Amaral et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:22
https://doi.org/10.1186/s13677-021-00238-6

Journal of Cloud Computing:
Advances, Systems and Applications

RESEARCH Open Access

DRMaestro: orchestrating
disaggregated resources on virtualized

data-centers

Marcelo Amaral'2"

Check for
updates

, Jorda Polo?, David Carrera®?, Nelson Gonzalez', Chih-Chieh Yang',

Alessandro Morari', Bruce D'’Amora’, Alaa Youssef' and Malgorzata Steinder!

Abstract

that does not support resource disaggregation.

architecture, GPU

Modern applications demand resources at an unprecedented level. In this sense, data-centers are required to scale
efficiently to cope with such demand. Resource disaggregation has the potential to improve resource-efficiency by
allowing the deployment of workloads in more flexible ways. Therefore, the industry is shifting towards disaggregated
architectures, which enables new ways to structure hardware resources in data centers. However, determining the
best performing resource provisioning is a complicated task. The optimality of resource allocation in a disaggregated
data center depends on its topology and the workload collocation. This paper presents DRMaestro, a framework to
orchestrate disaggregated resources transparently from the applications. DRMaestro uses a novel flow-network model
to determine the optimal placement in multiple phases while employing best-efforts on preventing workload
performance interference. We first evaluate the impact of disaggregation regarding the additional network
requirements under higher network load. The results show that for some applications the impact is minimal, but other
ones can suffer up to 80% slowdown in the data transfer part. After that, we evaluate DRMaestro via a real prototype
on Kubernetes and a trace-driven simulation. The results show that DRMaestro can reduce the total job makespan
with a speedup of up to &21.20x and decrease the QoS violation up to ~2.64x comparing with another orchestrator

Keywords: Orchestration, Resource allocation, Cloud computing, Resources disaggregation, Composable

Introduction

Traditional data centers consist of monolithic building
blocks that tightly integrate a small number of resources
(i.e., CPU, memory, storage, and accelerators) for com-
puting tasks. The main flaws of such server-centric archi-
tecture are the dearth of resource provisioning flexi-
bility and agility. In particular, the resource allocation
within the boundary of the mainboard leads to resource
fragmentation and inefficiencies [1-3]. Therefore, indus-
try and research communities have been concentrating
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efforts on enabling the shift from mainboard-as-a-unit
server architecture to a more flexible software-defined
block-as-a-unit approach [4-7]. Systems within a dis-
aggregated (or composable) architecture are re-factored
so that the subsystems can communicate via a network
as a single system; resources are pooled together and
provisioned independently [8]. It increases the orches-
tration flexibility since allocating disaggregated resources
enables fine-grained provisioning decisions and effi-
cient sharing of the cluster resources across multiple
applications.

The most commonly used resource provisioning and
scheduling methods, such as the ones implemented in
Mesos [9], Kubernetes [10], YARN [11], Borg [12], and
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Firmament [13] resource managers, aims to consolidate
as many jobs into servers as possible or load-balance the
resource usage across the cluster. However, even though
an intelligent orchestrator could assign a workload to a
proper compute node, resource fragmentation still exists.
This leads to the problem that some valuable resources,
such as GPUs or NVMes, cannot be allocated because
of the lack of computing power or memory availability
within a node.

As for the application placement problem, three aspects
need to be considered. First, the current approaches do
not consider the possibility to allocate remote resources
transparently to the application, the access to resources
across multiple nodes must be explicitly managed by the
application, which can lead to resource fragmentation
in the cluster. Second, a disaggregate resource relies on
network communication to transfer data which is often
overlooked. More specifically, the applications that do not
require network communication, will transparently start
to transfer data via network connections to the remote
resources. Then, the usage of disaggregated resources may
introduce orders of magnitude higher networking band-
width, additional latency, and memory usage not present
when the application is using a directly attached resource
within a node. Third, apart from the additional resource
usage, an application can transparently become sensi-
tive to the network load, presenting performance vari-
ation, as we verify in our experiments, which is often
overlooked.

In this work, we conduct a comprehensive analysis
of the application placement problem considering the
possibility to allocate disaggregated resources. Nonethe-
less, determining the best-performing resource provi-
sioning and job scheduling, in most of its relevant
forms, is known to be NP-hard. In addition to that, the
problem is even more acute considering the possibil-
ity to allocate disaggregated resources. Then, we present
DRMaestro, a flow-network-based approach that solves
the problem in multiple phases to minimize the com-
plexity and allow the introduction of placement prefer-
ences. The system orchestrates disaggregated resources
on cloud environments preventing applications’ Service
Level Objectives (SLOs) violations when using disag-
gregated resources while maximizing the overall system
utilization. We consider the measured network communi-
cation dependencies from an application using disaggre-
gate resources, the network load, and server-side resource
constraints. The main contributions are summarized as
follows:

e The first contribution is the investigation of to what
extent the introduced network sensitivity and
requirements by using disaggregated resources can
affect the application’s performance.

(2021) 10:22 Page 2 of 20

e The second contribution is the proposal of a novel
framework to orchestrate and transparently allocate
disaggregated resources, which we call DRMaestro.

e The third contribution is a novel flow-network
model to determine the placement of jobs in a set of
machines considering the possibility to allocate
disaggregated resources.

e The fourth contribution is the creation of a
network-aware policy to prevent co-scheduled jobs
that become network sensitive by using disaggregated
resources with other network-intensive jobs.

The rest of the paper is structured as follows. “Prob-
lem formulation” section further describes the resource
provisioning problem when considering disaggregated
resources. “Related work” section discusses the key
differences between our work and the related works.
“DRMaestro architecture and implementation” section
presents the architecture and implementation of DRMae-
stro. “Experimental evaluation” section provides the
evaluation of our framework in a real prototype and
“Trace-driven simulation evaluation” section in a trace-
driven simulation. Finally, “Conclusion” section presents
the conclusions.

Problem formulation

To tackle the placement problem (i.e., the knapsack prob-
lem) of mapping a set of jobs with a set of machines, a
promising approach that has been widely investigated and
efficiently solved is to use graph isomorphism [14, 15].
By modeling the placement problem in a bipartite graph,
the problem can be modeled as a flow-network prob-
lem which can be efficiently solved with one of the de
facto flow-network-based existing algorithms to find the
optimal match by minimizing the costs [13, 16, 17].

The placement problem

The main challenge is how to model the resource dis-
aggregation as a flow-network problem. . To illustrate
that, let’s consider the scenario where the GPU is disag-
gregated. In this case, the model should consider that the
traffic flow rests on the behavioral assumption that the
job’s performance depends on any prevailing system flow,
which might introduce an inherent delay. Note that, this
problem should attain an equilibrium because the delay
that one job incurs depends on the flow of other jobs, and
all jobs are simultaneously choosing their best path. Addi-
tionally, the model also should consider that a machine has
limited capacity, and to satisfy the job’s demand; it might
have resources allocated beyond the available spares at a
larger cost, which is allocating disaggregated resources.
Moreover, for performance reasons, it is also desired to
have mechanisms to define placement preference (i.e.,
affinity to local resources).
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A formal statement
Let G = (N,A) be a directed bipartite network graph
whose arcs carry flow from the source to a sink node, in
which each arc (i, /) and (i, /) € A has a nonnegative capac-
ity x;; and a cost c;; associated with every arc (i,j) € A.
Each node i € N has a number b; that indicates its supply
or demand depending the node type. If it is a job’s task,
then b; > 0, else if the node is a machine, b; < 0. Addi-
tionally, it is always assumed that there are no loops, the
flow-network is finite, and the solution is feasible, that is,
there must be enough resources to place all jobs.

The goal is to find a flow f that minimizes Eq. 1 while
respecting the feasibility constraints in Eq. 2 and the
capacity in Egs. 3 and 4, as follows:

Minimize Y cyfj "
(ij)eA

subject to
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A “feasible flow” assigns a non-negative integer flow fj; to
each edge € A up to the maximum capacity x;;. Addition-
ally, when more than one resource is represented, Eq. 4
will be repeated for each resource r € R. Also, each flow,
demand, or capacity will have the values normalized. For
example, let’s consider the supply b;, each resource r € R
will be normalized with the maximum existing supplier in
the cluster of the given resource, as shown in Eq. 5.

In this work, we define the cost c¢;; associated with every
arc as the complement of the utility Ut; multiplied by the
placement preference P;. The Utility Function is inspired
in the work of [18] and is presented in Eq. 6. Where 7,
represents an average completion time goal and the ¢,
represents the expected completion time of the job with
the current resource » and load /.
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The utility value is bounded by one and is always greater
or equal to zero as long as the placement meets the goal.
That is, Ut(¢,;) €[1,0]. If the goal is violated, the utility
function yields negative values scaling with the magnitude
of z. loss, according to the importance of the sharing-
induced performance interference, where the z, = 1 has
the highest importance.

\%
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The preference P; is determined by the list of preferred
machines from each job’s task i, which can be determined
by affinity, resource constraints (i.e., a specific type of
resource), or by different phases in our scheduling pro-
cess (since our scheduling approach define preference in
different phases).

Apart from the communication cost in the data center,
the cost of external network load interference in the appli-
cation performance is a significant factor to be considered,
as we detail in our experiments in “Experiment 1 - perfor-
mance analysis of network-interference from using GPU
disaggregation” section.

To be specific, we assume that the expected comple-
tion time ¢,.; of a job might suffer a slowdown when using
resource disaggregation accordingly to the network load /.
Therefore, the expected completion time ¢, ; must be mul-
tiplied by a sensitivity factor sf [ concerning the network
load /. The sensitivity factor sf * [ might be experimentally
or statistically calculated.

Therefore, we define two policies: the first policy (i) do
not consider the network interference in the evaluation of
the expected completion time ¢,.; of the job; and the sec-
ond policy (ii) perform a different calculation for ¢, * sf
by considering the level of interference from the net-
work load that the application can suffer when accessing
disaggregated resources.

Flow-network-based min-cost algorithms

A flow-network-based resource provisioning system can
use any min-cost algorithm, but some algorithms are
better suited for this problem as further described by
Gog et al. [13]. The simplest min-cost algorithm is the
cycle canceling [19] that computes a max-flow solution
and then performs multiple iterations augmenting flow
along with negative-cost directed cycles in the residual
capacity of the network. The algorithm finishes with an
optimal solution once no negative-cost cycles exist. On
the other hand, different from cycle canceling, the suc-
cessive shortest path [16] algorithm attempts to keep the
costs reduced in all the steps to try to achieve feasibil-
ity, repeatedly selecting the shortest paths. The algorithm
cost scaling [17, 20, 21] iterates multiple times attempting
to reduce the cost while maintaining feasibility and relies
on a relaxed complementary slackness condition called
€-optimality.

The worst-case complexity of the cycle canceling, suc-
cessive shortest path and cost scaling algorithms are com-
pared in Table 1. Where, in the context of the problem in
this work, K is the number of disaggregated resources plus
one, N is the number of nodes, M the number of arcs, C
is the largest arc cost, and U the largest arc capacity. In
our problem, M > N > C > U. It is worth mention-
ing that although the worst-case complexities suggest that
successive shortest path performs better, Gog et al. [13]
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Table 1 Worst-case time complexity for min-cost algorithms

Algorithm Worst-case complexity
O(KNM?CU)
O(KN? Mlog(NC))

O(KN? Ulog(N))

Cycle canceling
Successive shortest path

Cost Scaling

showed that cost scaling scales better since in practice the
algorithms rarely reach the worst-case.

Related work

In this section, we review related work and the state of the
art for resource disaggregation middleware to clarify our
contributions.

Orchestration

Orchestration based on flow network

Isard et al. [22] introduce a powerful and flexible new
framework for scheduling concurrent distributed jobs,
enforcing data locality, fairness, and being a starvation-
free method. The scheduling problem is mapped to a
graph data structure, where the edge weights and capac-
ities encode the competing demands. They called their
framework Quincy and evaluated it with a cluster con-
taining a few hundred computers. They showed an exam-
ple of how efficient scheduling problems on flow-based-
network models can be, which has inspired our work. The
experimental results showed that Quincy provides better
fairness, while substantially improving the data locality
when compared with default greedy approaches.

Gog et al. [13] proposed Firmament by extending the
work of [22] via implementing different flow-network-
based algorithms to solve their proposed model, improv-
ing the scheduling latency. The Gog et al. results showed
that they improved the placement latency by 20x over
Quincy for an experiment with 12k machines. Addi-
tionally, they showed that Firmament’s 99th percentile
response time is 3.4x better than the SwarmKit [23] and
Kubernetes [10] ones, and 6.2x better than Sparrow [24]
response time.

While these previous works have done a great job show-
ing that flow-network based orchestration outperforms
greedy approaches, their proposed flow-network mod-
els have a rigid topology of the resources, preventing the
allocations of resource disaggregation as they are. More
specifically, a job can only be placed within a node and a
node cannot access resources of other nodes, as it happens
with resource disaggregation. Additionally, their model
only considers CPU and memory, they do not define hot-
plugged resources such as GPUs and NVMes. Quincy
does not include network load in its model. Finally,
although Firmament includes network load as a resource
constraint in its model, it does not include either network
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cost regarding resource disaggregation or the application
sensitivity to the external network load. The model that
our work uses includes the possible network interference
that disaggregated resources can suffer due to introduce
additional network requirements.

Orchestration considering the network traffic

Meng et al. [25] studied the effect of network traffic pat-
terns between VMs to optimize VM migration on host
machines. The study was performed in operational data
centers, and the results showed the distribution of VMs in
data centers was very uneven. They found that VMs with a
relatively high traffic rate tend to have high network usage,
and VMs with a low rate constantly exhibit a low rate.
Then, they formulated a traffic-aware VM mapping prob-
lem and proposed an approximation algorithm to solve
this problem. The experiments compare the impact of
the traffic patterns and the network architectures and the
results showed that the proposed algorithm increases the
performance and greatly decreased the communication
costs of a network.

Zhang et. al. [26] conducted a study of the network-
aware VM migration problem, considering not only the
underlying network topology of a data center, the server-
side resource, the communication dependencies among
VMs in the application tier, but also the data traffic of
VM migration from one host to another. They applied
two heuristic algorithms such as genetic algorithm (GA)
and artificial bee colony (ABC) to solve the optimization
problem of minimizing the communication and the VM
migration cost. Where the communication cost is defined
regarding the distance between the VM and the destina-
tion physical machine, i.e., latency, delay, or the number
of hops between servers, and the VM migration cost is
the distance times the VM size. The results showed that
the ABC algorithm scales better than GA regarding the
problem size.

These works share the similarity with our work regard-
ing the consideration of the network load and the com-
munication cost in the optimization problem. However,
they do not consider sensitivity (i.e, the slowdown factor)
respecting the network load as we do in our optimization
problem. Additionally, their optimization problem cannot
be directly applied to solve the placement of disaggregated
resources since their model only allocates VMs within the
boundary of a server, and a server cannot access resources
on other servers.

Orchestration considering disaggregation

Iserte et al. [27] provide an extension in the cluster
resource manager SLURM [28] by including a new type of
resource called “rgpu’; to obtain access from any applica-
tion to any GPU in the cluster using the library rCUDA
[7] to access the remote GPU. They extended the SLURM
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job submission with new parameters so that the user can
request to allocate remote GPUs. They have also pro-
vided a naive scheduler that first attempts to allocate local
GPUs, but if it is not possible it randomly selects other
available GPUs in the cluster. Iserte et al. [29] have done
another work that extends OpenStack [30] to support
remote GPUs using rCUDA. They extended OpenStack
to allow the user to allocate local or disaggregated GPUs
from a pool of GPUs. The main limitations of these works
are that the user must explicitly define the number of
remote GPUs, i.e., rgpus, which is not transparent to the
user. Additionally, in this work, the scheduler randomly
selects GPUs without considering the network and other
affinity preferences.

Lama et al. [31] proposes a power-aware virtual
OpenCL (pVOCL) framework that controls the peak
power consumption of the underlying server systems
and dynamic scheduling of GPU resources for online
power management in virtualized GPU environments.
pVOCL uses the VOCL [32] middleware to virtualize
GPUs for applications using OpenCL. pVOCL framework
uses a power-aware dynamic placement and migration
approach. The results showed an improvement of up to
29% in energy efficiency by turning off compute nodes
when they are idling. The main goal of this work how-
ever is to use GPU virtualization for power management
in GPU-enabled servers, and they do not leverage the
benefit of the possibility to remotely access virtualized
GPUs.

Resource disaggregation middleware

Previously, similar works to the HFCUDA library (detailed
in “HFCUDA” section) have been proposed, imple-
mented, and evaluated to intercepts CUDA calls as a soft-
ware middleware. Oikawa et al. [33] proposed, DS-CUDA,
implementing a redundant mechanism to replicate the
job execution in other GPUs to minimize the impact
of errors, which they claimed to be frequent in cloud
environments. For experimental evaluation, they imple-
mented DS-CUDA to intercepts calls from the CUDA
toolkit 4.1. Unfortunately we cannot use DS-CUDA for
this work because the CUDA toolkit is too old.

Liang and Chang [34] proposed GridCuda: a software
development toolkit to develop CUDA programs and to
aggregate GPU resources in computational grids for the
execution of CUDA programs. The runtime system of
GridCuda can automatically cooperate with the resource
brokers of computational grids to discover and allocate
GPUs available for jobs according to the user’s resource
requirements. The implementation supports the CUDA
toolkit 4.0 and demands modifications in the applications’
code to be implemented using their toolkit. Similarly to
DS-CUDA, we cannot use GridCuda in this work because
the CUDA toolkit is too old.
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Merritt et al. [35] present Shadowfax to virtualize GPUs
over Xen hypervisor 3.2.1, supporting CUDA toolkit 1.1.

The rCUDA [7] is a middleware that traps the CUDA
call APIs from an application and forwards the calls to
a remote server to process the request in the remote
GPU. rCUDA implements most of the CUDA API and
also provides support for other libraries such as cuFF,
cuBLAS, and cuSPARSE. rCUDA also supports network
transmission with RDMA over InfiniBand or Ethernet
networks. The results showed that the middleware over-
head impact varies by GPU architecture due to computing
power. Additionally, the results showed that for some
specific scenarios, the middleware achieves better per-
formance than the native CUDA calls dues to the usage
of pinned memory. At the time of this writing, rCUDA
is the most popular middleware for GPU virtualization.
It supports the CUDA toolkit up to version 9.1, can be
used by both VMs and containers, and has low com-
munication overhead when using InfiniBand networks.
Unlike other works rCuda requires users to allocate avail-
able GPUs by themselves for the execution of their CUDA
programs and the code is proprietary, making it hard to
run on top of POWERS architectures, and preventing us
from understanding the underlying behavior and as well
as implementing missing features.

Finally, Xiao et al. [32] presented the VOLC, a mid-
dleware to virtualize GPU for OpenCL calls. The main
limitation of this work is that although it provides GPU
virtualization it does not provides support for remote
access.

Therefore, in this work, we used the HFCUDA library,
our in-house middleware for GPU virtualization.

DRMaestro architecture and implementation

Our proposed framework is a dynamic, loop-based con-
troller that can manage resources from both server-
centric and/or disaggregated architectures. DRMaestro’s
architecture is depicted in Fig. 1, and the key compo-
nents are as follows. (i) A Resource Manager (RM) module
that interacts with the end-user receiving the submis-
sion of jobs and enforcing placement decisions. (ii) A
Placement Decision Maker (PDM) module responsible for
updating the flow-network models and making place-
ment decisions. Finally, (iii) a Flow-Network Solver (FNS)
module that executes a min-cost algorithm to solve the
flow-network models.

Placement decision maker (PDM) module

DRMaestro’s PDM module determines the optimal place-
ment for a given set of jobs in an online scheduling
approach. As detailed in the Alg. 1 and illustrated in Fig. 1,
it first receives the cluster status (the snapshot of the cur-
rent resource usage), and then, based on this status it
gathers a list of jobs from the waiting job queue. Only
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costs (e.g., Firmament)

Flow Network | models/ min-cost| algorithm
Model ryappings Cluster
= Algorithm Repository Info
jobs _J
Clufter e l monitoring data. | job list
state

Queue

get jobs that fit in available resources
PLACEMENT DECISION (job list sorted by waiting time)
MAKER
jobs mapping on machines and disaggregated resources

RESOURCE MANAGER
(e.g., Mesos, Yarn,
Kubernetes)

Virtualization
(e.g., Docker)

HFCUDA
Server

Resources

(e.g., GPUs, NMVe)

Virtualization
(e.g., Docker)

HFCUDA HFCUDA
Server Client

Resources

(e.g., GPUs, NMVe)

inject libraries into

jobs, and start jobs
and disaggregated
resource daemons

DRMaestro starts the disaggregated resource daemons

Fig. 1 Conceptual view of DRMaestro’s architecture. In a loop-based approach, the Resource manager (e.g., Kubernetes [10]) appends to the queue
the new incoming jobs. If there are enough resources in the cluster, a list of jobs is sent to the Flow Network Model module to update the models.
The optimal placement is determined by sending the updated models to the Flow Network Solver Model (e.g., Firmament [13]). If necessary,

the jobs that can fit in the currently available resources
are gathered from the queue, and to prevent starvation,
the queue is sorted by the total wait time of each waiting
job. This data is then used to update the models within
the Flow Network Model (FNM) module and forward the
updated models to the FNS module, which will return the
mapping results of each model.

Each requested resource that is possible to be disaggre-
gated is treated individually, i.e., if different resources are
disaggregated, they are allocated in different phases. This
is because carefully separating the optimization problem
into independent sub-problems is effective at reducing the
complexity of finding the optimal placement. We further
detail our flow-network models in “Flow-network model
(FNM) module” section.

Therefore, FNM maintains multiple flow-network mod-
els that are solved sequentially, as illustrated in Fig. 2. The
first flow-network model will represent the placement of
server-centric resources. The other following models will
represent the placement of the disaggregated resources.
After the first model is solved, the other models (if any)
update the machine preferences based on the decisions
made with the previous models, as shown in Algo. 2, when
calling the function UpdateModelPreferences ().

After the FNS module returns all the solved mod-
els, the final placement decision of each job is extracted
based on the analysis of the optimal flow from all
solved models, as shown in Algo. 2 when calling the
GetMapping () function. By default, we gang sched-
ule all resources (but our method can be easily extended
to allocate resources incrementally). Hence, in our pro-
posal, if any requested resource (i.e., job’s “sub-task” in our
model) is left unscheduled in any of the solved models,
the job will not be scheduled. If the job is not sched-
uled it will be added back to the queue with an increment
to its total wait time counter. After that, PDM sends the
placement decisions to RM to configure and start the
jobs.

Algorithm 1 DRMaestro Placement Process

function PLACEMENT( )
cs = get_cluster_state()
jobs = queue.pop_jobs(cs) //only jobs that fit in the
resources
update_flow_network_models(jobs, cs)
mp = MAPPING(jobs) /1Algorithm 2
for job in m do
if job.state == scheduled then
for r in disaggregated_resources do
for {task, m} in m[job][r] do
bind_to_node(job, m)
end for
end for
wait_all_hfcuda_severs_start()
m = mpljob][not_disaggr_group][0]
inject_info(job.manifest, mp)
bind_to_node(job.manifest, m)
else
job.waiting_counter++
queue.push(job)
end if
end for
end function

Flow-network model (FNM) module

Although, the placement problem can be modeled as
a flow-network model in many different ways, for ele-
gance and clarity we have attempted to create the simplest
possible model. We created our models inspired by the
models applied in [13, 22], but, unlike the previous ones,
we encompass the system with disaggregated architec-
tures. In our flow-network model, the allocation of both
server-centric and disaggregated resources is incremen-
tally solved in different phases, using a divide and conquer
approach. The approach is incremental as it decides to
place each resource at a time without modifying the allo-
cation plan from previous decisions in the other phases.
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Placement Scheduling

Scheduling

Placement Scheduling Placement

(a) CPU allocation for jobs 0,1,2 with tasks

have the CPU allocated in only one Server-
Node (SN) or Rack-Node (RN). X is an phase each G has
aggregator. U represents unscheduled tasks.

(b) For the disaggregated GPU allocation, a
(T) representing the Job’s CPU. Each job will | job can request more than one GPU task (G).
Since the CPU was already allocated, in this
a scored placement
preference for an SN or RN.

Fig. 2 Proposed flow network modeling. All disaggregated resources are allocated incrementally in different phases. Each phase depends on the
previous one and are optional depending which resource can be disaggregated. Additionally, each phase determines the jobs' placement
preferences that directly changes the arc costs to machines accordingly with the applied policy

(c) Regarding the disaggregated storage
allocation, a job can request more storage
than available in a single place; then, the
model split the request into multiple tasks (S)
with preference on an SN or RN.

We have carefully defined the problem in multiple phases
to enable the possibility to express placement preferences
(i.e., define affinity). For instance, when a job is placed
in machine #1 (having the server-centric resources allo-
cated in machine #1), in our model, it will be possible to
define preferences to allocate the resources that can be
disaggregated in the local machine or a remote machine,
depending on the allocation policy.

This multi-phase approach requires the definition of
multiple flow-network models, as illustrated in Fig. 2. In

Algorithm 2 DRMaestro Flow-Network Mapping

function MA PP 1NG(incoming_jobs)
prev_model = nil;
map_m = [[]]
for (group in resource_groups) do
model = flow_models[group]
if (prev_model not empty) then
UpdatePref(model, prev_model)
end if
map_m/[group] = GetMappings(model)
prev_model = map_m[group]
end for
for (job in incoming_jobs) do
job.state = scheduled
for (t in job[group].tasks()) do
m = map_m|[group][t]
if (t not in map_m|[group]) then
job.state = unscheduled
else
map(job][group] = {t, m}
end if
end for
end for
end function

this figure, in each model, the node U, determines if the
job will be activated or left unscheduled. Note that, the
cost to leave a task unscheduled must be initially higher
than placing it. Also, in this figure, the node X stands for
an aggregator to reduce the number of possible arcs from
jobs to machines, and the ¢* is the sink node. The SN
represents a server-node with software-defined resource
disaggregation, i.e., using a software-based middleware to
disaggregate the resource. The RN represents a rack-node
with hardware-defined resource disaggregation. To apply
the scheduling policy, the arc weights and capacity are
properly determined.

Fig. 2a illustrates the first phase, where the job will
be placed and allocated server-centric resources. In this
figure, the Ty ,, represents each task of job Ji with the
group of the server-centric resource, for instance, CPU
and memory. In a more intricate description, this phase is
a snapshot of the cluster, showing the available machines
(SN and RN), and also the running and incoming jobs (i.e.,
the jobs picked from the waiting list). In this phase, the
placement of each task Ty ,, will determine the placement
preferences in the other phases.

Fig. 2b illustrates the second phase and will exist only
if a disaggregated resource is required to be allocated.
This phase is incremental to the previous phase and will
update the graph of the flow-network model to represent
the allocation of a group of a type of resource. For exam-
ple, Fig. 2b creates new “sub-tasks” G, , for each z GPUs
that each task T}, is requesting. It allows the allocation of
each GPU independently and possibly going to different
machines, i.e., allocating disaggregated GPUs. Addition-
ally, the mapping result from the first phase is translated
here to preference arcs for each “sub-tasks”, which will dic-
tate the costs. To illustrate that, consider the case where
Job Jo best performs when its CPU and GPU are on the
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same machine, and the applied scheduling policy prior-
itizes locality. If in the first phase, task Ty is placed in
SNy, in the second phase, the sub-tasks G« will have a
preference for SNp.

Figure 2c illustrates the third phase and stands for the
allocation of another disaggregated resource. Note that,
for each type of resource that can be disaggregated a new
phase will be created. In this example, we are showing
a phase to allocate disaggregated GPU and a phase to
allocate Non-Volatile Memory Express (NVMe) storage.
However, in the case that there are more resource groups
to be provisioned, the method keeps transforming the
graph and translating the placements into preference arcs.
Thence, in Fig. 2¢, the “sub-tasks” Skq will allocate the dis-
aggregated NVMes. Note that the level of parallelism is
defined by the number of sub-tasks. For example, in the
case that a task has only two “sub-tasks” Sy, this task
can access up to two machines at most, but this process is
transparent for the applications.

Cost model (CM) module

The CM module is responsible to determine the cost of
the edges in the flow-network model according to a given
policy. As detailed in “A formal statement” section, in this
work, the cost c;; is defined as the complement of the util-
ity Ut;, in Eq. 6, times the preference P;. The preference P;
is determined by the list of preferred machines from each
job’s task i, which can be determined by affinity, resource
constraints (i.e., a specific type of resource), or by differ-
ent phases in our scheduling process (since our scheduling
approach defines preference in different phases). The cost
c;j for all edges, except the one between the job i and the
unscheduled state U}, is determined by Eq. 7. On the other
hand, cost ¢;; of the edges that point to an unscheduled
state U; is determined by Eq. 8, which, to avoid starva-
tion, has an incremental counter W; that increases every
time that the job i is left unscheduled after each scheduler
iteration.

Therefore, in our model, the cost c;; for all edges, except
the one between the job i and the unscheduled state U,
is determined by Eq. 7. On the other hand, cost c;; of the
edges that point to an unscheduled state U; is determined
by Eq. 8, which, to avoid starvation, has an incremental
counter W; that increases every time that the job i is left
unscheduled after each scheduler iteration.

Cij = (1 — Ut(pr))P; (7)

cij = (1 — Ut(pr,))Pi + Wi ®)

The network-aware (NA) policy

The NA policy updates the costs to place a task or leaves
it unscheduled based on the network load and the sen-
sitivity of the task to such a load. Where the sensitivity
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is given by a job profile created from experimentation
using historical data (i.e., offline profiling), as shown in
“Experiment 1 - performance analysis of network-inter-
ference from using GPU disaggregation” section. The
model will contain the execution time of the best-
performing scenarios for the application accessing dis-
aggregated resources, along with the execution time in
another scenario where an artificial load was introduced
in the network. Then, with this policy, the cost is calcu-
lated considering the expected slowdown that this appli-
cation might suffer given the current load in the network.
Additionally, in this policy, for each scheduling decision,
if the placement does not satisfy the task’s SLO, the place-
ment will be postponed. Where the SLO is defined as the
task’s expected completion time.

The inference engine

This module is implemented with a simple approach that
keeps the information (i.e., the offline profiling) of the
average job’s completion time in each cluster state. While
we keep it simple since in practice a complicated inference
engine is not typically applied because of the introducing
delay in the placement, we plan to extend DRMaestro to
also use a more sophisticated engine such as using deci-
sion tree [36, 37] or statistical clustering [38—40]. But for
now, our classification is based on the job’s Docker image
metadata and an off-line model created with both histori-
cal data from experimentation. In the absence of a model,
the application is classified as unknown using a neutral
cost value (e.g., as 1).

Flow-network solver (FNS)

The FNS module continuously consumes telemetry data
to update the flow-network models and the list of incom-
ing jobs to add to the queue of waiting jobs. Additionally,
this module is responsible to solve the flow-network mod-
els using a min-cost algorithm and replies to the PDM
module the solved the models. Most of the telemetry
cluster data is given by Kubernetes Heapster.

Resource manager (RM) module
The RM module is responsible for monitoring the cluster,
enforce the placement decisions, and trigger the orches-
tration with a set of jobs L when L > 0. Each job, on its
arrival, is put into a queue (sorted by the waiting time),
and in a loop-based approach, the resource manager sends
a set of jobs to the orchestrator to find the optimal place-
ment for them. After that, it maps and runs each job’s task
within its target machine. When it is necessary, before
starting any job, the resource disaggregation daemons will
be started.

In our implementation, the RM module is built on
Kubernetes [10] since it one of the most widely applied
resources managers in today’s cloud data centers. For
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connecting the FNS module with the RM module, we
use the Kubernetes support for an add-on scheduler. The
interface between these modules was based on the Kuber-
netes’s scheduler add-on Poseidon [41]. We extended this
add-on scheduler to interpret the new format of the place-
ment decisions that DRMaestro supplies and enforce the
setup of daemons responsible to enable the resource dis-
aggregation. Additionally, it also injects into the job the
required libraries and information to access the disaggre-
gated resource before running the job.

Enabling GPU disaggregation

The disaggregated resources can be managed through a
centralized or a distributed model and accessed by appli-
cation programming models through hardware, hypervi-
sor/operating system, or middleware based approaches
as discussed in [42]. In this study, we focus on the
middleware-based approach.

GPU disaggregation into DRMaestro

Disaggregation is implemented via a simple approach,
with no change in the Kubernetes architecture. DRMae-
stro dynamically creates new disaggregated daemon
servers as Kubernetes jobs and injects into the job the
required libraries and environment variables to set up
the channel between the job and the disaggregated GPU.
Then, for each application submitted into Kubernetes that
will need remotely access the disaggregated GPUs, we
create HFCUDA servers in the nodes that have access
to the GPUs. Where HFCUDA is our in-house GPU
Disaggregation middleware. Therefore, as a Kubernetes
job, each HFCUDA server is created on the node as a
Pod with a container accessing the local (server-centric)
GPUs. Consequently, the application is created with the
HFCUDA client, which will access the servers to access
the GPUs remotely. Note that the process to create the
HFCUDA client and server is transparent from the user,
the framework receives a regular Kubernetes manifest and
then injects the necessary libraries, environment variable,
affinity constraints and creates all the Kubernetes pods
necessary to run the job with HFCUDA.

HFCUDA

HFCUDA is used since most of the similar libraries tar-
get only virtual machines, support only old CUDA ver-
sions, do not support POWERS architectures, or have a
proprietary source code (which prevents us from under-
standing the underlying behavior as well as implementing
missing features), as discussed in “Resource disaggrega-
tion middleware” section. The HFCUDA runtime is a
cross-platform library written in C for portability and
performance. The architecture is composed of a “client”
library hooking all CUDA calls and offloads API-related
data via a network (either Socket/PCle or RDMA/PCle)
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to a “server” that executes the calls into activated GPUs
installed at the server node and returns the results. The
application does not need to be changed, except that it
must be compiled with the cudart library set as shared and
be started with LD PRELOAD to load the HFCUDA wrap-
per. Additionally, the application’s shared library must
be provided to the server. The server uses the applica-
tion’s shared library to execute the CUDA kernels. That
is, it receives the CUDA Kernel name and its parame-
ters from the client and loads and configures the function
from the shared library into the GPU. Therefore, the
server depends on the application, then, we dynamically
create it. This confers security benefits and reduces the
exchanged information between the server and the client.
Additionally, when the server starts, it initializes CUDA
and creates a context in each GPU that it has access to.
Thence, since a different server is created for a new appli-
cation, different applications will never share the same
context.

Premises, limitations, and other discussions

Although it is possible to represent in our model the
sharing of GPU or job preemption, we did not enable
it during our experiments because, at the time of this
work, there were still some limitations to enable them.
Even though, there were some libraries to help to enable
that, such as Multi-Process Service (MPS) [43]. At this
writing time, MPS has harsh limitations preventing its
usage in Cloud environments. For instance, in pre-Volta
NVIDIA GPU architectures (e.g., Pascal and Kepler),
the process sharing the GPU did not have isolated
address spaces, that is an out-of-range write in a CUDA
Kernel could modify the memory state of another pro-
cess without triggering an error. Moreover, even though,
the new NVIDIA Volta architectures implement now fully
isolated GPU address spaces, there are still limitations
regarding sharing GPU in a cloud environment. For exam-
ple, a GPU exception generated by any client will be
reported to all clients, and a fatal GPU exception trig-
gered by one client will terminate the GPU activity of all
clients [43].

Additionally, the network latency and bandwidth can be
alimitation when using disaggregated resources. Then, for
good performance, the InfiniBand network is desirable. In
this work, we used software-based disaggregation tech-
nology, but more advanced ones, such as implemented
directly with hardware support, will benefit the perfor-
mance.

Finally, the underlying non-uniform memory topology
interconnecting GPUs impacts the GPU communication
performance as demonstrated in [44]. Although this is not
the focus of this work, the topology cost can be easily
added to the flow-network costs; we leave it for future
work.



Amaral et al. Journal of Cloud Computing: Advances, Systems and Applications

Experimental evaluation

We evaluate DRMaestro by comparing it to, Firma-
ment [13], the most relevant related flow-network-based
scheduling system. It is noteworthy that Firmament was
extensively evaluated showing that it always performs bet-
ter than greedy approaches. The fundamental difference
between Firmament and DRMaestro is that Firmament is
built to manage only server-centric systems; it does do not
allocate disaggregated resources as DRMaestro does.

Next, we present the main goals of the experiments in
this section.

The first goal (I) is to investigate to what extent the
introduced network sensitivity/requirements - by using
disaggregated resources - can affect the application’s per-
formance, as will be elaborated in “Experiment 1 - per-
formance analysis of network-interference from using
GPU disaggregation” section. The motivation is although
resource disaggregation confers many advantages, it intro-
duces the challenge to deal with added network require-
ments. An application that does not require network com-
munication will transparently start to rely on transferring
data via network connections.

The second goal (1) is to investigate to what extent
the resource-efficiency of the cluster can be leveraged
by using GPU disaggregation, as will be presented in
“Experiment 2 - resource-efficiency leveraged by GPU dis-
aggregation” section. The motivation is that one of the
main advantages of resource disaggregation is to enable
the allocation of spare resources that could not be allo-
cated in normal situations. That is, a machine that does
not have enough available computing resources cannot
assign its idle resource for waiting jobs. Therefore, we
create all the experiments within a scenario where some
machines have part of their computing resources already
allocated. More specifically, we warm up the cluster by
allocating some long-running jobs before starting the
experiments.

The third goal (III) is to investigate to what extent
the QoS violations of the jobs are mitigated by using
our Network-Aware (NA) policy, as will be described in
“Experiment 3 - resource-efficiency leveraged by mitigat-
ing QoS violations” section. The motivation is that since
disaggregated resources may introduce network sensitiv-
ity into the job, we hope to mitigate QoS violations by
preventing collocation with network-intensive jobs.

Testing environment

All experiments are conducted on 4 IBM® Firestone
POWERS® servers. Each Firestone is configured with
512GB DRAM, 2 x POWERS® 3.4Ghz CPU (10 cores per
CPU and 8 threads per core), 4 x NVIDIA® K80 GPUs,
1 x dual-ported Mellanox® EDR IB, and 4 x 1/10GbE
Broadcom Ethernet. The InfiniBand network provides
connectivity between distributed applications tasks and
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access to the IBM® Spectrum Scale storage servers run-
ning GPFS file system. The 1/10 GbE networks are used
for three purposes: (1) connectivity via a private net-
work to a management controller node that can be used
to provision software via the xCAT cluster management
software (2) connectivity to the BMC (Baseboard Manage-
ment Controller) that monitors the physical state of the
computer and can be accessed to remotely power on/off
a server (3) connectivity to the internet. The Spectrum
Scale storage servers provide 1.2 PB of storage accessed via
the General Parallel File System (GPFS). Each Firestone
server is provisioned with Ubuntu 16.04 with the 4.4.0-
31-generic kernel. A development stack including GNU
toolchain, IBM® XL compilers, CUDA 9.1 with driver
version 387.36, and Kubernetes version 1.10 is deployed
across the cluster. In all experiments, the applications
were executed in Docker containers.

The benchmark

The workload is composed of applications from the
Rodinia Benchmark Suite for Heterogeneous Computing
[45]. We selected only the applications that most differ
from each other concerning the resource usage pattern,
and we configured them as follows:

® B+tree performs queries on large n-ary trees and is
configured with an input of 10k elements.

e Back Propagation is a pattern recognition
application that implements a single training step of a
neural network. But we extended it to have multiple
iterations, and we configured it with 100k input
elements and 10k iterations.

e Gaussian implements the Gaussian elimination
solver for a system of linear equations and is
configured with a generated matrix of 6k elements.

e HotSpot is a transient thermal differential equation
solver and is configured with both the thermal and
the temperature data with a matrix of 8k elements.

e LavaMD performs a step in a larger molecular
dynamic simulation; we configured it with 114 cluster
nodes (called boxes).

e Needleman-Wunsch (NW) is a bioinformatics
application that runs a global optimization method
for DNA sequence alignment, and we configured it
with 40k rows/columns and a penalty of 10.

e Pathfinder computes the path on a 2D grid with the
smallest total cost and is configured with 10 million
columns, 200 rows, and with the pyramid height as
100.

¢ Speckle Reducing Anisotropic Diffusion (SRAD)
is an image processing algorithm using anisotropic
diffusion to reduce noise in images and configured
with 10k iterations, 0.5 of saturation coefficient, 5k
rows, and 4k columns.
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Experiment 1 - performance analysis of
network-interference from using GPU disaggregation

To quantify the performance impact of the introduced
network sensitivity/requirements by using disaggregated
resources, we collocate Rodinia applications accessing
remote GPUs using the HFCUDA library with Iperf [46]
on the same machines. However, it is important to high-
light that the goal of this experiment is not to show the
impact of disaggregation versus non-disaggregation since
it depends exclusively on the techniques used to enable
disaggregation. More specifically, it depends on how effi-
ciently the software or hardware-based disaggregation is
implemented. Instead, the goal of this experiment is to
show how sensitive to the network the application can
become by using a disaggregated resource.

The performance breakdown of how much time is spent
on the Network, GPU (CUDA), and CPU and disk of
the Rodinia applications accessing disaggregated GPUs,
with and without additional network load, is presented
in Fig. 3. The figure illustrates the comparison of how
each application behaves running in isolation and run-
ning collocated with another CPU-only network-intensive
workload. As expected, all jobs increase the time rela-
tive to the network transfer of data to a remote GPU
when running collocated with another job. For instance,
in the case of HotSpot, the increase is from 0.2% to 1%
(i-e., 80% higher), while NW goes from 17% to 49% (i.e.,
32% higher). Thence, in conclusion, the added network
load may affect differently the performance of the appli-
cations. Some applications can become more network
sensitive because of their communication pattern with
the GPU.
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Experiment 2 - resource-efficiency leveraged by GPU
disaggregation

To quantify the improvement realized by leveraging the
resource-efficiency of the cluster using GPU disaggre-
gation, we first evaluate the implemented prototype of
DRMaestro and Firmament within a small cluster com-
posed of four machines. During this experimentation, we
generate jobs following a normal distribution to define the
job type (i.e., the Rodinia application). A Poisson process
with an exponential distribution and an arrival rate of 16
jobs per second is used. Two scenarios are evaluated. The
first scenario (i) submits 128 jobs to the Resource Manager
(RM) module, and the second scenario (ii), to increase the
pressure in the system, 512 jobs are submitted. To config-
ure this scenario, we warm up the cluster allocating some
CPU-only long-running jobs before starting the experi-
ments. The first jobs only request CPU and Memory and
execute for ~2000s. The warm-up enables us to show the
benefit of resource disaggregation when there are spare
fragmented resources in the cluster.

The results are shown in Figs. 4 and 5 and summarized
in Tables 2 and 3. As expected, in these scenarios, where
part of the cluster CPUs have already been allocated, some
GPUs cannot be locally allocated because of the shortage
of computing resources.

Figure 4 shows that Firmament performs worse than
DRMaestro regarding resource-efficiency when submit-
ting 128 jobs in a system with 4 machines. During the exe-
cution of this experiment, Firmament could only allocate
8 GPUs at most. On the contrary, when GPU disaggrega-
tion is enabled, by using DRMaestro, all the GPUs are allo-
cated. The small interval where some GPUs are not being
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Fig. 3 Network performance analysis of disaggregated resources. Performance breakdown for different Rodinia applications running with HFCUDA
in collocation with a network-intensive workload (Iperf), or running solo in isolation
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Fig. 4 Experiment results of orchestration with DRMaestro. Orchestration performed with DRMaestro with the implemented prototype in a cluster
with 4 machines and 128 jobs
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Fig. 5 Experiment results of orchestration with DRMaestro. Orchestration performed with DRMaestro with the implemented prototype in a cluster
with 4 machines and 512 jobs
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Table 2 Total makespan of a set of jobs

Execution time

#Job  #Node  NetPolicy Fir. DR. Ratio
Fir\DR.
128 4 False 1145.16s 760.53s — ~1.50X
128 4 True - 744.61s
\ N
Network Policy Improvement ~1.02X ~1.54
512 4 False 3413275 2690.08s  — ~1.27X
512 4 True 2593.50s
{ N
Network Policy Improvement ~1.04X ~132

Where Fir. is Firmament and DR. is DRMaestro

used happens because of the interval between finishing
and starting the jobs. Besides, to improve the resource uti-
lization of the cluster, DRMaestro also decreases the total
makespan with a speedup of up to ~1.50X, as shown in
Table 2. This is explained by the fact that DRMaestro can
place more waiting jobs by allocating spare idle GPUs.
On the other hand, since resource disaggregation intro-
duces additional network requirements/sensitivity into
some jobs, the number of jobs with violated QoS (the
number of jobs that suffered slowdown) is ~9% higher
when using DRMaestro without the NA policy, as detailed
in Table 3. The results with the NA policy enabled is dis-
cussed in “Experiment 3 - resource-efficiency leveraged by
mitigating QoS violations” section.

When evaluating a more intensive scenario, submit-
ting 512 jobs instead of only 128, DRMaestro still per-
forms better than Firmament regarding maximizing the
resource utilization and decreasing the makespan. The

Table 3 Number of jobs that violate QoS

Number of jobs

with violated QoS

# Job # Node Net Policy Fir. DR. Ratio
Fir\DR.
128 4 False 106 117 — ~0.91x
128 4 True - 112
! N
Network Policy Improvement ~1.04x ~0.95x
512 4 False 445 463 — ~0.96x
512 4 True - 431
\ N
Network Policy Improvement ~1.07x ~1.03x

Where Fir. is Firmament and DR. is DRMaestro
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results are illustrated in Fig. 5. In this scenario, sub-
mitting 512 jobs, after the ~2000s, Firmament starts to
allocate almost all the GPUs in the cluster. This behav-
ior is explained because the long-running jobs that started
during the warm-up phase have finished. Therefore, all
the machines start to have enough computing power to
allocate the waiting jobs requiring GPU.

Since the scenario that submits 512 jobs introduces
more pressure in the system, DRMaestro has less room
for improvements. This leads to a smaller speedup in
the makespan when compared with the previous scenario
that had 128 jobs, as shown in Table 2. Additionally, the
percentage of jobs with violated QoS is ~4% higher in
DRMaestro without using the NA policy.

The scheduling overhead is illustrated in Fig. 6, which
shows the Cumulative Distribution Function (CDF) of the
average time that the algorithm and all the other schedul-
ing mechanism spend on making and enforcing decisions.
The DRMaestro scheduler that allocates disaggregated
resources is ~2 times slower than the Firmament sched-
uler that does not allocate disaggregated resources. This
behavior is expected since the DRMaestro scheduler runs
the model twice, in two consecutive phases. Nonetheless,
the DRMaestro scheduler overhead is still minimal; it is in
the order of sub-seconds.

Experiment 3 - resource-efficiency leveraged by mitigating
QoS violations

As presented in the earlier experiments, the number of
jobs with violated QoS is higher in DRMaestro then in
Firmament. This is because the jobs that are using disag-
gregated resources might have performance perturbation
according to the network load intensity. Therefore, to
mitigate the QoS violation from network interference in
jobs using disaggregated resources, we implemented a
Network-Aware (NA) policy. This policy determines the
placement cost based on the current network load and
the network sensitivity of the job, and postpones the
placement of jobs in suboptimal placement conditions, as
described in “The network-aware (NA) policy” section.

In both scenarios, submitting 128 and 512 jobs on 4
machines, the NA policy is effective at improving the QoS
violations for DRMaestro. There was an improvement of
~4% for the scenario with 128 jobs and ~7% for the
other one. It is worth noting that for the scenario with
512 jobs, DRMaestro with NA policy has effectively pro-
tected the QoS, showing fewer violations than Firmament.
Before, without the policy, DRMaestro was introducing
~9% more QoS violation than Firmament, but, with the
NA policy, DRMaestro started to have ~3% less QoS vio-
lations. The policy also confers improvement in the total
makespan, ~4%, as detailed in Table 2. Furthermore, if
there are more available resources, DRMaestro with NA
policy will have more room for improvements, as we
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Fig. 6 Scheduler execution time. The DRMaestro scheduler runs 2 times slower than Firmament scheduler, since DRMaestro executes the model

further detail in a large-scale scenario in “Trace-driven
simulation evaluation” section.

Trace-driven simulation evaluation

To evaluate the potential of DRMaestro over a large-
scale scenario - with thousands of jobs and hundreds of
machines - we implemented an event-driven simulation
based on traces collected from the prototype. This exper-
iment shares the evaluation goals II (resource-efficiency
leveraged by disaggregation) and III (QoS violations miti-
gated by NA policy) like the previous experiment.

Trace-driven simulation implementation

The simulation simulates machines that are possible to be
configured with different NUMA topologies with differ-
ent number CPUs, GPUs, and memory regions. The job
description defines the job type since each job requests
a different amount of resources, and has different com-
pletion time and performance interference models, as
detailed in the previous experiment.

The simulation has a generator for synthetic workloads,
creating events that will represent the arrival of a new job
(following a Poisson process with an exponential distribu-
tion), taking as a parameter the time interval between job
arrivals. The event that stands for the arrival of a job is
handled by creating a job in the system and submitting it
to the scheduler module. There is also an event to call the
scheduler: this event is periodically generated by a given
interval. This scheduling event updates the flow-network
model with the new jobs and calls the flow-network algo-
rithm to solve the model. With the results from the solver,

it generates events to place the tasks in the simulated
machines, and also events to complete the tasks.

The task completion time is given by a parameter that
is re-evaluated each time that a new task starts or a run-
ning task finishes. Note that, the module that defines the
task execution time does not adjust only the completion
time of the new incoming task but also the completion
time of all currently running tasks in the machine. The
execution time is then determined based on a given his-
togram of the jobs’ completion time, for each job type,
that is generated from the traces from the prototype. The
execution time also changes based on the currently run-
ning jobs in the machine, which uses a pre-defined profile
model loaded from the traces, slow down or speed up the
completion time based on the task’s resource allocation
and collocation.

Trace-driven simulation configuration

To generate the traces, we executed the prototype over
different configurations, warm-ups, and job arrival rates.
To be statistically representative, each scenario was exe-
cuted ten times. Afterward, the trace files are parsed and
transformed into a format compatible with the simulator,
creating application execution time and resource usage
profiles.

For generating workloads, a Poisson process with the
same arrival rate (16 jobs per second) as the first exper-
iment is used. To create the job’s configuration, we use
a uniform distribution generating the job’s type (Rodinia
applications). All simulated machines are configured with
the same architecture as the machines used in the testbed.
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Therefore, all jobs can run when there are enough
resources.

Additionally, as in the previous experiment, we warm up
the cluster with initial jobs requesting 50% of the available
CPUs with no network requirements.

Experiment 4: resource-efficiency leveraged by GPU
disaggregation over a large-scale scenario in a trace-driven
simulation

In this experiment, we quantify the improvements to max-
imize the resource utilization of the cluster by using GPU
disaggregation. We first evaluate both DRMaestro and Fir-
mament using the trace-driven simulation configured to
submit 512 jobs to 16 machines. After that, we simulate
a more intensive scenario submitting 4096 jobs to 128
machines.

The results show that DRMaestro, even with the more
intensive scenario, provides higher resource utilization,
scheduling flexibility, minimizing the makespan, and QoS
violations. For example, Fig. 7 and Table 4 show a speedup
of up to ~1.21X in the accumulative execution time of
the experiment when using DRMaestro instead of Firma-
ment. Like in the previous experiment, in “Experimental
evaluation” section, Firmament could only allocate a few
GPUs because of the lack of available computing power
in some machines. However, just after the warm-up jobs
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finished, Firmament can allocate all the GPUs in the clus-
ter. Conversely, unlike the earlier experiment, with this
experiment, DRMaestro does not allocate all the GPUs in
the system during all the experiment execution. This is
due to the arrival rate of the jobs, if the system is not fully
stressed and there are no waiting jobs, DRMaestro will not
allocate idle GPUs. This explains why the GPUs are not
fully utilized since the beginning. We have confirmed this
with other experiments that vary the arrival rate and the
number of jobs and machines.

Regarding the QoS, unlike the previous experiment, in
this experiment, there are more machines (16 instead
of only 4), and hence, there are more possibilities for
improvement. Thence, DRMaestro did not introduce
more QoS violations than Firmament. However, by using
the NA policy, DRMaestro could perform much better as
will be discussed in “Experiment 5 - resource-efficiency
leveraged by mitigating QoS violations over a large-scale
scenario in a trace-driven simulation” section.

In the second experiment performed with the simula-
tor, we evaluated a larger scenario submitting 4096 jobs
to be placed on 128 machines. This scenario is interest-
ing since it shows that although DRMaestro could confer
less speedup in the makespan like the other experiment,
DRMaestro performed much better regarding QoS viola-
tion. Improving the number of QoS violations by ~65%.
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Fig. 7 Simulation results of orchestration with DRMaestro. Orchestration performed with DRMaestro with the implemented prototype in a cluster
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Table 4 Total makespan. Where Fir. is Firmament and DR. is
DRMaestro

Execution time

# Job # Node Net Policy Fir. DR. Ratio
Fir\DR.
512 16 False 1019.33s 842.58s — ~1.21x
512 16 True - 815.565
\ N
Network Policy Improvement ~1.03x ~1.25x
4096 128 False 1087.73s 972.20s — &1.12x
4096 128 True - 907.18s
\ N
Network Policy Improvement ~1.07x ~21.20x

Although the overhead of the DRMaestro scheduler
is closer to Firmament in this scenario, there are some
cases that the DRMaestro scheduler runs slower. This
comportment is shown in the CDF in Fig. 8. That the
DRMaestro scheduler runs slower is expected since the
allocation of disaggregated GPUs requires the model to
run twice. On the other hand, the behavior of both sched-
ulers’ overhead looks similar and is explained by the fact
that the DRMaestro scheduler can place more jobs by
enabling GPU disaggregation. Thus, the number of wait-
ing jobs in the DRMaestro’s queue decreases faster with
Firmament, minimizing the pressure on the DRMaestro
scheduler.
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Experiment 5 - resource-efficiency leveraged by mitigating
QoS violations over a large-scale scenario in a trace-driven
simulation

As discussed before, to mitigate the QoS violations intro-
duced in the application due to disaggregated resources,
we developed the NA policy. In this experiment, we evalu-
ate the effects of this policy in two large-scale scenarios by
using our trace-driven simulation. The first scenario sub-
mits 512 jobs to be placed on 16 machines, and the second
one submits 4096 jobs to be placed on 128 machines.

The results are shown in Fig. 9, and Tables 4 and 5. The
NA policy improved both the total makespan and the QoS
violation count for both scenarios. In the first scenario,
the improvement in the makespan is minimal, i.e. only
3%, since the amount of resources is limited. However, the
policy decreases the DRMaestro QoS violation count by
~40%.

On the other hand, in the second scenario, the DRMae-
stro scheduler with the NA policy decreased the total
makespan by &7%. The DRMaestro scheduler with the NA
policy decreased the total makespan by ~20% compared
with Firmament. Moreover, the NA policy reduces the
number of DRMaestro QoS violations by ~60% compared
with DRMaestro without the policy and improved the
number of QoS violations ~2.64x compared with Firma-
ment. The results of the QoS violation are much different
in this scenario than the previous one. This is explained by
the fact that in this scenario there are many more available
resources, i.e., from only 16 machines to 128, then, there
is much more room to perform better placements, pro-
viding more efficient job collocation. Hence, by improving
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DRMaestro
0.8
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0.4

CDF (sched runtime)

0.2

0.0
0.5

some cases for the scenario with 4096 jobs and 128 machines
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Fig. 8 Scheduler execution time. Both DRMaestro and Firmament scheduler appear to have similar overhead, expect that DRMaestro runs slower in
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Fig. 9 Simulation results of orchestration with DRMaestro. Orchestration performed with DRMaestro with the implemented prototype in a cluster
with 128 machines and 4096 jobs

the quality of the job collocation, more jobs will suffer less
slowdown which will also affect the total makespan.

The comparison of the performance of the Firmament
and the DRMaestro schedulers regarding QoS for the
second scenario is presented in Fig. 10. This figure illus-
trates the improvements that the NA policy confers to
DRMaestro by showing the normalized job execution time
sorted from worst to best.

Table 5 Number of jobs with violated QoS

Number of Jobs

with violated QoS
# Job # Node Net Policy Fir. DR. Ratio
Fir\DR.
512 16 False 377 382 — ~0.99x
512 16 True - 272
{ N
Network Policy Improvement ~1.40x ~1.39x
4096 128 False 2160 1310 — ~1.65x
4096 128 True - 818
{ N
Network Policy Improvement ~1.60x ~22.64x

Conclusion

In this paper we have presented DRMaestro, a novel
framework to orchestrate disaggregated resources on
shared cloud systems. DRMaestro addresses some of the
main challenges found in data-centers with disaggregated
architectures, providing a mechanism to enable transpar-
ent disaggregation of resources, as well as an optimized
placement of workloads that improves resource efficiency
while avoiding interference.

This work first evaluated the impact of disaggrega-
tion regarding the additional network requirements under
higher network load. The results show that for some appli-
cations the impact is minimal, but other ones can suffer
up to 80% slowdown in the data transfer part. Then, the
framework is validated through the implementation of
a prototype on Kubernetes and evaluated by perform-
ing several trace-driven simulations with traces from the
testbed that show that our solution provides higher cluster
utilization and fewer SLO violations.

Our experiments driven by representative workloads
demonstrate the effectiveness of our proposal in differ-
ent scenarios. To the best of our knowledge, this is the
first scheduling framework to take into account resource
disaggregation that optimizes placement while mitigating
sharing-induced interferences. The experiments show the
trade-off of enabling resource disaggregation in a shared
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cluster. DRMaestro reduces the total job makespan with
a speedup of up to ~1.20x and decreases the number
of QoS violations up to ~2.64x compared with similar
orchestrator based on flow-network discipline that does
not support resource disaggregation.

To the best of our knowledge, our work is the first to
apply a flow-network model to solve the scheduling and
placement problem for a cluster composed of disaggre-
gated resources.

For future work, we plan to introduce into the scheduler
the notion of minimizing GPU communication cost, along
with the possibility to share GPUs among different jobs.
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