
Journal of Cloud Computing:
Advances, Systems and Applications

Li et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:24
https://doi.org/10.1186/s13677-021-00241-x

RESEARCH Open Access

Take one for the team: on the time
efficiency of application-level buffer-aided
relaying in edge cloud communication
Zheng Li1* , Francisco Millar-Bilbao1, Gonzalo Rojas-Durán1 and Susana Ladra2

Abstract

Background: Adding buffers to networks is part of the fundamental advance in data communication. Since edge
cloud computing is based on the heterogeneous collaboration network model in a federated environment, it is
natural to consider buffer-aided data communication for edge cloud applications. However, the existing studies
generally pursue the beneficial features of buffering at a cost of time, not to mention that many investigations are
focused on lower-layer data packets rather than application-level communication transactions.

Aims: Driven by our argument against the claim that buffers “can introduce additional delay to the communication
between the source and destination”, this research aims to investigate whether or not (and if yes, to what extent) the
application-level buffering mechanism can improve the time efficiency in edge-cloud data transmissions.

Method: To collect empirical evidence for the theoretical discussion, we built up a testbed to simulate a remote
health monitoring system, and conducted both experimental and modeling investigations into the first-in-first-served
(FIFS) and buffer-aided data transmissions at a relay node in the system.

Results: An empirical inequality system is established for revealing the time efficiency of buffer-aided edge cloud
communication. For example, given the reference of transmitting the 11th data entity in the FIFS manner, the
inequality system suggests buffering up to 50 data entities into one transmission transaction on our testbed.

Conclusions: Despite the trade-off benefits (e.g., energy efficiency and fault tolerance) of buffering data, our
investigation argues that the buffering mechanism can also speed up data transmission under certain circumstances,
and thus it would be worth taking data buffering into account when designing and developing edge cloud
applications even in the time-critical context.

Keywords: Atomic data entity, Buffering, Communication performance, Edge cloud computing, Time efficiency

Introduction
It has been identified that “interprocess communication
is at the heart of all distributed systems” [1], while edge
cloud applications are typical distributed software sys-
tems involving interprocess communication between the
edge devices and the cloud. Given the booming wireless
devices at the edge side, cooperative relaying becomes a

*Correspondence: imlizheng@gmail.com
1Department of Computer Science, University of Concepción, Edmundo
Larenas 219, 4070409 Concepción, Chile
Full list of author information is available at the end of the article

promising technique to enhance the spectral efficiency
and network coverage for wireless edge-cloud commu-
nications [2, 3]. More importantly, the relay nodes can
supplement edge devices (e.g., sensors and actuators) with
extra compute and storage capacities to strengthen the
cooperative functionalities in edge cloud computing [4].
We are involved in an edge cloud computing project

that can be simplified and demonstrated as a cooperative
health monitoring system: Personal health parameters are
periodically collected from wearable sensors and are ini-
tially processed by a nearby prediagnosis broker, before

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00241-x&domain=pdf
http://orcid.org/0000-0002-9704-7651
mailto: imlizheng@gmail.com
http://creativecommons.org/licenses/by/4.0/

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 2 of 18

sending out to a remote hospital for further analytics.
Following the business logic, naturally, we implemented
the prediagnosis broker to process and transmit individ-
ual users’ data in a first-in-first-served (FIFS) manner.
However, since the prediagnosis results are as small as
a few kilobytes, there is a significant inefficiency in data
transmission due to the low utilization of communication
bandwidth. Therefore, we decided to upgrade the broker’s
relaying with buffer that has been adopted to better take
advantage of the network resource [5].
In fact, adding buffers to networks has been considered

part of the fundamental advance in data communica-
tion [6]. By implementing buffers at different locations
along the network link inclusively between data source
and destination, the buffering mechanism can help obtain
various benefits ranging from energy efficient transmis-
sion [7] to smooth streaming playback [8]. On the other
hand, these benefits are generally considered to come
with a cost of time, as the buffer “can introduce addi-
tional delay to the communication between the source
and destination” [9]. Inspired by the metaphor of “Race
Cars vs. Trailer Trucks” [10], we wonder if there is a win-
win inflection point where the application-level buffering
mechanism can increase throughput as well as improving
time efficiency in data transmission. Thus, we proposed
a counterintuitive research question to drive a separate
study besides our project:

RQ1: Can the buffering mechanism speed up data
transmission for edge cloud applications?

Although the tentative answer to RQ1 is YES in our
hypothesis, the speedup effects could vary for different
applications on a case-by-case basis. Therefore, we also
proposed a follow-up research question:

RQ2: To what extent can the buffering mechanism speed
up data transmission for an edge cloud application?

It should be noted that RQ2 is based on the answer YES
to RQ1. In other words, if the answer to RQ1 is NO, it
will be unnecessary and meaningless to look for answers
to RQ2 then.
To pursue answers to these research questions, we set

up an edge-cloud testbed to represent the aforementioned
cooperative health monitoring system, and conducted
experiments to compare the time consumption between
the FIFS and the buffer-aided communications. Based on
the experiments, we further performed modeling investi-
gation to better understand the nature of how the buffer
would help speed up data transmission. The experimen-
tal and modeling investigations eventually established an
empirical inequality system for revealing the time effi-
ciency of buffer-aided communication on our testbed. For
example, given the reference of transmitting the 11th data

entity in the FIFS manner, the inequality system suggests
buffering and uploading up to 50 data entities as one
transaction from an edge device to the cloud. Although
the buffer-aided data transmission could have delayed the
first ten data entities’ arrival in this case, we claim that
the communication time efficiency has been significantly
improved from the overall data’s perspective.
It is noteworthy that, in this study, the buffered objects

are homogeneous atomic data entities (i.e. the prediagno-
sis reports in our testbed) operated by applications rather
than data packets operated by network protocols. To be
specific, we clarify the definition of atomic data entity as
follow.

An atomic data entity is defined as a coherent and irreducible
“value attached to an attribute which has a character,
meaning and presentation providing specific message and
understanding to its viewer or user” [11].

As such, a typical feature of our study is the investi-
gation into the application-level buffering for program-
matically controllable communication transactions. In
contrast, buffering data packets is invisible to applications,
as the deployment and utilization of buffers are imple-
mented transparently by the relevant protocols at lower
network layers [4, 6, 12].
The experimental testbed employed in this research

is partially reused from our earlier paper “Character-
ising Edge-Cloud Data Transmission for Patient-centric
Healthcare Systems” [13] published in the Proceedings of
the 22nd IEEE International Conference on E-health Net-
working, Application & Services (HealthCom 2020). As
the original edge-cloud testbed is abstracted from a real-
world project (i.e. cooperative remote health monitoring),
it is more meaningful to keep using the concrete use
case of health monitoring to demonstrate this research,
rather than come up with made-up application scenar-
ios. However, it should be noted that our current work is
completely a new study with more comprehensive investi-
gations than [13], driven by new research questions.
Overall, by reporting our study on the time efficiency of

buffer-aided data transmission in the edge-cloud context,
this paper mainly makes a twofold contribution:

• For researchers, our work not only reveals the positive
proportional relationship between buffering and
communication speed under certain circumstances,
but also pinpoints new research opportunities of
optimizing the time efficiency in buffer-aided data
transmission. For example, compared with Nagle’s
algorithm that refers to the maximum segment size
as the fixed buffer size, this research argues to use a
latency inequality system to regulate a wide range of
adjustable buffer sizes, so as to adapt to some dynamic
circumstances conveniently and programmatically
(e.g., when involving different task priorities).

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 3 of 18

• For practitioners, our experimental and modeling
investigation demonstrates a reusable methodology
of communication performance engineering. This
methodology can not only help identify the feasibility
and effectiveness of using buffers to speed up data
transmission, but also help guide buffer tuning with
respect to specific edge cloud applications. Since
there is no one-size-fits-all latency inequality system
to enhance the time efficiency of buffer-aided data
relaying, it is crucial and valuable to follow a standard
methodology to engineer the communication
performance and characteristics of different
applications even at different relay nodes.

The remainder of this paper is organized as follows.
“Related work” section summarizes the related work
according to different buffering locations. “Theoretical
discussion” section draws theorems and their proofs to
discuss the theoretical conditions of using buffers to
speed up data transmission. Based on the theoretical
discussion, “Experimental investigation” and “Modeling
investigation” sections describe our experimental inves-
tigation and modeling investigation respectively. Three
limits to the validity of our current work are highlighted in
“Limits to validity” section. Conclusions are drawn and
some future work is introduced in “Conclusions and
future work” section.

Related work
By ignoring the study contexts, most data transmission
scenarios in the literature can be abstracted into a data tra-
jectory from a source node (or more) to a destination node
(or more), optionally via a relay node (or more) some-
where in between. Thus, according to different buffering
locations, we use the three-node network topology to
roughly classify the current studies on buffer-aided data
transmission, as shown in Fig. 1 and explained below.
Note that the buffers can be implemented atmultiple loca-
tions simultaneously (e.g., network messages are buffered
at both the source side and the destination side [14]).
1) Source-side Buffering.
Considering the buffering overhead in terms of time

consumption, implementing buffer from the source side
is generally discussed in the context of delay tolerant data
transmission [15]. In other words, the source-side buffer-
ing has mainly been employed to trade off transmission
time in exchange for other benefits, as vividly described in
[10] using the metaphor of “Race Cars vs. Trailer Trucks”.
For example, when network is underutilized for cater-
ing the incoming data, concatenating multiple data units
into a single large transmission burst will significantly
increase the network efficiency [16]. Benefiting from the
increased network utilization, correspondingly, large-size
data transmissions will be more energy efficient [7]. An

Fig. 1 Three buffering locations in buffer-aided data transmission

opposite use case is to use managed buffering to avoid
network congestion and improve transmission reliability
when many source nodes attempt to send data simulta-
neously [17, 18]. In addition, buffering data and lowering
transmission frequency have been advocated to decrease
the power usage and maximize the lifetime of source
nodes [19, 20].
As for this research, despite the different buffering loca-

tion, we still target the time efficiency of data transmission
without pursuing the other trade-offs.
2) Relay-side Buffering.
As edge cloud computing is based on the heterogeneous

collaboration network model [21, 22] in a federated envi-
ronment [23], it is natural to observe application-level
data relay nodes and even intentionally design data relay-
ing for edge cloud applications. In contrast, the frequently
discussed packet relaying across the Internet is invisible
from the application’s perspective. Thus, here we distin-
guish between the application’s view and the packet’s view
of data relaying, as illustrated and compared in Fig. 2.

• Studies from the data packet’s perspective: In
practice, there is no perfect-condition network link
between any data source and destination. Thus, relay
nodes have been proposed and employed to
cooperate with source and destination nodes to
obtain various non-functional gains when
transferring data in cooperative systems. For
example, in the wireless sensor network, there have
been transport protocol implementations that can
reduce data retrieval latency by buffering the data in
the nodes near the destination [4]. Under
dynamic-rate transmission situations, advanced
buffer-aided relaying protocols are developed to help
reduce delay through adaptive link selection [12]. By
involving relay nodes for selecting better-condition
channels, buffer-aided relaying has been proved

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 4 of 18

Fig. 2 Two different views of data relaying in edge cloud computing

useful to improve the transmission reliability and the
sum throughput when the destination node includes
non-orthogonal multiple access users [24]. In
addition to the benefit of performance improvement,
the relay-side buffering is also advocated to be able to
enhance the communication security [25]. Overall,
these studies are generally focused on buffering data
packets and frames at the lower layers of the network
stack (e.g., the underlay cognitive radio network [26])
for link selection or route optimization, while the
developed protocols and techniques are used
transparently for data communication of
applications.

• Studies from the application’s perspective: Visible
and predesigned data relaying at the application level
can be exemplified by the business logic of
electrocardiography (ECG) telemonitoring systems.
Driven by different concerns, the relay node is
designed to play various functional roles in the ECG
systems. For example, the store-and-forward
functionality is to save transmission cost [27], the
encryption functionality is to safeguard the privacy of
personal information [28], and the analytical
functionality is even intended to prevent major
medical conditions before visiting hospitals [29].
Note that the real-time mode in the studies like
[27, 30] for immediately transferring patient data
after acquisition is out of the scope of our discussion,
as these cases do not equip the relay node with any
extra functionality other than passing on the data.

As mentioned previously, this research is focused on
the application-level communication transactions instead
of their underlying data packets, and the communica-
tion transactions are programmatically controllable when
implementing buffering mechanisms in the application
business logic. On the other hand, compared with the
existing application-level relay-side buffering studies that
generally aim to obtain extra beneficial features by sacri-
ficing (or ignoring) timely data transmission, this research
particularly investigates the time efficiency and targets
the improvement of time efficiency in application-level
buffer-aided data relaying.
3) Destination-side Buffering.
After data arrive at destination, they can still be buffered

before being consumed. This seems to be a widely appli-
cable strategy when the destination node is end user
devices. Considering the uncertain and unstable connec-
tivity in the client environment, many edge cloud appli-
cations have allowed prefetching and buffering data for
later usage when the network backbone has high service
qualities [31]. For example, GPS Navigation can still be
functional during the signal blockage in a tunnel, if there
are prefetched and buffered data. Even if the connectiv-
ity is not a concern, prefetching and buffering data are
still crucial to guarantee the consecutive and smooth play-
back in high-degree-of-freedom video streaming systems
[8, 32]. In fact, given the pervasive multimedia terminals
in the modern daily life of people, buffering multimedia
data transmitted over the Internet or television cable has
become a successful industry practice to improve user

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 5 of 18

experience and customer satisfaction, as reflected by a
bunch of patents [33, 34].
In this research, we are only concerned with the timely

arrival of the data from the sender’s perspective, while fur-
ther data buffering/processing at the destination is out of
the scope of this paper.

Theoretical discussion
When transferring data in multilayer networks like
the Internet, there are inevitable overheads for
crossing different layers [7, 35]. Therefore, from
the application layer’s perspective, there is a fixed
minimum time consumption of data communica-
tion transactions (or the fixed time consumption
of minimum-size communication transactions), no
matter how trivial the bandwidth utilization is. As
an initial study on trying to speed up data trans-
mission by improving bandwidth utilization, here
we are only concerned with the situation of apply-
ing buffers to the minimum-size communication
transactions. Consequently, the buffering effec-
tiveness must have a limited range constrained by
the characteristics of such a situation. To facilitate
unfolding the experimental and modeling investiga-
tion, we firstly analyze the theoretical potential of
making data communication more time efficient, by
coming up with a set of lemmas and theorems and their
proofs.
Since characterizing the aforementioned situation is

the prerequisite to drawing lemmas and theorems, we
exemplify and discuss different timings of transmitting
an atomic data entity, as illustrated in Fig. 3. It should
be noted that we constrain the atomic data entities here
to be homogeneous (e.g., prediagnosis reports of differ-
ent patients) with more or less the same data sizes, so as
to align with the practical situation in our case study (cf.
“Experimental investigation” section). In particular, each
atomic data entity has four states in its communication life
cycle:

• Process is the state when the data entity is being
processed or being generated.

• Wait is the state when the data entity is ready to be
transferred at its sender’s side.

• Transmit is the state when the data entity is on the
way between its sender and receiver.

• Arrive is the state when the data entity has arrived at
its receiver.

From the infrastructural perspective, the network link
between the data sender and receiver can stay purely
idle, standby while buffering, and occupied by catering
communication transactions. Thus, assume an atomic
data entity is ready at time tw, we take into account five
communication options for later discussions:

Fig. 3 Timing diagram of transmitting an atomic data entity waiting
at tw

• Option 1 describes the baseline scenario where no
buffering mechanism is implemented. The atomic
data entities are transferred successively in the
first-come-first-served fashion from time t0.

• Option 2 shows a buffering mechanism that delays
data transmission to a later time, even though at least
one atomic data entity has been ready to be
transferred since t0.

• Option 3 helps explain that the buffering mechanism
can be adjusted to have different buffering time
spans. Note that the buffering time span is not
necessarily proportional to the buffer size, e.g., longer
buffering time span may come with lower buffering
rate.

• Option 4 highlights the special buffering time span
that is exactly equal to the minimum time
consumption of communication transactions.

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 6 of 18

• Option 5 portrays the buffering mechanism whose
buffering time span is longer than the minimum time
consumption of communication transactions.

Then, we pursue the effective buffering conditions of
being able to speed up data transmission, by respec-
tively discussing the buffering time span, the total size of
buffered data, the size of individual atomic data entities,
and the buffering speed. In particular, the following nota-
tions in Table 1 are used in the theoretical discussion here
and in “Modeling investigation” section:

Lemma 1 Given Tcc as the time consumption of the
minimum transactional data communication, the effective
buffering time span Tbf for the adjacent communication
transaction is constrained by

Tbf < Tcc

Proof On the contrary, assume we employ the buffering
Option 4 and 5 (cf. Fig. 3) where

Tbf � Tcc

Table 1 Notations and Explanations

Notation Explanation

B Bandwidth of the network link between the edge
and the cloud.

d Average size of the homogeneous atomic data
entities to be buffered.

di Size of the ith atomic data entity in the buffer.

Dbf Overall size of the buffered data.

Lbf(s) Combinatory latency of buffering and uploading s
atomic data entities (under the buffering
mechanism).

Lbf-up(s) Latency of uploading the buffered s atomic data
entities (under the buffering mechanism).

Lfifs(i) Latency of uploading the ith atomic data entity
under the FIFS mechanism.

n Amount of atomic data entities (prediagnosis reports
in our testbed).

s Buffer size, measured by the amount of atomic data
entities.

t0 Starting time point of measuring wall-clock latency.

t1, t2 Ending time points of the first and the second
minimum-size communication transactions in the
FIFS manner.

tw Time point when an atomic data entity starts waiting
to be transmitted.

Tbf Effective buffering time span.

Tcc Time span of the minimum-size communication
transaction.

λ Buffering speed with respect to the amount of
atomic data entities.

When a random atomic data entity is ready to be trans-
ferred at tw, Option 4 will transfer it at the same time t1
as Option 1 will do, while Option 5 will delay its arrival
to the cloud side. Thus, the buffering mechanism is mean-
ingless in both options from the perspective of this data
entity. This completes the proof.

Lemma 2 Given the bandwidth B of the network
between the edge and the cloud, the size Dbf of buffered
data that can be transferred through the adjacent com-
munication transaction with time span Tcc is constrained
by

Dbf � B × Tcc

Proof Network bandwidth indicates the maximum data
transfer rate of a wired or wireless communication link,
which physically constrains the maximum capacity of data
communication over a period of time (Tcc in this case),
not to mention that the actual data throughput (or effec-
tive bandwidth) is usually smaller than the theoretical
bandwidth value [36]. This completes the proof.

Theorem 1 Let B and Tcc be the network bandwidth
and the time span of a communication transaction respec-
tively. Then, the average size d of homogeneous atomic data
entities to be buffered is constrained by

d � B × Tcc
2

Proof On the contrary, assume the size of an individual
atomic data entity is bigger than the constraint, i.e.

d >
B × Tcc

2
Taking into account the overall size of buffered data

Dbf =
n∑

i=1
di >

n
2

× B × Tcc

where di indicates the size of the ith atomic data entity.
As constrained previously, d1, d2..., and dn are roughly the
same.
Then, even buffering two (i.e. n = 2) of such data

entities will violate Lemma 2. In other words, it will be
impossible to implement the buffering mechanism for
speeding up data transmission in this case. This completes
the proof.

Theorem 2 Define the buffering speed (i.e. the incoming
rate of atomic data entities) as

λ = n
Tbf

where n data entities are buffered during the time span Tbf .

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 7 of 18

Then the effective buffering speed λ falls within the range:
2
Tcc

< λ � B
d

where Tcc represents the time span of a communication
transaction, B indicates the network bandwidth, and d is
the average size of the buffered atomic data entities.

Proof We separate Theorem 2 into two parts (i.e.
2/Tcc < λ and λ � B/d) and give corresponding proofs
respectively.
Part 1: In practice, it is meaningless to buffer one atomic

data entity only. Therefore, the practical buffering speed
should satisfy

λ � 2
Tbf

If Lemma 1 is satisfied, i.e. Tbf < Tcc, then
2
Tcc

<
2
Tbf

� λ

Part 2: On the contrary, assume the effective buffering
speed is beyond the range’s upper bound, i.e.

λ = n
Tbf

>
B
d

Recall Dbf = ∑n
i=1 di = d × n, then we have

Dbf

Tbf
> B

However, the network bandwidth is the communication
link’s physical property that cannot be exceeded. In other
words, the bandwidth B cannot afford the theoretical data
throughput Dbf /Tbf at the data incoming rate λ. Then, λ
is not appropriate for effective buffering, which arrives to
a contradiction and completes the proof.

Overall, the discussion here has theoretically answered
RQ1 with YES, by revealing the possibility and opportu-
nity of using application-level buffer-aided mechanism to

improve the time efficiency in data transmission, as well
as the required conditions to be satisfied.

Experimental investigation
To obtain empirical evidence to verify and demon-
strate the theoretical discussion in “Theoretical discus-
sion” section, we conducted an experimental study on
different efficiencies of data communication of an edge
cloud application. The application scenario is assumed
to be remote health monitoring that was also used in
our earlier study [13], as shown in Fig. 4. In this sce-
nario, we consider the application’s business logic to be:
(1) wearable sensors continuously detect the host patients’
health parameters and send their values to a closeby bro-
ker; (2) the broker periodically processes the collected
raw data into prediagnosis reports that are atomic data
entities in this case; and (3) once a prediagnosis report
is ready, the broker immediately sends it to a hospital
who remotely monitors the health status of those patients.
Moreover, we constrain that each prediagnosis report
should be small enough to satisfy Theorem 1. Then, we
focus on the one-way communication from the broker to
the hospital for our investigation, which essentially corre-
sponds to the relay-destination transmission described in
“Related work” section.

Testbed setup
We distinguish between the application and its runtime
environment when building up a testbed for this exper-
imental investigation. In particular, the runtime envi-
ronment is further decomposed into two parts for the
sender (i.e. relay instead of original data source, as rep-
resented by Prediagnosis Broker in Fig. 4) and receiver
(i.e. destination, as represented by Cloud (Hospital) in
Fig. 4) of the prediagnosis reports respectively, as specified
below.

• Application.We developed a mobile app with
Android Studio to simulate the health monitoring

Fig. 4 The scenario of cooperative remote health monitoring [13]

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 8 of 18

application.1 To simplify the sensor data collection
(fromWearable Sensors in Fig. 4) that is out of this
study’s focus, we pre-stored a group of “people’s”
health parameters in a JSON-format file to mimic the
moment when the broker is ready to do prediagnosis.
The prediagnosis is composed of simple comparison
measures against standard values, which can be
quickly done including generating PDF-format
reports.2

• Report Sender (i.e. Prediagnosis Broker that
plays the relay role in the application). The
developed mobile app is deployed on a Redmi Note 8
Pro handset with the CPU Octa-core (2x2.05 GHz
Cortex-A76 & 6x2.0 GHz Cortex-A55) and the
operating system Android 9.0 (Pie). Here we let the
handset play the broker role who tries to send out
prediagnosis reports to the remote cloud (hospital) at
soon as possible. In particular, the handset works in a
stable WiFi environment with about 101 Mbps
download speed and 5.6 Mbps upload speed
(measured by using the Speedtest app3).

• Report Receiver (i.e. Cloud (Hospital) that plays
the destination role in the application). Since this
study is focused on the data communication only, the
post-transmission activities of health monitoring
(e.g., cumulative data analytics, setting off alarms,
etc.) are out of the scope of this paper. Therefore, we
assume that the role of remote hospital merely keeps
the prediagnosis reports after receiving them. In this
testbed, we employed Firebase Storage4 to act as the
report receiver. Considering that Firebase Storage is
backed by Google Cloud Storage5, the transmitted
data are eventually stored in the Google cloud, which
essentially enables our testbed to reflect real
edge-cloud application features.

Note that, following the definition of atomic data entity,
here we treat each prediagnosis report as a coherent and
irreducible message from the sender to the receiver. Since
each report has about 1.4 KB of data, the atomic data
entity in this testbed clearly satisfies the aforementioned
size constraint.

Two transmission mechanisms
As demonstrated in Fig. 3 via different communication
options, we take into account two mechanisms for trans-
mitting prediagnosis reports in the scenario of remote
health monitoring, namely FIFS transmission and buffer-
aided transmission.

1The mobile app is open-sourced at https://github.com/
Frmillar/NutriEvaluator
2An example report is shared online: https://bit.ly/2UE8CA7
3https://www.speedtest.net/apps
4https://firebase.google.com/products/storage/
5https://cloud.google.com/storage/

• FIFS transmission is part of the traditional and
straightforward implementation of the application’s
business logic. In this implementation, an instance of
data transmission (i.e. an uploading request) starts
immediately after the prediagnosis processing
delivers a report. Given a set of jobs of pre-diagnosing
a group of people’s health status, the delivered
reports are transmitted consecutively in the FIFS
manner, as shown in Fig. 5(a). It is noteworthy that
the FIFS transmission mechanism corresponds to the
illustrated Option 1 of data communication in Fig. 3,
and it also acts as the baseline for us to study the
buffer-aided transmission mechanism.

• Buffer-aided transmission temporarily keeps the
generated prediagnosis reports and delays their
transmission until reaching a predefined buffer
threshold. Then, the buffered reports will be
transmitted all at once rather than individually, as
shown in Fig. 5(b). It is noteworthy that the buffering
mechanism here makes common sense, without
requiring unique techniques or sophisticated
manipulations. As such, we expect this research to
draw relatively generic conclusions with respect to

Fig. 5 Activity diagram of the two mechanisms for transmitting
prediagnosis reports

https://github.com/Frmillar/NutriEvaluator
https://github.com/Frmillar/NutriEvaluator
https://bit.ly/2UE8CA7
https://www.speedtest.net/apps
https://firebase.google.com/products/storage/
https://cloud.google.com/storage/

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 9 of 18

the time efficiency of buffer-aided relaying in
edge-cloud data transmissions. Particularly, in our
developed app, since Firebase Storage allows an
upload task to include a single file only, we merge the
generated individual reports into one PDF file when
buffering them. Correspondingly, we predefine and
adjust the buffer threshold by varying the number of
reports to be merged. In other words, we manually
control the eventually programmatically adjustable
buffer size in this research. As such, we are able to
gradually investigate the effective buffering range, as
demonstrated in Fig. 3 with regard to Option 2,
Option 3, and Option 4 of data communication.

Measurement metrics
This study on data transmission’s time efficiency is essen-
tially to engineer the communication performance of edge
cloud applications. Since the selection of measurement
criteria or metrics plays a prerequisite role in performance
engineering for communication and computing systems
[37], practitioners need to decide what to measure before
conducting the experiments.
Following the theoretical timing discussion about data

communication (cf. “Theoretical discussion” section), we
choose the primary metric to be Latency that is widely
used to measure the elapsed time of an activity, a process,
or a task/job. Thus, ideally, we can use different timers
in the testbed to obtain the latencies of data processing,
waiting/buffering, and transmitting report for every single
prediagnosis task.
However, since the public cloud environments are

uncontrollable (often invisible) from the perspective of
cloud users [36], it is impossible for us to set any
timer inside Firebase Storage from the cloud. Instead,
Firebase Storage allows app development to use an
OnSuccessListener to know if a report is uploaded
successfully or not. As such, although we cannot obtain
the exact timestamp when a report arrives to its receiver
(in the cloud), it is still convenient to understand each
report’s successful uploading latency, at least from the
sender’s perspective. In detail,

• under the FIFS mechanism, we employ four timers in
every prediagnosis task: (i) when the prediagnosis
processing starts; (ii) when the prediagnosis report is
generated; (iii) when the report uploading starts; and
(iv) when the report is uploaded successfully. The
expected measurement results are then named as
Processing Latency from Timer (i) to (ii),Waiting
Latency from Timer (ii) to (iii), and Uploading
Latency from Timer (iii) to (iv). In particular, here
we define Transmission Latency to be equivalent to
the uploading latency in this case.

• under the buffering mechanism, we employ four
timers with respect to each uploading event: (i) when

the prediagnosis processing starts; (ii) when the
buffering starts (as soon as the buffer size is
saturated); (iii) when the uploading event starts (as
soon as the buffering is done); and (iv) when the
buffered reports are together uploaded successfully.
The expected measurement results are then named as
Processing Latency from Timer (i) to (ii), Buffering
Latency from Timer (ii) to (iii), and Uploading
Latency from Timer (iii) to (iv). Note that, unlike
under the FIFS mechanism, the processing latency
here covers the generation of multiple prediagnosis
reports (depending on the buffer size). Moreover, to
be consistent with the discussion in “Related work”
section, we define Transmission Latency in this case
to be the combination of buffering latency and
uploading latency.

Experimental analysis of FIFS transmission
Following the principles of Design of Experiments (DOE)
[38], we repeated the FIFS health monitoring experiment
multiple times (five times in specific) for 50 made-up
individuals, and then calculated average values of latency
indicators. According to the experimental results, there
is no waiting latency between the data processing and
report uploading in the individual prediagnosis tasks6,
as illustrated in Fig. 6. In terms of “waiting”, there are
merely queuing delays for the later tasks due to the FIFS
nature. Such a phenomenon is the result from a combi-
nation effect of the asynchronous mechanism of Firebase
Storage and the single-thread generation of prediagnosis
reports. Since the performance bottleneck is data pro-
cessing rather than data transmission in this case, none
of the generated prediagnosis reports needs to wait to be
uploaded.
We believe that the waiting time in the prediagnosis

tasks will appear when we speed up the report genera-
tion, e.g., through multi-thread processing. However, the
investigation intomulti-thread report generation has been
intentionally excluded from this study. Recall that the bro-
ker role is played by an edge device in this research. Given
the huge heterogeneity in edge devices and technologies
[39, 40], we have to conservatively relax the assumption
of brokers’ multi-thread processing capacity. For example,
the broker in this research can also be implemented on a
WiFi-supported Arduino YUN7 that has limited compute
resources.
To facilitate discussing our observations, we demon-

strate the average measurement results for the first 10
reports in Fig. 6. In specific,

6The 50 reports are shared online: http://doi.org/10.5281/
zenodo.4556465
7https://store.arduino.cc/usa/arduino-yun-rev-2

http://doi.org/10.5281/zenodo.4556465
http://doi.org/10.5281/zenodo.4556465
https://store.arduino.cc/usa/arduino-yun-rev-2

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 10 of 18

Fig. 6 Latency measurements for dealing with 10 consecutive prediagnosis tasks on our testbed. T1, T2..., and T10 indicates the 10 tasks respectively.
The three parts of each line indicate the task queuing delay, the patient data processing latency, and the prediagnosis report uploading latency
respectively (one millimeter represents 10 milliseconds)

1) The dash green part of each line indicates the
queuing delay before processing the corresponding
patient’s data. It is clear that data processing for the
first patient does not have any delay.

2) The tiny red part of each line represents the data
processing latency until delivering the prediagnosis
report. Given the simple prediagnosis logic in our
testbed, generating one report takes from about six
ms to 22 ms.

3) The long blue part of each line shows the report
uploading latency between the moment when the
prediagnosis report starts transmission and the
moment when the successful uploading is heard (by
the OnSuccessListener).

Such measurement results have denied the previous
hypothesis of serial data transmission illustrated in Fig. 3,
i.e. there are only task queuing delays instead of any wait-
ing latency before transmitting individual reports. This
also justifies the needs of empirical investigation in addi-
tion to theoretical discussion. Benefiting from the asyn-
chronous strategy of Firebase Storage (i.e. putFile()
in our testbed), the successor prediagnosis task can
be launched right after starting the precursor report
transmission. Thus, the individual reports are gener-
ated regularly about every 10 ms on average, indicating
roughly the same overhead of single-thread data process-
ing. Meanwhile, the transactions of report uploading are
also issued regularly, with overlapping time windows, in
parallel.
However, there exhibits a trend that although the

data transmission transactions start regularly, it would
take longer and longer time (wall-clock latency) to fin-
ish the continuous prediagnosis tasks, especially after
the first several ones. This phenomenon can be nar-
rowed down to the uploading latency, as portrayed in
Fig. 7.

The shape composed of plotted uploading latencies is
similar to a hockey stick. The measurement result keeps
increasing regularly from uploading the fourth report on.
Considering the low network utilization in this case, we
believe this phenomenon is because of the incremen-
tal resource competition when saving reports and/or the
queuing delay of issuing response signals from the receiver
side (in the cloud).
To verify such an explanation, we further tested serial

data transmission by forcing the later uploading events to
wait for the former success signals. Ideally, there should
not be resource competition anymore in the new test.
Thus, according to the illustrated results in Fig. 8, we
claim that the plain uploading latency of a single report
can be as short as less than 300 ms on our testbed. This
confirms that the longer latency of uploading individ-
ual reports via Firebase Storage’s asynchronous approach
must have involved extra noises, and one noise source
must be the resource competition when uploading data

Fig. 7 The 50 prediagnosis reports’ uploading latencies under the
asynchronous FIFS transmission mechanism, together with their
two-part linear regression analysis

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 11 of 18

Fig. 8 The 50 prediagnosis reports’ uploading latencies under the
serial FIFS transmission mechanism

asynchronously. However, by focusing on the wall-clock
latency of multiple tasks from the holistic perspective,
the asynchronous FIFS transmission is still more efficient
than the serial data transmission. Therefore, we stick to
the asynchronous uploading for investigating the FIFS
transmission mechanism in the rest of our study.

Experimental analysis of buffer-aided transmission
Given the above lessons from the experimental analysis of
FIFS transmission, it is foreseeable that the asynchronous
buffer-aided transmission will also come with extra mea-
surement noises. To better isolate and compare different
buffering effects, we decided to emphasize the standalone
communication transactions’ latencies, by experimenting
with serial transmission of buffered data.
When it comes to observing different buffering effects,

since controlling the buffering time will introduce higher
overhead (e.g., frequent timestamp comparisons) in the
testbed, we vary the buffering threshold by modifying the
amount of prediagnosis reports to be buffered, i.e. adjust-
ing the buffer size instead of controlling the buffering
time. In fact, when successively including reports in one
communication transaction, the buffering time window
will correspondingly be expanded in a fine-grained man-
ner, as demonstrated from Option 2 to Option 3 in Fig. 3.
Thus, focusing on the buffer size still allows us to match
our empirical investigation with the previous theoretical
discussion about the buffering time span (e.g., Lemma 1).
In detail, we performed 49 experimental trials of buffer-

ing two, three, ..., and 50 prediagnosis reports respec-
tively. Note that “buffering” one report is meaningless in
practice, as justified in Theorem 2. For each buffer size,
the corresponding trial continuously buffered and trans-
mitted data entities 50 times in the serial manner, and
also recorded relevant timestamps of the 50 transactions.
After using the function TRIMMEAN (array, 20%)
to exclude potential outliers, we calculated the average

Fig. 9 Latencies of a single transmission transaction with respect to
different buffer sizes, together with the linear regression analyses. The
upper scatters indicate the latency of report buffering and uploading,
while the lower scatters indicate the uploading latency only

latencies of a single transaction with respect to different
buffer sizes, as plotted in Fig. 9.
As can be seen, along with the increasing buffer size,

the latency trajectories generally show an upward trend.
In particular, the lower trajectory represents the upload-
ing latency only. Its upward trend indicates that the data
size still proportionally influences the uploading latency,
even at the kilobyte level. The upper trajectory repre-
sents the combination of both the buffering latency and
the uploading latency. Thus, the distance between those
two trajectories reflects the influences of buffering on the
whole transmission latency. Despite the common sense
that buffering more data would take longer time, the
buffering overhead (against the data size) will gradu-
ally dominate the transmission latency when the buffer
size keeps increasing, as revealed by the slope difference
between the lower and the upper trajectories.

Modeling investigation
Modeling is a powerful scientific approach to revealing
the nature of complex systems ranging from a software
module to the universe, by abstracting real-world objects
or processes that are difficult to observe or understand
directly [41, 42]. To help understand how the buffering
potentially speeds up data transmission, we also abstract
the previous experimental work into models, so as to
concisely and formally perform a comparison investiga-
tion between those two data transmission mechanisms. In
particular, to be consistent with the experimental inves-
tigation, we model the whole workflow of FIFS transmis-
sion while only model a single transaction of buffer-aided
transmission.

Modeling analysis for FIFS transmission
Inspired by the hockey-stick shape in Fig. 7, we conducted
a two-part linear regression analysis via Excel Analysis

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 12 of 18

ToolPak (for uploading the first four and the last 47 pre-
diagnosis reports respectively), so as to better understand
the edge-cloud data transmission in our application sce-
nario. Note that, since the fourth report acts as the inflec-
tion point in the shape, we included it in the both parts
of the analysis. The analytical results with respect to the
main indicators are listed in Table 2 and briefly explained
as follows.

• Observations are the sample size for conducting a
regression analysis. As mentioned previously, our
analysis includes two parts covering four and 47
prediagnosis reports respectively.

• Intercept and (Index) Coefficient are two constant
parameters to build a linear regression model between
two variables, by following the equation in Eq. (1). In
particular, we regard the sequential position (index)
of a prediagnosis report as the independent variable
that can “explain” why the uploading latency (as the
dependent variable) changes.

y = Coefficient · x + Intercept (1)

where y represents the data transmission latency of
uploading the xth report within a group of
continuous prediagnosis tasks.

• Abs(Correlation Coefficient) is the absolute value
of the correlation coefficient that measures the linear
relationship between two variables. The value bigger
than 0.999 indicates a strong correlation between the
index and uploading latency of prediagnosis reports
in most of the cases (i.e. Part II). However, although
the visualization (cf. Fig. 7) of Part I also shows a
roughly linear trend, the statistical result does not
support such an assumption.

• Coefficient of Determination indicates the
percentage of the dependent variable’s variation
(i.e. latency changes in this case) that can be explained
by the independent variable (i.e. report index in this
case). The determination above 99% in the data of
Part II shows a good fit of the linear regression
model. In contrast, the fit of Part I’s model is poor.

Table 2 FIFS Transmission’s Regression Analysis Output

Indicator Analysis Part I Analysis Part II

Observations 4 47

Intercept 475.45 −106.31

(Index) Coefficient 2.52 143.9

Abs(Correlation Coefficient) 0.26 0.99926

Coefficient of Determination 6.78% 99.85%

Standard Error 14.78 77.634

Significance F 0.7397 2.3 × 10−65

• Standard Error acts as an absolute measure to
reflect the average error between the real data and the
regression line. For instance, there would be about 77
ms error on average when using the second-part
regression model to predict report uploading latency.

• Significance F reveals the probability that the entire
regression model is wrong and should be rejected.
Since we have only one independent variable in this
study, the Significance F here is equal to the p-value
that applies to the coefficient Index. The extremely
small value in Part II have statistically confirmed the
strong reliability of the modeling result. On the
contrary, we should reject the first model for the data
in Part I.

After trying to build linear regression models for the
two-part analysis, we eventually compose a piecewise
function of report uploading latency, as shown in Eq. (2).

Lfifs(i) =
⎧
⎨

⎩
2.52i + 475.45 if 1 � i < 4

143.9i − 106.31 if i � 4
(2)

where Lfifs(i) indicates the latency of uploading the
ith report under the FIFS mechanism. As explained
with respect to the indicators, the first model should be
rejected, because it does not fit the observations well. On
the other hand, it may not be practical to use such a small
amount of observations to build regression models. For
example, it has been identified that both false positives
and false negatives will occur in regression analyses if the
sample size is less than eight, even with very low variance
[43]. Therefore, we intentionally omit the first three obser-
vations while include i = 4 in the second piece of the
function.
In addition to the statistical confirmation, we employed

new datasets to validate the applicability of the estab-
lished model. Despite the slight variation in the measure-
ment results from trial to trial, it seems that individual
reports’ uploading latencies will generally increase along-
side enlarging the group size of prediagnosis tasks. This
could be caused by the thread pool adjustment in the
cloud, and it should be worth future investigations. At
least with similar-scale group sizes, we can always obtain
acceptable prediction results through this piecewise func-
tion. For example, the validation results from a 100-task
experiment are exemplified in Table 3. It is noteworthy
that all the residuals stay within an error bound of 5%.

Modeling analysis for buffer-aided transmission
Given the roughly linear upward trend of the latency
trajectories, we also use the linear regression modelling
to abstract and analyze the latency characteristics of

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 13 of 18

Table 3 Validation of the FIFS Uploading Latency Model by
Using New Measurements against Prediction

Report Index Measured
Latency

Rounded
Prediction

Residuals

20th 2859ms 2772ms 87ms

30th 4329ms 4211ms 118ms

45th 6510ms 6369ms 141ms

60th 8732ms 8528ms 204ms

75th 10945ms 10686ms 259ms

90th 13153ms 12845ms 308ms

100th 14656ms 14284ms 372ms

*Individual reports’ uploading latencies generally increase alongside enlarging the
group size of prediagnosis tasks.

buffer-aided transmission (cf. Fig. 9). The detailed analy-
sis outputs in terms of the aforementioned indicators are
specified in Table 4.
In brief, the large absolute value of the correlation coef-

ficient (about 0.99) in both trajectories justifies the strong
correlation between the buffer size and the latency of
buffer-aided transmission. The large Coefficient of Deter-
mination value (over 97%) together with the trivial Sig-
nificance F value (less than -40 orders of magnitude)
statistically confirm the good fit and reliability of the lin-
ear models against the 49 observations, as shown in Eq. (3)
and Eq. (4).

Lbf-up(s) = 5.0393s + 277.52 (3)

where Lbf-up(s) indicates the latency of uploading the
buffered s prediagnosis reports, and the buffer size is
accordingly measured as s.

Lbf(s) = 11.561s + 314.01 (4)

where Lbf(s) indicates the combinatory latency of buffer-
ing and uploading s prediagnosis reports, and the buffer
size is also s.
Similarly, we also enlarged the maximum buffer size and

conducted new experiments to validate these two models.

Table 4 Buffer-aided Transmission’s Regression Analysis Output

Indicator Analysis of
Uploading
Latency

Analysis of
Buffering &
Uploading
Latency

Observations 49 49

Intercept 277.52 314.01

(Buffer Size) Coefficient 5.0393 11.561

Abs(Correlation Coefficient) 0.98811 0.99395

Coefficient of Determination 97.64% 98.79%

Standard Error 11.3235 18.4413

Significance F 7.1 × 10−40 9.44 × 10−47

Table 5 Validation of the Uploading Latency Model under the
Buffering Mechanism

Buffer Size Measured
Uploading
Latency

Predicted
Uploading
Latency

Residuals

10 326ms 328ms -2ms

20 377ms 378ms -1ms

30 434ms 429ms 5ms

40 486ms 479ms 7ms

50 538ms 529ms 9ms

60 592ms 580ms 12ms

70 623ms 630ms -7ms

80 691ms 681ms 10ms

The validation results are exemplified in Tables 5 and 6
respectively. The generally small residuals prove that the
established models are suitable for predicting the perfor-
mance of buffer-aided transmission on our testbed, even
with larger buffer sizes. Recall that we adjust the buffer
size by controlling the amount of prediagnosis reports
to be buffered. Thus, the buffers in our experiments are
always saturated when uploading the buffered data, no
matter how big the buffer sizes are.

Conjoint modeling analysis to answer RQ2
As mentioned in “Introduction” section, RQ2 is defined
based on the hypothesized answer (i.e. YES) to RQ1, while
the discussion in “Theoretical discussion” section has
theoretically answered RQ1 with YES, i.e. the application-
level bufferingmechanism can speed up data transmission
from the edge to the cloud. Therefore, the modeling anal-
ysis here aims only to answer RQ2, i.e. to what extent the
application-level buffering mechanism can speed up data
transmission from the edge to the cloud. In fact, given
the dependency of RQ2 on RQ1, the modeling analysis
together with the previous experimental investigation will

Table 6 Validation of the Buffering & Uploading Latency Model
under the Buffering Mechanism

Buffer Size Measured
Buffering &
Uploading
Latency

Predicted
Buffering &
Uploading
Latency

Residuals

10 410ms 430ms -20ms

20 531ms 545ms -14ms

30 672ms 661ms 11ms

40 791ms 776ms 15ms

50 901ms 892ms 9ms

60 1031ms 1008ms 23ms

70 1105ms 1123ms -18ms

80 1252ms 1239ms 13ms

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 14 of 18

empirically reinforce the answer YES to RQ1, no matter
what the answer to RQ2 is.
From the perspective of a single prediagnosis report (cf.

“Theoretical discussion” section), the buffer-aided trans-
mission will be preferred if it makes the report arrive
earlier than the FIFS manner does. Benefiting from the
respective modeling analyses of the two transmission
mechanisms, we can conveniently conjoin their latency
models and mathematically compare their time efficiency.
Since the buffering overhead should also be included in
the time efficiency comparison, we employ Eq. (4) for
buffer-aided transmission to perform the conjoint mod-
eling analysis with Eq. (2) for FIFS transmission. The
aforementioned situation from the single report’s perspec-
tive can then be abstracted into the following system of
inequalities:

{
Lfifs(i) � Lbf(s)
s > i � 1

(5)

In particular, s > i guarantees that the ith prediagno-
sis report must have been buffered. Meanwhile, Lfifs(i) �
Lbf(s) regulates when involving the buffering overhead is
worth it for the ith report. By ignoring the first three
reports and by further substituting Eq. (2) and Eq. (4) into
(5), we rewrite the inequality system as:

{
s � �12.447i − 36.357�
s > i > 3 (6)

Since the buffer size s can only be a positive integer, we
use the floor operation �� to constrain the solutions to
the inequality system to be integer values. Note that, by
using the ith report (and essentially its FIFS transmission
latency) as the reference, the buffering mechanism could
have sacrificed the performance of transmitting the first
(i − 1) reports for the whole “team” of the buffered data.
Despite the difference between buffering atomic data

entities (i.e. prediagnosis reports) and buffering under-
lying packets, the buffer-aided transmission mechanism
here with a fixed reference (i.e. a particular report in the
pipeline) is similar to Nagle’s algorithm [44] that refers
to the maximum segment size to improve the efficiency
of TCP/IP networks. Nevertheless, the advantage of this
research is the developed inequality system that regulates
a wide range of changeable references for setting buffer
sizes. This allows our buffer-aided transmission mecha-
nism to be able to conveniently adapt to some dynamic
circumstances. For example, when involving different task
priorities, we can programmatically employ the inequality
system (6) to adjust buffer sizes automatically by referring
to the high-priority tasks.
Driven by RQ2, we measure the wall-clock latency of

prediagnosis tasks to validate this conjoint analysis result,
in order to reflect and compare the practical effects of
different transmission mechanisms. In particular, for the

purpose of consistency, we still use the serial approach
to implement buffer-aided transmission in the validation
experiments.
For example, by referring to the 11th report, we can set

the buffer size as big as 50 according to the inequality sys-
tem (6). In practice, given a 50-task job, completing the
job in the FIFS manner will take about 7694 ms in total,
while the buffer-aided transmission will help reduce the
job’s wall-clock latency down to 2025 ms. We also tried
the other buffer sizes, as illustrated in Fig. 10. It is clear
that small sizes of buffer will make the performance even
worse, due to the nature of serial transmission here. The
bigger buffers can generally speed up the job, and some
medium-size buffer (e.g., 25) seems to be able to bring the
best performance in this case. However, the performance
difference will also vary depending on the job size, while
the buffer size optimization with respect to different job
sizes is out of the scope of this paper.
Note that, when 50 is not exactly divisible by a buffer

size, we supplement extra tasks to saturate the buffer of
the final transmission transaction, so as to obtain the
conservative measurement result for more confidence in
performance comparison. For instance, the 50-task job
will require two uploading events even if the buffer size is
49, and accordingly we will give 48 more tasks to the job
in the experiment).

Limits to validity
We applied a specific application scenario (i.e. cooperative
remote health monitoring) to investigating the time effi-
ciency in buffer-aided edge-cloud communication. Thus,
the findings from this study might suffer from a set of
limits, mainly related to the application-specific work-
load characteristics and the data-type-specific buffering
technique. By highlighting the limits to the validity of
our current work, on one hand, we try to remind read-
ers of this study’s research scope; on the other hand, we
expect to attract more attentions and efforts to bringmore
empirical evidence for this research topic.
1) Application-specific Workload Regime.
This study emerges from a real-world healthcare

project, and the project requires periodically transmitting
atomic data entities (i.e. the kilobyte-scale prediagnosis
reports) rather than streaming raw sensor signals. Since
one edge unit (i.e. a prediagnosis broker) is in charge of
less than 50 patients according to the requirements, we
estimate that the network is not saturated under both
data transmissionmechanisms, from the single edge unit’s
perspective. Correspondingly, our findings could not be
applicable for saturated network scenarios (e.g., with large
atomic data entities per patient).
Despite such a limit, we argue the importance of iden-

tifying the practical characteristics of edge-cloud data
transmission at runtime, because the data transmission

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 15 of 18

Fig. 10Wall-clock of latency of completing 50 continuous prediagnosis tasks on our testbed. FIFS indicates the FIFS transmission mechanism, while
the others indicate the buffer-aided transmission mechanism with respect to different data sizes

characteristics can vary considerably over both differ-
ent workload regimes and different environmental condi-
tions. For example, by intuitively assuming the network
congestion due to big data volumes, some researchers pro-
pose to prioritize the health data traffic, which however
would incur unnecessary processing delay and result in
unwanted unfairness among patients in the context of our
project [45–47].
Furthermore, considering the usually heterogeneous

capacity of upload bandwidth and uneven request rates
from different edge nodes [48], we also use this limit
to argue the necessity of replicating the characterization
implementation rather than simply reusing the previous
characterization results in different situations. In other
words, we claim that there is no one-size-fits-all latency
inequality system to improve the time efficiency in edge-
cloud data transmissions. Practitioners should empirically
build up specific latency inequality systems for different
applications at different relay nodes, by referring to the
logic and process of the experimental investigation and
modeling analysis reported in this paper as the generic
methodology.
2) Data-type-specific Buffering Technique.
Recall that the Firebase Storage in our testbed only

allows uploading one single file per communication trans-
action. We also tried zipping as an alternative buffer-
ing mechanism besides the PDF-file merging. Although
we observed similar buffering latency, zipping-aided
transmission generally transferred bigger-size data than
merging-aided transmission, as exemplified in Table 7.
The smaller data size in the latter case is mainly because
n − 1 file headers are saved after merging n PDF files into
one. Therefore, we decided to take advantage of the spe-
cific data type (i.e. PDF) to save communication overhead
in practice. Note that “buffering by grouping” in Table 7 is

only to sum up the sizes of individual PDF files for theo-
retical comparison, while it is not a functional technique
on our testbed.
This limit further confirms that the practical character-

istics of edge-cloud data transmission can be impacted
by many factors. Thus, we urge including empirical char-
acterization in any research on optimizing edge-cloud
communication. It is noteworthy that, although employ-
ing a different buffering technique (e.g., zipping) would
change the quantitative parameters in the inequality sys-
tem, the qualitative logic and methodology of our study
will still be valid and remain the same.

Conclusions and future work
Backbone buffers have been deployed across the entire
Internet, in order to help transport protocols and
algorithms maximize network throughput, minimize
communication delay, and reduce data loss. These

Table 7 Overall Data Sizes (in Bytes) with Different Buffering
Strategies

Buffered Data Bytes by
Grouping

Bytes by
Zipping

Bytes by
Merging

2 reports 2833 2380 2452

3 reports 4247 3565 3484

4 reports 5680 4756 4536

5 reports 7110 5949 5584

6 reports 8506 7097 6599

7 reports 9917 8267 7629

8 reports 11337 9450 8667

9 reports 12763 10634 9712

10 reports 14176 11802 10744

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 16 of 18

infrastructure-level buffering implementations can be
viewed as public services for the universal data packet
transmissions, without necessarily being dedicated to
individual applications. When it comes to the applica-
tion level, there might be requirements of application-
specific buffering mechanisms with dedicated buffers.
For example, applications dealing with sparse and small-
size data units can use buffers to enhance their com-
munication energy efficiency; while applications having
periodic data flood can use buffers to avoid poten-
tial communication congestion. It is notable that, no
matter working on infrastructure or application, the
existing studies generally trade off data transmission
time in exchange for other benefits when utilizing
buffers.
Given the requirement of processing and transmit-

ting small-size atomic data entities in our edge cloud
computing project, we started wondering if employing
buffers could eventually reduce the system’s communica-
tion latency, besides those trade-off benefits. Thus, we
defined two research questions and developed a testbed to
investigate the feasibility and effectiveness of using buffers
to speed up data transmission.

Current findings
By answering YES to the first research question, we are
able to conclude the existence of chances in improv-
ing time efficiency of edge-cloud communication. Note
this conclusion does not violate the existing lessons that
buffers will introduce additional delay to the communica-
tion, because our argument is to slow down a small part
for speeding up the whole.
After pursuing answers to the second research question,

we conclude that the applicability of buffering should be
a mandatory concern when developing edge cloud appli-
cations, because the buffering mechanism may signifi-
cantly improve the communication performance under
suitable circumstances. The applicable circumstances can
be determined via an empirical latency inequality system
derived from a full cycle of experimental investigation
and modeling analysis. Since the quantitative speedup
would vary when workload regimes and environmental
conditions are different, in practice, we suggest using
the second research question to drive replicated investi-
gations and explore application-specific answers case by
case.

Future work
Driven by both the findings and the limits of the current
work, we plan to gradually involve extra factors and con-
tinue this research along three directions in the future.
This incremental research strategy essentially follows the
experimental principle of gradual factorial investigations
[38].

• Varying atomic data entities at relay nodes. Due to
the nature of the same-format prediagnosis reports,
the buffered objects in this research are homogeneous
atomic data entities with roughly the same data size.
Considering that there must be different transmission
patterns with regarding to heterogeneous data
entities, we will employ mixed-data application
scenarios and re-investigate the time efficiency of
buffer-aided relaying in this case. It should be noted
that the mixed-data scenario among multiple
applications is out of the scope if this research
direction. As clarified previously, the application-level
buffering is supposed to be programmatically
controllable within the application’s implementation.

• Multi-thread data processing at relay nodes. As
justified in “Experimental analysis of FIFS
transmission” section, our current work is only
focused on the single-thread data processing at relay
nodes, so as to make this study compatible with the
diverse compute capacities of heterogeneous edge
devices. Based on such a fundamental study, we will
narrow down our focus to the edge devices with
multi-thread processing capacities, and investigate
buffer-aided relaying for intensive and simultaneous
tasks in edge cloud applications.

• Multi-objective buffering at relay nodes. Using a
latency inequality system has been able to reveal the
maximum gains for the whole “team” of the buffered
data when delaying particular atomic data entities.
However, it could be unclear about delaying which
ones for the team at runtime. Therefore, we will take
into account multiple objectives of buffer-aided
relaying to optimally decide when to stop buffering,
for example, by including the different priorities
and/or a delay penalty function for the individual
atomic data entities. It is foreseeable that the
development and validation of potential optimization
policies will require extensive empirical
investigations. Thus, the methodology demonstrated
in this research can act as a solid cornerstone to
significantly facilitate future investigations.

Abbreviations
DOE: Design of Experiments; ECG: electrocardiography; FIFS: First-In-First-
Served; JSON: JavaScript Object Notation; PDF: Portable Document Format;
RQ: Research Question

Acknowledgements
We acknowledge the thorough reviews, insightful comments and helpful
suggestions from the editors and the reviewers.

Authors’ contributions
All authors took part in the discussion and analysis of the work described in
this paper. Francisco Millar-Bilbao led the experiments. Zheng Li led the
writing of this paper. All authors read and approved the final manuscript.

Authors’ information
Zheng Li is an assistant professor at the Department of Computer Science,
University of Concepción. FranciscoMillar-Bilbao is a research student at

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 17 of 18

the Department of Computer Science, University of Concepción. Gonzalo
Rojas-Durán is an assistant professor at the Department of Computer
Science, University of Concepción. Susana Ladra is an associate professor at
Universidade da Coruña, CITIC.

Funding
This work is supported in part by Chilean National Research and Development
Agency (ANID, Chile) [grant FONDECYT Iniciación 11180905], and by
MICINN-AEI (PGE and ERDF) [grants RTC-2017-5908-7,PID2019-105221RB-C41]
and by Xunta de Galicia (co-founded by ERDF) [grant ED431C 2017/58]. We
also wish to acknowledge the support received from the Centro de
Investigación de Galicia “CITIC”, funded by Xunta de Galicia and the European
Union (European Regional Development Fund – Galicia 2014-2020 Program),
by grant ED431G 2019/01.

Availability of data andmaterials
The mobile app developed in this research is open-sourced at https://github.
com/Frmillar/NutriEvaluator
The 50 example prediagnosis reports generated on the testbed are shared
online at http://doi.org/10.5281/zenodo.4556465

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computer Science, University of Concepción, Edmundo
Larenas 219, 4070409 Concepción, Chile. 2Universidade da Coruña, CITIC,
Elviña, 15071 A Coruña, Spain.

Received: 1 November 2020 Accepted: 25 February 2021

References
1. Tanenbaum AS, van Steen M (2006) Distributed Systems: Principles and

Paradigms, 2nd. Prentice Hall, Upper Saddle River, NJ. p 115
2. Amin O, Mesleh R, Ikki SS, Ahmed MH, Dobre OA (2015) Performance

analysis of multiple relays cooperative systems with signal space diversity.
IEEE Trans Veh Technol 64(8):3414–3425. https://doi.org/10.1109/TVT.
2014.2359175

3. Tao X, Xu X, Cui Q (2012) An overview of cooperative communications.
IEEE Commun Mag 50(6):65–71. https://doi.org/10.1109/MCOM.2012.
6211487

4. Alipio M, Tiglao NM, Grilo A, Bokhari F, Chaudhry U, Qureshi S (2017)
Cache-based transport protocols in wireless sensor networks: A survey
and future directions. J Netw Comput Appl 88:29–49. https://doi.org/10.
1016/j.jnca.2017.04.001

5. Zlatanov N, Ikhlef A, Islam T, Schober R (2014) Buffer-aided cooperative
communications: Opportunities and challenges. IEEE Commun Mag
52(4):146–153. https://doi.org/10.1109/MCOM.2014.6807959

6. Gettys J, Nichols K (2012) Bufferbloat: Dark buffers in the internet.
Commun ACM 55(1):57–65. https://doi.org/10.1145/2063176.2063196

7. Wolfson O, Xu B, Tanner RM (2007) Mobile peer-to-peer data
dissemination with resource constraints. In: Proceedings of the 8th
International Conference on Mobile Data Management (MDM 2007). IEEE
Press, Mannheim, Germany. pp 16–23. https://doi.org/10.1109/MDM.
2007.12

8. Ma L, Xu Y, Sun J, Huang W, Xie S, Li Y, Liu N (2018) Buffer control in VR
video transmission over MMT system. In: Proceedings of the 13th IEEE
International Symposium on Broadband Multimedia Systems and
Broadcasting (BMSB 2018). IEEE Press, Valencia, Spain. pp 1–5. https://doi.
org/10.1109/BMSB.2018.8436817

9. Qiao D, Gursoy MC (2017) Buffer-aided relay systems under delay
constraints: Potentials and challenges. IEEE Commun Mag 55(9):168–174.
https://doi.org/10.1109/MCOM.2017.1600213

10. Shpiner A, Zahavi E (2016) Race cars vs. trailer trucks: Switch buffers sizing
vs. latency trade-offs in data center networks. In: Proceedings of the IEEE
24th Annual Symposium on High-Performance Interconnects (HOTI

2016). IEEE Computer Society, Santa Clara, CA, USA. pp 53–59. https://doi.
org/10.1109/HOTI.2016.021

11. Jawadekar WS (2009) Management Information Systems: Text & Cases,
4th. Tata Mcgraw Hil, l7 West Patel Nagar, New Delhi. p 520

12. Zlatanov N, Schober R (2013) Buffer-aided relaying with adaptive link
selection–fixed and mixed rate transmission. IEEE Trans Inf Theory
59(5):2816–2840. https://doi.org/10.1109/TIT.2013.2238607

13. Li Z, Millar-Bilbao F (2020) Characterising edge-cloud data transmission
for patient-centric healthcare systems. In: Proceedings of the 22nd IEEE
International Conference on E-health Networking, Application & Services
(HealthCom 2020). IEEE Communications Society, Shenzhen, China. to
appear

14. Kim J-H, Lee S-H, Jin H-W (2016) Supporting virtualization standard for
network devices in RTEMS real-time operating system. ACM SIGBED Rev
13(1):35–40. https://doi.org/10.1145/2907972.2907977

15. Söderman P, Grinnemo K-J, Hidell M, Sjödin P (2015) EWSN 2015: Wireless
Sensor Networks. In: Abdelzaher T, Pereira N, Tovar E (eds). Lecture Notes
in Computer Science. Springer, Cham Vol. 8965. pp 104–119. https://doi.
org/10.1007/978-3-319-15582-1_7

16. Wang H, Crilly B, Zhao W, Autry C, Swank S (2007) Implementing mobile
ad hoc networking (MANET) over legacy tactical radio links. In:
Proceedings of the 26th IEEE Military Communications Conference
(MILCOM 2007). IEEE Press, Orlando, FL, USA. pp 1–7. https://doi.org/10.
1109/MILCOM.2007.4455103

17. Chen S, Yang N (2006) Congestion avoidance based on lightweight
buffer management in sensor networks. IEEE Trans Parallel Distrib Syst
17(9):934–946. https://doi.org/10.1109/TPDS.2006.115

18. Cao L, Settlemyer BW, Bent J (2017) To share or not to share: Comparing
burst buffer architectures. In: Proceedings of the 25th High Performance
Computing Symposium (HPC 2017). Society for Computer Simulation
International, Virginia Beach, VA, USA. https://dl.acm.org/doi/10.5555/
3108096.3108100

19. Ghasemzadeh H, Loseu V, Ostadabbas S, Jafari R (2010) Burst
communication by means of buffer allocation in body sensor networks:
Exploiting signal processing to reduce the number of transmissions. IEEE
J Sel Areas Commun 28(7):1073–1082. https://doi.org/10.1109/JSAC.2010.
100912

20. Maheswar R, Jayarajan P, Vimalraj S, Sivagnanam G, Sivasankaran V, Amiri
IS (2018) Energy efficient real time environmental monitoring system
using buffer management protocol. In: Proceedings of the 9th
International Conference on Computing, Communication and
Networking Technologies (ICCCNT 2018). IEEE Press, Bangalore, India.
pp 1–5. https://doi.org/10.1109/ICCCNT.2018.8494144

21. Fang J, Ma A (2021) IoT application modules placement and dynamic task
processing in edge-cloud computing. Internet Things J I. https://doi.org/
10.1109/JIOT.2020.3007751, https://ieeexplore.ieee.org/document/
9134385

22. Tianfield H (2018) Towards edge-cloud computing. In: Proceedings of the
2018 IEEE International Conference on Big Data (BigData 2018). IEEE Press,
Seattle, WA, USA. pp 4883–4885. https://doi.org/10.1109/BigData.2018.
8622052

23. Villari M, Fazio M, Dustdar S, Rana O, Ranjan R (2016) Osmotic computing:
A new paradigm for edge/cloud integration. IEEE Cloud Comput
3(6):76–83. https://doi.org/10.1109/MCC.2016.124

24. Luo S, Teh KC (2017) Adaptive transmission for cooperative NOMA system
with buffer-aided relaying. IEEE Commun Lett 21(4):937–940. https://doi.
org/10.1109/LCOMM.2016.2647250

25. Huang J, Swindlehurst AL (2015) Buffer-aided relaying for two-hop secure
communication. IEEE Trans Wirel Commun 14(1):152–146. https://doi.
org/10.1109/TWC.2014.2334602

26. Kim SM, Seo S, Jang SK, Kim J (2018) On the buffer-aided relaying
technique and its applications. Int J Appl Eng Res 13(2):1514–1519.
https://www.ripublication.com/ijaer18/ijaerv13n2_93.pdf

27. Wen C, Yeh M-F, Chang K-C, Lee R-G (2008) Real-time ECG telemonitoring
system design with mobile phone platform. Meas 41(4):463–470. https://
doi.org/10.1016/j.measurement.2006.12.006

28. Chou C-Y, Chang E-J, Li H-T, Wu A-Y (2018) Low-complexity
privacy-preserving compressive analysis using subspace-based dictionary
for ECG telemonitoring system. IEEE Trans Biomed Circ Syst
12(4):801–811. https://doi.org/10.1109/TBCAS.2018.2828031

https://github.com/Frmillar/NutriEvaluator
https://github.com/Frmillar/NutriEvaluator
http://doi.org/10.5281/zenodo.4556465
https://doi.org/10.1109/TVT.2014.2359175
https://doi.org/10.1109/TVT.2014.2359175
https://doi.org/10.1109/MCOM.2012.6211487
https://doi.org/10.1109/MCOM.2012.6211487
https://doi.org/10.1016/j.jnca.2017.04.001
https://doi.org/10.1016/j.jnca.2017.04.001
https://doi.org/10.1109/MCOM.2014.6807959
https://doi.org/10.1145/2063176.2063196
https://doi.org/10.1109/MDM.2007.12
https://doi.org/10.1109/MDM.2007.12
https://doi.org/10.1109/BMSB.2018.8436817
https://doi.org/10.1109/BMSB.2018.8436817
https://doi.org/10.1109/MCOM.2017.1600213
https://doi.org/10.1109/HOTI.2016.021
https://doi.org/10.1109/HOTI.2016.021
https://doi.org/10.1109/TIT.2013.2238607
https://doi.org/10.1145/2907972.2907977
https://doi.org/10.1007/978-3-319-15582-1_7
https://doi.org/10.1007/978-3-319-15582-1_7
https://doi.org/10.1109/MILCOM.2007.4455103
https://doi.org/10.1109/MILCOM.2007.4455103
https://doi.org/10.1109/TPDS.2006.115
https://dl.acm.org/doi/10.5555/3108096.3108100
https://dl.acm.org/doi/10.5555/3108096.3108100
https://doi.org/10.1109/JSAC.2010.100912
https://doi.org/10.1109/JSAC.2010.100912
https://doi.org/10.1109/ICCCNT.2018.8494144
https://doi.org/10.1109/JIOT.2020.3007751
https://doi.org/10.1109/JIOT.2020.3007751
https://ieeexplore.ieee.org/document/9134385
https://ieeexplore.ieee.org/document/9134385
https://doi.org/10.1109/BigData.2018.8622052
https://doi.org/10.1109/BigData.2018.8622052
https://doi.org/10.1109/MCC.2016.124
https://doi.org/10.1109/LCOMM.2016.2647250
https://doi.org/10.1109/LCOMM.2016.2647250
https://doi.org/10.1109/TWC.2014.2334602
https://doi.org/10.1109/TWC.2014.2334602
https://www.ripublication.com/ijaer18/ijaerv13n2_93.pdf
https://doi.org/10.1016/j.measurement.2006.12.006
https://doi.org/10.1016/j.measurement.2006.12.006
https://doi.org/10.1109/TBCAS.2018.2828031

Li et al. Journal of Cloud Computing: Advances, Systems and Applications (2021) 10:24 Page 18 of 18

29. Wang X, Gui Q, Liu B, Jin Z, Chen Y (2014) Enabling smart personalized
healthcare: A hybrid mobile-cloud approach for ECG telemonitoring. IEEE
J Biomed Health Inform 18(3):739–745. https://doi.org/10.1109/JBHI.2013.
2286157

30. Engin M, Çağlav E, Engin EZ (2005) Real-time ECG signal transmission via
telephone network. Meas 37(2):167–171. https://doi.org/10.1016/j.
measurement.2004.11.001

31. Shu P, Liu F, Jin H, Chen M, Wen F, Qu Y, Li B (2013) eTime:
Energy-efficient transmission between cloud and mobile devices. In:
Proceedings of The 32nd IEEE International Conference on Computer
Communications (IEEE INFOCOM 2013). IEEE Press, Turin, Italy.
pp 195–199. https://doi.org/10.1109/INFCOM.2013.6566762

32. Jiang Z, Zhang X, Huang W, Chen H, Xu Y, Hwang J-N, Ma Z, Sun J (2020)
A hierarchical buffer management approach to rate adaptation for
360-degree video streaming. IEEE Trans Veh Technol 69(2):2157–2170.
https://doi.org/10.1109/TVT.2019.2960866

33. Demircin MU, van Beek PJL (2010) Sender-side Bandwidth Estimation for
Video Transmission with Receiver Packet Buffer. Patent: US7784076B2.
https://patents.google.com/patent/US7784076

34. Harumoto H, Horiuchi M, Fujita T (2006) System for transmitting stream
data from server to client based on buffer and transmission capacities
and delay time of the client. Patent: US7016970B2. https://patents.
google.com/patent/US7016970B2/en

35. Domenico MD, Solé-Ribalta A, Cozzo E, Kivelä M, Moreno Y, Porter MA,
Gómez S, Arenas A (2013) Mathematical formulation of multilayer
networks. Phys Rev X 3(4):041022. https://doi.org/10.1103/PhysRevX.3.
041022

36. Li Z, O’Brien L, Zhang H, Cai R (2014) On the conceptualization of
performance evaluation of IaaS services. IEEE Trans Serv Comput
7(4):628–641. https://doi.org/10.1109/TSC.2013.39

37. Obaidat MS, Boudriga NA (2010) Fundamentals of Performance
Evaluation of Computer and Telecommjnication Systems. John Wiley &
Sons, Inc., Hoboken. p 8

38. Montgomery DC (2019) Design and Analysis of Experiments, 9th. John
Wiley & Sons, Inc., Hoboken. pp 162–165

39. Augusto JC (2010) Agents and Artificial Intelligence. In: Filipe J, Fred A,
Sharp B (eds). Communications in Computer and Information Science.
Springer, Berlin Vol. 67. pp 3–15. https://doi.org/10.1007/978-3-642-
11819-7_1

40. Viani F, Robol F, Polo A, Rocca P, Oliveri G, Massa A (2013) Wireless
architectures for heterogeneous sensing in smart home applications:
Concepts and real implementation. Proc IEEE 101(11):2381–2396. https://
doi.org/10.1109/JPROC.2013.2266858

41. Writer S (2020) What is a model in science? https://www.reference.com/
science/model-science-727cde390380e207

42. Mellor SJ, Clark AN, Futagami T (2003) Model-driven development – guest
editor’s introduction. IEEE Softw 20(5):14–18. https://doi.org/10.1109/MS.
2003.1231145

43. Jenkins DG, Quintana-Ascencio PF (2020) A solution to minimum sample
size for regressions. PLoS ONE 15(2):0229345. https://doi.org/10.1371/
journal.pone.0229345

44. Mogul JC, Minshall G (2001) Rethinking the TCP nagle algorithm. ACM
SIGCOMM Comput Commun Rev 31(1):6–20. https://doi.org/10.1145/
382176.382177

45. Beitelspacher S, Mubashir M, Besher KM, Ali MZ (2020) Prioritizing health
care data traffic in a congested IoT cloud network. In: Proceedings of the
2020 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW). IEEE Press, Seoul, South Korea. pp 1–6. https://doi.
org/10.1109/WCNCW48565.2020.9124867

46. Kumar MA, Vimala R, Britto KRA (2019) A cognitive technology based
healthcare monitoring system and medical data transmission. Meas
146:322–332. https://doi.org/10.1016/j.measurement.2019.03.017

47. Misra S, Chatterjee S (2014) Social choice considerations in cloud-assisted
WBAN architecture for post-disaster healthcare: Data aggregation and
channelization. Inf Sci 284:95–117. https://doi.org/10.1016/j.ins.2014.05.
010

48. Zhao W, Liu J, Guo H, Hara T (2018) ETC-IoT: Edge-node-assisted
transmitting for the cloud-centric internet of things. IEEE Netw
32(3):101–107. https://doi.org/10.1109/MNET.2018.1700164

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/JBHI.2013.2286157
https://doi.org/10.1109/JBHI.2013.2286157
https://doi.org/10.1016/j.measurement.2004.11.001
https://doi.org/10.1016/j.measurement.2004.11.001
https://doi.org/10.1109/INFCOM.2013.6566762
https://doi.org/10.1109/TVT.2019.2960866
https://patents.google.com/patent/US7784076
https://patents.google.com/patent/US7016970B2/en
https://patents.google.com/patent/US7016970B2/en
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1109/TSC.2013.39
https://doi.org/10.1007/978-3-642-11819-7_1
https://doi.org/10.1007/978-3-642-11819-7_1
https://doi.org/10.1109/JPROC.2013.2266858
https://doi.org/10.1109/JPROC.2013.2266858
https://www.reference.com/science/model-science-727cde390380e207
https://www.reference.com/science/model-science-727cde390380e207
https://doi.org/10.1109/MS.2003.1231145
https://doi.org/10.1109/MS.2003.1231145
https://doi.org/10.1371/journal.pone.0229345
https://doi.org/10.1371/journal.pone.0229345
https://doi.org/10.1145/382176.382177
https://doi.org/10.1145/382176.382177
https://doi.org/10.1109/WCNCW48565.2020.9124867
https://doi.org/10.1109/WCNCW48565.2020.9124867
https://doi.org/10.1016/j.measurement.2019.03.017
https://doi.org/10.1016/j.ins.2014.05.010
https://doi.org/10.1016/j.ins.2014.05.010
https://doi.org/10.1109/MNET.2018.1700164

	Abstract
	Background
	Aims
	Method
	Results
	Conclusions
	Keywords

	Introduction
	Related work
	Theoretical discussion
	Experimental investigation
	Testbed setup
	Two transmission mechanisms
	Measurement metrics
	Experimental analysis of FIFS transmission
	Experimental analysis of buffer-aided transmission

	Modeling investigation
	Modeling analysis for FIFS transmission
	Modeling analysis for buffer-aided transmission
	Conjoint modeling analysis to answer RQ2

	Limits to validity
	Conclusions and future work
	Current findings
	Future work

	Abbreviations
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author details
	References
	Publisher's Note

