
Journal of Cloud Computing:
Advances, Systems and Applications

Lin et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:33
https://doi.org/10.1186/s13677-021-00246-6

RESEARCH Open Access

Computation offloading strategy based
on deep reinforcement learning for
connected and autonomous vehicle in
vehicular edge computing
Bing Lin1,2,3†, Kai Lin1†, Changhang Lin4* , Yu Lu5*, Ziqing Huang1 and Xinwei Chen6

Abstract
Connected and Automated Vehicle (CAV) is a transformative technology that has great potential to improve urban
traffic and driving safety. Electric Vehicle (EV) is becoming the key subject of next-generation CAVs by virtue of its
advantages in energy saving. Due to the limited endurance and computing capacity of EVs, it is challenging to meet
the surging demand for computing-intensive and delay-sensitive in-vehicle intelligent applications. Therefore,
computation offloading has been employed to extend a single vehicle’s computing capacity. Although various
offloading strategies have been proposed to achieve good computing performace in the Vehicular Edge Computing
(VEC) environment, it remains challenging to jointly optimize the offloading failure rate and the total energy
consumption of the offloading process. To address this challenge, in this paper, we establish a computation
offloading model based on Markov Decision Process (MDP), taking into consideration task dependencies, vehicle
mobility, and different computing resources for task offloading. We then design a computation offloading strategy
based on deep reinforcement learning, and leverage the Deep Q-Network based on Simulated Annealing (SA-DQN)
algorithm to optimize the joint objectives. Experimental results show that the proposed strategy effectively reduces
the offloading failure rate and the total energy consumption for application offloading.

Keywords: Computation offloading, Connected and autonomous vehicle, Reinforcement learning, Simulated
annealing, Offloading failure, Energy consumption, Mobility

Introduction
With the development of artificial intelligence technology,
mobile communication technology and sensor technol-
ogy, the design requirements of vehicles are no longer
limited to the driving function. Vehicles are gradu-
ally transformed into an intelligent, interconnected and
autonomous driving system, namely, Connected and
Autonomous Vehicle (CAV) [1]. The rapid increase of
vehicles on the road makes traffic accidents, traffic

*Correspondence: linchanghang@139.com; fzluyu@163.com
†Bing Lin and Kai Lin contributed equally to this work.
4The School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal
University, Fuzhou 350300, China
5Concord University College, Fujian Normal University, Fuzhou 350117, China
Full list of author information is available at the end of the article

congestion and automobile exhaust pollution become
increasingly prominent. A report of the World Health
Organization (WHO) pointed out that more than 1.35
million people die in traffic accidents per year [2]. By
sharing information with the infrastructure and neigh-
boring vehicles, CAVs can perceive the surrounding envi-
ronment more comprehensively [3], effectively reducing
traffic accidents caused by human error and alleviat-
ing traffic congestion. Electric Vehicle (EV) [4], with its
advantages in energy saving, is becoming the key sub-
ject in the next generation of CAVs. Its electricity can be
generated from various renewable energy sources, such
as solar energy, wind energy, and geothermal energy,

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00246-6&domain=pdf
http://orcid.org/0000-0002-2477-0988
mailto: linchanghang@139.com
mailto: fzluyu@163.com
http://creativecommons.org/licenses/by/4.0/

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 2 of 17

etc [5]. This will greatly reduce the environmental pollu-
tion caused by automobile exhaust emissions.
The development of CAV technology has given birth

to a series of computing-intensive and delay-sensitive
in-vehicle intelligent applications [6], e.g., autonomous
driving [7], augmented reality [8], etc. They typically
require large amounts of computing resources. But it is
challenging for vehicles to meet the surging demand for
such emerging applications, due to the limited endurance
and computing capacity of vehicles. In recent years,
computation offloading has been employed to extend
a single vehicle’s computing capacity. The computation
offloadingmethods, based on traditional cloud computing
platforms [9], offload computing tasks to cloud computing
centers with powerful computing capabilities, effectively
alleviating the computing burden on vehicles. However,
due to the long transmission distance between vehicles
and cloud computing centers, it will not only cause serious
service delays, but also lead to huge energy consumption,
which can not meet the needs of in-vehicle intelligent
applications [10].
To address the above challenges, a new networking

paradigm, Vehicular Edge Computing (VEC), has been
proposed. VEC deploys Mobile Edge Computing (MEC)
servers with computing and storage capabilities in Road-
side Units (RSU). This enables CAV applications to be
either processed in the vehicles locally, or offloaded to
other cooperative vehicles or RSUs within the commu-
nication range for processing. This paradigm opens up
new challenges on how to manage offloading to keep
the offloading failure rate and overall energy consumption
low. (1) Offloading failure rate could be impacted by the

application execution time and the communication link
established between the vehicle and the offloading targets.
If the offloaded tasks can not complete within the appli-
cation’s tolerance time, the offloading fails; if the com-
munication link is broken during the offloading process,
the offloading fails. This requires that the offloading strat-
egy should minimize the overall application execution
time, and minimize the communication interruption by
taking into consideration the vehicle’s continuous move-
ments. (2) Energy consumption also plays an important
role in offloading [11, 12]. Both communication and task
execution consumes vehicle’s energy. An offloading strat-
egy that can minimize the energy consumption would
benefit vehicle’s endurance. Therefore, different offload-
ing strategies can impact both objectives simultaneously,
potentially in opposite directions. This necessitates the
joint optimization of the two objectives.
Researchers have done a considerable amount of work

on CAV computation offloading strategy in the VEC envi-
ronment. Table 1 lists a group of existing research work,
where we mark the objectives, conditions and offloading
schemes that are considered for each approach. As we can
see, they have the following limitations.

1 The optimization objective mainly focused on either
execution delay [13, 14] or energy consumption
[15, 16], instead of the joint optimization of offloading
failure rate and energy consumption [17, 18].

2 Most work only considered computation offloading
strategy in the static environment [19–21], instead of
dynamic offloading strategy with the change of
vehicle positions in different time slots.

Table 1 Comparison of existing approaches and our approach (�indicates the corresponding item is considered in the technique)

Techniques
Objectives Conditions Schemes

Latency Energy Time Slot Task Dependency Local V2I V2V

Wu [13] � � � �
Zhang [14] � � �
Jang [15] � � � �
Pu [16] � � � � �
Wang [17] �(joint) � � � �
Khayyat [18] �(joint) � � �
Dai [22] � �
Ke [23] �(joint) � �
Zhan [24] �(joint) � � �
Dai [25] � � � �
Xu [19] � �
Liu [20] � � �
Guo [21] � � � �
Our work �(joint) � � � � �

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 3 of 17

3 They mostly aimed at computation offloading of
independent tasks [22, 23], i.e., no data dependency
among tasks of an application.

4 Most work only considered offloading tasks to RSUs
or processing tasks directly on On-Board Unit (OBU)
[24, 25], without utilizing the idle computing
resources of cooperative vehicles.

To address the above limitations, our work establishes
a new computation offloading model, which takes into
consideration task dependencies, vehicle mobility, and dif-
ferent computing resources to offload tasks to. Our goal
is to jointly optimize the objectives offloading failure rate
and energy consumption. To this end, our work employs
Deep Reinforcement Learning (DRL), which excels at
resolving the dimension disaster problem existed in the
traditional reinforcement learningmethods [26, 27]. More
specifically, our work designs an efficient computation
offloading strategy based on Deep Q-Network Based on
Simulated Annealing (SA-DQN) algorithm in the VEC
environment.
The main contributions of this paper are as follows.

• A new computation offloading model for CAV
applications in the VEC environment is established
based on Markov Decision Process (MDP). Since the
computation tasks from application decomposition
can be processed locally, offloaded to RSUs or
cooperative vehicles, the model introduces task
queues in vehicles and RSUs to model the task
transmission and processing. Moreover, vehicle
mobility and temporal dependency among tasks are
also considered in the model.

• The work designs a computation offloading strategy
based on deep reinforcement learning, and leverages
the SA-DQN algorithm to optimize the joint
objectives.

• The proposed computation offloading strategy is
evaluated using real vehicle trajectories. The
simulation results show that the proposed strategy
can effectively reduce the offloading failure rate and
the total energy consumption.

The rest of this paper is organized as follows. Section
II introduces the related work of computation offload-
ing in VEC. Section III formally defines the computa-
tion offloading problem of CAV applications and the
optimization goal, and analyzes the computation offload-
ing process using an example. Section IV proposes the
computation offloading strategy based on DRL, and
designs the SA-DQN algorithm for the computation
offloading strategy. Section V presents and analyzes the
experimental results, as well as the performance dif-
ferences between SA-DQN algorithm and traditional

reinforcement learning algorithms. Section VI summa-
rizes this work and looks into future work.

Related work
As shown in Table 1, there have been a wide range
of research work on CAV application offloading strat-
egy with different objectives, conditions and offloading
schemes. Most existing studies focused on the optimiza-
tion of either execution delay or energy consumption, but
rarely consider joint optimization of execution delay and
energy consumption. Wu et al. [13] proposed an optimal
task offloading approach using 802.11p as the transmis-
sion protocol of inter vehicle communication, in which
transmission delay and computation delay are considered
to maximize the long-term return of the system. Although
a large number of experimental results show that the
proposed optimization approach has good performance,
the optimization of energy consumption is not consid-
ered in this study. Zhang et al. [14] proposed an effective
combined prediction mode degradation approach con-
sidering the computation task execution time and vehi-
cle mobility. Although the simulation results show that
the approach greatly reduces the cost and improves the
task transmission efficiency, it does not consider the
energy consumption of communication and processing.
Jang et al. [15] considered the change of communica-
tion environment, jointly optimized the offloading ratio
of multiple vehicles, and optimized the total energy con-
sumption of vehicles under the delay constraint. Although
the proposed energy-saving offloading strategy signifi-
cantly reduces the total vehicle energy consumption, it
does not consider the processing energy consumption of
the computing node. Pu et al. [16] designed an online
task scheduling algorithm to minimize the energy con-
sumption of vehicles in the network for multi-vehicle and
multi-task offloading problem. Simulation results show
that the proposed framework has excellent performance.
Wang et al. [17] proposed a dynamic reinforcement learn-
ing scheduling algorithm to solve the offloading deci-
sion problem. Although the experimental results show
that the performance of the proposed algorithm is bet-
ter than other benchmark algorithms, the offloading of
dependent tasks is not considered. Khayyat et al. [18]
proposed a distributed deep learning algorithm to opti-
mize the delay and energy consumption. The simulation
results show that the algorithm has faster convergence
speed.
Some research work only focused on independent task

offloading in the VEC environment. Dai et al. [22] pro-
posed a method based on utility table learning, which
verified the effectiveness and scalability of the method in
various scenarios. The work considers both cloud com-
puting and edge computing platform to offload tasks. Ke
et al. [23] proposed a computation offloading method

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 4 of 17

based on deep reinforcement learning in the dynamic
environment.
Some studies only considered offloading tasks to RSU

or processing tasks locally. Han et al. [24] established
a MDP model for the problem, and optimized the
offloading strategy with deep reinforcement learning.
Although the study considers the change of vehicle’s
position in different time slots, it does not make full
use of cooperative vehicle resources. Dai et al. [25]
transformed the load balancing and offloading prob-
lem into an integer non-linear programming problem
to maximize the system utility. Experiments show that
the strategy is significantly better than the benchmark
strategy in terms of system utility. Although the mobil-
ity of vehicles is considered in this study, the offloading
mode does not consider offloading tasks to cooperative
vehicles.
Some studies did not consider the change of vehicle posi-

tions in different time slots. Xu et al. [19] proposed an
adaptive computation offloading method to optimize the
delay of task offloading and resource utilization. Exper-
imental results show the effectiveness of this method.
Liu et al. [20] offloaded multiple vehicle applications to
RSU, divided each application intomultiple tasks with task
dependencies, and proposed an efficient task schedul-
ing algorithm to minimize the average completion time
of multiple applications. This work divides the applica-
tion into several tasks to effectively reduce the completion
time of application. Guo et al. [21] introduced Fiber-
Wireless (FI-WI) integration to enhance the coexistence
of VEC network and remote cloud, and proposed two task

offloading approaches. The experimental results show
that the proposed approaches have advantages in reducing
the task processing delay.

Problem definition and analysis
In this section, we first define the problem by modeling
the network, application, communication and computa-
tion, then analyze an example of the proposed model.

Problem definition
Networkmodel
The VEC network model is shown in Fig. 1. The vehicles
are categorized into Task Vehicle (TaV) and Service Vehi-
cle (SeV) [28]. Both are equipped with OBU, and hence
they have certain computing capability. TaV is the user of
applications, which can be offloaded to SeVs after applica-
tion decomposition to utilize the computing resources of
cooperative vehicles in the neighborhood. There are fixed
RSUs deployed on the roadside. Each RSU is equipped
with an MEC server, which is integrated with wired con-
nection [29]. They also have certain computing capability.
SeVs and RSUs are referred to as Service Nodes (SNs)[30].
In the VEC network model, there are m RSUs

{α1,α2, ...,αm}, one TaV β1, and n SeVs {γ1, γ2, ..., γn}.
The coverage radiuses of RSUs are {r1, r2, ..., rm}, respec-
tively, and the communication radius of a vehicle is rv.
TaV can not only offload computation tasks to RSUs
by Vehicle to Infrastructure (V2I) communication, but
also to SeVs by Vehicle to Vehicle (V2V) communication.
The two offloading schemes are referred to as remote
offloading.

Fig. 1 VEC network model

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 5 of 17

To better describe the generation, transmission and
processing process of CAV applications, we divide the
vehicle travel time into t time slots, with each slot of length
ε. In each time slot, the VEC system is quasi-static; that is,
the relative position of the vehicle and the wireless chan-
nel state are stable, while they may change across different
time slots [31].

Applicationmodel
Most CAV applications use algorithms based on com-
puter vision or deep learning to process a large amount of
data collected by on-board sensors (cameras, radars, etc).
CAV local applications and various third-party applica-
tions are usually computation-intensive or delay-sensitive
applications. They typically need to use a lot of comp-
uting resources to process real-time data to meet the
requirements of low execution delay [32].
The OBU on CAVs with limited computing resources

cannot meet the requirements of applications. Therefore,
to fully utilize the computing resources of RSUs and SeVs
within CAV’s communication range, CAV applications are
decomposed into multiple smaller tasks, potentially with
dependecies among them. Let’s assume there are z differ-
ent CAV applications, and each of them can be generated
with probability 1/z in each time slot. As shown in Fig. 2,
each CAV application can be decomposed to multiple
tasks, denoted as Ai

�= {Gi, li}(i ∈ {1, 2, ..., z}), where
Gi is the temporal dependency of decomposed tasks and
li is the tolerance time for the i-th application. Specif-
ically, the temporal dependency of tasks is represented

by a directed acyclic graph (DAG) Gi = 〈N i,Ei〉, where
N i =

{
T i
1,T

i
2, ...,T

i|N i|
}
is the set of decomposed tasks,

and Ei = {
eiu,v|f

(
eiu,v

) = 1, 1 ≤ u, v ≤ |N i| ,u �= v
}
is the

set of direct edges representing temporal dependency of
tasks. f

(
eiu,v

) = 1 indicates there is a directed edge T i
u →

T i
v, while f

(
eiu,v

) = 0 indicates there is no edge. T i
u is

called the direct predecessor task of T i
v. The direct pre-

decessor task T i
u must be completed before T i

v can be
processed. The set of direct predecessors of a task can be
denoted as Ri

v = {
T i
u|f

(
eiu,v

) = 1, 1 ≤ u, v ≤ |N i| ,u �= v
}
.

The task T i
v can not be processed until all tasks in the

set of direct predecessors Ri
v have been completed. Tasks

without any direct predecessor are called entry task, while
tasks without any direct successor are called exit task.
Moreover, each decomposed task can be represented as
T i
u

�= {
u,Deep

(
T i
u
)
, diu

}
(u ∈ {1, 2, ..., |N i|}, where u is

the decomposed task index, Deep
(
T i
u
)
is the task depth

defined by Eq. (1), and diu is the task data size.

Deep(T i
u) =

{
0,Ri

u = ∅
1 + MAX(Deep(Ri

u)), otherwise
(1)

Task queuemodel
The task queue model is illustrated in Fig. 3. Consid-
ering the transmission and processing of task data, we
denote a task queue on TaV/SeV as Qt/ Qs, while a task
queue on RSUs as Qr . Each task queue holds the tasks
from the decomposition of CAV applications. Tasks in the
task queue are sorted by task depth first and then by task
number in the ascending order.

Fig. 2 Decomposition model of CAV’s application

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 6 of 17

Fig. 3 Task queue model

For the task queueQt , we have the following definitions:

i) Qt holds the tasks decomposed from TaV
applications;

ii) TaV can only transmit or process task data at the
head of Qt .

For the task queues Qs and Qr , we have the following
definitions:

i) Qs and Qr hold the tasks transmitted by TaV;
ii) SeVs can only process task data at the head of Qs and

RSUs can only process task data at the head of Qr .

Communicationmodel
TaV can communicate with SNs to transmit task data at
the head of Qt . We define channel bandwidth as B, trans-
mission power of TaV as ptr , channel fading coefficient as
h, Gaussian white noise power as χ and path loss exponent
as � .
In the i-th time slot, the transmission rate from TaV to

SN j is expressed as

τ SNi,j = Blog2

⎛
⎜⎝1 + |h|2ptr

χ
(

SN

i,j

)�

⎞
⎟⎠ (2)

where
SN
i,j is the distance between TaV and SN j, defined

by

SN
i,j =

√(
xtavi − xSNi,j

)2 +
(
ytavi − ySNi,j

)2
(3)

where xtavi and ytavi are the two-dimensional coordinates
of TaV in the i-th time slot, xSNs

i,j and ySNs
i,j is the two-

dimensional coordinates of SN j in the i-th time slot.
In the i-th time slot, only when the distance between

TaV and the SN j is within the coverage radius of SN, the
task data can be transmitted. If TaV transmits task data
to the SN j, the amount of task data transmitted can be
expressed as

ηSNi,j =
{

ετ SNi,j ,
SN
i,j ≤ rSNj

0,
SN
i,j > rSNj

(4)

the data transmission between TaV and SN j will cause
energy consumption, which can be expressed as

δSNi,j =
{

εptr ,
SN
i,j ≤ rSNj

0,
SN
i,j > rSNj

(5)

Computationmodel
TaV can either transmit the task at the head of Qt to SNs,
or process the task locally. SNs only process the task at the
head of task queue locally.

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 7 of 17

The computation model includes two parts: tasks pro-
cessed by TaV and tasks processed by SNs.

a) Tasks processed by TaV. The power consumption
of TaV processing tasks locally is expressed as

ptav = κtav(f tav)3 (6)

where κtav is the effective switched capacitance
coefficient related to the chip architecture in vehicle
[33], and f tav is the local computing capacity of the
TaV (i.e., the CPU frequency in cycles/sec). TaV
processing tasks will consume a certain amount of
energy, expressed as

δ
process
tav = ptavε = κtav(f tav)3ε (7)

The data size that TaV can process in a time slot is
given by

dtav = f tavε
c

(8)

where c is the processing density of task data (in
CPU cycles/bit).

b) Tasks processed by SNs. The power consumption
of SN i processing locally is expressed as

pSNi = κi
(
f SNi

)3
(9)

where κi is the effective switched capacitance
coefficient related to the chip architecture in SN i.
f SNi is the processing capability of SN i. SNs
processing tasks will consume a certain amount of
energy, expressed as

δSNi = pSNi ε = κi(f SNi)3ε (10)

The data size that SN i can process in a time slot is
given by

dSNi = f SNi ε

c
(11)

In a time slot, TaV can process the task data locally
or offload the task to the SNs within the communication
range. The offloading decision adopted by TaV can be rep-
resented by the 0-1 decision variable as shown in Eq. (12).
νi indicates whether TaV processes task data locally in the
i-th time slot, and oij indicates whether TaV offloads task
to SN j in the i-th time slot. SNs process a task only when it
is at the head of task queue. θ ij indicates whether SN j pro-
cesses task data in the i-th time slot. β and ζ are the weight
coefficients of execution delay and energy consumption
respectively, where β + ζ = 1.

Minimize Loss =
t∑

i=1
lossi =

t∑
i=1

[
βfaili + ζ(δtavi + δtSNi + δcomi)

]

subject to νioij = 0

(12)

where faili is offloading failure penalty in the i-th time
slot, expressed as

faili =
|Dloss

i |∑
j=1

dlossi,j (13)

whereDloss
i is the data size set of the offloading failed tasks

(unprocessed tasks belonged to offloading failed applica-
tions in task queues), dlossi,j is data size of j-th offloading
failed task in i-th time slot.
There are two cases that can lead to application offload-

ing failure:

1 While the SNs are receiving task data, distance
between TaV and SNs is out of the communication
range during data transmission.

2 The completion time of application is greater than its
tolerance time.

In Eq. (12), δtavi is the energy consumption caused by
TaV processing tasks, given by

δtavi = viδ
process
tav (14)

δtSNi is the energy consumption caused by SNs processing
tasks, given by

δtSNi =
∑

1≤j≤m+n
θ ij δ

SN
j (15)

and δcomi is the energy consumption of communication,
given by

δcomi =
∑

1≤j≤m+n
oijδ

SN
i,j (16)

the constraint indicates that tasks can only be processed
locally or offloaded to SNs within a time slot.

Example analysis
Figure 4 illustrates an example of the computation offload-
ing process in the VEC environment.

1) In the first time slot, TaV generates the first
application A1 with the tolerance time of 4 time slots.
It is decomposed into three tasks, which are kept in
Qt . At this time slot, TaV processes task data locally.
loss1 is energy consumption caused by TaV
processing task T1

1 locally, multiplied by the weight
coefficient of energy consumption optimization.

2) In the second time slot, TaV transmits task data to
γ1. loss2 is energy consumption caused by TaV
transmitting task T2

1.
3) In the third time slot, TaV generates the second

application A2 with the tolerance time of 4 time slots.
At this time slot, TaV transmits task data to γ2, loss3
is the weight sum of energy consumption caused by

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 8 of 17

Fig. 4 An example analysis of the computation offloading process

γ1 processing task data and TaV transmitting T4
2 to

γ2.
4) In the fourth time slot, TaV processes task data

locally. At this time slot, the task T5
2 is completed,

and the task T3
1 belonged to A1 has not been

processed. So application A1 offloading failed due to
that the completion time of A1 is greater than its
tolerance time. SeV γ2 processes task data locally, the
task T4

2 is completed, then all the tasks of A2 have
been processed, so A2 are executed successfully. loss4
is the weight sum of total data size of unprocessed
task dloss4,1 and the energy consumption caused by TaV
processing locally as well as the energy consumption
caused by γ2 processing task.

Computational offloading strategy based on deep
reinforcement learning
Reinforcement Learning (RL) algorithms have four key
elements in model building: agent, environment, action
and reward. It is usually modeled as Markov Decision
Process (MDP) model.
In the algorithm learning process, the agent observes

the current environment and chooses actions according to
strategy. After executing the action, the agent observes the
reward and transfers to the next environment. RL algo-
rithms imitate the way of human learning. The purpose of
RL algorithms is tomaximize the total reward by adjusting

the strategy appropriately when the agent interacts with
the unknown environment.
In this section, we first describe the computation

offloading problem by an MDP model to determine the
four key elements. Secondly, we introduce Q-learning
algorithm. Finally, due to the large dimension of state
space in VEC environment, the traditional reinforcement
learning optimization method is almost impossible to
solve complex computation offloading problem in VEC.
Therefore, we adopt SA-DQN to optimize the compu-
tation offloading strategy, and describe the computation
offloading strategy based on SA-DQN.

MDPmodel
In order to design the computation offloading strategy
based on SA-DQN, we first establish an MDP model. It
can fully describe the offloading scheduling model.
MDP model is the basic model of RL algorithms. Since

the probability of state transition in real environment is
often related to historical state, it is difficult to estab-
lish the model. Therefore, the model can be simplified
according to Markov property (i.e. the next state in the
environment is only related to the current state infor-
mation, but not to the historical state), so that the next
state is only related to the current state and the action
taken [34]. Next, we will introduce each key element
of MDP.

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 9 of 17

We define the state space as Sk
�= {�k ,Ok} in k-th

time slot, where �k= {xtavk , ytavk } is the two-dimensional
coordinates of TaV. Ok represents the distance between
TaV and SNs which can be expressed as Ok =
{f (
SN

k,1), f (

SN
k,2), ..., f (

SN
k,n+m)}. If SN is out of communi-

cation range, then f (
SN
k,1) = −1, else f (
SN

k,i) =
SN
k,i . The

action space can be described as Ak
�= {olk ,OSik ,ORi

k}
in k-th time slot, where olk indicates whether tasks are
processed locally by TaV, OSik = {os1k , os2k , ..., osnk} indi-
cates whether tasks are offloaded to SeV i and ORi

k =
{or1k , or2k , ..., ormk } indicates whether tasks are offloaded to
RSU i. The reward can be described as rk

�= 1/lossk in k-th
time slot. The problem of computation offloading for CAV
in VEC environment can be described as the following
MDP model:

• Agent:TaV
• State:Sk
• Action:Ak
• Reward:rk

Q-Learning algorithm
In this section, we introduce the traditional RL algorithm
called Q-learning. Q-learning is a temporal difference
(TD) algorithm based on stochastic process and model-
free, and has no state transition probability matrix. The
algorithm will select the maximum value for updating the
value function, while the action selection does not nec-
essarily follow the action corresponding to the maximum
value. It will lead to an optimistic estimation of the value
function. Due to this feature, Q-learning belongs to the
off-line policy learning method [35].
Q-learning optimizes the value function by four tuple

information 〈Sk ,Ak ,Rk , Sk+1〉, where Sk represents the
environmental state in k-th time slot, Ak represents the
current action chose, Rk represents the immediate reward,
and Sk+1 represents the environmental state of the next
time slot after the state transition.
The Q-learning value function is updated as follows:

Q(Sk ,Ak) = Q(Sk ,Ak) + α[rk+
γmaxAk+1Q(Sk+1,Ak+1) − Q(Sk ,Ak)]

(17)

where α is the learning efficiency, representing the degree
of value function updating; r is the immediate reward, rep-
resenting the reward obtained by transferring to the next
state; γ is the discount factor, representing the impact
of the subsequent state’s value on the current state; and
maxAk+1Q(Sk+1,Ak+1) is themaximum value of next state.
The Equation (17) can be further expressed as

Q(Sk ,Ak) = Q(Sk ,Ak) + α(Qtarget − Qeval) (18)

where

Qtarget = r + γmax
Ak+1

Q(Sk+1,Ak+1) (19)

Qeval = Q(Sk ,Ak) (20)

In other words, the updating of Q-learning value func-
tion can be expressed as the value function’s value plus the
product of the difference between target Q-value and esti-
matedQ-value and the learning efficiency. It is also known
as TD target.

SA-DQN algorithm
The value function in Q-learning algorithm can be
designed simply by a table. But in practice, the state space
of computation offloading problem in VEC is large. If
we want to establish a value function table, it will lead
to serious memory usage and time cost. To solve this
problem, known as dimensional disaster, we describe the
computation offloading problem as a DRL process, using
the function approximation to combine Q-learning with
Deep Neural Network (DNN), transform the value func-
tion table into Q-network, and adjust the network weight
coefficient by algorithm training to fit the value function
[36].
Compared with Q-learning, DQN has three main

advantages:

i) The Q-network can be expressed as Q(Sk ,Ak ; θ). θ
represents the weights of the neural network, and the
Q-network fit value function by updating the
parameter θ in each iteration.

ii) In order to improve the learning efficiency and
remove the correlation in the subsequent training
samples, DQN adopts experience replay technique in
the learning process. The sample observed in k-th
time slot ek = 〈Sk ,Ak ,Rk , Sk+1〉 is stored into the
reply memory D first, and then a sample is randomly
chosen from D to train the network. It breaks the
correlation among samples and makes them
independent.

iii) Two neural networks with the same structure but
different weights are used in DQN. One is called the
target Q-network, and the other is the estimated
Q-network. The estimated Q-network has the latest
weights, while the weights of the target Q-network
are relatively fixed. The weights of the target
Q-network is only updated with the estimated
Q-network every ι time slots.

The network used to calculate TD target is called TD-
network. If the network parameters used in the value
function are the same as those of TD network, it is easy
to cause the correlation among samples and make the

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 10 of 17

training unstable. In order to solve this problem, two neu-
ral networks are introduced. The weights of the target
Q-network can be expressed as θ̄k and that of estimatedQ-
network can be expressed as θk , where θ̄k=θk−ι, it means
that θ̄k is updated with θk every ι time slots. In DQN
algorithm, Equation (17) is transformed into:

ȳk = rk + γmax
Ak+1

Q(Sk+1,Ak+1; θ̄k) (21)

In order to minimize the difference between the esti-
mated value and the target value, we define the loss
function as follows:

L(θk) = [
(ȳk − Q(Sk ,Ak ; θk))2

]
(22)

By deriving L(θk) over θk , we obtain the gradient:

∇θk L(θk) =[
2 (Q(Sk ,Ak ; θk) − yk)∇θkQ(Sk ,Ak ; θk)

] (23)

Therefore, the updating of value function in DQN is
transformed to use gradient descent method to minimize
the loss function:

θk ← θk − ∇θk L(θk) (24)

In order to balance the exploration and exploitation of
DQN, the Metropolis criterion [37] is used to choose the
action, and cooling strategy is described as follows:

Tk = θkT0 (25)

where T0 is the initial temperature, k is the amount of
current episode, and θ is the cooling coefficient.
The computation offloading strategy based on SA-DQN

algorithm is shown in Algorithm 1. In every episode, VEC
network needs to be initialized, as shown in Algorithm 2.
Then it needs to determine if there is communication
interruption and handle it in every time slot, as shown
in Algorithm 3. After TaV chooses the offloading deci-
sion, the VEC network needs to be updated, as shown
in Algorithm 4. If TaV chooses to process tasks locally,
the task queue of TaV needs to be updated, as shown in
Algorithm 5. If TaV choose to transmit tasks to SNs, the
task queue of TaV and SNs also needs to be updated,
as shown in Algorithm 6. It needs to determine whether
there are applications that offloading failed as it can not
complete within its tolerance time in every time slot, as
shown in Algorithm 7. The interaction among algorithms
is shown in Fig. 5.

Experimental results and analysis
Parameter settings
All the simulation experiments were conducted on a
Win10 64-bit operating system with a Intel(R) Core(TM)
i7-4720HQ CPU @ 2.60GHz processor and 8GB RAM.
We use TensorFlow 1.15.0 with Python 3.6 to imple-
ment SA-DQN algorithm. In the experiment, we consider
the real vehicle trajectory data set of two hours in the

Algorithm 1: Computation offloading strategy based
on SA-DQN.
Input: VEC network, target Q-network and estimated

Q-network
Output: computation offloading strategy

1 Initialization:target Q-network θ1, estimated
Q-networkθ̄1 = θ1, initial temperature T1, the action
chose in previous time slot pre_action → 0;

2 for epi ← 1 to epimax do
3 Algorithm 2;
4 for k ← 1 to ε do
5 TaV generates different applications, and then

stored in Qt ;
6 Calculate exit tasks of applications and Ri

j of all
tasks;

7 Obtain the two-dimensional coordinates of
TaV �k and that of SNs;

8 Ok are calculated by Equation (3),
Sk = �k ∪ Ok ;

9 Ak = Algorithm 3;
10 lossk = Algorithm 4, Rk=1/lossk ;
11 Calculate
SN

k+1,j, obtain Sk+1;
12 Store < Sk ,Ak ,Rk , Sk+1 > to replay memoryD;
13 Random sampling minibatch of experience

< Si,Ai,Ri, Si+1 > from D;
14 if i + 1 is ε-th time slot then
15 ȳi = Ri;
16 else
17 ȳi = Ri + γmaxAi+1Q(Si+1,Ai+1; θ̄k);
18 end
19 Perform gradient descent step on[

(ȳi − Q(Si,Ai; θk))2
]
with respect to θk and

update θk ;
20 Every ι time-slots, update θ̄k with θk ;
21 pre_action = Ak ;
22 end
23 Cooling the current temperature Tepi according to

Equation (25);
24 end

Algorithm 2: Initialize VEC network.
1 Initialize the task queues: Qt → ∅, QSN → ∅;
2 Initialize the direct precursor node set Ri

j → ∅, exit
tasks of applications exit_task(i) → ∅, the remaining
life cycle of applications
life_cycle(i) → tolerance_time(i), list of tasks
completed comp_list → ∅, and list of applications
completed app_comp → ∅.

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 11 of 17

Algorithm 3: Handling communication interruption.
Input: Qt , life_cycle, pre_action
Output: Ak

1 if Qt(0)(2) �= 0 then
2 Ak = pre_action;
3 if the distance between TaV and SN where Qt(0)

offloaded exceeds its coverage range then
4 Find the application index according to Qt(0);
5 life_cycle(index) → 0;
6 else
7 According to simulated annealing strategy to

select Ak ;
8 end
9 end

Algorithm 4: Updating VEC network.
Input: QSN , pre_node, comp_list,Ok
Output: lossk

1 Initialization:processing energy consumption of TaV
tav_process ← 0, energy consumption of SNs
processing SN_process ← 0, communication energy
consumption com ← 0, penalty of application
offloading failure fail_penal ← 0;

2 SN_process = Algorithm 5(QSN , n + m, δSNi , dSNi);
3 if TaV processes task locally then
4 tav_process = Algorithm 5(Qt , 1, δprocesstav , dtav);
5 else if TaV transmit task to SN j and distance between
them ≤ rj then

6 Calculate data size transmitted
trans_amount = ηSNk,j ;

7 com = Algorithm 6(Qt ,QSN
j , trans_amount);

8 end
9 life_cycle(i)− = 1;

10 fail_penal = Algorithm 7;
11 lossk =

βfail_penal + ζ(SN_process + tav_process + com)

morning (7.00-9.00) on a circular road in cretey, France
[38]. The communication radius of the vehicle is 130
meters. The road conditions include a roundabout with
6 entrances and exits, multiple two lane or three lane
roads, one bus road, four lane change points, and 15 traf-
fic lights. In the data set, the trajectory of vehicle with
vehicle ID “BusFlowWestEast0.0” is considered as the tra-
jectory of TaV. The trajectory of vehicle with vehicle ID
“VehicleFlowWestToEast.0” is considered as the trajectory
of the first SeV, and the trajectory of vehicle with vehi-
cle ID “VehicleFlowWestToEast_0.0” is considered as the
trajectory of the second SeV. In the center of the TaV’s

Algorithm 5: Updating task queue while processing
tasks locally.
Input: Q, pre_node, comp_list, amount, exec_energy,

1 comp_power
Output: process_energy

2 Initialization:total_energy → 0;
3 for i ← 1 to amount do
4 ifQ �= ∅ and pre_node (Q(0)(0)) ⊆ comp_list then
5 total_energy+ = exec_energy(i);
6 if comp_power(i) ≥ Q(0)(2) then
7 comp_list.append(Q(0)(0));
8 Q.remove(0);
9 else

10 Q(0)(2)− = comp_power(i);
11 end
12 end
13 end

Algorithm 6: Updating task queue while offloading
tasks remotely.
Input: Qt ,Qto, pre_node, comp_list, trans_amount
Output: trans_energy

1 Initialization:trans_energy → 0;
2 if Qt �= ∅ and pre_node (Q(0)(0)) ⊆ comp_list then
3 trans_energy+ = εptr ;
4 if trans_amount ≥ Qt(0)(2) then
5 Qto.append(Qt(0));
6 sort tasks in Qto;
7 Qt .remove(0);
8 else
9 Q(0)(2)− = trans_amount

10

11 end

trajectory, i.e. the two-dimensional coordinate (1250,600),
we place an RSU with a coverage radius of 300 meters. β
is set to 0.4 and ζ is set to 0.6. There are six CAV’s appli-
cations, each application can be divided into three tasks.
The length of the time slot is set to 10 ms. The range
of data size is distributed uniformly from 1 to 2, and the
range of tolerance time is distributed uniformly from 50 to
100 time slots. Table 2 is the detailed setting of simulation
parameters. After a number of experiments on parameter
adjustment of the RL algorithms to achieve good conver-
gence, parameters setting of RL algorithms is shown in
Table 3.

Comparative offloading strategies
In order to verify the effectiveness of our proposed com-
putation offloading strategy, we designed comparative

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 12 of 17

Algorithm 7: Handling application offloading failure.
Input: life_cycle,Qt ,QSN

Output: fail_penal
1 Initialization:fail_penal → 0;
2 for i ← 1 to len(life_cycle) do
3 if life_cycle(i) = 0 and i /∈ app_comp then
4 app_comp.append(i);
5 if exit_task(i) �⊂ comp_list then
6 fail_penal+ =sum of data size of all tasks

belonging to application i in Qt ,QSN ;
7 delete all tasks belonged to application i in

Qt ,QSN ;
8 end
9 end

10 end

offloading strategies from two perspectives: different RL
algorithms and different offloading schemes.
In the first part, we select TD(0) algorithm combined

with simulated annealing: Q-learning [39], Sarsa [40] and
TD(λ) algorithm [41] with that: Sarsa(λ), Q-learning(λ) as
comparative algorithms.
In the second part, we select four schemes for com-

parison. It is described as follows: Scheme 1 is our
proposed strategy; Scheme 2 only considers tasks pro-
cessed by TaV; Scheme 3 only considers tasks processed
by TaV or offloaded to RSU; Scheme 4 only considers

tasks processed by TaV or offloaded to cooperative
vehicle.

Experimental results
Offloading strategies with different algorithms
Figure 6 shows the average reward of computation
offloading strategy based on SA-DQN and comparative
algorithms in every 20 episodes. It can be seen that, in
the process of optimizing the offloading strategy, SA-
DQN continuously interacts with the environment in
every episode, updates the weights of neural network, and
approaches the optimal value function. With the amount
of episodes increasing, the reward increased. Around the
80th episode, the average reward obtained by SA-DQN
tends to be optimal and stable, and remained at about 978.
Compared with the comparative algorithms, SA-DQN has
faster convergence speed. TD(λ) algorithms converged
around the 100th round, while TD(0) algorithm converged
around the 120th round. It indicates that TD(λ) algorithm
converges faster than TD(0) algorithms. The possible rea-
son is that TD(λ) algorithms introduces eligibility trace
and adopts multi-step updating strategy. Therefore, it can
accelerate the convergence speed. In the experiment, SA-
DQN does not encounter the problems of divergence
and oscillation, which proves the feasibility computation
offloading strategy based on SA-DQN proposed in this
paper.
Figure 7 shows the average total offloading energy con-

sumption of strategy optimized by SA-DQN and compar-
ative algorithms in every 20 episodes. It can be seen that

Fig. 5 The interaction among algorithms

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 13 of 17

Table 2 Parameters setting about simulation

Description Parameter Value

Maximum episodes epimax 200

Length of time slot ε 100 ms

Maximum time slots t 186

Number of RSUs m 1

Number of SeV n 2

Coverage radius of RSU r1 300 m

Communication radius of
vehicle

rv 130 m

Number of applications z 6

Tolerance time of
applications

li [50,100] slots

Data size of tasks dij [1,2] Mb

Channel bandwidth b 1 MHz

Transmission power of
vehicles

ptr 30 dBm

Channel fading coefficient h 1

White Gaussian noise
power

γ -100 dBm

Path loss exponent � 2

Switched capacitance
coefficient of vehicle

κtav 10−24

Switched capacitance
coefficient of RSUs

κi 10−29

Processing capability of
vehicle

f li 1.4 G cycles/s

Processing capability of
RSU

f r1 10 G cycles/s

Processing density of data c 100 cycles/bit

Table 3 Parameters setting about RL algorithms

Description Parameter Value

Learning rate α 0.01

Discount factor γ 0.9

Trace decay rate λ 0.5

Initial temperature θ 0.9

Number of hidden layers 2

Number of nodes for the
first hidden layer

20

Number of nodes for the
second hidden layer

20

Activation function for
hidden layers

ReLU

Maximum replay memory
size

|D| 500

Minibatch size 300

Parameter updating
frequency for target DQN

ι 10

the average offloading total energy consumption of SA-
DQN and comparative algorithms is decreasing. Around
the 160th episode, the average total offloading energy
consumption of each algorithm tends to be optimal and
stable. Compared with the comparative algorithms, the
average total offloading energy consumption of SA-DQN
can be maintained at about 30, reaching a lowest energy
consumption level. In the comparative algorithms, the
average total offloading energy consumption of Sarsa and
Sarsa(λ) algorithms maintained at about 35, while that
of Q-learning and Q-learning(λ) algorithms maintained
at about 40. This shows that the online learning method
can converge to a lower level than the offline learning
method in optimizing the average total offloading energy
consumption. This is because the online learning method
updates the value function by the samples generated by
the current strategy. Therefore it can converge faster, but
the disadvantage is that it is easy to fall into the local
optimal solution.
Figure 8 shows the average offloading failure rate of

applications optimized by SA-DQN and comparative
algorithms in every 20 episodes. It can be seen that with
the increase of episodes, the average offloading failure
rate of every algorithm decreased. In the 160th episode,
except for Q-learning, the average offloading failure rate
obtained by other algorithms tends to converge, and the
average failure rate of SA-DQN can reach a lower level
faster than other algorithms. Compared with the offline
learning method, the average offloading failure rate of
online learning method was lower than that of offline
learning method. This shows that the online learning
method can converge to a lower level than the offline
learning method in optimizing the average offloading fail-
ure rate. This is because the online learning method is a
conservative strategy, and it can converge to a lower level
faster by following the current strategy.

Offloading strategies with different offloading schemes
Figure 9 shows the average application offloading failure
rate of offloading strategies based on different schemes
varying from data size. It can be seen that with the
increase of data size, the average application offloading
failure rate of all strategies increased continuously. The
average application offloading failure rate obtained by
our proposed strategy reached lower level compared with
other strategies when data size is 32. It is because Scheme
1 has various offloading methods, and high offloading
flexibility. The average offloading failure rate of Scheme 3
is the closest to that of Scheme 1, because the computing
capacity of RSU is higher than that of vehicle. Although
it requires certain communication energy consumption to
offload to RSU, the completion time of tasks can be greatly
reduced, and hence the completion time of application
is not easy to exceed its tolerance time, so the penalty

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 14 of 17

Fig. 6 Average reward in every 20 episodes

Fig. 7 Average total offloading energy consumption in every 20 episodes

Fig. 8 Average offloading failure rate in every 20 episodes

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 15 of 17

Fig. 9 Average offloading failure rate of different strategies with varying data size

of offloading failure decreased. The average application
offloading failure rate of Scheme 4 is the highest, because
its offloading targets include not only local processing,
but also cooperative vehicles, which requires a certain
transmission time, and the processing capacity of vehicles
is limited, which is not enough to process large amount
of data. With the increase of data size, the completion
time of application is more likely to exceed its tolerance
time, and the penalty for application offloading failure
will increase significantly. Therefore, it is obvious that the
average application offloading failure rate is rising.
Figure 10 shows the average application offloading

failure rate of offloading strategies with varying from
tolerance time. It can be seen that with the increase of
tolerance time, the average application offloading fail-
ure rate of all strategies decreased. Compared with other
strategies, the proposed strategy reached lower level when
tolerance time is 90. This is because when the applica-
tion tolerance time increases, the application can have
more time to offload, and the application completion time
is less likely to exceed its tolerance time, and hence the
application offloading failure rate decreased. The average
offloading failure rate of Scheme 3 is the closest to that
of Scheme 1. This is because RSU has strong computing
capacity, which can greatly reduce the task completion
time. With the increase of the application tolerance time,
Scheme 3 can make full use of the computing power of

RSU. Therefore, it can be seen that the average application
offloading failure rate of Scheme 3 is significantly reduced.
Compared with other strategies, the average offloading
failure rate of Scheme 2 and Scheme 4 stay at a high level.
One possible reason is that both Scheme 2 and Scheme
4 offload tasks to the vehicles with the limited processing
capacity. with the increase of application tolerance time,
the task offloading with large amount of data size may fail.
Thus, the application offloading failure rate is high. On
the contrary, both Scheme 1 and Scheme 3 can offload
tasks to RSU with stronger computing capacity. There-
fore, the number of successful offloading applications
increases, and the failure rate of application offloading is
lower.

Conclusion
In order to solve the problem of computation offloading
for CAV’s applications in VEC environment, this paper
proposed an computation offloading strategy based on
SA-DQN algorithm. In the simulation experiment, the
proposed strategy was evaluated based on the real vehicle
trajectory. The experimental results show that our pro-
posed computation offloading strategy based on SA-DQN
algorithm has good performance, and further indicates
that the strategy proposed can effectively reduce the total
offloading energy consumption and offloading failure rate
of CAV.

Fig. 10 Average offloading failure rate of different strategies with varying tolerance time

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 16 of 17

In the future work, we will further consider to design
collaborative computation offloading strategy in End-
Edge-Cloud orchestrated architecture, which can trans-
fer complicated computation tasks to remote cloud for
further processing, and it can prompt the flexibility of
computation offloading. We will consider more dynamic
factors in the VEC environment to make it more suit-
able for the real world model. In addition, we will take
on-board applications in real world into account.

Acknowledgements
Both Changhang Lin and Yu Lu are corresponding authors.

Authors’ contributions
Both Bing Lin and Kai Lin drafted the original manuscript and designed the
experiments. Changhang Lin provide ideas and suggestions. Yu Lu provided
critical review and helped to draft the manuscript. Both Ziqing Huang and
Xinwei Chen designed partial experimental work in the preliminary work and
contributed to the revised manuscript. The authors read and approved the
final manuscript.

Authors’ information
Bing Lin received the B.S. and M.S degrees in Computer Science from Fuzhou
University, Fuzhou, China, in 2010 and 2013, respectively, and the Ph.D. degree
in Communication and Information System from Fuzhou University in 2016.
He is currently an associate professor with the College of Physics and Energy at
Fujian Normal University. Now he is the deputy director of the Department of
Energy and Materials, and leads the Intelligent Computing research group. His
research interest mainly includes parallel and distributed computing,
computational intelligence, and data center resource management.
Kai Lin received the B.S. in Software Engineering from Fujian Agriculture and
Forestry University, he is currently pursuing the M.S degree in Fujian Normal
University. His main research interests include vehicular edge computing and
cloud computing.
Changhang Lin received the B.S. and M.S degrees in Computer technology
from Fuzhou University. He is currently an professor of the School of Big Data
and Artificial Intelligence, Fujian Polytechnic Normal University. His research
interest mainly includes Resource scheduling of cloud computing, Edge
computing, Federated learning.
Yu Lu is currently an professor the College of Physics and Energy at Fujian
Normal University. His research interest mainly includes Intelligent
measurement and control technology in new energy technology.
Ziqing Huang is currently pursuing the B.S. degree in Fujian Normal
University. Her main research interests include vehicular edge computing and
mobile edge computing.
Xinwei Chen received the B.S., M.S. and Ph.D both in Computer Science and
Intelligent Robot System from Nankai University, in 2006,2009 and 2012, and
he is with College of Computer and Control Engineering, Minjiang University,
Fujian Provincial Key Laboratory of Information Processing and Intelligent
Control, Fuzhou, 351008, China. His current research interests include
Intelligent Robot System, Embeded System and Computer Vision.

Funding
This work is partly supported by the Intelligent Computing and Application
Research Team of Concord University College, Fujian Normal University under
Grant No.2020TD001, the Natural Science Foundation of China under Grant
No.62072108, the Industry and Science guide Foundation of Fujian Province
under Grant No.2017H0011, the Natural Science Foundation of Fujian Province
under Grant No.2019J01286, and the Young and Middle-aged Teacher
Education Foundation of Fujian Province under Grant No.JT180098, Fujian
Provincial Key Laboratory of Information Processing and Intelligent Control
(Minjiang University) under Grant No.MJUKF-IPIC201907, Open Foundation of
Engineering Research Center of Big Data Application in Private Health
Medicine, Fujian Province University under Grant No.KF2020001.

Availability of data andmaterials
The data set of vehicle trajectory is available on http://vehicular-mobility-
trace.github.io/.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Physics and Energy, Fujian Normal University, Fujian Provincial Key
Laboratory of Quantum Manipulation and New Energy Materials, Fujian
Provincial Collaborative Innovation Center for Advanced High-Field
Superconducting Materials and Engineering, Fuzhou 350117, China. 2Fujian
Provincial Collaborative Innovation Center for Optoelectronic Semiconductors
and Efficient Devices, Xiamen 361005, China. 3Engineering Research Center of
Big Data Application in Private Health Medicine, Putian University, Putian
351100, China. 4The School of Big Data and Artificial Intelligence, Fujian
Polytechnic Normal University, Fuzhou 350300, China. 5Concord University
College, Fujian Normal University, Fuzhou 350117, China. 6Engineering
Research Center of Big Data Application in Private Health Medicine, Fujian
Province University, Minjiang University, Fuzhou 351008, China.

Received: 8 January 2021 Accepted: 18 May 2021

References
1. Wang Y, Liu S, Wu X, Shi W (2018) CAVBench: A Benchmark Suite for

Connected and Autonomous Vehicles. In: 2018 IEEE/ACM Symposium on
Edge Computing (SEC). pp 30–42. https://doi.org/10.1109/sec.2018.00010

2. Organization WH, et al (2018) Global status report on road safety 2018:
Summary. World Health Organization, Geneva

3. Lin K, Lin B, Chen X, Lu Y, Huang Z, Mo YA (2019) Time-Driven Workflow
Scheduling Strategy for Reasoning Tasks of Autonomous Driving in Edge
Environment. In: 2019 IEEE Intl Conf on Parallel Distributed Processing
with Applications, Big Data Cloud Computing, Sustainable Computing
Communications, Social Computing Networking
(ISPA/BDCloud/SocialCom/SustainCom). pp 124–131. https://doi.org/10.
1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028

4. Wang M, Liang H, Deng R, Zhang R, Shen XS (2013) VANET based online
charging strategy for electric vehicles. In: 2013 IEEE Global
Communications Conference (GLOBECOM). pp 4804–4809. https://doi.
org/10.1109/glocomw.2013.6855711

5. Kadav P, Asher ZD (2019) Improving the Range of Electric Vehicles. In:
2019 Electric Vehicles International Conference (EV). pp 1–5. https://doi.
org/10.1109/ev.2019.8892929

6. Dhirani L, Newe T (2020) 5G security in smart manufacturing.
ResearchGate. https://doi.org/10.13140/RG.2.2.27292.72320

7. Feng J, Liu Z, Wu C, Ji YAVE (2017) Autonomous Vehicular Edge
Computing Framework with ACO-Based Scheduling. IEEE Trans Veh
Technol 66(12):10660–10675

8. Zhao J, Li Q, Gong Y, Zhang K (2019) Computation Offloading and
Resource Allocation For Cloud Assisted Mobile Edge Computing in
Vehicular Networks. IEEE Trans Veh Technol 68(8):7944–7956

9. Adiththan A, Ramesh S, Samii S (2018) Cloud-assisted control of ground
vehicles using adaptive computation offloading techniques. In: 2018
Design, Automation Test in Europe Conference Exhibition (DATE).
pp 589–592. https://doi.org/10.23919/date.2018.8342076

10. Liu L, Chen C, Pei Q, Maharjan S, Zhang Y (2020) Vehicular Edge
Computing and Networking: A Survey. Mob Netw Appl. https://doi.org/
10.1007/s11036-020-01624-1

11. Wu H, Wolter K, Jiao P, Deng Y, Zhao Y, Xu MEEDTO (2021) An
Energy-Efficient Dynamic Task Offloading Algorithm for
Blockchain-Enabled IoT-Edge-Cloud Orchestrated Computing. IEEE
Internet Things J 8(4):2163–2176

12. Wu H (2018) Multi-Objective Decision-Making for Mobile Cloud
Offloading: A Survey. IEEE Access 6:3962–3976

13. Wu Q, Liu H, Wang R, Fan P, Fan Q, Li Z (2020) Delay-Sensitive Task
Offloading in the 802.11p-Based Vehicular Fog Computing Systems. IEEE
Internet Things J 7(1):773–785

14. Zhang K, Mao Y, Leng S, He Y (2017) ZHANG Y. Mobile-Edge Computing
for Vehicular Networks: A Promising Network Paradigm with Predictive
Off-Loading. IEEE Veh Technol Mag 12(2):36–44

15. Jang Y, Na J, Jeong S, Kang J (2020) Energy-Efficient Task Offloading for
Vehicular Edge Computing: Joint Optimization of Offloading and Bit

http://vehicular-mobility-trace.github.io/
http://vehicular-mobility-trace.github.io/
https://doi.org/10.1109/sec.2018.00010
https://doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028
https://doi.org/10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00028
https://doi.org/10.1109/glocomw.2013.6855711
https://doi.org/10.1109/glocomw.2013.6855711
https://doi.org/10.1109/ev.2019.8892929
https://doi.org/10.1109/ev.2019.8892929
https://doi.org/10.13140/RG.2.2.27292.72320
https://doi.org/10.23919/date.2018.8342076
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1

Lin et al. Journal of Cloud Computing (2021) 10:33 Page 17 of 17

Allocation. In: 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring). pp 1–5. https://doi.org/10.1109/vtc2020-spring48590.
2020.9128785

16. Pu L, Chen X, Mao G, Xie Q, Xu J (2019) Chimera: An Energy-Efficient and
Deadline-Aware Hybrid Edge Computing Framework for Vehicular
Crowdsensing Applications. IEEE Internet Things J 6(1):84–99

17. Wang Y, Wang K, Huang H, Miyazaki T, Guo S (2019) Traffic and
Computation Co-Offloading With Reinforcement Learning in Fog
Computing for Industrial Applications. IEEE Trans Ind Inform 15(2):976–986

18. Khayyat M, Elgendy IA, Muthanna A, Alshahrani AS, Alharbi S,
Koucheryavy A (2020) Advanced Deep Learning-Based Computational
Offloading for Multilevel Vehicular Edge-Cloud Computing Networks.
IEEE Access 8:137052–137062

19. Xu X, Zhang X, Liu X, Jiang J, Qi L, Bhuiyan MZA (2020) Adaptive
Computation Offloading With Edge for 5G-Envisioned Internet of
Connected Vehicles. IEEE Trans Intell Transport Syst:1–10

20. Liu Y, Wang S, Zhao Q, Du S, Zhou A, Ma X, et al (2020)
Dependency-Aware Task Scheduling in Vehicular Edge Computing. IEEE
Internet Things J 7(6):4961–4971

21. Guo H, Zhang J, Liu J (2019) FiWi-Enhanced Vehicular Edge Computing
Networks: Collaborative Task Offloading. IEEE Veh Technol Mag
14(1):45–53

22. Dai P, Hang Z, Liu K, Wu X, Xing H, Yu Z, et al (2020) Multi-Armed Bandit
Learning for Computation-Intensive Services in MEC-Empowered
Vehicular Networks. IEEE Trans Veh Technol 69(7):7821–7834

23. Ke H, Wang J, Deng L, Ge Y, Wang H (2020) Deep Reinforcement Learning-
Based Adaptive Computation Offloading for MEC in Heterogeneous
Vehicular Networks. IEEE Trans Veh Technol 69(7):7916–7929

24. Zhan W, Luo C, Wang J, Wang C, Min G, Duan H, et al (2020)
Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular
Edge Computing. IEEE Internet Things J 7(6):5449–5465

25. Dai Y, Xu D, Maharjan S, Zhang Y (2019) Joint Load Balancing and
Offloading in Vehicular Edge Computing and Networks. IEEE Internet
Things J 6(3):4377–4387

26. Lee SS, Lee S (2020) Resource Allocation for Vehicular Fog Computing
Using Reinforcement Learning Combined With Heuristic Information.
IEEE Internet Things J 7(10):10450–10464

27. Dong P, Wang X, Rodrigues J (2019) Deep Reinforcement Learning for
Vehicular Edge Computing: An Intelligent Offloading System. ACM Trans
Intell Syst Technol 10(6)

28. Sun Y, Song J, Zhou S, Guo X, Niu Z (2018) Task Replication for Vehicular
Edge Computing: A Combinatorial Multi-Armed Bandit Based Approach.
In: 2018 IEEE Global Communications Conference (GLOBECOM). pp 1–7.
https://doi.org/10.1109/glocom.2018.8647564

29. Zeng F, Chen Q, Meng L, Wu J (2020) Volunteer Assisted Collaborative
Offloading and Resource Allocation in Vehicular Edge Computing. IEEE
Trans Intell Transport Syst:1–11

30. Qin Y, Huang D, Zhang X (2012) VehiCloud: Cloud Computing Facilitating
Routing in Vehicular Networks. In: 2012 IEEE 11th International Conference
on Trust, Security and Privacy in Computing and Communications.
pp 1438–1445. https://doi.org/10.1109/trustcom.2012.16

31. Luo Q, Li C, Luan TH, Shi W (2020) Collaborative Data Scheduling for
Vehicular Edge Computing via Deep Reinforcement Learning. IEEE
Internet Things J 7(10):9637–9650

32. Wang L, Zhang Q, Li Y, Zhong H, Shi W (2019) MobileEdge: Enhancing
On-Board Vehicle Computing Units Using Mobile Edges for CAVs. In: 2019
IEEE 25th International Conference on Parallel and Distributed Systems
(ICPADS). pp 470–479. https://doi.org/10.1109/icpads47876.2019.00073

33. Mao Y, Zhang J, Song SH, Letaief KB (2016) Power-Delay Tradeoff in
Multi-User Mobile-Edge Computing Systems. In: 2016 IEEE Global
Communications Conference (GLOBECOM). pp 1–6. https://doi.org/10.
1109/glocom.2016.7842160

34. Sidford A, Wang M, Wu X, Ye Y (2018) Variance Reduced Value Iteration,
Faster Algorithms for Solving Markov Decision Processes. Society for
Industrial and Applied Mathematics, USA

35. Li J, Xiao Z, Li P (2019) Discrete-Time Multi-Player Games Based on
Off-Policy Q-Learning. IEEE Access 7:134647–134659

36. Li R, Zhao Z, Sun Q, I C, Yang C, Chen X, et al (2018) Deep Reinforcement
Learning for Resource Management in Network Slicing. IEEE Access
6:74429–74441

37. Su R, Wu F, Zhao J (2019) Deep reinforcement learning method based on
DDPG with simulated annealing for satellite attitude control system. In:
2019 Chinese Automation Congress (CAC). pp 390–395. https://doi.org/
10.1109/cac48633.2019.8996860

38. Lèbre MA, Le Mouë F, Ménard E (2015) On the Importance of Real Data
for Microscopic Urban Vehicular Mobility Trace. In: Proceedings of the
14th International Conference on ITS Telecommunications (ITST’2015),
Copenhagen, Denmark. pp 22–26. https://doi.org/10.1109/itst.2015.
7377394

39. Jiang K, Zhou H, Li D, Liu X, Xu S (2020) A Q-learning based Method for
Energy-Efficient Computation Offloading in Mobile Edge Computing. In:
2020 29th International Conference on Computer Communications and
Networks (ICCCN). pp 1–7. https://doi.org/10.1109/icccn49398.2020.
9209738

40. Alfakih T, Hassan MM, Gumaei A, Savaglio C, Fortino G (2020) Task
Offloading and Resource Allocation for Mobile Edge Computing by Deep
Reinforcement Learning Based on SARSA. IEEE Access 8:54074–54084

41. Altahhan A (2020) True Online TD(λ)-Replay An Efficient Model-free
Planning with Full Replay. In: 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE, Glassglow. pp 1–7

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/vtc2020-spring48590.2020.9128785
https://doi.org/10.1109/vtc2020-spring48590.2020.9128785
https://doi.org/10.1109/glocom.2018.8647564
https://doi.org/10.1109/trustcom.2012.16
https://doi.org/10.1109/icpads47876.2019.00073
https://doi.org/10.1109/glocom.2016.7842160
https://doi.org/10.1109/glocom.2016.7842160
https://doi.org/10.1109/cac48633.2019.8996860
https://doi.org/10.1109/cac48633.2019.8996860
https://doi.org/10.1109/itst.2015.7377394
https://doi.org/10.1109/itst.2015.7377394
https://doi.org/10.1109/icccn49398.2020.9209738
https://doi.org/10.1109/icccn49398.2020.9209738

	Abstract
	Keywords

	Introduction
	Related work
	Problem definition and analysis
	Problem definition
	Network model
	Application model
	Task queue model
	Communication model
	Computation model

	Example analysis

	Computational offloading strategy based on deep reinforcement learning
	MDP model
	Q-Learning algorithm
	SA-DQN algorithm

	Experimental results and analysis
	Parameter settings
	Comparative offloading strategies
	Experimental results
	Offloading strategies with different algorithms
	Offloading strategies with different offloading schemes

	Conclusion
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

