
consideration these factors comprehensively. Due to the
wide deployment of RSUs, the number of communities
which vehicles can join at the same time is explosively
increasing. It is not an easy work for vehicles to select
the suitable community to contribute the computing ser-
vices, especially considering the potential benefits. For
instance, as shown in Fig. 1, if the number of vehicle
members in Community 1 is much more than other com-
munities, it is unadvisable for the vehicles on the road
to join Community 1. On anther hand, if most of the
vehicles on road choose to join Community 1, it is also
unadvisable for vehicle, say v, to join Community 1 at the
same time.

Vehicle-to-Vehicle (V2V) and Vehicle-to-RSU (V2R)
communication technologies enable information shar-
ing and data delivery among these entities. RSU usually
has all the information about its members in the com-
munity while vehicles can learn the information about
the community during the beacon information exchange.
To be specific, the procedure of interaction between
RSU and vehicles can be detailed as follows. At the
beginning, RSU broadcasts the beacon information bcn-
Msg = (cmt_ID, cmt_loc, no_mbr, avl_rsc, p, timestamp)
to the nearby vehicles. cmt_ID and cmt_loc represents
the numeric identification and location of the commu-
nity, respectively. no_mbr denotes the current number
of members in the community. avl_rsc is the comput-
ing resources available in the community. p is price that
resource requesters need to pay for using unit computing
resource. Note that p may be a function to better reflect
the real-world pricing mechanism.
From the descriptions above, we can observe that to

realize the benefits maximization from the perspective of
vehicles, the information obtained from communities is
not enough to aid the best decision making. For exam-
ple, recall the factors affecting the benefits of vehicles,
and the benefits of a vehicle can be influenced by other
vehicles’ decisions. However, the information pertaining
to other vehicles’ decisions is not included in bcnMsg. In
such cases, vehicles cannot make decisions immediately
after they receive the beacons, for the reason that they
need to reason and evaluate the communities combining
other information such as the decisions of other vehicles.
To this end, we assume that vehicles under the communi-
cation coverage of the same RSU can share the decisions
freely and honestly by V2V communication technologies.
Each vehicle learns from these information and makes the
best decisions for themselves.
After the decision is made, confirmation information

can be sent to the corresponding community, and finally
the vehicle becomes a member of the community. In this
paper, our work focuses on the phase of decision making
from the perspective of vehicles. As smart agents, vehicles
need to make the best decisions for themselves.

Systemmodel and problem formlation
There is a set of RSUs R = {R1,R2, · · ·,Rm} and a set of
nearby vehicles V = {v1, v2, · · ·, vn}, wherem and n denote
the number of RSUs and vehicles, respectively. Each RSU
Ri can initialize a community Ci for the sake of computing
resource pooling. To recruit the vehicles, beacons bcnMsg
are broadcast by communities using V2R technologies
such as DSRC, 4G/5G, Zigbee, Bluetooth, etc. Each vehi-
cle can join at most one community at the same time.
Assume that vehicles are equipped with GPS receivers
such that the location information can be known and dis-
seminated at any time. After receiving bcnMsg from the
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communities, vehicles start to evaluate the communities
with an aim to pursue the benefits maximization. The
decision should be made based on the information gath-
ered from all the involved entities (e.g., RSU, vehicles).
For example, the information dissemination and sharing
is needed, so vehicles can learn the decisions of other
vehicles.
Due to the high mobility of vehicles, the time during

which a vehicle can stay in one community is limited.
Given a vehicle vi, denoted by dti,j the dwell time of vi in
the community Cj and dti,j can be calculated as follows:

dti,j = 2Dj sin (θi,j/2)
ρi

(1)

where Dj is the communication distance of Community
Cj, ρi is the velocity of vi, and θi,j as shown in Fig. 2, is the
angle formed between Rj and the points where vi enters
and leaves the communication range ofCj, respectively. θi,j
can be obtained in advance, since it is relatively fixed. As
observed in Fig. 2, θi,j is dependent upon the location of
RSU relative to the road rather than the vehicles.
However, if the distance between vi and Cj, denoted by

dis(i, j), is larger than Dj, it is unlikely for vi to join Cj.
Thus, the dwell time dti,j can be generally defined as:

dti,j =
{

2Dj sin (θi,j/2)
ρi

dis(i, j) ≤ Dj
0 dis(i, j) > Dj

(2)

If vehicle vi joins the community Cj, its computing
resources will be contributed toCj. In this way,Cj can pool
resource together and thus provision computing services
to the nearby requestors. Given a unit time, the benefits of
vi in Cj, denoted by Bi,j, can be defined as follows:

Bi,j = λj · pj · ri∑
vk∈Cj rk

(3)

where λj denotes the average amount of computing
resources at Cj required by requesters and it can be set

in advance according to the historical experience, pj is the
price that requesters need to pay for using unit comput-
ing resource of Cj. ri represents the amount of computing
resources that vi can contribute to Cj. In this paper, to
simplify the discussion, we assume that the benefits are
distributed among the community members proportion-
ally to the corresponding resources they can contribute.
Based on the definition, we can see that the benefits of vi
can be affected by the strategies of other vehicles in Cj.
The more the number of vehicle members in Cj, the less
the benefits vi can earn.
As mentioned earlier, several factors should be consid-

ered such as dwell time, available resources and so on,
when vehicles pursue the maximal benefits. Accordingly,
we define the utility of vehicle vi in the community Cj as:

Ui,j = dti,j · Bi,j − ri · ci (4)

where ci denotes the cost for contributing unit computing
resource to Cj.
The objective of vehicles is to maximize their benefits

by joining the suitable communities. A decision variable
φi = (φi,1,φi,2, ...,φi,m) is used to denote the decision of
vehicle vi, where φi,k (1 ≤ k ≤ m) is binary variable.
If vi chooses to join community Ck , φi,k = 1; otherwise,
φi,k = 0. Given a decision profile φ = (φ1,φ2, ...,φn) of
all vehicles in V, the utility of the vehicles in V can be
mathematically formulated as follows:

U(φ) =
n∑

i=1

m∑
j=1

φi,j · Ui,j (5)

Then the optimization problem in this paper can be
formulated as:

P : Maximize U(φ) (6)

Fig. 2 An example of the dwell time for vehicle in one community
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subject to:

m∑
j=1

φi,j = 1 ∀i ∈[ 1, n] (7)

φi,j · dis(i, j) ≤ Dj ∀i ∈[ 1, n] (8)

Ui,j ≥ 0 ∀i ∈[ 1, n] ,∀m ∈[ 1,m] (9)

φi,j ∈ {0, 1} ∀i ∈[ 1, n] ,∀m ∈[ 1,m] (10)

Constraint (7) guarantees that for arbitrary vehicle in
V, it can join one and only one community. If vehicle
vi wants to join Cj, it must be under the communica-
tion coverage of Cj. The locations of both vi and Cj can
be known to each other in advance, and we use dis(i, j)
to represent the physical distance between them. Thus,
the distance should be shorter than the communication
range of Cj (i.e., Dj), which can be guaranteed by con-
straint (8). Constraint (9) ensures that there must be
the profits earned by contributing computing resources
for an arbitrary vehicle in V. This constraint condi-
tion is indispensable to stimulate vehicles to join the
communities.
Problem Analysis. Obviously, the potential solution

space is ofmn, wherem and n denote the number of RSUs
and vehicles respectively. As a result, it is not advisable
to seek the best solution with exhaustive algorithms. In
the next section, we propose a genetic algorithm to cope
with this resource pooling problem in the vehicular fog
computing.

Proposed solution
In this paper, we adopt a genetic algorithm (GA) based
approach to solve the problem P. GA is well known owing
to its advantages in solution searching over huge poten-
tial solution space, e.g., easy deployment, powerful search
capability and so on. GA is a population based iterative
algorithm that mainly consists of selection, crossover and
mutation operations.
As a phenotype, each individual in the population can

represent a potential solution to the problem P. We
encode the corresponding genotype (i.e., chromosome)
in the next. In the previous problem statement, arbitrary
vehicle vi(1 ≤ i ≤ n) can join arbitrary community Cj(1 ≤
j ≤ m) for the sake of profit maximization. The decision
of vi is defined as φi. Thus the decision for all the vehicles

is (φ1,φ2, ...,φn) that is actually a matrix. Accordingly, the
chromosome chm can be represented by φ, i.e.,

chm =

∣∣∣∣∣∣∣∣∣∣∣∣

φ1,1 · · · · · · · · · · · · φ1,m
φ2,1 φ2,2 · · · · · · · · · φ2,m
φ3,1 · · · φ3,3 · · · · · · φ3,m
φ4,1 · · · · · · φ4,4 · · · φ4,m
· · · · · · · · · · · · · · · · · ·
φn,1 · · · · · · · · · · · · φn,m

∣∣∣∣∣∣∣∣∣∣∣∣
(11)

where each row known as the gene segment represents the
choice of an individual vehicle and thus the decision pro-
file chm (i.e., the chromosome) can represent the choices
of all the vehicles. Large numbers of chromosomes consti-
tute the population of GA and the initial population can
be generated in a random way.

Fitness function
Fitness function can quantitatively evaluate the environ-
mental adaptability of individuals in the population in the
current generation, so based on the fitness values of indi-
viduals, GA can determine which individuals should be
reserved and which ones should not in the next genera-
tion.
For our problem P, each individual in the population

represents a potential decision profile for all the vehicles.
Thus, we can directly use Equ. (5) to act as the fitness
function. Specifically, the larger the value of the fitness
function, the better the environmental adaptability for the
individual.

Crossover andmutation operations
Two common methods used to produce the next gen-
eration of population in GA are the crossover and
mutation operations, respectively. Two parents can coop-
eratively produce the offspring in the next generation
by the crossover operation. To be more specific, the
crossover operation is to exchange the gene segments of
the two parents. In this paper, a multi-point crossover
operation is adopted, and an example corresponding to
our problem in this paper is shown in Fig. (3). Since a
chromosome is encoded into a matrix in this paper, a ran-
dom binary matrix S of the same size as the chromosome
is used to assist the crossover operation. Given S, check
each gene position in it. If the value for this gene position
is nonzero, then the two parent chromosomes exchange
their gene values with each other (see Fig. 3).
On another hand, a mutation operation usually follows

after a crossover operation, with an aim to preserve the
diversity of individuals in the population. The mutation
operation strives to generate a new individual by altering
a gene randomly in the chromosome. As for our problem,
we still adopt a single point mutation which is differ-
ent from the previous crossover operation. The crossover
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Fig. 3 An example of a multi-point crossover operation

operation strives to enhance the global search capability
of GA while the mutation operation is targeted at improv-
ing the local search capability. To avoid being trapped into
local optimization, we thus adopt a single point mutation
operation in this paper. To that end, for a given a binary
matrix S which is generated randomly, there is only one
nonzero value in S, and the value for the current gene posi-
tion is altered if the value for the same position in S is
nonzero.

GA based decision making algorithm
In this section, we present a GA based decision making
algorithm (GADM) for the problem P and the corre-
sponding pseudo code is shown in Algorithm 1. In this
algorithm, cp and cm denote the crossover probability and
mutation probability, respectively. Note that in GADM the
crossover andmutation operators are independent of each
other, since we perform both operators over the common
population S1 (lines 7–16).
It is likely that a resulting individual is invalid after

the crossover and mutation operators, due to the con-
straints violation (e.g., Eqs. (7)-(9)). To guarantee that each
individual in the population is valid, we should check
whether it violates the constraint conditions or not after
each crossover and mutation operations. If the viola-
tion happens, the individual is then abandoned, and new
individual should be supplemented such that the size of
population is fixed.

Numeric evaluation and results analysis
Experimental settings
Extensive experiments have been carried out to evalu-
ate the efficiency and effectiveness of the approach in
this paper. The experimental design and numerical results
are reported in this section, respectively. A simulator is
developed and the corresponding experiments are run on

a laptop with 1.8GHz Intel I5 Quad-Core CPU, 8G of
RAM, Microsoft Windows 10 Operating System, Python
3.7. Some key parameter settings are listed in Table 1.
In the initial parameter settings, the number of com-

munities is a constant (e.g., 10), for the reason that an
assumption of too many overlapping communities costs
too much and also is impractical in reality. In addition, to
simplify the experimental design, we overlook the calcu-
lation of dwell time of each vehicle at each community,
by just assuming that the dwell time of each vehicles ran-
domly varies from 3 to 10. The population size is set to
100 and the number of iterations is 50 at the beginning.

Comparison benchmark
On one hand, as far as GADM itself is considered, sev-
eral parameters can affect the performance of GADM
to a great extend with regards to convergence rate, run-
ning time, optimal solution approximation and so on. For
instance, these parameters usually include the crossover
probability, mutation probability, population size, and the
number of iterations. On the other hand, GADM should
be compared with other approaches to investigate its effi-
ciency and effectiveness. Specifically, we in this paper have
adopted two approaches as the comparison benchmarks.
One is the greedy approach and the other is the random
approach.
For the former, there are usually several rules to guide

the greedy search for the approximate optimal solution.
For instance, one obvious greedy rule is that vehicles tend
to join the community with longer dwell time. Intuitively,
longer dwell time means longer service time, which can
bring about more benefits for vehicles. Another greedy
rule is that vehicles tend to join the community with larger
values of λ and p, for the reason that according to the
Eq. (3), larger values of λ and p can bring forth more bene-
fits. However, it is worth mentioning that this greedy rule



Tang et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:19 Page 8 of 14

Algorithm 1: GA based decision making algorithm
(GADM)
Input: GA involved parameters and problem P

involved parameters, respectively
Output: The optimal fitness value V

1 Initialize a population S for GA;
2 Calculate the fitness value of each individual in the
current population;

3 Record the best fitness value V ;
4 while Termination condition not satisfied do
5 Perform the selection operation on S;
6 Produce new population S1;
7 for each pair of individuals in S1 do
8 if ρ > cp then
9 Perform the crossover operations on this

pair;
10 end
11 end
12 for each individual in S1 do
13 if μ > cm then
14 Perform the mutation operation on this

individual;
15 end
16 end
17 Construct the new population S2 with resulting

individuals;
18 Supplement S2 with new individuals to keep the

population size fixed;
19 Calculate the fitness values of the current

population;
20 Update the best fitness value V if necessary;
21 end
22 Return the largest fitness value V ;

Table 1 Experimental parameter settings

Parameter Description Default value

cp Crossover probability 0.2

cm Mutation probability 0.01

size Population size 100

step The number of iterations 50

λ Average resources to be requested [10, 15]

n The number of communities 10

p The price for using unit resource [20, 30]

ri The amount of resources vehicle i
can contribute

ci The cost for contributing unit
resource for vehicle i

(0, 1)

will incur the backlog of vehicles in one community. Vehi-
cles following this rule always join the same community
at the time, which however makes the part of Eq. (3) (i.e.,

ri∑
vk∈Cj rk

) much smaller. As a result, this greedy rule is

not satisfactory compared with the rule with longer dwell
time. Therefore, for the greedy benchmark, we adopt the
greedy rule with longer dwell time to guide the solution
searching. We denote this approach by “Greedy” in this
paper.
For the latter, a random approach is adopted as the ran-

dom benchmark. To be specific, each vehicle selects a
community to join randomly. In this way, constraint viola-
tion occurs all the time. To avoid the constraint violation,
before joining the community, each constraint condition
(e.g., (2), (8) and (9)) should be checked. We denote this
approach by “Random” in this paper.

Numeric results and analysis
A series of experiments have been conducted following
the aforementioned principles. The corresponding results
are reported as follows.

Impact of parameters
The first set of experiments is investigate the impact of
the crossover probability (i.e., cp) in this paper, and the
results in terms of the fitness values and response time
have been shown in Figs. 4 and 5, respectively. Given other
parameters with the default values set in Table 1, we vary
the crossover probability from 0.1 to 0.5 with a step of 0.1
in the experiment. From Fig. 4 we can observe that GADM
can reach the best fitness value when cp is equal to 0.3
with the number of iterations around 20. Although other
cases can obtain relatively fast convergence rate, they are
easily trapped into local optimization.
For instance, when cp equals 0.1, GADM reaches its

local optima with the number of iterations equal to 11.
After numbers of iterations, GADM continues to reach a
better value, but it is not as good as the case with cp equal
to 0.3. On the other hand, the corresponding running time
for each iteration is recorded and shown in Fig. 5. From
the figure we can see that different values of cp seem to
have less impact on the response time compared to the
impact on the fitness values. However, when cp is equal to
0.5, the fluctuation of response time over each iteration is
much greater than other cases. Accordingly, we can care-
fully draw the conclusion that cp with a larger value is not
always better. In our experiment, GADM can reach the
best performance when cp is 0.3, considering the fitness
values and the response time.
The second set of experiments is to investigate the

impact of mutation probability (i.e., cm) in this paper.
The experimental results in terms of the fitness values
and response time have been shown in Figs. 6 and 7,
respectively. Similarly, given other parameters with the
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Fig. 4 Fitness values with different values of crossover probability

default values set in Table 1, we vary the mutation prob-
ability cm from 0.01 to 0.05 with a step of 0.01 in the
experiment. As mentioned earlier, the crossover opera-
tion strives to enhance the global search capability of GA
while the mutation operation is targeted at improving the
local search capability. As a result, the mutation probabil-
ity is usually smaller than 0.1. From Fig. 6 we can observe
that when cm = 0.05, GADM can obtain the best fit-
ness value compared to other cases. Moreover, fast rate
of convergence is not always better, for the reason that
GADM tends to fall into the local optima. Take the case

with cm = 0.04 for example, GADM reaches its best fit-
ness value when the number of iterations is about 11. The
fitness value does not change with the increasing number
of iterations.
On the other hand, the corresponding running time for

each iteration is recorded and shown in Fig. 7. From the
figure we can see that different values of cm have less
impact on the response time compared to the impact on
the fitness values. Accordingly, we can carefully draw the
conclusion that in our experimental settings, GADM can
achieve its best performance when cm equals 0.05.

Fig. 5 Response times with different values of crossover probability
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Fig. 6 Fitness values with different values of mutation probability

The third set of experiments is to investigate the impact
of population size (i.e., size) in this paper. The experimen-
tal results in terms of the fitness values and response time
have been shown in Figs. 8 and 9, respectively. Similarly,
given other parameters with the default values denoted
in Table 1, we vary the population size size from 50 to
150 with a step of 25 in the experiment. From Fig. 8
we can observe that the performance of GADM depends
on the population size to a great extent. Generally, given
the number of iterations, the larger the population size,
the better the fitness values. For example, when the

population size equals 150, the fitness value is the largest
one among these cases.
Interestingly, the case with population size of 75 is worse

than the case with population size of 50 in terms of the
fitness values. However, this situation can be reasonable
and acceptable for the following reason. The popula-
tion is generated in a random way in the simulation,
and thus there are no common data among these cases
with different population size, which is different from the
first two sets of experiments. During the investigation of
impacts of cp and cm on GADM respectively, each set of

Fig. 7 Response times with different values of mutation probability
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Fig. 8 Fitness values with different values of population size

experiments has the common data, i.e., the population. In
this set of experiments, due to the difference in popula-
tion initialization in each case, better individuals may be
included in the population with small size with regards
to the fitness value. As a result, an abnormal situation
Interestingly, the case with population size of 75 is worse
than the case with population size of 50 in terms of the
fitness values. However, this situation can be reasonable
and acceptable for the following reason. The population
is generated in a random way in the simulation, and thus

there are no common data among these cases with differ-
ent population size, which is different from the first two
sets of experiments. During the investigation of impacts of
cp and cm on GADM respectively, each set of experiments
has the common data, i.e., the population. In this set of
experiments, due to the difference in population initial-
ization in each case, better individuals may be included in
the population with small size with regards to the fitness
value. As a result, the abnormal situation at the beginning
occasionally happens.

Fig. 9 Response times with different values of population size
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Fig. 10 Fitness values with different number of vehicles (small)

On another hand, Fig. 9 shows the response time of
each iteration under different population size. Different
from the impacts of cp and cm on GADM with regards to
the response time, the population size has a great impact
over the response time of GADM. Generally speaking,
the larger the population size, the longer the response
time. Considering the high mobility of vehicles in VFC,
it is inappropriate to spend much time on decision mak-
ing. Accordingly, we set the population size to 100 as the
default value.

Approach comparison
In addition to the GA involved parameters, other param-
eters such as n, p, ri and ci can also affect the performance
of GADM. The number of communities is assumed to be a
constant, so the number of vehicles tend to increase in one
community when the number of vehicles increase. In this
subsection, we have conducted the last set of experiments
to evaluate the impact of n over GADM in comparison
with other approaches (i.e., “Greedy” and “Random”). The
results are shown in Figs. 10 and 11, respectively. The

Fig. 11 Fitness values with different number of vehicles (large)
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difference between Figs. 10 and 11 lies in that one has
small number of vehicles and the other has large number
of vehicles. A few observations can be made from both
figures as follows.
1) GADM can achieve the best performance, while

Random has the worst performance. This observation
can be understandable and acceptable, since the ran-
dom approach makes decision without consideration of
any evaluation metric. Random just checks whether the
constraint conditions are violated or not.
2) Greedy can achieves the second best performance

among the three approaches. Greedy is much better
than Random all the time. Different from the random
approach, Greedy has a greedy rule (i.e., largest dwell time
first) to assist in decision making. Although this greedy
rule differs from the fitness function (Eq. (5)), it still brings
forth relatively good performance.
3) As the number of vehicles increases, the fitness val-

ues do not always increase. For instance, when the number
of vehicles equals 16 and 55 respectively, the fitness val-
ues decrease compared to the cases with the number of
vehicles equal to 15 and 50 respectively. For GADM, the
number of vehicles varies, so the length of chromosome
varies. Then the entire population is totally different.
As discussed earlier, relatively good individuals may be
included when the number of vehicles is small. Due to
inscrutability of the population, the fitness value can be
better when the number of vehicles is small than that
when the number of vehicles is large. Another important
reason to account for this is that the best fitness value may
not be found yet owing to the limited number of iterations.
This is because the chromosome length increases when
the number of vehicles increases.
4) As for the performance comparison, when the num-

ber of vehicles is small, GADMhas averagely improved the
performance by 20.15% and 65.3% compared the Greedy
and Random, respectively. When the number of vehicles
is large, GADM has averagely improved the performance
by 17.39% and 52.14% compared the Greedy and Random,
respectively.
To sum up, GADM outstands other two approaches

when the GA involved parameters are set appropriately.
Furthermore, considering the mobility of vehicles in VFC,
the response time can also be acceptable.

Conclusion
VFC has attracted extensive attention recently due to the
proximity of computing resources to the data source. Lots
of works have focused on task offloading and resource
allocation in VFC from multiple viewpoints. Vehicles as
fog nodes can contribute their idle computing resources
to the requestors. Meanwhile, they can earn their benefits
as computing services are provisioned in a pay-as-you-go
model in VFC. We in this paper have proposed to pool

the computing resources together to provision services at
the edge, with an aim to maximize their own benefits. A
GA based algorithm is put forward to make decisions on
which communities vehicles can join. The experimental
results have shown that GADM indeed is superior to other
two approaches.
However, GA based approaches are good at solving the

discrete optimization problems at the cost of relatively
long response time. Consequently, it is unsuitable to solve
the optimization problems in the contexts of VFC, espe-
cially when the number of requests is extremely large.
Therefore, for the future work, we still plan to designmore
efficient and effective algorithms to solve the optimization
problem.
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