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Abstract

Cloud resource demands, especially some unclear and emergent resource demands, are growing rapidly with the
development of cloud computing, big data and artificial intelligence. The traditional cloud resource allocation methods
do not support the emergent mode in guaranteeing the timeliness and optimization of resource allocation. This paper
proposes a resource allocation algorithm for emergent demands in cloud computing. After building the priority of
resource allocation and the matching distances of resource performance and resource proportion to respond to
emergent resource demands, a multi-objective optimization model of cloud resource allocation is established based
on the minimum number of the physical servers used and the minimum matching distances of resource performance
and resource proportion. Then, an improved evolutionary algorithm, RAA-PI-NSGAII, is presented to solve the multi-
objective optimization model, which not only improves the quality and distribution uniformity of the solution set but
also accelerates the solving speed. The experimental results show that our algorithm can not only allocate resources
quickly and optimally for emergent demands but also balance the utilization of all kinds of resources.

Keywords: Cloud computing, Emergent demands, Resource allocation, Multi-objective optimization, Resource
proportion matching distance, Resource performance matching distance

Introduction
Cloud computing applies virtualization technology to
divide massive physical resources into various virtual re-
sources [1]. A large number of users can use these virtual
resources on a cloud platform anytime and anywhere [2].
More and more applications are being deployed on cloud
platforms, whose resource scales have become increasingly
large with the application and development of cloud
computing, big data and artificial intelligence. Cloud re-
source demands submitted to them also appear the
characteristics of diversity, burst and emergency. Most
existing methods of cloud resource allocation do not

support the emergent mode, meaning that they cannot
guarantee the timeliness and optimization of resource al-
location. However, users pay more attention to the
timeliness and optimization of their emergent resource
demands, and cloud service providers are highly
concerned with how to manage massive resources and
improve resource utilization. An efficient resource allo-
cation method is crucial to meet these goals. The
process of resource allocation is a problem of virtual
machine placement for finding the suitable physical
servers upon which to place virtual machines (VMs).
This process can not only satisfy resource demands of
VMs but also improve the resource utilization of the
cloud platform. To Find the optimal solution is also a
problem. Some simple heuristic algorithms, such as
Round Robin (RR) [3], Best Fit (BF) [4], and Min-Max
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[5], are applied in the resource allocation process of the
small-scale cloud platforms. These algorithms are sim-
ple and easy, but they are also prone to waste resources,
especially in large-scale cloud platforms.
The bin packing problem is one classical method of

VM placement. The VM placement problem on phys-
ical servers is transformed into the bin packing prob-
lem of n objects packed into m boxes, which requires
that all objects be placed in the minimum number of
boxes. A dynamic bin packing method is proposed to
reduce the total cost of cloud resource allocation by
permanently closing the empty box [6]. An enhanced
variable-sized packing particle swarm optimization al-
gorithm (PSOLBP) is proposed to minimize the num-
ber of physical servers and to realize the load balance
of physical servers, in which a levy flight algorithm is
combined with a particle swarm optimization algo-
rithm (PSO) to avoid the loss of particle dispersion
when finding the local and global optimal solutions
[7]. An online vector bin packing is used to build a
multi-dimensional cloud resource dynamic allocation
model (MDCRA), which uses a single weight algo-
rithm and a double weight algorithm to maximize re-
source utilization, minimize the number of physical
servers and energy [8]. The bin packing problem is
classified as an NP-hard problem, which only solves
the constraints of resource capacity and does not
consider incompatible constraints.
Another classical method of cloud resource allocation

is to model VM placement as a multi-objective
optimization mathematical problem [9–11]. The main
idea is to express a cloud resource allocation problem
as a multi-objective mathematical function, and then to
use a multi-objective evolutionary algorithm to solve it.
An optimal VM placement method is proposed, which
regards the minimum number of physical servers and
the minimum times of VM migration as two objectives
and uses a non-dominated sorting genetic algorithm
with elite strategy (NSGA-II) to solve this multi-
objective problem [12]. A task-oriented multi-objective
scheduling method is presented, which takes into ac-
count multiple objectives, such as the completion time
of tasks, cost and resource utilization, and uses the
multi-objective ant colony optimization algorithm
(MOSACO) to solve them [13]. A three-dimensional
virtual resource scheduling method reduces energy con-
sumption and minimizes service level agreement (SLA)
violations from three aspects of virtual resource alloca-
tion, scheduling and optimization [14].
The cloud resource allocation is involved in cost-

driven [15, 16], energy-saving [17, 18], profit-driven [19],
quality of service (QoS) assurance [20, 21], utilization-
improving [22, 23] and load balance methods [24, 25]. A
systematic resource allocation method based on the

random optimization and Lyapunov optimization theor-
ies is proposed to ensure users’ quality of experience
(QoE) and minimize the cost of rented VMs. Consider-
ing the trade-off between resource utilization and appli-
cation performance, a resource allocation algorithm is
proposed to meet users’ QoS requirements and
maximize the resource utilization of a cloud platform
[22]. A VM integration scheduling algorithm is proposed
based on an active workload-prediction technology and
a passive control technology, which uses an exponential
smoothing method to predict future workload [26].
There also exist some cloud resource allocation methods
for big data applications [27–29], scientific applications
[30, 31], video streaming [32], cloud manufacturing [33],
mobile applications [34], and workflow [35, 36].
Although some methods have been proposed for

saving cost and energy, improving resource utilization
and guaranteeing QoS in cloud computing, it is sel-
dom studied how to allocate cloud resources quickly
and optimally for emergent demands. A concept of
task relaxation degree is proposed based on the dead-
line time and the execution time of a task, and the
task whose relaxation degree is less than a threshold
is regarded as the emergent task [37]. And a random-
ness aware scheduling method is proposed, in which
the emergent tasks are executed preferentially on the
existing free VMs or the newly added VMs. However,
this method only sets some simple priority levels of
tasks and does not consider the heterogeneous and
diverse emergent resource demands. A machine
startup-time-aware strategy is proposed to meet
emergent tasks, where an emergent VM is provided
and can scale up its CPU capacity dynamically [38].
The method of preparing VMs in advance is only
suitable for a small amount of emergent resource de-
mands. If a large number of VMs are prepared in
advance, it can cause resource waste due to the idle
time. In this paper, the emergent demand denotes
the emergent resource demand, which is different
from the common resource demand without the re-
quirement of the deadline time of resource
provision. The emergent demand should be allocated
resources more preferentially than the common re-
source demand.
Although these methods are effective, most of them

allocate resources fairly and do not preferentially sat-
isfy the emergent resource demands. Using these
methods will lead to poor effectiveness. An effective
cloud resource allocation method should meet the fol-
lowing conditions for emergent resource demands.
First, the emergent cloud resource demands should
be satisfied preferentially. Second, the optimal cloud
resources should be provided. Third, the physical
servers should be used as little as possible, and the
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proportion between different types of resources (num-
ber of CPU cores: memory capacity: disk size) should
be as uniform as possible to reduce resource waste
and improve resource utilization.
To solve the above problems, this paper proposes a

cloud resource allocation algorithm for emergent de-
mands. The main contributions of this paper are as
follows.

(1) We propose a novel priority of resource allocation
based on users’ priorities and emergent grades of
resource demands, which guarantees the emergent
resource demand to be allocated resources
preferentially.

(2) We propose a model of resource performance
matching, which selects more suitable physical
servers to provide resources with better
performance for VM requests based on resource
performance matching distance between VMs and
physical servers.

(3) We propose a model of resource proportion
matching, which builds the resource proportion
matching distance to ensure the balanced utilization
among different types of resources of physical
servers.

(4) We propose a method RAA-PI-NSGAII to enhance
the quality and distribution uniformity of the solu-
tion set and accelerate the solving speed by improv-
ing NSGA-II algorithm, which further ensure the
timeliness and optimization of cloud resource
allocation.

A list of the mathematical notations used in this paper
is given in Table 1.

Background
Cloud resource allocation process
Resource allocation and scheduling of a cloud plat-
form generally consists of three steps, as shown in
Fig. 1. The cloud platform allocates resources to

create the requested VM on an appropriate physical
server when a user applies for a VM. The cloud plat-
form can scale out or scale in some VMs to ensure
the performance of a virtual cluster or reduce the
cost according to an auto-scaling strategy when the
resource load of a running virtual cluster is too high
or too low. One or multiple VMs can also be dynam-
ically migrated to other physical servers to maintain
the load balance of the whole cloud platform when a
physical server is overloaded.
The first two forms involve in VM creation, which

mainly selects the appropriate physical servers to allo-
cate resources for the requested VMs. The final form in-
volves VM migration, which selects virtual machines and
migrates them to other appropriate physical servers.
This paper mainly studies cloud resource allocation
method for the first two forms.

Non-dominated sorting genetic algorithm with elite
strategy (NSGA-II)
The key of cloud resource allocation is to find the
suitable physical servers to create VMs and improve
resource utilization of a cloud platform. Especially,
the timeliness and optimization of cloud resource al-
location are more important for emergent demands.
However, it is not feasible to find the optimal solu-
tion by enumerating all feasible solutions because
there are a large number of heterogeneous physical
servers and various VM requests in a cloud platform.
The simple Round Robin (RR) algorithm uses a poll-
ing mechanism to select a suitable physical server to
create a VM, and Best Fit (BF) algorithm deploys a
VM to a physical server that satisfies the VM de-
mand and has the least idle resource. However, these
methods generally cause resource waste and resource
mismatch because of randomness.
The NSGA-II is an effective multi-objective genetic al-

gorithm [39] often used in solving the multi-objective
problem of cloud resource allocation. Figure 2 shows the
implementation process of NSGA-II algorithm. First, the

Table 1 List of mathematical notations

Symbol Annotation Symbol Annotation

f kiþ1
the objective value of the i + 1 the individual on the dimension k vik the resource demand of the VM vi for k type of resource

Li the priority of a user’s resource allocation pf
jk

The free k type of resource of the physical server pj

vi the i th VM request N the initial population size

pj a physical server xij the mapping element between a VM and a PM

MDij resource performance matching distance MPij resource proportion matching distance

ε the threshold of the distance between two individuals dij Euclidean distance of two adjacent i and j individuals
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population of size N and the iteration times G are initial-
ized. Second, the initialized population is sorted using a
non-domination, and all individuals of the population
are assigned to a different non-dominant rank. Third,
the objective values and the crowding distances of all in-
dividuals are calculated according to the following for-

mula (1), where f kiþ1 , f ki − 1 , represents the objective
values of the adjacent i − 1 and i + 1 individuals of the i
individual on the dimension k.

di ¼
Xm
k¼1

j f kiþ1 − f ki − 1 j ð1Þ

Then, the excellent individuals are selected to con-
struct a new parent population according to their non-
dominant ranks and crowding distances. If the non-
dominant rank of an individual is smaller than that of
others, this individual will be selected. The individual
with a higher crowding distance is selected if both the
individuals have the same non-dominant rank. Then, the
parent population goes through selection, crossover and
mutation to generate the offspring population of size N.
Subsequently, a population of size 2N is generated by
combining the offspring population with the parent
population. Then, the above process continues to be ex-
ecuted until the stopping condition is reached for this
combined population.

A multi-objective optimization model for cloud
resource allocation
We design the priority of resource allocation to respond
to emergent demands, build the matching distance of

Fig. 1 Resource allocation and scheduling process of a cloud platform

Fig. 2 The process of NSGA-II algorithm
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resource performance to realize resource optimization,
and establish a matching distance of resource proportion
to balance the utilization of all types of resources. Fi-
nally, we consider the benefits of cloud users and service
providers and set up a multi-objective optimization
model for cloud resource allocation with the goals of
minimizing the number of the used physical servers, im-
proving resource utilization and reducing resource frag-
mentation of the cloud platform.

Priority of resource allocation
A cloud platform generally sets users’ priorities to se-
quentially allocate resources, which cannot respond to
emergent demands quickly. Thus, we further propose
another parameter: the emergent grade, which indicates
an emergent degree of a user’s resource demand. Thus,
the priority of a user’s resource allocation can be calcu-
lated by a user’s priority and his emergent grade, which
guarantees that the emergent resource demands can be
satisfied preferentially. However, a user’s priority and
emergent grade need to be normalized before carrying
out the calculation because their units are inconsistent.
Supposing the priority of a cloud user is denoted as R =
(R1, ..., Ri, ..., Rn), the normalized user priority can be cal-
culated by formula (2), where Rmin and Rmax represent
the minimum and the maximum value of all users’ prior-
ities, respectively, where Ri represents the priority of the
i th user. All users’ priorities will be set as zero if users’
priorities need not be considered in the cloud resource
allocation.

Rni ¼ Ri − Rmin

Rmax − Rmin
ð2Þ

Similarly, supposing the emergent grade of users’ re-
source demands is denoted as G = (G1, ...,Gi, ...,Gn), the
normalized emergent grade can be calculated by formula
(3), where Gmin and Gmax represent the minimum and
the maximum values of the emergent grades of all users’
resource demands, respectively, where Gi represents the
emergent grade of the resource demand of the i th user.

Gni ¼ Gi −Gmin

Gmax −Gmin
ð3Þ

Thus, the priority of a user’s resource allocation can
be calculated using the weighted average method ac-
cording to formula (4), where α and β represent the
weights of the normalized priority Rni and the emergent
grade Gni, respectively.

Li ¼ α � Rni þ β � Gni αþ β ¼ 1ð Þ ð4Þ

Resource performance matching distance
To meet the emergent resource demands, it is necessary
to match the optimal resources in addition to ensuring
the timeliness of resource allocation, which means that a
VM should be placed on a physical server, whose re-
source performance is more appropriate for the per-
formance requirement of the VM. For instance, if a user
requests a compute-intensive virtual machine, a
compute-intensive physical server will be selected to al-
locate resources for this VM. Thus, we set up a resource
performance matching distance between a VM and a
physical server based on their resource performance vec-
tors. The smaller the resource performance matching
distance, the better the resource performance matching
between them.
Users’ resource demands are expressed as a request

queue V = < v1, ..., vi, ..., vn>, where vi represents the i th
VM and n denotes the sequence number of VM re-
quests. The resource demand of the VM vi is expressed
as vi(vic, vim, vid), where vic, vim and vid denote the num-
ber of CPU cores, the memory capacity and the disk size
requested by the VM vi, respectively. The available phys-
ical servers of a cloud platform are represented as a
physical server group P = (p1, ..., pj, ...pn). Each physical
server has the total resource capacity pj = (pjc, pjm, pjd)

and the free resource capacity pjðpf
jc; p

f
jm; p

f
jdÞ , where pjc

and pf
jc , pjm and pf

jm , pjd and pf
jd represent the total and

free number of CPU cores, memory capacities and disk
sizes, respectively.
The performance vector of a VM vi is expressed as

vvi = (vvic, vvim, vvid) for a physical server pj. The ele-
ments in this vector can be calculated by the formulas.

CPU performance vector : vvic ¼ vic=pjc ð5Þ
Memory performance vector : vvim ¼ vim=pjm ð6Þ
Disk performance vector : vvid ¼ vid=pjd ð7Þ

Similarly, the performance vector of a physical server
is denoted as pvj = (pvjc, pvjm, pvjd) . The elements in this
vector can be calculated by the formula as follows.

CPU performance vector : pvjc ¼ pf
jc=pjc ð8Þ

Memory performance vector : pvjm ¼ pf
jm=pjm ð9Þ

Disk performance vector : pv jd ¼ pf
jd=pjd ð10Þ

Then, we calculate the normalized performance vector
nvvi = (nvvic, nvvim, nvvid) of the VM vi and the normal-
ized performance vector npvj = (npvjc, npvjm, npvjd) of the
physical server pj according to their performance vectors
vvi and npvj. Consequently, the optimal objective func-
tion—that is, the resource performance matching
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distance MDij between the VM vi and the physical server
pj—is established on their performance vectors. The
smaller the distance, the better will be the resource per-
formance matching between the VM and the physical
server.

MDij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k∈ c;m;df g

npvik − nppjk
� �2s

ð11Þ

And the resource demands of all VMs placed on a
physical server should be less than the free resource of
this physical server pj. So the constraint should be con-
sidered as follows.

Xm
i¼1

vik < pf
jk k ¼ c;m; d; j ¼ 1; 2;…; nð Þ ð12Þ

Resource proportion matching distance
Physical servers are heterogeneous, and VM demands
are different for all kinds of resources in cloud comput-
ing. When a VM is created on a physical server, it can
lead to a varied proportion among different types of free
resources of the physical server, such as the free number
of CPU cores, memory capacity and disk size. When one
type of resource has been exhausted, a physical server
will no longer create a new VM despite there still
remaining a large amount of other types of resources.
For instance, if the CPU resource of a physical sever is
exhausted, it cannot create VMs though it may have
large memory capacity and disk size, which will result in
resource fragment generation and resource waste. To re-
duce resource waste, it is necessary to consider the pro-
portion between different types of resource demands of
VMs and different types of free resources of physical
servers. A VM should be created on the physical server
whose resource proportion is closer to that of this VM.
Thus, the proportion of different types of resources can
always maintain uniformity on a physical server, which
reduces the probability of resource fragment generation.
Therefore, the resource allocation problem changes into
a problem of finding a resource proportion reflection of
the resource demands of VMs and free resources of
physical servers. A physical server should be selected to
allocate resources for this VM because its proportion
among different types of free resources is closer to that
among different types of requested resources of this VM,
that is, if pjc : pjm : pjd is closer to vic : vim : vid, where vic,
vim and vid denote the requested number of CPU cores,
memory capacity and disk size of the VM vi and pjc, pjm
and pjd denote the free number of CPU cores, memory
capacity and disk size of the physical server pj, the phys-
ical server pj should be selected to allocate resources for
the VM vi. The resource proportion matching distance

between different types of resources is set up between a
VM and a physical server by the following formula. The
closer the resource proportion matching distance is, the
fewer resource fragments and the greater the resource
utilization there will be.

MPij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

k∈ c;m;df g

pf
jk � vic
p f
jc

− vik

 !2
vuuut ð13Þ

Similarly, the constraint should be considered as
follows.

Xm
i¼1

vik < pf
jk k ¼ c;m; dð Þ: ð14Þ

A multi-objective optimization model of resource
allocation
There are a large number of physical servers in a cloud
platform, which generates a large number of VMs to
provide resource services. These VMs always manifest
with different performances regardless of whether the
physical servers are heterogeneous or homogeneous. A
good algorithm should ensure the fastest and optimal re-
source allocation for emergent demands. The process of
resource allocation is to place a virtual machine to the
appropriate physical server. If a VM vi is placed on a
physical server pj, the mapping element xij between this
VM and this physical server should satisfy xij = 1; other-
wise, xij = 0. The mapping matrix from the VM request
queue V to the physical server group P may be expressed
as follows.

X ¼

x11 ::: x1 j ::: x1n
::: ::: ::: ::: :::
xi1 ::: xij ::: xin
::: ::: ::: ::: :::
xm1 ::: xmj ::: xmn

0
BBBB@

1
CCCCA ð15Þ

The mapping from the VM queue to the physical ser-
ver group can be expressed as follows.

v1; :::; vi; :::; vmð Þ

�

x11 ::: x1 j ::: x1n
::: ::: ::: ::: :::
xi1 ::: xij ::: xin
::: ::: ::: ::: :::
xm1 ::: xmj ::: xmn

0
BBBB@

1
CCCCA

¼

p1
:::
pj
:::
pn

0
BBBB@

1
CCCCA ð16Þ
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So, the number of the used physical servers can be cal-
culated by summing all elements of the matrix X—that

is,
Pm
i¼1

xij. Thus, a multi-objective optimal resource alloca-

tion model can be established based on the minimum
number of the used physical servers, the minimum re-
source performance matching distance and the mini-
mum resource proportion matching distance, as follows.

min
Xm
i¼1

Xn
j¼1

xij

( )
ð17Þ

min
Xm
i¼1

Xn
j¼1

MDij

( )
ð18Þ

min
Xm
i¼1

Xn
j¼1

MPij

( )
ð19Þ

The constraints should satisfy the relation that the re-
source demands of all VMs placed on a physical server
pj cannot exceed its free resources as follows.

S:T :
Xm
i¼1

vic � xij≤pf
jc j ¼ 1; 2;…; nð Þ ð20Þ

Xm
i¼1

vim � xij≤pf
jm j ¼ 1; 2;…; nð Þ ð21Þ

Xm
i¼1

vid � xij≤pf
jd j ¼ 1; 2;…; nð Þ ð22Þ

And if one type of free resource capacity pf
jh of a phys-

ical server pj cannot satisfy the resource demand vih of
any VM, the ratio of other type of free resource capacity

pf
jk to the total resource capacity pjk should be less than

a threshold εk as the formula (23), where the symbol h
denotes one type of resource, such as CPU, and the sign
k denotes another type of resource, such as memory or
disk. Thus, three types of resources will be used evenly,
which largely reduces resource fragments.

if ∃vih > pf
jh; then

p f
jk

pjk
≤εk h≠k; j ¼ 1; 2;…; nð Þ ð23Þ

Thus, the resource allocation algorithm is transformed
into the solution of a multi-objective mathematical
model. This multi-objective mathematical problem is
NP-hard because its solution is not uniquely definite
value, that is, it is not single but multiple. These solu-
tions can be obtained by using a multi-objective evolu-
tionary algorithm, but they cannot be compared.

The multi-objective optimization algorithm RAA-
PI-NSGAII
A multi-objective optimization mathematical problem
can be solved by a multi-objective evolutionary algo-
rithm. Moreover, the algorithm should accelerate the
solution process and improve the quality of the solu-
tion set to ensure the timeliness and optimization of
resource allocation for emergent demands. NSGA-II
is a non-dominated sorting genetic algorithm that
has been used to solve the multi-objective
optimization problems and has achieved good effect-
iveness [40–44].
The traditional NSGA-II algorithm has three prob-

lems in solving the multi-objective optimization
model of resource allocation, as follows. First, the
computation time of the values of objective functions
is too long to allocate resources in a timely manner;
hence, it cannot meet emergent resource demands.
Second, the individuals from the parent and offspring
populations may be repetitive in the process of popu-
lation evolution. After the parent and offspring indi-
viduals are merged, the repetitive individuals have
non-dominant relationships and are assigned the same
hierarchical rank. These individuals may be selected
into the next-generation population because their
crowding distances may be larger than those of the
non-repetitive individuals, which will cause many re-
petitive solutions to enter into the optimal solution
set. As shown in Fig. 3, the a and b points are the
repetitive individuals, and their crowding distances
are greater than the points h and i; consequently,
they are preferentially selected to enter the next-

Fig. 3 Repetitive individual problem

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:20 Page 7 of 17



generation population. Third, the distribution of the
solution set is not uniform. As shown in Fig. 4, al-
though the a individual is very close to the b individ-
ual, both of them may be retained because of their
larger crowding distances. In contrast, both the f indi-
vidual and the g individual may be eliminated, which
results in an uneven population distribution. Obvi-
ously, the c individual and the d individual have the
same situation, and a good selection is to retain one
of them.
Therefore, we propose a cloud resource allocation al-

gorithm based on a parallel and improved NSGA-II al-
gorithm (RAA-PI-NSGAII), which computes the fitness
values of individuals concurrently, removes the repetitive
individuals and selects the adjacent excellent individuals
to improve the quality of the solution set, accelerates the
solving speed, and optimizes the distribution uniformity
of the solution set. Thus, the timeliness and optimization
of resource allocation are further guaranteed for emer-
gent demands.
The multi-objective optimization algorithm of cloud

resource allocation RAA-PI-NSGAII improves the
NSGA-II algorithm in the following respects.

Parallel computation and evaluation of the fitness
function
The computation and evaluation time of the fitness
values is very long due to too many individuals in the
population. The multi-core processors calculate the
fitness values of individuals and evaluate them in par-
allel, which can speed up the convergence rate of the

proposed algorithm. We calculate and evaluate the fit-
ness values (i.e., objective functions) of each individ-
ual as follows.

f 1 ¼
Xm
i¼1

Xn
j¼1

xij ð24Þ

f 2 ¼
Xm
i¼1

Xn
j¼1

MDij ð25Þ

f 3 ¼
Xm
i¼1

Xn
j¼1

MPij ð26Þ

Optimal selection of adjacent individuals
Some individuals remain after all individuals are sorted
in a non-dominant order, and the repetitive individuals
who cause the non-uniformity distribution of the solu-
tion set are removed. Consequently, we should further
select excellent individuals to enter the next generation
population. We calculate the Euclidean distance between
two adjacent individuals to determine whether the dis-
tance is less than a threshold. If it is, the excellent indi-
vidual is selected according to the following strategy.

Definition of threshold
Calculate the maximum Euclidean distance max(Drank(i))
of two individuals of the non-dominant set and the
threshold ε according to formula (27), where N is the
population size.

Fig. 4 Population distribution problem Fig. 5 Selection of adjacent excellent individuals
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ε ¼ max D rank ið Þ
� �
2� N

ð27Þ

Selection of adjacent excellent individuals
The Euclidean distance dij of two adjacent i and j indi-
viduals is first calculated after removing repetition in the
non-dominant set. As shown in Fig. 5, if the distance dij
is less than the threshold ε, the individuals h and k adja-
cent to them are determined, and their centre point f is
calculated. Then, the individual from the set of i and j
that is closer to f is retained. As a result, the individual j
is retained, and the individual i is removed.
The implementation of the whole algorithm consists

of two parts. The parameters are initialized, and the
multi-objective optimization function of resource allo-
cation is established in Algorithm 1. The improved
NSGA-II algorithm is used to solve the multi-
objective optimization function, as shown in Algo-
rithm 2. The main steps of the implementation of the
algorithm RAA-PI-NSGAII are as follows.

– Step 1: Construct a multi-objective optimization re-
source allocation model.

– Step 2: Initialize the parameters of RAA-PI-
NSGAII algorithm, such as the parent population
S1, the offspring population Q1, crossover and
mutation probability Pc, cross distribution index
Icd, mutation probability Pm, mutation distribution
index Imd, maximum iteration times G and popu-
lation size N.

– Step 3: Merge the parent population Si and the
offspring population Qi.

– Step 4: The fitness values of the individuals from the
merged population Rm are calculated in parallel, and
the improved NSGA-II algorithm is used to carry
out non-dominant sorting.

– Step 5: Remove the repetitive individuals on each
non-dominant set and select the excellent one from
the adjacent individuals.

– Step 6: If the accumulative number of individuals
selected from k non-dominant sets is greater than
the number N, then the individuals in the k th
non-dominant set are sorted from the largest
crowding distance to the smallest one, and a new
parent population Rm + 1 is formed with the N se-
lected individuals.

– Step 7: Select, cross and mutate the individuals
from the new parent generation population Rm + 1

to generate the new offspring population.
– Step 8: Determine whether the stopping

conditions have been reached or not. If they are
reached, the Pareto optimal solution set of
resource allocation is output. If it is not, step 3 is

continued to be executed until the stopping
conditions is reached.
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In theoretical analysis, the algorithm RAA-PI-NSGAII
takes into account users’ priorities and emergent grades
to calculate the priority of resource allocation, which
guarantees the rapid resource allocation for the urgent
resource demands. Additionally, the resource perform-
ance matching distance depicts the distance between a
VM performance vector and a physical server perform-
ance vector, which ensures more suitable resource allo-
cation for urgent resource demands. Finally, the
resource proportion matching distance makes the pro-
portion among different types of resources of a VM re-
quest closer to that among different types of resources
of a physical server, which reduces the resource frag-
ment of a physical server.

Experimental setup and metrics
Experimental setup
We use the cloud computing simulation software
‘CloudSim’ and a multi-objective algorithm framework
‘Jmetal’ to test and verify the effectiveness, repetitiveness
removal, distribution uniformity and solving time of our
algorithm. The simulation program is written in Java
and deployed on a Lenovo Thinkpad notebook (8G
memory, Intel Core i7 6500U).
Three types of resources (CPU, memory and disk) are

considered in this experiment. A cloud datacenter com-
posed of 400 physical servers is simulated using ‘Cloud-
sim’ software. There are four types of physical servers,
and each type includes 100 physical servers. Table 2
shows the total and free number of CPU cores, memory
capacity and disk size for each type of physical server.
There exist five common specifications of VMs in
Table 3. In this experiment, we assume five users apply-
ing for different types but having the same number of
VMs. Users’ priorities are positive integer numbers gen-
erated randomly within integer number set [1, 5], with
larger number corresponding to higher priorities. We
use the emergent grades to express the degrees of emer-
gent resource demands. The emergent grades of VM re-
quests are also generated randomly within the integer
number set [1, 5]. Similarly, the greater the value, the
higher the emergent degree is. The total numbers of
VMs requested by users are set as the values 100, 200,
400, 600, 800, and 1000, respectively. The units of

different types of resources differ, so the direct calcula-
tion of the original data will cause the proportion among
them to be dominated by one type of resource. For in-
stance, the proportion among free number of CPU cores,
free memory capacity and free disk size is 48:192:1800
for a P1 type of physical server, which may cause the
matching distance of resource proportion to be domi-
nated by the disk. We divide the data of the disk size by
10 to prevent the domination of disk resource.
The population size, the crossover probability, the

crossover distribution index and the mutation distribu-
tion index are set as 200, 0.85, 20 and 20, respectively, in
the experiment on the RAA-PI-NSGAII algorithm. The
mutation probability is set as the reciprocal of the num-
ber of variables. The maximum number of evaluations of
fitness values and iterations are set as 20,000 and 100,
respectively. We execute each algorithm 10 times and
compute the average results.

Metrics
To verify the effectiveness and performance of the RAA-
PI-NSGAII algorithm, we evaluate and compare it with
other algorithms on these following metrics.

Number of the used physical servers
The physical servers should be used as little as possible
when VMs are created according to the resource alloca-
tion algorithm. The fewer used physical servers there
are, the more the idle physical servers can be closed,
thereby reducing energy consumption and cost.

Matching distances of resource performance and resource
proportion
The matching distances of resource performance and re-
source proportion can be used to evaluate the matching
degree of the resource demands of VMs and the free re-
sources of the physical servers. The smaller the dis-
tances, the better the virtual resource demands match
with physical resources. Thus, the VMs will have better
performance, and fewer resources are wasted.

Resource utilization
A good multi-dimensional resource allocation algorithm
should maximize and homogenize each type of resource
utilization.

Table 3 Type of VMs

Types of VMs V1 V2 V3 V4 V5

Number of CPU cores 1 2 2 4 8

Memory capacity (GB) 2 2 4 8 8

Disk size (GB) 80 100 120 150 200

Table 2 Type of physical servers

Types of physical servers P1 P2 P3 P4

Total number of CPU cores 64 32 64 64

Total memory capacity (GB) 256 64 128 128

Total disk size (GB) 2048 1024 2048 1024

Free number of CPU cores 48 28 42 50

Free memory capacity (GB) 192 56 86 82

Free disk size (GB) 1800 800 1700 900

Chen et al. Journal of Cloud Computing: Advances, Systems and Applications           (2021) 10:20 Page 10 of 17



Repetition rate of the solution set
The repetition rate of the solution set is defined as the
ratio of the repetitive solutions to the total number of
solutions. The smaller its value, the better the solution
set is, which indicates that the algorithm has better ef-
fectiveness with regard to resource allocation.

Distribution uniformity of the solution set
The spacing metric (SP) is an effective index that can
be used to evaluate the distribution uniformity of the
solution set, as proposed by Schoot. The smaller the
SP value, the better the distribution of the solution
set is. SP is formulated as follows, where n is the
number of solutions, dk is the distance between the
individual k and its nearest individual h, and d is the
average value of dk.

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n − 1

Xn
k¼1

d − dk
� �2s

ð28Þ

The distance dk of the adjacent individuals is defined

as follows, where f kl is the value of the k th individual on
the objective dimension l.

dk ¼ min
Xm
l¼1

j f kl − f hl
� �j

( )
ð29Þ

Time cost
The time of VM resource allocation includes the solving
time of the RAA-PI-NSGAII algorithm, the VM waiting
time in the queue and the VM creation time. The total
VM waiting time and creation time of all VMs are

Fig. 6 Number of the used physical servers

Table 4 Matching distances of resource performance and resource proportion

Number BF RR SPEA2 NSGA-II RAA-PI-NSGAII

of VMs MD MP MD MP MD MP MD MP MD MP

100 116 670 120 1024 60 451 56 402 56 398

200 234 1378 275 1470 142 1036 137 932 132 887

400 467 2661 496 2417 309 2400 298 2177 291 2051

600 700 4061 761 4394 461 3799 457 3532 456 3435

800 871 5464 975 5413 615 5342 614 5010 613 5030

1000 1046 6600 1235 6670 779 6585 763 6446 764 6400
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similar for different resource allocation algorithms re-
gardless of the influence of the network topology and
server load. Therefore, we use the solving time as the al-
gorithm runtime to evaluate the performance of the
multi-objective optimization algorithms.

Experimental results and analysis
In the experiments, we recalculate the priorities of re-
source allocation according to users’ priorities and emer-
gent grades generated randomly. For example, 400 VM
requests from 5 users have different emergent grades

Fig. 7 Average CPU utilization of the used physical servers

Fig. 8 Average memory utilization of the used physical servers
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and users’ priorities. The 215th, 219th, 223th, 227th,
230th, 236th, 245th, 264th, 279th and 282th VM re-
quests in the queue belong to the same user with the
highest user priority and have the highest emergent
grades. These VMs are preferentially allocated resources
by the first to the 10th order in the queue, which en-
sures the timelessness of resource allocation for VMs
with higher priorities. To verify the effectiveness of our
proposed RAA-PI-NSGAII algorithm, we compare it
with the RR, BF, NSGA-II and SPEA2 algorithms ac-
cording to the number of the used physical servers, re-
source utilization, resource matching, repetitive solution
removal, and solution distribution uniformity. The BF al-
gorithm is a single-type resource allocation method.
CPU is the allocated resource type in the BF algorithm
experiment.
A cloud platform receives various VM requests and

then creates VMs on physical servers according to the

solution of a resource allocation algorithm. Figure 6
shows the number of physical servers used for different
VM requests. It can be observed that the BF algorithm
uses the fewest physical servers. For instance, 600 VMs
are created on 103 physical servers and 1000 VMs are
created on 144 servers. The BF algorithm first creates a
VM on a physical server that can meet the resource de-
mand of this VM and has the fewest free resources. The
RR algorithm uses the largest number of physical servers
due to its polling mechanism. The multi-objective evolu-
tionary algorithm SPEA2, NSGA-II, and our proposed
RAA-PI-NSGAII algorithm use more physical servers
than the BF algorithm but fewer than the RR algorithm.
Since these three algorithms aim to use the fewest phys-
ical servers, the solving results are similar. Each algo-
rithm uses almost the same number of physical servers
for the same VM requests. Relatively, the RAA-PI-
NSGAII algorithm uses fewer physical servers than the

Fig. 9 Average disk utilization of the used physical servers

Table 5 Repetition rate of a solution set

Number of VMs SPEA2 NSGA-II RAA-PI-NSGAII

100 27.20% 24.59% 0.00%

200 27.05% 22.36% 1.36%

400 25.00% 0.00% 0.00%

600 24.75% 0.00% 0.00%

800 27.17% 23.49% 0.00%

1000 25.75% 19.91% 0.00%

Table 6 Spacing metric of algorithm distribution

Number of VMs SPEA2 NSGA-II RAA-PI-NSGAII

100 1.50 1.94 1.73

200 2.67 4.60 4.01

400 4.36 9.66 7.55

600 6.13 11.71 8.59

800 6.83 13.23 11.80

1000 7.43 14.97 12.85
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SPEA2 and NSGA-II algorithms. The RAA-PI-NSGAII
algorithm only uses 319 physical servers for 800 VM re-
quests, while both the SPEA2 and NSGA-II algorithms
use over 325 physical servers.
Table 4 shows the experimental results of the different

algorithms according to their resource performance and
resource proportion matching. It can be seen that the
MD and MP of the RR algorithm reach maximum values
because it adopts a polling strategy and does not con-
sider any resource matching. The BF algorithm places
virtual machines on physical servers with the fewest
CPU resources, so its MD value is slightly lower than
that of RR algorithm. The multi-objective evolutionary
algorithms SPEA2, NSGA-II and RAA-PI-NSGAII aim
at achieving the minimum number of physical servers,
the minimum matching distance of resource perform-
ance and the minimum matching distance of resource

proportion, so their MD and MP values are smaller than
those of the BF and RR algorithms. Among them, the
MD and MP values obtained by the RAA-PI-NSGAII al-
gorithm are smaller than those of the SPEA2 and
NSGA-II algorithms, which demonstrates that the RAA-
PI-NSGAII algorithm is more effective than other algo-
rithms in regard to matching the optimal physical re-
sources for VMs and reducing resource fragments.
Figures 7, 8, 9 show the effectiveness of different algo-

rithms in regard to improving resource utilization. It is
noted that the curves of NSGA-II and RAA-PI-NSGAII
methods are offset by 2 units along the Y-axis to make
them clear. The BF algorithm deploys VMs on fewer
servers, which can cause the resource load to grow too
fast to maintain the stability of a cloud platform. The RR
algorithm appears to have the lowest utilization of the
CPU, memory and disk, but the use of these resources

Fig. 10 Pareto optimal solution set for 100 VM requests

Fig. 11 Pareto optimal solution set for 400 VM requests
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increases much faster than that of other algorithms with
the increase of the number of VM requests. Because the
SPEA2, NSGA-II, and RAA-PI-NSGAII algorithms con-
sider the resource proportion matching of different types
of resources, their utilization of the CPU, memory and
disk are always stable and slightly increase with the in-
crease of the number of VM requests, which is beneficial
to the stability and resource optimization of a cloud
platform.
The repetitive individuals not only deteriorate the

search efficiency due to the overlapped search space but
also greatly influence the evaluation of the solution dis-
tribution. The repetition rates of the solution set of the
SPEA2, NSGA-II and RAA-PI-NSGAII algorithms are
compared in Table 5. The SPEA2 algorithm has the
highest repetition rate, which is greater than 20% or
even up to 27.20%. The NSGA-II algorithm has the sec-
ond highest repetition rate, and its repetition rate is
close to 25%. Our proposed RAA-PI-NSGAII algorithm
greatly reduces the number of repetitive individuals and
achieves a 1.36% repetitive ratio.
To validate the advantages of our algorithm, we calcu-

late the SP values of three algorithms in Table 6. The
average SP values of the RAA-PI-NSGAII algorithm are
smaller than those of the NSGA-II algorithm, which
shows that the RAA-PI-NSGAII algorithm improves the
distribution uniformity of the solution set. However, we

also find that SP values of the RAA-PI-NSGAII algo-
rithm are obviously higher than those of the SPEA2
algorithm.
We randomly select a solution of each algorithm for

further analysis. The distribution of the Pareto optimal
solution set of the SPEA2, NSGA-II and RAA-PI-
NSGAII algorithms are shown in Figs. 10, 11 and 12 for
different VM requests. It can be seen that the solution
distribution of the NSGA-II algorithm is not uniform.
The solution is sparse or even zero in some regions,
while the solution is dense and repeated in other re-
gions. We can also observe that the SPEA2 algorithm
has many repetitive solutions that stack together. Be-
cause the zero distance between the repetitive solutions
greatly affects the distribution of the solution set, the
SPEA2 algorithm achieves low SP values. The distribu-
tion of the solution set of the RAA-PI-NSGAII algo-
rithm. is relatively uniform, but may not be dense, and
there are still some sparse regions. This paper mainly fo-
cuses on reducing the solving time and improving the
quality and distribution uniformity of the solution set. In
the future, we will further use Hypervolume (HV) to
evaluate the convergence and diversity of the obtained
solution set.
We performed an experiment to obtain the solving time

of each algorithm. The solving time of the BF and RR al-
gorithms are both short, within 1 s, while those of the
multi-objective evolutionary SPEA2, NSGA-II, RAA-PI-
NSGAII algorithms are relatively long due to performing
multiple generation evolution of the population.
Table 7 compares the results of the RAA-PI-NSGAII,
SPEA2 and NSGA-II algorithms. The NSGA-II algo-
rithm is more effective than the SPEA2 algorithm.
The NSGA-II algorithm takes 5 and 20 s less than the
SPEA2 algorithm to perform 200 and 600 VM re-
quests, respectively. We use 8, 32 and 128 threads to

Fig. 12 Pareto optimal solution set for 800 VM requests

Table 7 Solving time of the multi-objective evolutionary
algorithms

Number
of VMs

SPEA2(ms) NSGA-
II (ms)

RAA-PI-NSGA-II (ms)

8 T 32 T 128 T

200 152,594 147,534 57,064 43,036 40,882

400 292,013 293,395 113,385 83,720 79,987

600 411,650 392,866 159,934 115,199 118,689
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solve the multi-objective problem based on the RAA-
PI-NSGAII algorithm. Obviously, the solving time of
the RAA-PI-NSGAII algorithm is greatly reduced
compared to those of the SPEA2 and NSGA-II algo-
rithms. The solving time of the RAA-PI-NSGAII algo-
rithm using 8-thread parallel execution is 40% lower
than those of the SPEA2 and NSGA-II algorithms
and is lower by 30% using 32-thread and 128-thread
parallel execution.

Conclusion
With the development of cloud computing, big data and arti-
ficial intelligence, cloud resource demands demonstrate the
characteristics of diversity, burst and uncertainty. Undoubt-
edly, cloud platforms often encounter such emergent re-
source demands, which needs to be allocated resources
quickly and optimally. This paper proposes a multi-objective
optimization cloud resource allocation algorithm for emer-
gent demands. The priority of resource allocation is first de-
signed to respond to emergent demands, and resource
performance and resource proportion matching distances
are established to realize resource optimization and balanced
utilization of all types of resources. Then, a multi-objective
optimization algorithm of resource allocation is presented to
guarantee the timeliness and optimization of resource alloca-
tion, in which a multi-objective mathematical model mini-
mizes three objectives to optimize resource utilization and an
improved NSGA-II algorithm accelerates the solving speed
and improves the quality and distribution uniformity of the
solution set. Experiments are performed to compare our pro-
posed RAA-PI-NSGAII algorithm with the RR, BF, SPEA2
and NSGA-II algorithms. The results of this study verify the
effectiveness of our algorithm to meet the emergent de-
mands in cloud computing.
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