
Journal of Cloud Computing:
Advances, Systems and Applications

Huang et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:31
https://doi.org/10.1186/s13677-021-00248-4

RESEARCH Open Access

HTPC: heterogeneous traffic-aware
partition coding for random packet spraying
in data center networks
Jiawei Huang1, Shiqi Wang1, Shuping Li1, Shaojun Zou1,2,3* , Jinbin Hu4 and Jianxin Wang1

Abstract

Modern data center networks typically adopt multi-rooted tree topologies such leaf-spine and fat-tree to provide high
bisection bandwidth. Load balancing is critical to achieve low latency and high throughput. Although the per-packet
schemes such as Random Packet Spraying (RPS) can achieve high network utilization and near-optimal tail latency in
symmetric topologies, they are prone to cause significant packet reordering and degrade the network performance.
Moreover, some coding-based schemes are proposed to alleviate the problem of packet reordering and loss.
Unfortunately, these schemes ignore the traffic characteristics of data center network and cannot achieve good
network performance. In this paper, we propose a Heterogeneous Traffic-aware Partition Coding named HTPC to
eliminate the impact of packet reordering and improve the performance of short and long flows. HTPC smoothly
adjusts the number of redundant packets based on the multi-path congestion information and the traffic
characteristics so that the tailing probability of short flows and the timeout probability of long flows can be reduced.
Through a series of large-scale NS2 simulations, we demonstrate that HTPC reduces average flow completion time by
up to 60% compared with the state-of-the-art mechanisms.

Keywords: Data center, Packet spraying, Heterogeneous traffic, Network coding

Introduction
With the rapid development of cloud computing and big
data, data centers have been used as a critical infrastruc-
ture for online services such as recommendation systems,
advertisement [1–4], and back-end computations such as
MapReduce and GFS [5, 6]. Moreover, the heterogeneous
traffic in data center network comes from various appli-
cations such as data mining and web search [7, 8]. When
these applications are running, a mix of long and short
flows will be generated in the network, constituting het-
erogeneous traffic [9, 10]. Prior work shows that most
bytes are contained in a very small number of long flows
that demands high throughput while most flows are short

*Correspondence: zoushj@csu.edu.cn
1School of Computer Science and Engineering, Central South University,
410083 Changsha, China
2School of Computer Engineering and Applied Mathematics, Changsha
University, 410022 Changsha, China
Full list of author information is available at the end of the article

and require low latency [11]. Moreover, a small delay seri-
ously degrades the user experience and then affects the
financial revenue [11]. For example, Google observes that
an extra 500ms of latency causes a 20% traffic reduc-
tion, and Amazon reports that every additional 100ms of
latency comes at the cost of 1% of business revenue [1, 12].
To improve application performance, various fine-

grained load balancing solutions have been proposed
to make full use of bandwidth resources. For exam-
ple, per-packet load balancing schemes such as Random
packet Spraying (RPS) [13] split flows across multiple
paths at packet granularity and achieve good perfor-
mance in symmetric topologies. However, they inevitably
cause serious packet reordering in asymmetric topologies,
degrading performance of network. Moreover, although
flowlet-based load schemes can effectively mitigate packet
reordering, they suffer from inflexible path switching due
to improper threshold of flowlet timeout [14].

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00248-4&domain=pdf
http://orcid.org/0000-0001-9770-3308
mailto: zoushj@csu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 2 of 16

Fortunately, network coding can effectively mitigate the
packet reordering by recovering some unlucky packets
that are blocked or dropped on congested paths. With
the help of network coding, per-packet load balancing
schemes not only can take full advantage of multiple paths
between each host pair, but also prevent packet reorder-
ing and reduce flow completion time. For instance, both
Corrective [15] and CAPS [16] are typically coding-based
schemes that the source packets are encoded at the sender
and these encoded packets are scattered to multiple paths
at the switch. Although some flows experience packet
loss or out-of-order, the receiver can immediately recover
source packets when it receives the sufficient encoded
packets.
However, the existing schemes either only consider the

coexistence of long and short flows without network cod-
ing [17, 18] or leverage the same strategy to encode
packets of long and short flows [15, 16]. That is, these
coded-based schemes do not differentiate between short
and long flows when they calculate the number of encoded
packets. As a result, these solutions obtain suboptimal
performance.
In this paper, we propose a Heterogeneous Traffic Par-

tition Coding mechanism HTPC for data center net-
works to improve overall benefits of short and long
flows. To effectively reduce the tailing probability of
short flows and the timeout probability of long flows,
HTPC dynamically adjusts the number of redundant
packets based on the multi-path congestion information
and the traffic characteristics. Moreover, the coding layer
is deployed between the TCP and IP layers at the end
hosts and does not modify the existing TCP/IP pro-
tocols. By using NS2 simulations, we demonstrate that
HTPC performs remarkably better than the state-of-the-
art schemes. Specially, HTPC greatly reduces the 99th
percentile flow completion time (FCT) of short flows
by ∼65%-83% over RPS under high workload. Mean-
while, HTPC yields up to ∼25% and ∼62% throughput
improvement for long flows over Corrective and CAPS,
respectively.
In summary, the key contributions of this work are:

• We conduct a series of experiments using NS2
simulator to explore the issues of multi-path
transmission solutions: the existing coding-based
schemes ignore the characteristic of heterogeneous
traffic (i.e., a mix of long and short flows) [10],
inevitably degrading the network performance.

• We propose a packet-level transmission mechanism
HTPC, which considers the characteristics of
heterogeneous traffic in data centers. HTPC
smoothly adjusts the number of redundant packets
based on the congestion information and the traffic
characteristics of heterogeneous traffic, aiming to

reduce the tailing probability of short flows and the
timeout probability of long flows.

The remainder of this paper is organized as follows.
In “Design motivation” section, we discuss our design
motivation. In “Desgin overview” section, the overview
of HTPC is presented. In “Redundancy adjustment” and
“Coding and decoding” sections, we introduce redun-
dancy adjustment and the coding algorithm of HTPC,
respectively. In “Model analysis” section, we present a
modeling analysis of HTPC. In “Simulation evaluation”
section, we evaluate the performance of HTPC through
NS2 simulations. In “Related works” section, we summa-
rize the related works. Finally, we conclude the paper in
section “Conclusion” section.

Designmotivation
In this section, we first introduce the background ofmulti-
path transmission in data center networks. Then we ana-
lyze the limitations of existing schemes through extensive
tests. Finally, we summarize our observations to motivate
our design.

Background
Recently, a substantial amount of research efforts on
multi-path transmission mechanisms have been proposed
to improve the overall throughput in data center net-
works. They can be roughly divided into the following
three categories: multi-path transmission mechanisms
without network coding, multi-path transmission mecha-
nisms with undistinguished coding and multi-path trans-
missionmechanism with distinguishing coding. As shown
in Fig. 1, there are 3 flows coexisting on 3 equal-cost paths
between switches. Both flow 1 and flow 2 are short flows
while flow 3 is long one. The switch uses the RPS load
balancing strategy to forward packets.
Figure 1a shows the multi-path transmission mecha-

nism without network coding, whose representative work
is RPS. When the packet arrives, the switch randomly
picks one available path for each packet to forward. Since
RPS forwards packets at packet granularity, it can make
full use of the multiple paths. Unfortunately, some packets
from flow 1 and flow 3 are scattered to the blocked path.
These packets can only be recovered by retransmission.
That is, flow 1 and flow 3 at least take one additional round
trip time (RTT) to finish data transmission, resulting large
flow completion time.
In Fig. 1b, the transmission mechanism with undistin-

guished coding additionally transmits redundant encoded
packet. Although some packets are dropped or blocked
on the congested path, the receiver can recover the
blocked/lost data when it receives the sufficient encoded
packets. This transmission mechanism avoids the retrans-
mission and decreases flow completion time. Corrective

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 3 of 16

Fig. 1 Three transmission mechanisms. The numbers in the boxes indicate flows’ ID

is a representative protocol in this type of transmission
mechanism. It implements encoding by performing an
XOR operation on all the packet payloads of a congestion
window, and adds an encoded data packet for each con-
gestion window. Corrective significantly reduces network
latency with low computational and bandwidth overhead.
However, the encoding method does not distinguish

between long and short flows, which may inject a large
amount of redundant packets into the network. As a con-
sequence, packets of short flows suffer from large queuing
delay and increase the flow completion time. Besides, cor-
rective can only recover a single packet loss within a win-
dow. If more than one packet is dropped, the sender has
to transmit the lost packets via the fast or timeout retrans-
mission. That is, Corrective hardly adapts to the dynamic
traffic with the fixed number of encoded packets [19].
The multi-path transmission mechanism with distin-

guishing coding considers the characteristics of heteroge-
neous traffic in data center network. CAPS is a typical rep-
resentative of this type of transmission mechanism. The

sender only encodes short flows and the switch adopts
an adaptive load balancing scheme to forward packets.
Specially, the switch uses the ECMP [20] method to for-
ward packets of the long flows when the long flows coexist
with the short flows while leveraging RPS mechanism to
forward data of the long flows when there are no short
flows.
However, Fig. 1c shows that the switch leverages the

ECMPmechanism to forward the packets of long-live flow
3. When long flow 3 is hashed to the blocked path and
cannot be switched in time, it inevitably results in low
throughput.

The limitations of existing solutions
To intuitively illustrate the above problems, we take RPS,
Corrective and CAPS as the representatives of the above
three transmissionmechanisms, and then conduct a series
of experiments to test their performances. In this test,
we adopt the Leaf-Spine network topology with 4 spine
switches and 4 leaf switches, as shown in Fig. 2. Each

Fig. 2 Leaf-Spine topology

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 4 of 16

leaf switch is connected to 16 hosts. All links have 1Gbps
bandwidth and 100μs latency. The buffer size of per port
is 256 packets. Here, we use two realistic workloads (i.e.,
the Web Search and Data Mining [21]) measured from
deployed data centers to evaluate their performance. The
experimental results of the three transmission mecha-
nisms are shown in Fig. 3.
Figure 3a shows that in the Web Search and the Data

Mining scenario, RPS without coding strategy has the
longest short flow completion time, followed by Correc-
tive, and CAPS achieves the best performance of short
flows. For RPS, the short flows obtain low performance
due to packet loss. Besides, since corrective can recover a
single data packet loss through a single redundant coded
packet in the window, the performance of short flow is
improved slightly. CAPS adopts coding and adaptively
load balancing scheme, greatly reducing the flow comple-
tion time of short flows.
Figure 3b shows that the throughput of long flows in

CAPS is the lowest. This is because that only short flows
are encoded, and its load balancing scheme prioritizes
short flows, which impairs the performance of long flows.
Since Corrective uses the same coding strategy for long
and short flows, Corrective’s long flows perform better.
RPS suffers from packet loss and causes congestion win-
dow reduction so that long flows obtain lower throughput
than other protocols.

Summary
In summary, the current multi-path transmission mecha-
nisms have the following limitations: (i) the transmission
mechanism without network coding cannot recover the
packet loss, so both short and long flows are impacted
by the path asymmetry; (ii) For the coding strategy
without distinguishing heterogeneous traffic, long and
short flows use the same coding mechanism and long
flows may generate lots of redundant packets, which
inevitably increase the queuing delay and short flows’
flow completion time; (iii) the current encoding strategy

that distinguishes heterogeneous traffic uses encoding
technology only for short flows to compensate for
packet loss, and ignores long flows, thereby reducing the
throughput of long flows. These conclusions motivate
us to tackle above problems by designing and imple-
menting a Heterogeneous Traffic-aware Partition Coding
mechanism.

Desgin overview
In this section, we present an overview of HTPC. The key
point of HTPC design is that the sender adopts a het-
erogeneous traffic-aware partition coding to improve the
overall network performance. On the one hand, redun-
dant encoded packets can recover the blocked and lost
packet. On the other hand, based on the characteristics
of the heterogeneous traffic, the sender smoothly adjusts
the number of redundant packets so that both the tail-
ing probability of short flows and the timeout probability
of long flows can be reduced. The architecture of HTPC
consists of three modules, as shown in Fig. 4.
(1) Encoding Module at the sender: In our design, we

implement an encoding layer between the IP and trans-
port layer. The main reason is that it does not modify the
existing TCP/IP protocols, which can keep compatibility
with existing protocols and is ease of practical deploy-
ment. In encoding layer, we implement network status
estimation, heterogeneous flow identification as well as
redundancy adjustment. Specifically, the packets deliv-
ered from the transport layer to IP layer are stored in
the encoding buffer for coding while the control pack-
ets (i.e., SYN, FIN and ACKs) are directly sent to the IP
layer without coding. During data transmission process,
the sender estimates the network status through RTTs
and distinguishes heterogeneous flows based on the num-
ber of data bytes sent. According to the discrimination
result and the network congestion information, the sender
smoothly adjusts the coding parameters of long and short
flows, reducing the tailing probability of short flows and
the timeout probability of long flows.

Fig. 3 Network performance

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 5 of 16

Fig. 4 HTPC architecture

Note that the key drawbacks of encoding at other lay-
ers is that it inevitably needs to modify the control
logic at corresponding layer and increases its complexity.
What is worse, it may interfere with the original control
logic.
(2) Packet Spraying Module at switch: To make full

use of the bandwidth resources, the switch adopts the RPS
load balancing scheme to forward packets, which have
already been implemented in many commodity switches
[16]. Specially, when a packet arrives at the switch, the for-
warding engine randomly selects one available path for the
packet.
(3) Decoding Module at the receiver: Upon receiving

one packet, the receiver stores the packet in the decoding
buffer and determines whether the packet is a redundant
coded packet by a coding flag bit in packet header. If the
packet is source packet, it is submitted directly to the
upper layer without decoding. If the packet is the encoded
packet and there are enough source and encoded pack-
ets, the receiver uses Gaussian elimination to decode so
that the blocked or lost packets can be fast recovered and
delivered to the upper layer.

Redundancy adjustment
To better adjust the redundancy of coding mechanism,
HTPC leverages a measurement module to periodically
calculate the real-time packet loss rate at sender so that
it can effectively cope with the rapid change of dynamic
network. The main variables used in the paper are shown
in Table 1.

Table 1 Variables in HTPC

Variable Description Variable Description

T sampling period PL Packet loss rate

nt Number of packets
transmitted during T

w Weight of each flow

nd Number of packets
loss during T

D Number of bytes sent
by the flow

Ts Threshold of short
flows

k Size of the encoding
unit

Tw Threshold of weight
adjustment

wc Congestion window
size

x Number of packets
expected to be
received by receiver

nb number of ACKwhose
RTT is greater than 2x
the average RTT

r Number of redundant
encoded packets

n Total number of ACKs

G a random linear
independent
coefficient matrix

s Identity matrix of the
original data packet in
a coding unit

c Corresponding
generating matrix

Tfr Threshold of fast
retransmission

PBRPS Packet blocking rate
of RPS

PTORPS timeout probability of
RPS

PBCor Packet blocking rate
of Corrective

PTOCor timeout probability of
Corrective

PBCA Packet blocking rate
of CAPS

PTOCA timeout probability of
CAPS

PBHT Packet blocking rate
of HTPC

PTOHT timeout probability of
HTPC

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 6 of 16

Let nt and nd denote the total number of transmitted
packets and the number of packet loss during sampling
period T, respectively. Then we can calculate the real-time
packet loss rate PL as

PL = nd
nt

. (1)

In our design, the sampling period T is set as 500μs.
This is because that the time interval of packet burst is
generally larger than 500μs, and micro-burst is the main
cause of packet loss [22–24].
It is a common traffic pattern that long and short flows

coexist in data center network. Short flows require low
latency while long flows demands high throughput. HTPC
allocates the weight for each flow according to the number
of transmitted bytes and adjusts its redundancy accord-
ingly. The weight of each flow gradually decreases as it
transmits more packets.
Inspired by L2DCT [11], we use D, Ts and Tw to denote

the number of bytes sent by each flow, the thresholds of
short flows and weight adjustment respectively, and then
calculate the weight w of each flow as

w =
⎧
⎨

⎩

1, if D < Ts
1 − D−Ts

Tw−Ts
, if Ts ≤ D ≤ Tw

0, if D > Tw,
(2)

When the sender detects packet loss, it has to retransmit
the lost packet, which at least increases one RTT to fin-
ish data transmission. Since short flows are delay-sensitive
and requires low delay, one additional RTT inevitably
leads to a sharp decline in network performance. For
long flows, when TCP timeout happens, the sender has
to wait the minimum retransmission timeout (RTOmin,
whose default value is 200ms in most operating systems),
greatly degrading the throughput of long flows. Fortu-
nately, when the number of packets received by each long
flow’s receiver is not less than the threshold of fast retrans-
mission (its default value is 3), the sender triggers the
fast retransmissionmechanism that retransmits lost pack-
ets without expensive timeout. Therefore, long flows can
avoid long waiting and achieve high throughput.
Note that the RTOmin can be adjusted to 10ms in data

center. However, this method may cause safety problems
such as spurious retransmission [25]. Once the sender
triggers spurious retransmission due to timeout, it will
enter the slow-start phase and set its congestion window
to the minimum value, inevitably resulting in the waste of
available bandwidth. A detailed discussion of verifying the
proposal under different RTOmin is left for future work.
To reduce the packet retransmission of short flows and

the timeout of long flows, the lower and upper bounds
of the number of packets expected to be successfully
received by the receiver are set to the threshold of fast

retransmission Tfr (its default value is 3) and the conges-
tion window size wc, respectively. Besides, let k denotes
the size of the encoding unit, whose value is set to the con-
gestion window size (i.e. wc). Then the number of packets
x expected to be received successfully can be calculated as

x = w × k + (1 − w) × Tfr . (3)

We assume that a coding unit has r redundant encoded
packets. It means that the sender will transmit k source
packets and r redundant encoded packets. To achieve high
decoding probability, the number of redundant encoded
packets should satisfy (k + r) × (

1 − nb
n

) ≥ k, where
n is the total number of ACKs and nb is the number of
ACKs whose RTTs are greater than 2x the average RTT.
Moreover, to avoid unnecessary bandwidth waste, we can
obtain the optimal number of redundant encoded packets
r as

r = x
1 − nb

n
− k = w × k + (1 − w) × Tfr

1 − nb
n

− k, (4)

With Eqs. (2) and (4), the number of redundant encoded
packets r can be calculated as

r =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1

1− nb
n

− 1
)

× k, if D < Ts
(
Tfr−k

)× D−Ts
Tw−Ts +k

1− nb
n

− k, if Ts ≤ D ≤ Tw
Tfr

1− nb
n

− k, if D > Tw.

(5)

Coding and decoding
In this section, we will introduce how HTPC implements
its coding and decoding mechanisms at the end hosts.
In our design, we uses the system coding due to its sim-

pleness and effectivity [26]. Specially, the sender initially
transmits source packets within congestion window and
then generates proper encoded packets according to the
network status. When enough source and encoded pack-
ets arrive at the receiver, the receiver recovers the lost or
blocked packets on congested path by decoding operation.
In coding, the data of each flow is divided into several

data blocks. The data block size (i.e., coding unit size)
is denoted by k. In each data block, several source data
packets are encoded, and the redundant encoded pack-
ets are a random linear combination of these original data
packets. Specifically, assuming that each data packet has
the same size pktsize and can be represented as a symbol
of size. By using a random matrix to multiply data pack-
ets of the same coding unit, an encoded data packet can
be generated. Furthermore, we assuming that G is a ran-
dom linear independent coefficient (RLIC) matrix and s is
the identity matrix of the original data packet in a coding
unit. Then the corresponding generating matrix c can be
calculated as

c = s × G. (6)

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 7 of 16

Then we have

[
c1 c2 · · · cm

] = [
s1 s2 · · · sk

]×
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 · · · 0 g1,k+1 g1,k+2 · · · g1,m
0 1 0 0 · · · 0 g2,k+1 g2,k+2 · · · g2,m
0 0 1 0 · · · 0 g3,k+1 g3,k+2 · · · g3,m
0 0 0 1 · · · 0 g4,k+1 g4,k+2 · · · g4,m
· ·
0 0 0 0 · · · 1 gk,k+1 gk,k+2 · · · gk,m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
(7)

where
[
c1 c2 · · · cm

]
is the matrix composed of m

encoded packets,
[
s1 s2 · · · sk

]
is the matrix composed

of k source packets, G = (gi,j)k×m is the k × mmatrix.
Using system coding greatly reduces the receiver’s

decoding delay, the CPU usage as well as memory occu-
pancy rate. Specifically, literature [27] proves that in the
worst case, system coding can reduces the decoding delay
of non-system coding by at least 50% in theory. More-
over, compared with non-system coding, the arithmetic
complexity of generating encoded packets in system cod-
ing can be reduced by 1 order of magnitude while the
arithmetic complexity of decoding a generation is reduced
by 2 or even 3 orders of magnitude [27], resulting in
low the CPU usage and memory occupancy rate. At the
receiver, the received packets are restored in the decod-
ing buffer to recover lost and blocked packets. To speed
up data transmission, the source packets are also directly
delivered to application layer. Besides, the receiver uses
Gaussian elimination to decode. Once enough source and
encoded packets are received, the lost or blocked pack-
ets are recovered and delivered to the upper layer. The
decoding equation in term of matrix can be expressed as

[

s1 s2 · · · sk
]

=
[

ca1 ca2 · · · cak
]

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1,a1 g1,a2 g1,a3 · · · g1,ak
g2,a1 g2,a2 g2,a3 · · · g2,ak
g3,a1 g3,a2 g3,a3 · · · g3,ak
· · · · · · · · · · · · · · ·
gk,a1 gk,a2 gk,a3 · · · gk,ak

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(8)

where
[
ca1 ca2 · · · cak

]
is the matrix composed of any k

encoded packets received by the receiver from m coded
packets, gi,aj is the ith element of column aj in the
matrix G.

Model analysis
In this section, we theoretically analyze the performance
of two representative transmission mechanisms (i.e., RPS,
Corrective and CAPS) and our design HTPC. Then we
test their performance through NS2 simulation experi-
ments.
(i) RPS
First, we analyze the packet loss rate of RPS, which

doesn’t apply network coding. As in Eq. (4), nb is the

number of ACKs whose RTT is greater than 2x the aver-
age RTT and n is the total number of ACKs. The packet
blocking rate PBRPS of RPS can be calculated as

PBRPS = nb
n
. (9)

When packet blocking happens and the sender cannot
trigger the fast retransmission mechanism due to lacking
of enough duplicate ACKs, the sender can not transmit
new data until the timeout retransmission timer expires.
Therefore, the timeout probability can be obtained by
calculating the probability that the number of success-
fully received packets is less than the fast retransmission
threshold Tfr . Then the timeout probability PTORPS of
RPS can be calculated as

PTORPS =
i<Tfr∑

i=0
Ci
wc × PBwc−i

RPS × (1 − PBRPS)
i, (10)

where wc is the size of congestion window.
(ii) Corrective
Next, we analyze the packet loss rate of Corrective. No

matter whether it’s a long flow or a short flow, Correc-
tive additionally transmits one redundant encoded packet
for each congestion window. When the number of source
packets is k, the total number of packets injected into the
network by Corrective is k + 1. The packet blocking rate
PBCor can be computed as

PBCor =
∑k+1

i=1 Ci
k+1 × (nb

n
)i × (

1 − nb
n

)k+1−i × (i − 1)
k

.

(11)

Then we can obtain the timeout probability PTOCor as

PTOCor =
i<Tfr∑

i=0
Ci
k+1 × PBk+1−i

RPS × (1 − PBRPS)
i. (12)

(iii) CAPS
CAPS distinguishes between long and short flows. In

CAPS, short flows generate several redundant encoded
packets according to the blocked probability and the
switch adopts RPS mechanism to forward the packets of
short flows. For long flows, the switch uses an adaptive
load balancing scheme to forward packets. According to
the encoding strategy of CAPS, the number of redundant
encoding packets is

rCA =
{ k

1− nb
n

− k, if D < Ts

0, if D ≥ Ts.
(13)

Obviously, the number of packets injected into the net-
work by CAPS is k + rCA. Then we can calculate the
CAPS’s packet blocking rate PBCA as

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 8 of 16

PBCA =
∑k+rCA

i=1 Ci
k+rCA × (nb

n
)i × (

1 − nb
n

)k+rCA−i × (i − 1)
k

.

(14)

According to the Eq. (14), the timeout probability
PTOCA of CAPS can be calculated as

PTOCA =
i<Tfr∑

i=0
Ci
k+rCA × PBk+rCA−i

CA × (1 − PBCA)i.

(15)

(iv)HTPC
Finally, we analyze the packet blocking rate and time-

out probability of HTPC. We assume that the number of
redundant encoded packets of HTPC is rHT , whose value
can be calculated from Eq. 5. We can obtain the packet
blocking rate PBHT of HTPC as

PBHT =
∑k+rHT

i=1 Ci
k+rHT

× (nb
n

)i × (
1 − nb

n
)k+rHT−i × (i − 1)

k
.

(16)

Then we can calculate the timeout probability PTOHT
of HTPC as

PTOHT =
i<Tfr∑

i=0
Ci
k+rHT

× PBk+rCA−i
HT × (1 − PBHT)i.

(17)

Finally, we compare the successful packet delivery rate
and timeout probability of RPS, Corrective, CAPS and
HTPC, as shown in Fig. 5. The successful delivery rate of
data packets refers to the ratio of the number of data pack-
ets successfully received by the receiver to the number of
source data packets. Here, we suppose the packet blocking
rate of link is 0.5.
Figure 5a shows that compared with RPS and Correc-

tive, the packet delivery rate of short flows in HTPC has

been greatly improved. The major reason is that HTPC
recovers packet loss by encoded packets. From Fig. 5b,
we observe that HTPC greatly reduces the timeout prob-
ability of long flows. Since the long flows of RPS and
CAPS don’t adopt network coding, the timeout probabil-
ity of long flows can not be improved. Besides, Correc-
tive slightly improves the performance of long flows as
the sender only generate one redundant encoded packet
in each congestion window. For HTPC, the long flows
dynamically generate proper encoded packets according
to its timeout probability, which helps reduce the timeout
probability.

Simulation evaluation
In this section, we conduct large-scale NS2 simulations to
evaluate HTPC’s performance. In the test, we adopt a 256-
host leaf-spine topology with 8 leaf switches and 8 spine
switches. That is, there are 8 equal cost paths between
any pair of hosts. Each leaf switch connects to 32 servers.
Besides, link capacity, round trip propagation delay, and
buffer size of switches are 1Gbps, 100μs and 100 packets,
respectively.
We compare HTPC with ECMP, RPS, Corrective and

CAPS. Specifically, ECMP is the standard load balancing
mechanism and it allocates a static path for each flow
based on the five-tuple information in packet header. RPS
randomly selects one available path to forward each date
packet. Corrective transmits one additional redundant
encoded packet for each congestion window. CAPS lever-
ages the forward error correction (FEC) coding for short
flows to handle the out-of-order problem. Note that the
network coding used in HTPC is different from the one
in CAPS. The main reason is that HTPC adopts system
coding, which generates the expected number of source
packets and serval encoded packets via RLIC. However,
LDPC used in CAPS does not guarantee that it can gen-
erate the expected number of source packets. Therefore,

Fig. 5Model performance

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 9 of 16

Fig. 6 The basic performance of short flows

we choose RLIC in HTPC. Moreover, the short flow is the
one with flow size less than 100KB and the size of each
long flow is more than or equal to 100KB [16].

Basic performance
To validate whether HTPC can improve the performance
of long and short flows, we conduct the micro experi-
ments with RPS and HTPC. In this test, there are 5 long
flows and 40 short flows. Since the total number of both
long and short flows is small (only 45), these flows are
randomly distributed under 4 Leaf switches and coexist
on 4 multiple paths, which helps to increase the proba-
bility that long and short flows compete for bandwidth
resources on the paths. Here, we measure the real-time
ACK sequence number of short flows and timeout prob-
ability of long flows. Thereinto, we obtain ACKSeqno
and timeout event of each flow from each end host and
calculate their average values.
Figure 6 shows the ACK seqno and packet loss amount

of short flows. In Fig. 6a, when the sequence number of
ACK remains unchanged, it means that some packets are
dropped due to buffer overflow. From Fig. 6b, we observer
that short flows of RPS has more packet loss than that of

HTPC. This is because that HTPC uses redundant coding
packets to recover lost packets so that the sender does not
sense the packet loss.
Figure 7 shows that long flows of RPS has experienced

two timeout events, which inevitably degrades network
performance. Fortunately, HTPC dynamically adjusts the
number of redundant encoded packets according to net-
work status. Since these redundant encoded packets can
recover the lost packets, the long flow of HTPC does not
suffer from timeout.

Performance under different flow proportions
In this section, we evaluate the performance of HTPC
under different flow proportions. In this scenario, the total
number of long and short flows is 100. We vary the num-
ber of long flows from 1 to 20. That is, the ratios of long
flow amount to short ones are set to 1:99, 5:95, 10:90, 15:85
and 20:80, respectively.
As shown in Fig. 8a, HTPC obtains lower 99th flow

completion time of short flows than that of ECMP, RPS
and Corrective. This is because HTPC uses coding to
recover the lost and blocked packets of short flows, reduc-
ing the packet blocking rate of short flows. ECMP and

Fig. 7 The basic performance of long flows

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 10 of 16

Fig. 8 Performance under different flow proportions

RPS do not distinguish between long and short flows,
resulting in large queueing delay for short flows and tail-
ing flow completion time. Corrective does not consider
the real-time network status and transmits fixed num-
ber of redundant encoded packets without distinguishing
long and short flows so that the improved performance is
limited.
Figure 8b shows that HTPC obtains the highest

throughput for long flows. The main reason is that ECMP,
RPS and CAPS do not generate redundant encoded pack-
ets for long flows while the long flows in HTPC generate
several encoded packets with low redundancy, which can
greatly reduce the number of timeouts and achieve high
throughput for long flows. Overall, HTPC obtains lower
average flow completion time (AFCT) of all flows than
other protocols, as shown in Fig. 8c.

Performance under different numbers of flows
In this section, we evaluate the performance of HTPC
under different numbers of flows. In this experiment, the
ratio of the number of long flows to short ones is fixed
(i.e., 0.1) and we vary the number of short flows from 20
to 100. The experimental results are shown in Fig. 9.
Figure 9a and c show that, with the increasing of

flow amount, all protocols take more time to finish data

transmission and the throughput of long flows gradu-
ally decrease, as shown in Fig. 9b. This is because that
the larger the number of flows, the more flows com-
pete. Therefore, each flow gets less bandwidth resources
and takes more time to transmit data. Fortunately, HTPC
obtains lower the FCT of short flows and higher through-
put of long flows than other schemes. The main reason is
that HTPC adopts the coding technology to generate sev-
eral encoded packets for long and short flows according to
the network status, which can fast recover the lost packets
of short flows and greatly reduce the number of time-
outs. This helps reduce the average FCT of short flows and
achieve high throughput for long flows.

Performance under realistic workloads
To evaluate HTPC’s broad applicability and effectiveness
in realistic scenarios, we conduct our tests using realistic
workloads measured from deployed data centers [28, 29].
In this test, we adopt two typical realistic workloads: web
search [3, 30, 31] and data mining [8, 32, 33]. Both of
their traffic distributions have the following characteristic:
a small fraction of long flows contribute most of the traf-
fic(i.e., heavy-tailed distribution). Specially, in web search
workload, 30% of flows larger than 1MB provide more
than 95% bytes. In data mining workload, ∼ 3.6% flows

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 11 of 16

Fig. 9 Performance under different numbers of flows

larger than 35MB provide 95% bytes [34], while around
80% of flows are less than 100KB. Table 2 shows the flow
size distribution under data mining and web search work-
loads. Besides, the source and destination of each flow are
chosen uniformly random from all hosts while the arrival
times of all flows follow a Poisson process. Here, we mea-
sure the average FCT of all flows, 99th percentile FCT of
short flows (<100KB) as well as the average FCT of long
flows (≥100KB) under different network loads. The load
can be calculated by λ×E

C , where λ, E andC denote the flow
arrival rate, the average flow size and link capacity, respec-
tively. In our experiments, we vary the load by changing
the flow arrival rate and draw the test results of web search
and data mining in Figs. 10 and 11, respectively.

Table 2 Flow size distribution under data mining and web
search workloads

Flow size Data Mining Web Search

0-10KB 78% 59%

10KB-100KB 5% 3%

100KB-1MB 8% 18%

>1MB 9% 20%

Figures 10a and 11a show that compared with ECMP,
RPS and Corrective, HTPC significantly reduces the 99th
percentile flow completion time of short flows, especially
in high load. Figures 10b and 11b show the throughput of
long flows. HTPC obtains the highest throughput of long
flows. This is because that HTPC adopts the multi-path
transmissionmethodwith network coding so that the long
flows can avoid timeout and improve long flows’ through-
put. RPS and Corrective achieve higher throughput than
ECMP, which gets the lowest throughput of long flows due
to hash collision. Besides, since CAPS does not encode
packets for long flows, some long flowsmay suffer timeout
and obtain lower throughput than HTPC.
Figures 10c and 11c show that since ECMP and RPS

cannot recover packet loss due to lacking of redun-
dant encoded packet, they can only recover lost packets
through the fast or timeout retransmission, resulting in
larger flow completion time. Corrective’s coding strategy
is fixed and cannot adapt to dynamically changing net-
works. CAPS only encodes for short flows and ignores
the performance of long flows. HTPC leverages an adap-
tive encoding strategy to recover the lost packets, which
helps reduce the number of short flow retransmissions
and timeouts of long flow. As a result, HTPC obtains
lower FCT of all flows than the other schemes.

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 12 of 16

Fig. 10Web search

Performance under asymmetric topology and different
network scales
In this section, we first adopt a leaf-spine topology with 8
leaf switches and 8 spine switches to validate the HTPC’s
performance under symmetric topology. In this test, we
increase one path’s RTT to produce asymmetric topology.
The link capacity and RTT are set to 10Gbps and 100μs,
respectively. Besides, there are 400 short flows and 100
long flows coexisting on 8 multiple paths.
As shown in Fig. 12, when the RTT ratio of bad path to

good one changes from 1.2 to 2, HTPC obtains the lower
99th percentile flow completion time and higher through-
put than other protocols. On the one hand, since RPS
causes serious packet reordering in asymmetric topol-
ogy and ECMP is unable to make full of multiple paths
due to hash collision, they get worse performance than
other schemes. Besides, Corrective only generates one
encoded packets in every congestion window, it fails to
deal with the case that multiple packets within conges-
tion window are lost or blocked on the bad paths. CAPS
does not encode packets for long flows, potentially mak-
ing some long flows experience timeout. On the other
hand, HTPC dynamically adjusts the number of encoded
packets according to the flow types and network status,

effectively reducing the tailing probability of short flows
and the timeout probability of long flows. As a result,
HTPC outperforms other schemes under asymmetric sce-
nario.
Furthermore, we evaluate the performance of HTPC

under different network scales. In this test, we gradually
expand the network scale by increasing the number of
leaf switches from 8 to 16, the other experimental param-
eters are the same as previous scenario. In this test, we
evaluate the performance of HTPC under the web search
workload. Here, wemeasure the 99th percentile flow com-
pletion time of short flows and the throughput of long
flows. The experimental results are shown in Fig. 13.
Figure 13 shows that the 99th percentile flow comple-

tion time of short flows becomes large and the throughput
of long flows gradually reduces with the increasing of
leaf switch amount. Fortunately, HTPC obtains lower flow
completion time for short flows and higher throughput for
long flows than other schemes under all scenarios. The
main reason is that HTPC smoothly adjusts the number
of encoded packets based on the characteristics of hetero-
geneous traffic and network status, reducing the tailing
probability of short flows and the timeout probability of
long flows.

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 13 of 16

Fig. 11 Data mining

Related works
Modern data center networks widely adopt multi-rooted
topologies such as leaf-spine and fat-tree [35] to transmit
data in parallel. In recent years, although lots of trans-
port control protocols [33, 36–38] have been proposed
to reduce flow completion time, they fail to effectively
improve the application-level performance. To this end,
various load balancing mechanisms are proposed to make

full use of bandwidth resources. Although these solu-
tions can improve network performance, they still have
shortcomings. The most relevant works are introduced as
follows.
ECMP [20] is a flow-based scheme, which is the stan-

dard load-balancing mechanism used in today’s data cen-
ters. In ECMP, the switch calculates the hash value based
on five-tuple in packet header, and then maps each flow to

Fig. 12 Performance under asymmetric topology

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 14 of 16

Fig. 13 Performance under different network scales

a static outgoing port according to the hash value. The key
problem of ECMP is that some long flows may be trans-
mitted on the same path due to hash collisions. These long
flows can not be rerouted to other paths with low link
utilization, resulting in low network utilization. To this
end, some researchers have proposed more fine-grained
mechanisms, which can be divided into flowlet-based,
flowcell-based and packet-based approaches.
The flowlet-based schemes consists of CONGA [39],

LetFlow [40], CLOVE [41] and CAF [42], which are
designed to prevent packet reordering and achieve good
network performance. The basic idea of them is that when
the packet gap of the same flow exceeds a given threshold,
the switch either shifts subsequent flowlets to the least
congested paths or randomly spreads subsequent flowlets
to one available path. Besides, Presto [43] is a flowcell-
based transmission scheme and splits a flow into several
units with fixed size (i.e., 64KB). However, Presto is insen-
sitive to path conditions and then spreads these units to
all available paths. Some flowcells may be transmitted on
congested path, which inevitably degrading the network
performance.
Although the flowlet-based schemes such as CONGA

can improve network utilization in some scenarios,
they do not reroute new flowlets until the time inter-
val between two packets of the same flow exceeds a
pre-determined threshold. Unfortunately, setting a right
threshold value is very difficult under highly dynamic traf-
fic in datacenters[1]. One too small threshold fails to avoid
packet reordering while a too large threshold inevitably
leads to inflexible path switching, making these flowlet-
based approaches be unable to effectively use multiple
paths. Fortunately, combined with network coding, per-
packet load balancing solutions can not only efficiently
make use ofmultiple paths, but also recover the blocked or
lost data packets, reducing flow completion time. In short,
network coding is a more promising technique than the
routing (CONGA).

MPLOT [44] adjusts the coding redundancy using mea-
sured packet blocking rate. Then MPLOT maps the more
useful packets to paths with shorter RTTs. However,
MPLOT does not consider the differences of path quality.
Moreover, its scheduling scheme is too simple to adapt to
the highly dynamic data center networks.
FMTCP [45] adopts digital fountain code to flexibly

solve the bottleneck problem of MPTCP. FMTCP designs
a data allocation algorithm based on packet’s expected
arrival time and decoding requirements to coordinate the
transmission of different subflows. When the path qual-
ity declines, the sender only needs to transmit the newly
encoded packets according to the decoding requirements
at receiver.
MPTCP-dFEC [46] combines dynamic FEC with

MPTCP protocol and each subflow adjusts the coding
algorithm according to its own path quality. MPTCP-
dFEC can recover lost data through the FEC-encoded
packets. However, when the redundant packets may be
mapped to bad path, which makes the bad path become
worse.

Conclusion
This paper presents a Heterogeneous Traffic-aware Par-
tition Coding named HTPC to eliminate the impact of
packet loss and reordering. HTPC dynamically adjusts
the number of redundant packets according to the packet
blocking rate and the traffic characteristics, which effec-
tively reduces the tailing probability of short flows and
the timeout probability of long flows. Our experimen-
tal results show that HTPC shortens the flow completion
time by up to 60% compared with the state-of-the-art
mechanisms.
Acknowledgements
Not applicable.

Authors’ contributions
All authors have participated in conception and design, or analysis and
interpretation of this paper. All authors read and approved the final manuscript.

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 15 of 16

Funding
This work is supported by the National Natural Science Foundation of China
(61872387, 61872403), CERNET Innovation Project (Grant No. NGII20170107),
Project of Foreign Cultural and Educational Expert (G20190018003).

Availability of data andmaterials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Computer Science and Engineering, Central South University,
410083 Changsha, China. 2School of Computer Engineering and Applied
Mathematics, Changsha University, 410022 Changsha, China. 3Hunan Province
Key Laboratory of Industrial Internet Technology and Security, Changsha
University, 410022 Changsha, China. 4School of Computer and
Communication Engineering, Changsha University of Science and
Technology, 410114 Changsha, China.

Received: 25 August 2020 Accepted: 21 May 2021

References
1. Alizadeh M, Greenberg A, Maltz D, Padhye J, Patel P, Prabhakar B,

Sengupta S, Sridharan M (2010) Data center tcp (DCTCP). In: Proceedings
of the ACM SIGCOMM: 30 August-September 3 2010; NewDelhi. pp 63–74

2. Zhang T, Wang J, Huang J, Chen J, Pan Y, Min G (2017) Tuning the
aggressive TCP behavior for highly concurrent HTTP connections in
intra-datacenter. IEEE/ACM Trans Networking 25:3808–3822

3. Huang J, Huang Y, Wang J, He T (2020) Adjusting packet size to mitigate
TCP incast in data center networks with COTS switches. IEEE Trans Cloud
Comput 8(3):749–763

4. Zeng G, Bai W, Chen G, Chen K, Han D, Zhu Y (2017) Combining ECN and
RTT for datacenter transport. In: Proceedings of the Asia-Pacific Workshop
on Networking: 3-4 August 2017; Hong Kong. pp 1–7

5. Ghemawat S, Gobioff H, Leung S-T (2003) The google file system. In:
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles. pp 29–43

6. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on
large clusters. Commun ACM 51(1):107–113

7. Zhou Z, Shojafar M, Alazab M, Abawajy J, Li F (2021) AFED-EF: An
Energy-efficient VM Allocation Algorithm for IoT Applications in a Cloud
Data Center. IEEE Trans Cogn Commun Netw:1–12

8. Cho I, Jang K, Han D (2017) Credit-scheduled delay-bounded congestion
control for datacenters. In: Proceedings of the ACM SIGCOMM.
pp 239–252

9. Liu F, Guo J, Huang X, Lui JCS (2017) eBA: Efficient bandwidth guarantee
under traffic variability in datacenters. IEEE/ACM Trans Networking
25(1):506–519

10. Liu J, Huang J, Lv W, Wang J (2020) APS: Adaptive packet spraying to
isolate mix-flows in data center network. IEEE Trans Cloud Comput:1–14.
https://doi.org/10.1109/TCC.2020.2985037

11. Munir A, Qazi IA, Uzmi ZA, Mushtaq A, Ismail SN, Iqbal MS, Khan B (2013)
Minimizing flow completion times in data centers. In: Proceedings of IEEE
INFOCOM. pp 2157–2165

12. Hoff T (2009) Latency is everywhere and it costs you sales how to crush it.
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-
how-crush-it

13. Dixit A, Prakash P, Hu YC, Kompella RR (2013) On the impact of packet
spraying in data center networks. In: Proceedings of the IEEE INFOCOM.
pp 2130–2138

14. Huang J, Lyu W, Li W, Wang J, He T (2021) Mitigating packet reordering for
random packet spraying in data center networks. IEEE/ACM Trans
Networking:1–14. https://doi.org/10.1109/TNET.2021.3056601

15. Flach T, Dukkipati N, Terzis A, Raghavan B, Govindan R (2013) Reducing
web latency: the virtue of gentle aggression. In: Proceedings of the ACM
SIGCOMM: 12-16 August 2013; Hong Kong. pp 159–170

16. Hu J, Huang J, Lv W, Zhou Y, Wang J (2019) CAPS:coding-based adaptive
packet spraying to reduce flow completion time in data center. IEEE/ACM
Trans Networking 27(6):2338–2353

17. Bai W, Chen L, Chen K, Han D, Tian C, Wang H (2017) PIAS: Practical
information-agnostic flow scheduling for commodity data centers.
IEEE/ACM Trans Networking 25(4):1954–1967

18. Carpio F, Engelmann A, Jukan A (2016) DiffFlow: Differentiating short and
long flows for load balancing in data center networks. In: Proceedings of
IEEE GLOBECOM. pp 1–6

19. Huang J, Li W, Li Q, Zhang T, Dong P, Wang J (2020) Tuning high flow
concurrency for MPTCP in data center networks. J Cloud Comput
9(1):1–15

20. Hopps C (2000) Analyssis of an equal-cost multi-path algorithm. In: RFC
2992. pp 1–8

21. Bai W, Chen K, Chen L, Kim C, Wu H (2016) Enabling ECN over generic
packet scheduling. In: Proceedings of the ACM CoNEXT: 12-15 December
2016; Irvine. pp 191–204

22. Shan D, Jiang W, Ren F (2017) Analyzing and enhancing dynamic
threshold policy of data center switches. IEEE Trans Parallel Distrib Syst
28:2454–2470

23. Shan D, Ren F, Cheng P, Shu R, Guo C (2018) Micro-burst in data centers:
Observations, analysis, and mitigations. In: Proceedings of the IEEE ICNP:
24-27 September 2018; Cambridge. pp 88–98

24. Shan D, Ren F (2017) Micro-burst in data centers: Observations, analysis,
and mitigations. In: Proceedings of the IEEE INFOCOM: 1-4 May 2017;
Atlanta. pp 1–9

25. Zhang J, Ren F, Tang L, Lin C (2013) Taming TCP incast throughput
collapse in data center networks. In: Proceedings of the IEEE ICNP. pp 1–10

26. Cloud J, Leith D, Medard M (2015) A coded generalization of selective
repeat ARQ. In: Proceedings of the IEEE INFOCOM: 26 April-1 May; Hong
Kong. pp 2157–2165

27. Li M, Lukyanenko A, Tarkoma S, Cui Y, Ylae-Jaeaeski A (2014) Tolerating
path heterogeneity in multipath TCP with bounded receive buffers.
Comput Netw 64(8):1–14

28. Zhou Z, Abawajy J, Chowdhury M, Hu Z, Li K, Cheng H, Alelaiwi AA, Li F
(2018) Minimizing SLA violation and power consumption in Cloud data
centers using adaptive energy-aware algorithms. Futur Gener Comput
Syst 86(2018):836–850

29. Zhou Z, Li F, Zhu H, Xie H, Abawajy JH, Chowdhury MU (2020) An
improved genetic algorithm using greedy strategy toward task
scheduling optimization in cloud environments. Neural Comput & Applic
32(6):1531–1541

30. Huang J, Li S, Han R, Wang J (2019) Receiver-driven fair congestion control
for TCP outcast in data center networks. J Netw Comput Appl 131:75–88

31. Ren Y, Zhao Y, Liu P, Dou K, Li J (2014) A survey on TCP incast in data
center networks. Int J Commun Syst 27:1160–1172

32. Hu S, Zhu Y, Cheng P, Guo C, Tan K, Padhye J, Chen K (2017) Tagger:
Practical PFC deadlock prevention in data center networks. In:
Proceedings of the ACM CoNEXT: 12-15 December 2016; Seoul/Incheon.
pp 451–463

33. Hu S, Bai W, Zeng G, Wang Z, Qiao B, Chen K, Tan K, Wang Y (2020) Aeolus:
A building block for proactive transport in datacenters. In: Proceedings of
the ACM SIGCOMM. pp 422–434

34. Susanto H, Jin H, Chen K (2016) Stream: Decentralized opportunistic
inter-coflow scheduling for datacenter networks. In: Proceedings of the
IEEE ICNP: 8-11 Nov. 2016; Singapore. pp 1–10

35. Liu S, Huang J, Zhou Y, Wang J, He T (2019) Task-aware TCP in data center
networks. IEEE/ACM Trans Networking 27:389–404

36. Zou S, Huang J, Wang J, He T (2021) Flow-aware adaptive pacing to
mitigate TCP incast in data center networks. IEEE/ACM Trans Networking
29(1):134–147

37. Zhang J, Bai W, Chen K (2019) Enabling ECN for datacenter networks with
RTT variations. In: Proceedings of the ACM CoNEXT. pp 233–245

38. Zhang T, Huang J, Chen K, Wang J, Chen J, Pan Y, Min G (2020) Rethinking
fast and friendly transport in data center networks. IEEE/ACM Trans
Networking 28(5):2364–2377

39. Alizadeh M, Edsall T, Dharmapurikar S, Vaidyanathan R, Varghese G (2014)
CONGA: Distributed congestion-aware load balancing for datacenters. In:
Proceedings of the ACM SIGCOMM: 17-22 August 2014; Chicago.
pp 503–514

https://doi.org/10.1109/TCC.2020.2985037
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
https://doi.org/10.1109/TNET.2021.3056601

Huang et al. Journal of Cloud Computing (2021) 10:31 Page 16 of 16

40. Alizadeh M, Edsall T, Dharmapurikar S, Vaidyanathan R, Varghese G (2017)
Let it flow: Resilient asymmetric load balancing with flowlet switching. In:
Proceedings of the USENIX NSDI: 9-11 April 2017; Renton. USENIX, Boston.
pp 407–420

41. Katta1 N, M. H, Ghag A, Kim C, Keslassy I, Rexford J (2016) CLOVE: How i
learned to stop worrying about the core and love the edge. In:
Proceedings of the ACM HotNets: 9-10 November 2016; Atlanta.
pp 155–161

42. Zou S, Huang J, Jiang W, Wang J (2020) Achieving high utilization of
flowlet-based load balancing in data center networks. Futur Gener
Comput Syst 108:546–559

43. He K, Rozner E, Agarwal K, Felter W, Carter J, Akella A (2015) Presto:
Edge-based load balancing for fast datacenter networks. In: Proceedings
of the ACM SIGCOMM: 17-21 August 2015; London. pp 465–478

44. Sharma V, Kalyanaraman S, Kar K, Ramakrishnan KK, Subramanian V (2008)
MPLOT: A transport protocol exploiting multipath diversity using erasure
codes. In: Proceedings of the IEEE INFOCOM: 13-18 April 2008; Phoenix.
pp 121–125

45. Cui Y, Wang L, Wang X, Wang H, Wang Y (2015) FMTCP: A fountain
code-based multipath transmission control protocol. IEEE/ACM Trans
Networking 23:465–478

46. Ferlin S, Kucera S, Claussen H, Alay Ö (2018) Mptcp meets fec: Supporting
latency-sensitive applications over heterogeneous networks. IEEE/ACM
Trans Networking 26:2005–2018

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Design motivation
	Background
	The limitations of existing solutions
	Summary

	Desgin overview
	Redundancy adjustment
	Coding and decoding
	Model analysis
	Simulation evaluation
	Basic performance
	Performance under different flow proportions
	Performance under different numbers of flows
	Performance under realistic workloads
	Performance under asymmetric topology and different network scales

	Related works
	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

