Rong et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:36
https://doi.org/10.1186/s13677-021-00250-w

Journal of Cloud Computing:
Advances, Systems and Applications

RESEARCH Open Access

An edge-cloud collaborative computing
platform for building AloT applications

efficiently

Guoping Rong'?"

Check for
updates

, Yangchen Xu', Xinxin Tong® and Haojun Fan?

Abstract

Sophon Edge platform.

The convergence of Artificial Intelligence (Al) and the Internet of Things (IoT), or AloT, has breathed a new life into loT
operations and human-machine interactions. Currently, resource-constrained loT devices usually cannot provide
sufficient capability for data storage and processing so as to support building modern Al models. An intuitive solution
is to integrate cloud computing technology into AloT and exploit the powerful and elastic computing as well as the
storage capacity of the servers on the cloud end. Nevertheless, the network bandwidth and communication latency
increasingly become serious bottlenecks. The emerging edge computing can complement the cloud-based AloT in
terms of communication latency, and hence attracts more and more attention from the AloT area. In this paper, we
present an industrial edge-cloud collaborative computing platform, namely Sophon Edge, that helps to build and
deploy AloT applications efficiently. As an enterprise-level solution for the AloT computing paradigm, Sophon Edge
adopts a pipeline-based computing model for streaming data from loT devices. Besides, this platform supports an
iterative way for model evolution and updating so as to enable the AloT applications agile and data-driven. Through a
real-world example, we demonstrate the effectiveness and efficiency of building an AloT application based on the

Keywords: AloT platform, Edge-cloud collaboration, Pipeline

Introduction

Recently, the world has witnessed the arrival of the era of
big data, along with two dominating technology trends,
i.e., Artificial Intelligence (AI) and the Internet of Things
(IoT). While the IoT creates an interconnected system
of machines, Al gives machines the capability of sim-
ulating human intelligence. Obviously, Al and the IoT
can complement each other, so as to enable a further
promising technology, i.e., Artificial Intelligence of Things
(AIOT). In general, AloT aims to achieve more efficient
IoT operations, improve human-machine interactions and
enhance the capability for data management and analytics.

*Correspondence: ronggp@nju.edu.cn

The Joint Laboratory of Nanjing University and Transwarp on Data
Technology, Nanjing University, Nanjing, China

’The State Key Laboratory of Novel Software Technology, Nanjing University,
Nanjing, China

Full list of author information is available at the end of the article

@ Springer Open

Thanks to recent advances in both hardware (e.g. smart
sensors, actuators, and low-power consuming chips [1])
and software (e.g. embedded operating systems, virtual-
ization technology, machine learning frameworks), AloT
is becoming into reality. Among many applicable areas,
Smart Home [2], Smart Factory [3], and Smart City [4] are
being at the forefront of AloT adoption.

As an Al-enabled technology, AloT also shares the typ-
ical two-stage process [5] shown in Fig. 1. In the first
stage, Al models are built using various machine learn-
ing algorithms with training data. In the context of AloT,
the training data are commonly collected from various
IoT devices. Then in the second stage, models are used
to make inferences from certain input. Generally, the two
stages can be called “Model Building” and “Model Infer-
encing’, respectively. A major challenge in AloT is that the
“Model Building” stage requires a significant amount of
data as well as processing capability to obtain the best Al

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00250-w&domain=pdf
http://orcid.org/0000-0003-4576-0524
mailto: ronggp@nju.edu.cn
http://creativecommons.org/licenses/by/4.0/

Rong et al. Journal of Cloud Computing (2021) 10:36

Training data Input

Model
Building

|
g

Algorithm
Fig. 1 The typical two-stage process of Al

Model
Inferencing

Al Model

Result

models [5], while most of the IoT devices cannot provide
sufficient resources to support such computing or storage
capability due to various constraints [6].

As depicted in Fig. 2a, a cloud-based paradigm seems to
be an ideal solution. Both “Model Building” and “Model
Inferencing” can be performed using the servers on the
cloud end with powerful and elastic computing and stor-
age resources, while the IoT devices only need to upload
data and receive decisions from the cloud end. How-
ever, with the ever-growing amount of data produced
by massive IoT devices, this cloud-based paradigm may
encounter a great challenge caused by the existing net-
work [7]. In other words, the network bandwidth and
communication latency between the devices and the dis-
tant cloud may become serious bottlenecks for highly
responsive AloT applications [6]. To gain low latency,

Page 2 of 14

modern AloT starts embracing edge computing [8-13],
an emerging paradigm that places computing and stor-
age resources on the edge of the network, which is away
from the servers on the cloud end, allowing a near real-
time and localized decision making. Consequently, an
edge-cloud collaborative paradigm of AloT is formed, as
depicted in Fig. 2b. In such a paradigm, devices are con-
nected to the edge servers nearby rather than distant
cloud servers. While “Model Building” is still performed
in the cloud, “Model Inferencing” is now offloaded to
the edge to achieve low-latency responses. Once Al mod-
els have been built in the cloud, they are delivered to
the edge. The edge end then uses the models to make
inferences from the data received from the IoT devices
and returns back the decisions to the IoT devices. Mean-
while, it also sends significant insights to the cloud.
Note that the edge still needs to send a large amount
of device data to the cloud for “Model Building’, but in
real-world applications, the frequency required for build-
ing models is usually much lower than that of using
models to make inferences. Hence, the edge-cloud col-
laboration finally is able to achieve a better performance
overall.

In this paper, we present an edge-cloud collaborative
computing platform, named Sophon Edge, that facili-
tates building AloT applications. The platform further
addresses the following challenges faced by developers in
practice:

¢ Heterogeneity. The inherent heterogeneity of the
devices in a large-scale IoT system makes the
connectivity and coordination process very difficult

e

Data
e
~

.. Decisions
Connectivity

Device
@ Data
e
Connectivity Decisions Model
Inferencing
Device Edge

Fig. 2 Two different paradigms of AloT

O o

Model Model
Building Inferencing

Cloud

(a) Cloud-based AloT

Insights
e

Model
Building

Models

Cloud

(b) Edge-cloud collaborative AToT

Rong et al. Journal of Cloud Computing

(2021) 10:36

Page 3 of 14

Pipeline

Input Operator

;

Processing Operator

Output Operator

Fig. 3 Generalized pipeline in AloT

Data 3 &
Source T = '@' Output

A I ~—
E.) by Database

[14]. Moreover, due to various protocols, the

e Accuracy. Algorithms used by Al need to be well

generated data usually have different formats, sizes,
and timestamps, which form a challenging task for
further processing, transmission, and storage [15].
Meanwhile, performing general computation on
servers with heterogeneous operating systems or
runtime also forms a non-ignorable aspect of the
challenge.

developed and tuned to understand and interpret
data so that more accurate decisions can be made
[16]. Additionally, due to the highly dynamic nature
of the physical world, a once trained AI model may
not perform well all the time, i.e., the models need to
be refined using the new-coming IoT data to achieve
better performance.

Table 1 Pre-implemented operators for structured data (partial.)

Category

Name

Usage

Input

Processing

Output

Time Series Database

Device Input

Filter

Sample

Time Window

Change Trigger

Aggregate

Custom Function

Apply Model

Device Output

Notification

The "Time Series Database” operator is used to observe certain data tables in a specified time series database
(such as InfluxDB). When new data is inserted into the table, the operator will be able to obtain the data
immediately and output it in a specific format to subsequent operators.

The “Device Input” operator provides real-time data access to a specified connected device on the Edge
Node. The product type of the device should be specified in the operator, which determines the format of
the data.

The “Filter” operator is used to filter the input data stream. The operator sets a conditional expression. Only
when the expression is true, the corresponding data will be forwarded to subsequent operators, otherwise,
it will be discarded.

The “Sample” operator samples the input data stream according to a specific step size as well as a time
interval. The operator can reduce the processing frequency of real-time data and thus optimize resource
usage.

The “Time Window" operator provides the function of batch forwarding the data arriving in a specified
period.

The “Change Trigger” operator monitors its input and only generates outputs when data changes occur.
This operator is suitable for data streams that have frequent data duplication in a period.

The "Aggregate” operator provides a variety of methods for aggregate computation on a data stream, such
as sum, count, mean, mode, etc., which can complete some common statistical tasks.

The “Custom Function” operator provides the ability to calculate data streams with user-defined functions.
The operator supports multiple custom computational expressions for each piece of data flowing through
the operator and merges the results of the computation into the final output data stream.

The “Apply Model” operator calls a certain Al model to make inferences upon its input, and outputs the
inferencing results. Note that the model to be called should have been already deployed on the Edge Node.

The “Device Output” operator provides the function of controlling devices, including setting the properties
and calling the services of certain devices.

The “Notification” operator provides a logging-like function that persists input data as messages on the Edge
Nodes. These messages can be set to different levels, including INFO, WARN, and ERROR. The notification
messages can be used as inputs for some operators.

Rong et al. Journal of Cloud Computing

(2021) 10:36 Page 4 of 14

Table 2 Pre-implemented operators for multimedia data (partial.)

Category Name Usage
Input File Input The “File Input” operator reads a video file from a specific device as the data source.

Real-time Stream Input The "Real-time Stream Input” operator binds a specific device using the RTSP or RTMP protocol and outputs
the real-time data stream to subsequent operators.

USB Camera Input The “USB Camera Input” operator reads and outputs data from a specific USB camera.

Processing Encode The “Encode” operator encodes the original video stream into a specific format, e.g. H.264, H.265, JPEG.

Decode The “Decode” operator decodes the encoded video or JPEG images to obtain raw video information.

Mux The “Mux" operator encapsulates the encoded video into a specific format, e.g. FLV, MP4.

Demux The “Demux” operator parses the input data into encoded video.

Resolution The “Resolution” operator transforms the resolution of the input video stream into a specific setting, e.g.
1280*720.

Frame Rate The “Frame Rate” operator limits the maximum number of frames per second of the input video stream.

Region Of Interest The “Region Of Interest” operator specifies a region in the input image or video stream, so that subsequent
“Apply Model” operators will only make inferences towards the specified region in the images. This avoids
unnecessary processing and saves resources.

Apply Model The “Apply Model” operator binds a specific Al model, and the input video stream is filtered somehow to get
the model input. Moreover, the results returned by the model are saved in the output video stream, such as
drawing recognition frames.

Output File Output The “File Output” operator saves the input video stream as a local file.

Alert The “Alert” operator treats its inputs as alerts and sends them to the cloud.

Our contributions can be summarized as the following:

e We present the computing model and the
architecture of Sophon Edge, an edge-cloud
collaborative AloT platform.

e e present the pre-implemented operators
supported in Sophon Edge, which saves development
and operation efforts for the user of the platform, i.e.,
the developers of various AloT applications.

e We present the process of model evolution and
updating using the Sophon Edge platform, which
helps to build agile and data-driven AloT
applications [17].

e We implement the Sophon Edge platform and
demonstrate its usability through a real-world use
case.

The rest of this paper is organized as follows: in “Related
work” section, we present the related work. The design of
Sophon Edge platform is elaborated in “The sophon edge
platform” section, while some in-depth discussions are
presented in “An application example” section. In “Dis-
cussion” section, we introduce a real-world use case and
demonstrates the usability of the platform. Finally, we
draw the conclusion of this work and discuss the future
work in “Conclusion” section.

Related work

A lot of research efforts have been made towards the
convergence of edge computing, Al, and the IoT. In this
section, we present these work briefly.

Edge computing for loT

Many comprehensive surveys on edge computing for
IoT have been carried out in recent years. Yu et al
[7] discussed the potential ability for integrating IoT
and edge computing as edge computing-based IoT, and
illustrated the advantages and disadvantages of edge
computing assisted IoT in transmission, storage, and
computation. Pan et al. [18] presented discussions on
the state-of-the-art efforts, key enabling technologies,
research topics, and typical IoT applications benefiting
from edge computing. Premsankar et al. [6] described
key IoT application scenarios that benefit from edge
computing, and carried out an experimental evalua-
tion to demonstrate the necessity of edge computing
to achieve a satisfactory quality of experience. Ai et al.
[19] analyzed three different edge computing technolo-
gies for 10T, i.e. mobile edge computing (MEC), cloudlets,
and fog computing. Ray et al. [1] presented a taxo-
nomic classification of industrial edge-IoT computing.
The authors also proposed a novel e-healthcare architec-

Rong et al. Journal of Cloud Computing (2021) 10:36

Page 5 of 14

|
|
|
|
|
|
|
|
Cloud | : ,
| In
| N
|
|
|
|
: Product/Pipeline/Al Model '
|
|
| Edge Node
|
Edge | q TS @
|
08
I]
|
| - Shared o .
: . Local peration
Device

JuSWATBUBIA

Edge Infrastructure

(b) Edge Node

Fig. 4 Platform architecture

{9
200

=]

Products

Edge/Hub
) @;&3
s oy
J ToR2

Pipelines

' Significant Data

Edge Node

Q- oo

GO
' Raw Data
J

Pipeline Management

Model Warehouse

Sunoyuoy

Product Management

jes]
=%
0Q
(¢}
z
o
=%
(¢
s
=
o
(i}
@
-
@
=
=

Cloud Infrastructure

(c) Edge Hub

ture that relies upon industrial elements of the edge-IoT
ecosystem.

Giang et al. [20] shared their experiences in building an
edge computing platform for IoT applications. Notably,
they used a distributed data flow programming model
which is proved to map well to edge computing. Lertsin-
srubtavee et al. [21] also introduced a lightweight edge
computing platform, addressing the computational needs
for local applications like smart homes and applications
with stringent Quality of Service (QoS) requirements.

Morabito et al. [22—24] conducted a series of stud-
ies inspecting the usage of lightweight virtualization (LV)
technologies (i.e. containers, and unikernels) in edge com-
puting for IoT. Due to the heterogeneous nature of the

edge devices and servers, it’s crucial to provide simple but
efficient configuration and instantiation methods, where
the virtualization makes sense.

Typically, computation on the resource-constrained
devices is offloaded to both the cloud and the edge. The
offloading to the cloud allows complicated processing,
while the offloading to the edge ensures lower latency
and battery consumption. Hence the offloading should
be performed in an appropriate manner to optimize the
execution time and energy consumption. Chen et al. [25]
proposed a framework that supports mobile applications
with the context-aware computation offloading capability.
Xu et al. [26] proposed a computation offloading method
for IoT-enabled cloud-edge computing. Chen et al. [27]

Rong et al. Journal of Cloud Computing (2021) 10:36

Page 6 of 14

Presentation Layer

WebSocket

ws
Publisher

Video RTSP/RTMP

Devices H264/H265 |
-------- 6828181 |
OCR UA/MQTT
"""" Modbus/CoAP

Protocol
Driver

MQTT
Publisher,

Writs

Persistence Layer

Persistence Layer

> network protocol flow
—" data flow

Fig. 5 Data flow in the Sophon Edge platform

Upload

mQTT Y

Publisher MQTT
Media -
Weriter

Upload

BEP
Receiver

3

proposed a dynamic computation offloading algorithm
(DCOA), which decomposes the optimization problem
into a series of subproblems, and solves these subprob-
lems concurrently in an online and distributed way. Shen
et al. [28] used multiple deep reinforcement learning
(DRL) agents to guide the deployed on IoT devices to

guide their own offloading decisions. Besides, federated
learning is utilized to train the DRL agents.

Applying Al to loT
Calo et al. [5] first illustrated that Al is being required
by IoT applications, followed by a discussion of different

" 1\ N
Edge Node Edge Hub
Al Backend
: AN\ 4. Deliver /
@ ! ! Synchronize Ve N
3. Save Model 2. Containerize
Local Model odel Model
Gateway Models Warehouse Image Training
@ 6. Get model
inputs
6. Call model
— T 8. Update /
7. Upload significant data trainingdata | @ | [559
Model — — . ini
Inferencing Data Insight Big Data Backend training data
.
- J J

Fig. 6 The process of model evolution and updating

Rong et al. Journal of Cloud Computing (2021) 10:36

Real-time Stream Input

l

Demux

l

Decode

| |
| |
| |
l
" RegonOfimens |
| |
| |
| |
|

l

Apply Model

l

Apply Model

l

Encode

l

Alert

Fig. 7 The pipeline used in this AloT application

approaches for applying Al to IoT. They further proposed
an architecture that preserves the advantages of both edge
processing and server-based/cloud-centric computing for
AT algorithms. Debauche et al. [29] proposed a new archi-

Page 7 of 14

tecture used to deploy at edge level microservices and
adapted artificial intelligence algorithms and models. Li
et al. [30] introduced deep learning for IoT into the edge
computing environment. Furthermore, the authors pro-
posed an offloading strategy to optimize the performance
of 10T deep learning applications with edge computing.
Xiong et al. [31] discussed some design challenges for
building a scalable and shared multi-tenant AloT platform
through two edge computing use cases. Chiu et al. [32]
leveraged federated learning technologies to tackle the
network bandwidth limitations and data privacy concerns
in an AIoT platform.

The sophon edge platform

In this section, we first present the computing model
adopted in the Sophon Edge platform. Then we elabo-
rate on the platform’s architecture. Finally, we illustrate
how the platform supports the continuous evolution and
updating of the AI models, i.e. the agile AloT.

Unified device model

In consideration of the wide variety of existing IoT
devices, the Sophon Edge platform introduces a unified
device model, called product. A product is an “abstract
class” of IoT devices, which declares certain properties or
behaviors. Properties refer to the data generated on sen-
sors, which are usually observations of their surroundings
(e.g. temperature, humidity). Behaviors are the available
actions of actuators. The product can also declare sub-
scribable events that indicate some significant changes
of a certain IoT device. Theoretically, the product is able
to model any type of IoT device. Note that the Sophon
Edge platform does not specify any “official” definition of
products, which means products can be defined by users
without any constraint. Nevertheless, devices that share
the same or similar functionalities are usually defined as
the same product in practice. For example, we can define
a product named “webcam” to cover various types of
cameras that can connect to the Internet.

With Sophon Edge, a user can first define several prod-
ucts and then bind each device to one or more products.
Specifically, the properties, behaviors, and events defined
in the product are bound to the corresponding data access
or operation interfaces provided by the IoT device.

Pipelined computation task

Every computation task in the Sophon Edge platform is
described as a pipeline, which consists of a series of data
operation steps. Each operation step of the pipeline is
called an operator. An operator is actually a function that
implements certain business logic, along with the declara-
tion of its input and/or output. In Sophon Edge, pipelines
are built through assembling operators. Figure 3 shows a
generalized pipeline in common AloT applications. The

Rong et al. Journal of Cloud Computing (2021) 10:36

Fig. 8 lllustration of the “Region Of Interest” operator

pipeline starts with an “Input” operator that accesses data
on a certain device. Then a “Processing” operator is used
to process the data, e.g., using AI models to make infer-
ences. Finally, an “Output” operator handles the results.
Particularly, this “Output” operator may store the signif-
icant data, or insights, to a certain database, or operates
certain devices according to the decisions made.

To help AloT application developers to build their
own pipelines efficiently, the Sophon Edge platform pro-
vides a programming framework that integrates many
pre-implemented operators, i.e. general-purpose utility
functions. Tables 1 and 2 list the major pre-implemented
operators for structured and multimedia(unstructured)
data, respectively. These operators can save lots of devel-
opers’ coding efforts and help them focus more on the
construction of the overall computing procedure.

By adopting pipelines, not only the programming of
complicated computation tasks can be simplified, but the
parallelism of the computation can also be improved.
Moreover, as the pipeline is actually an abstraction, mul-
tiple pipeline instances can be deployed through dynamic
binding with different contexts (e.g. devices, AI mod-
els, databases), which is rather flexible. Remind that IoT

Fig. 9 A detected sewage dumping behavior

Page 8 of 14

devices are abstracted into products on Sophon Edge
platform. Such abstraction separates concrete devices
from a specific pipeline, allowing a single pipeline to be
deployed multiple times to access different devices under
the same product, with the only effort of some simple
configurations. Furthermore, if the input device needs
to be replaced or upgraded, the pipeline can keep run-
ning after the device change as long as the new device
belongs to the same product defined on the Sophon Edge
platform.

Edge-cloud collaborative architecture

Figure 4a shows a high level overview of the architecture
of the Sophon Edge platform. As can be seen, the plat-
form consists of two major parts, i.e. Edge Nodes and Edge
Hubs.

Edge Nodes are computing servers that are deployed
at the network edge. The Edge Node is mainly respon-
sible for managing the connection and operation on IoT
devices, e.g., performing edge computing, forwarding sig-
nificant data to the cloud, etc. The internal architecture of
the Edge Node is portrayed in Fig. 4b. To facilitate device
access, the platform supports a variety of communica-
tion protocols, including Modbus, MQTT, COAP, AMQP,
ONVIE RTSP, RTMP, UVC, OPCUA, HLS, GB28281, etc.
which covers the current mainstream devices in the IoT
field. Multiple drivers, brokers, and clients for these pro-
tocols are implemented in the Sophon Edge platform. The
raw data of IoT devices are gathered and transformed into
a data stream which facilitates subsequent data process-
ing through the exploitation of a multimedia gateway or a
message bus. The multimedia gateway collects real-time
stream media data (e.g. images, videos) from multime-
dia devices, while the message bus collects structured
data from ordinary IoT devices. In terms of computing,
the Edge Node manages a certain number of pipelines
that are either received from the cloud or created locally.
The instances of the pipelines are executed by the stream
processing engine. The Edge Node also manages sev-
eral Al models received from the cloud, and these mod-
els can be used to make inferences in the deployed
pipeline instances. The edge infrastructure mainly sup-
ports local data storage and transportation to the
cloud end.

Edge Hubs are indeed cloud servers, which manage the
Edge Nodes and perform computing-intensive tasks such
as model training. Likewise, Fig. 4c shows the internal
architecture of the Edge Hub. The Edge Hub also manages
pipelines, which are called shared pipelines. As the scale of
an AIoT application increases, the number of Edge Nodes
could increase, making it possible for the same computa-
tion task to run on multiple Edge Nodes. It would be costly
if we had to create at least one pipeline on each Edge Node.
To address this issue, these shared pipelines are managed

Rong et al. Journal of Cloud Computing (2021) 10:36

Page 9 of 14

<<RTD>>
Min: 0.169 ms
Avg: 1.479 ms
Max: 10.988 ms
Mdev: 3.205 ms

%,

Camera 1

<<RTD>>

<<Elapsed Time>>
Avg: 0.5 s (2 frame/s)

‘El Min: 0.164 ms
Avg: 2.479 ms
™ Max: 11.988 ms

<<Elapsed Time>>
Avg: 2s

Fig. 10 Latency of this AloT application

) \ <<RTD>> <<RTD>>
Camera 2 Mdev: 3405mS | ™ oy | Min: 0.316ms O Min 0359ms e
— Avg:1.3499ms — [OBEES - Avg: 0391ms |--» [pe——
<<RTD>> — % i Max: 8.933 ms o= Max: 0.451 ms E ‘
Min: 0.381 ms / Mdev: 2.561 ms Mdev: 0.037 ms
Avg: 22.445 ms Gateway Edge Node Edge Hub
‘ﬁl __— Max: 30.204 ms
Mdev: 8.047 ms N y N /
Camera 3 N N
<<RTD>> <<Elapsed Time>> <<FElapsed Time>>
Min: 0.142 ms Avg: 1s Avg: 1s
Avg: 17.183 ms
Max: 148.237 ms
‘ﬁl Mdev: 43.786 ms
Camera 4

on the Edge Hub and delivered to the Edge Nodes later
on. The model warehouse stores all the trained models as
container images that can be quickly deployed on the Edge
Nodes. The aforementioned products are also managed on
the Edge Hub since the definition of products are usually
able to be shared by all the Edge Nodes in a single AloT
application. The cloud infrastructure takes the responsi-
bility for computing, as it usually integrates a big data
backend (e.g. Spark) for data processing as well as an Al
backend (e.g. Tensorflow) for model training. In addition,
a monitoring mechanism is also implemented to monitor
the overall state of the AIoT application.

Figure 5 describes the data flow in the Sophon Edge plat-
form. The original device data is sent to the Device Bus
on the Edge Node and converted into MQTT messages.
These MQTT messages are not only sent as input to the
pipeline deployed on the Edge Node, but also being stored
in the local database or file system in real-time. If nec-

essary, these MQTT messages will also be displayed to
the user through WebSocket. Pipelines deployed on the
Edge Node will process the MQTT messages and output
the results as new MQTT messages. The output will be
pushed to the message queue of the Edge Hub through an
MQ publisher, and further stored on the cloud database.
Besides, the non-real-time data (mainly media files, e.g.
pictures, videos) will also be sent to the Edge Hub.

Agile AloT

Since device data is being generated continuously in
most AloT applications, the data set used for model
training thus should be frequently updated. Besides,
as business requirements change, the performance of
the model may also need to be improved, and even
new models are required. Therefore, AloT applications
require continuous model evolution and updating, i.e. the
agile AloT.

Rong et al. Journal of Cloud Computing (2021) 10:36

160

140

120

100

LOC

80
60
40
20
0 L

Without Operators With Operators

Fig. 11 Lines of Code (LOC) required to build the pipeline

Figure 6 presents the entire process of model evolu-
tion and updating on the Sophon Edge platform. Sup-
pose that some training data have been stored on the
Edge Hub. First, the training data will be sent to the Al
backend of the Edge Hub for model training. Once the
training is completed, a model image will be built via
the container technologies. Then the model image will
be saved on the Edge Hub’s model warehouse. Devel-
opers can deliver certain models to certain Edge Nodes
on-demand, and the delivered models can be further
updated through synchronization with the latest version
of the models on the Edge Hub. After getting the model
inputs through processing the raw data generated by IoT
devices, the Edge Node can use certain models on the
local to perform inferences. The inference results will
be uploaded to the cloud together with the correspond-
ing input data. After manual inspection, these data can
be added to the training set as new labels and features.
Through the continuous updates of training data, Al
models are thus updated in an agile manner. As can be
seen in Fig. 6, the entire process forms a closed loop,
which allows the AIoT application to evolve in an iterative
manner.

An application example

In this section, we present a real-world application exam-
ple to demonstrate the effectiveness and efficiency of
using the Sophon Edge platform.

Page 10 of 14

Background
In many cities in China, diversion of rain and sewage
water is required by the environment-related administra-
tions. However, the implementation of this policy requires
quick response to capture the undue behavior such as
direct dumping sewage into the rainwater pipe network
on the street, especially those sewage dumping behav-
iors conducted by the people in the shops nearby since
the relatively large volume of sewage they dump in one
time. The challenge is that such behavior normally hap-
pens in seconds, making it difficult to be observed and
captured on the spot. Although surveillance devices on
street may provide real-time video, manually capture the
undue behavior(e.g., one staff staring at the screen all the
time) of sewage dumping through video is not only boring
but also inefficient.

To address the above problem, we built an AloT applica-
tion that automatically detects and alerts sewage dumping
behavior based on the Sophon Edge platform.

Implementation

First, we set up the Sophon Edge platform and integrate
the platform with the city’s existing monitoring system.
Usually, the street cameras have been connected to the
gateways in the existing system, and these gateways pro-
vide interfaces to access the real-time video stream in
different cameras. Then we deployed several Edge Nodes
near these gateways, and one Edge Hub in the central
server to support a new AloT application to equip the
existing cameras with the capability to detect sewage
dumping behaviors in a timely manner. A noteworthy
point is that the number of Edge Nodes to be deployed
requires subtle consideration in practical applications, as
there are normally a great number of street cameras in a
city, it is important to keep a balance between cost and
performance.

The next step is model training. We trained two Al
models on the Edge Hub to detect the sewage dumping
behavior (assuming that there was an available training
set). Specifically, two computer vision (CV) models were
trained to implement the task. The first model is used
for “intrusion detection’, i.e., to detect whether some-
one is approaching the drain. The second model is used
for “activity recognition’) i.e., to recognize the activity of
sewage dumping. Note that these models can achieve
better accuracy through model evolution and updating
mentioned in the “Agile AIoT” section.

After the models are built, we defined the prod-
uct that represents the street cameras, and built the
pipeline shown in Fig. 7, utilizing the pre-implemented
operators. The “Real-time Stream Input” operator is
used to get access to the video stream. Through the
“Demux” and “Decode” operators, images are retrieved
from the video and fed to the input required by the

Rong et al. Journal of Cloud Computing (2021) 10:36

Al models. The ‘Region Of Interest” operator speci-
fies that only the area around the drain will be pro-
cessed in subsequent operators, as illustrated in Fig. 8,
which indeed clips the image and thus reduces the
input size to improve efficiency and save resources. Two
“Apply Model” operators in which the two aforemen-
tioned AI models are used to make inferences from the
clipped images. Only when both models output pos-
itive, that is, the sewage dumping behavior is recog-
nized, the “Encode” operator encodes the current image
into JPEG format, and the “Alert” operator further sends
the image file to the cloud and raised a corresponding
alert.

To provide a precise concept, we use pseudo-code to
show the key elements of implementation to the AloT
application based on the Sophon Edge platform, which is
presented in Code 1. The first part is to create a product,
the second snippet is for binding the devices, and the last
part is to create the corresponding pipeline.

public void main() {

// Create the product
Product cam = Product.name ("camera")
.property ("video", Property.
— STREAM_ DATA)
.create () ;

// Bind the cameras to the product
for (String uri: cameraURIs) ({
cam.addPropertyBinding ("video", uri) ;

// Create the pipeline
Pipeline p = Pipeline.name ("sewage dumping
— behavior detection")

.streamInput (cam)
.demux ()
.decode ()
.setProcessRegion (regions)
.applyModel (intrusionDetectionModel)
.applyModel (activityRecognitionModel)
.encode ()
.alert (edgeHubURTI)
.create () ;

}

Code 1 Pseudo key implementation of the application

As the last step, we deployed instances of the pipeline
on the Edge Nodes. By now this AloT application has
been successfully built and deployed. Figure 9 shows a
detected example during the field test phase. With these
captured images, administrators are able to capture such
undue behaviors effectively. Moreover, manual efforts are
reduced by large and the environment is thus well pro-
tected.

Results
As the result, the whole application reaches an accuracy
of 85% in detecting sewage dumping behaviors.

To portray a concept of the latency of this AloT appli-
cation, we randomly selected 4 street cameras and the

Page 11 of 14

corresponding gateway, Edge Node, and Edge Hub as well,
i.e., 7 nodes in total to form a small network for eval-
uation. We measured the network latency in terms of
Round-Trip Delay (RTD) as well as the elapsed time of
data transmission between the nodes and pipeline pro-
cessing on the Edge Node. The results are presented in
Fig. 10. The average elapsed time of data transmission
from the street cameras to the gateway, from the gate-
way to the Edge Node, and from the Edge Node to the
Edge Hub is 2 seconds, 1 second, and 1 second, respec-
tively. In this sense, the total elapsed time from a sewage
dumping behavior being captured by a camera to a corre-
sponding alert being raised on the cloud server (i.e. Edge
Hub) is 4.5 seconds on average. To be specific, the pipeline
shown in Fig. 7 takes about 0.5 seconds to process a
single frame.

Regarding the efficiency, Fig. 11 shows that the pre-
implemented operators help to reduce the lines of code
(LOC) required to build the pipeline from 150 on aver-
age down to around 20, indicating that the Sophon
Edge platform does help to save developers’ coding
efforts.

Discussion

In this section, we present some in-depth discussions
about several advantages and limitations of the Sophon
Edge platform.

Advantages

The Sophon Edge platform was designed with the pri-
mary purpose of improving the efficiency of building AloT
applications. The platform provides a practical framework
for developers to define computation tasks. The computa-
tion tasks are described as pipelines, which can be simply
built through assembling several pre-implemented opera-
tors without having to write massive lines of source code
on their own, which is rather efficient. Developers can
concentrate on the overall computing procedure and bet-
ter support business needs. Moreover, user-implemented
operators are also supported to meet some advanced
requirements in some special scenarios. The abstract
pipelines also give the platform considerable flexibility, as
a single pipeline can be instantiated multiple times with
different configurations.

Managing devices is also efficient with the Sophon
Edge platform. The mainstream IoT communication pro-
tocols are all covered so that most of the devices in
current production environment can be quickly con-
nected to the platform (see Table 3). The introduction
of the product concept further facilitates data access to
devices. Besides, the product allows a single pipeline
to be deployed upon different individual devices with
the same or similar function, and to keep working after
device change under the same product. This promotes

Rong et al. Journal of Cloud Computing (2021) 10:36

Table 3 Comparison of Sophon Edge and other AloT platforms

Page 12 of 14

AWS loT Alibaba Cloud Tencent Cloud Baidu Tiangong Sophon Edge
AloT Native loT Hub loT Hub
Device Access MQTT v v v v v
COAP - v v v v
HTTP v v v - v
Others LoRaWAN - - - Modbus/OPCUA/...
Computing Rule-based v v v v v
Complex v v v v v
Data Storage Edge - - - v v
Cloud v v v v v
Al Model Train Cloud Cloud Cloud Cloud Cloud
Inference Cloud Edge Edge Edge Edge

the portability and availability of the pipeline, adapting
to the heterogeneous and dynamic nature of the IoT
environment.

In traditional programming, the same or similar code
snippets commonly exist. Moving and merge these code
into a single place can greatly benefit the maintainabil-
ity of the software. Likewise, the same or similar pipelines
could exist on multiple edge servers in an IoT environ-
ment. Thanks to the edge-cloud collaboration, pipelines
can be shared in the cloud, and reused to different edge
servers on-demand. This also improves efficiency in a
sense.

Notably, as the “brain” of the overall application, the Al
models can continuously evolve in the platform through a
close loop of model training and performance feedback. In
other words, the edge servers can always be equipped with
the latest model to make better inferences in its changing
environment.

Last but not least, the application can tolerate a cer-
tain degree of network disconnection between the devices
and the cloud, as the edge can continue to perform local-
ized decision making. After the network is restored, the
data can be continuously transmitted and synchronized.
In response to data privacy issues, the edge only uploads
desensitized data to the cloud, reducing the risk of privacy
data leakage.

The status of the Sophon edge platform

The Sophon Edge platform is still evolving currently. We
provide a rough comparison of some similar platforms to
show the general status of existing AloT platforms. Since
it is not feasible to deploy and verify all the platforms, we
extract the above information from technical reports and
white papers as well. The results are presented in Table 3
based on four aspects, i.e., device access (communica-
tion protocols), computing, data storage and Al models.

In general, the Sophon Edge platform wins in its
comprehensive functions, which is extremely valuable,
given the heterogeneous nature of IoT environment.

Conclusion

The AloT combines the popular Al and IoT technologies,
aiming to build a connected ecosystem with advanced
artificial intelligence. Currently, the best solution for
AloT seems to be the edge-cloud collaborative computing
paradigm. While the cloud exploits its sufficient comput-
ing and storage resources to train sophisticated machine
learning models, frequent but less complicated computa-
tion tasks are offloaded to the edge of the IoT network
to provide low latency services, allowing the end users
of the AloT application to get near real-time responses,
which really improves the user experience. The rapid
development of multiple enabling technologies also paves
the way for the AloT applications. Nevertheless, devel-
opers face difficulties when building AloT applications
in practice, due to the diversity of devices, the context-
dependent characteristics of application logic, and some
other reasons.

The Sophon Edge platform is proposed as a promis-
ing solution to these challenges. The pipeline-based
computing model facilitates the programming of com-
putation tasks, and allows the computing to scale up
flexibly across multiple edge servers and even different
IoT devices. The edge-cloud collaboration further allows
the AI models to evolve with the continuously gener-
ated device data and quickly respond to the applica-
tion logic change. The real-world Smart City application
built on the Sophon Edge demonstrates the effective-
ness and usability of the platform. A great deal of cod-
ing efforts has been saved in developing the application
with the help of the platform’s abundant pre-implemented
operators.

Rong et al. Journal of Cloud Computing (2021) 10:36

As for future work, an effective computation offload-
ing scheme can be utilized to balance the computing and
storage load on every edge server to maximally exploit
the available resources. Distributed machine learning,
especially federate learning in terms of data privacy-
preserving, is another promising future work to achieve
better efficiency, as currently the AI model is trained in a
centralized manner on the Sophon Edge platform.

Abbreviations

Al: Artificial Intelligence; 1oT: Internet of Things; AloT: Artificial Intelligence of
Things; MEC: Mobile Edge Computing; QoS: Quality of Service; LV: Lightweight
Virtualization; DCOA: Dynamic computation offloading algorithm; DRL: Deep
Reinforcement Learning; MQTT: Message Queuing Telemetry Transport; COAP:
Constrained Application Protocol; AMQP: Advanced Message Queuing
Protocol; ONVIF: Open Network Video Interface Forum; RTSP: Real Time
Streaming Protocol; RTMP: Real-Time Messaging Protocol; UVC: USB Video
device Class; OPCUA: OPC Unified Architecture; HLS: HTTP Live Streaming

Acknowledgments

The authors would like to express their gratitude to engineers in Transwarp
Inc. for providing detailed information of the Sophon Edge platform and the
presented real-world application.

Authors’ contributions

GR(corresponding author): Contribution for this work includes research
process planning and execution, supervision, writing-review, and polishing.
YX: Contribution for this work includes conceptualization, investigation,
writing-draft, and editing. XT & HF: Their contribution includes managing
required software, and providing resources such as documentations and other
related materials. All authors read and approved the final manuscript.

Funding

This work is jointly supported by the National Key Research and Development
Program of China (No.2019YFE0105500) and the Research Council of Norway
(No. 309494), as well as the National Natural Science Foundation of China
(Grants N0.62072227,61802173), Intergovernmental Bilateral Innovation
Project of Jiangsu Province (BZ2020017).

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details

The Joint Laboratory of Nanjing University and Transwarp on Data
Technology, Nanjing University, Nanjing, China. 2The State Key Laboratory of
Novel Software Technology, Nanjing University, Nanjing, China. 3Transwarp
Inc, Shanghai, China.

Received: 11 January 2021 Accepted: 7 June 2021
Published online: 02 July 2021

References

1. Ray PP, Dash D, De D (2019) Edge computing for internet of things: A
survey, e-healthcare case study and future direction. J Netw Comput Appl
140:1-22. https://doi.org/10.1016/j,jnca.2019.05.005

2. Ricquebourg V, Menga D, Durand D, Marhic B, Delahoche L, Loge C
(2006) The smart home concept: our immediate future. In: 2006 1st IEEE
International Conference on E-learning in Industrial Electronics. IEEE.
pp 23-28. https:/doi.org/10.1109/ICELIE.2006.347206

3. Lucke D, Constantinescu C, Westkamper E (2008) Smart factory-a step
towards the next generation of manufacturing. In: Manufacturing
Systems and Technologies for the New Frontier. Springer, London.
pp 115-118. https://doi.org/10.1007/978-1-84800-267-8_23

20.

22.

23.

24.

25.

26.

Page 13 of 14

Schaffers H, Komninos N, Pallot M, Trousse B, Nilsson M, Oliveira A (2011)
Smart cities and the future internet: Towards cooperation frameworks for
open innovation. In: The Future Internet Assembly. Springer, Berlin,
Heidelberg. pp 431-446. https://doi.org/10.1007/978-3-642-20898-0_31
Calo SB, Touna M, Verma DC, Cullen A (2017) Edge computing
architecture for applying ai to iot. In: 2017 IEEE International Conference
on Big Data (Big Data). [EEE. pp 3012-3016. https://doi.org/10.1109/
BigData.2017.8258272

Premsankar G, Di Francesco M, Taleb T (2018) Edge computing for the
internet of things: A case study. IEEE Internet Things J 5(2):1275-1284.
https://doi.org/10.1109/JI07.2018.2805263

Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, Yang X (2017) A survey on
the edge computing for the internet of things. IEEE Access 6:6900-6919.
https://doi.org/10.1109/ACCESS.2017.2778504

Shi W, Dustdar S (2016) The promise of edge computing. Computer
49(5):78-81. https://doi.org/10.1109/MC.2016.145

ShiW, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and
challenges. IEEE Internet Things J 3(5):637-646. https://doi.org/10.1109/
JIOT.2016.2579198

Varghese B, Wang N, Barbhuiya S, Kilpatrick P, Nikolopoulos DS (2016)
Challenges and opportunities in edge computing. In: 2016 IEEE
International Conference on Smart Cloud (SmartCloud). IEEE. pp 20-26.
https://doi.org/10.1109/SmartCloud.2016.18

El-Sayed H, Sankar S, Prasad M, Puthal D, Gupta A, Mohanty M, Lin C-T
(2017) Edge of things: The big picture on the integration of edge, iot and
the cloud in a distributed computing environment. IEEE Access
6:1706-1717. https://doi.org/10.1109/ACCESS.2017.2780087
Satyanarayanan M (2017) The emergence of edge computing. Computer
50(1):30-39. https://doi.org/10.1109/MC.2017.9

Khan WZ, Ahmed E, Hakak S, Yagoob |, Ahmed A (2019) Edge computing:
A survey. Future Generation Computer Systems 97:219-235. https://doi.
org/10.1016/jfuture.2019.02.050

Atlam HF, Walters RJ, Wills GB (2018) Intelligence of things: opportunities
& challenges. In: 2018 3rd Cloudification of the Internet of Things (CloT).
IEEE. pp 1-6. https://doi.org/10.1109/CIOT.2018.8627114

Zhang J, Tao D (2020) Empowering things with intelligence: A survey of
the progress, challenges, and opportunities in artificial intelligence of
things. IEEE Internet Things J. https://doi.org/10.1109/JI0T.2020.3039359
Katare G, Padihar G, Quereshi Z (2018) Challenges in the integration of
artificial intelligence and internet of things. Int J Syst Softw Eng 6(2):10-15
Wang S, Hu Y, Wu J (2020) Kubeedge. ai: Ai platform for edge devices.
arXiv preprint arXiv:2007.09227

Pan J, McElhannon J (2017) Future edge cloud and edge computing for
internet of things applications. IEEE Internet Things J 5(1):439-449

Ai'Y, Peng M, Zhang K (2018) Edge computing technologies for internet
of things: a primer. Digit Commun Netw 4(2):77-86. https://doi.org/10.
1016/j.dcan.2017.07.001

Giang NK, Lea R, Blackstock M, Leung VC (2018) Fog at the edge:
Experiences building an edge computing platform. In: 2018 IEEE
International Conference on Edge Computing (EDGE). IEEE. pp 9-16.
https://doi.org/10.1109/EDGE.2018.00009

Lertsinsrubtavee A, Ali A, Molina-Jimenez C, Sathiaseelan A, Crowcroft J
(2017) Picasso: A lightweight edge computing platform. In: 2017 IEEE 6th
International Conference on Cloud Networking (CloudNet). IEEE. pp 1-7.
https://doi.org/10.1109/CloudNet.2017.8071529

Morabito R, Beijar N (2016) Enabling data processing at the network edge
through lightweight virtualization technologies. In: 2016 IEEE International
Conference on Sensing, Communication and Networking (SECON
Workshops). IEEE. pp 1-6. https://doi.org/10.1109/SECONW.2016.7746807
Morabito R (2017) Virtualization on internet of things edge devices with
container technologies: A performance evaluation. IEEE Access
5:8835-8850. https://doi.org/10.1109/ACCESS.2017.2704444

Morabito R, Cozzolino V, Ding AY, Beijar N, Ott J (2018) Consolidate iot
edge computing with lightweight virtualization. [EEE Netw 32(1):102-111.
https://doi.org/10.1109/MNET.2018.1700175

Chen X, Chen S, Zeng X, Zheng X, Zhang Y, Rong C (2017) Framework for
context-aware computation offloading in mobile cloud computing. J
Cloud Comput 6(1):1. https://doi.org/10.1186/513677-016-0071-y

Xu X, Liu Q, Luo 'Y, Peng K, Zhang X, Meng S, Qi L (2019) A computation
offloading method over big data for iot-enabled cloud-edge computing.

https://doi.org/10.1016/j.jnca.2019.05.005
https://doi.org/10.1109/ICELIE.2006.347206
https://doi.org/10.1007/978-1-84800-267-8_23
https://doi.org/10.1007/978-3-642-20898-0_31
https://doi.org/10.1109/BigData.2017.8258272
https://doi.org/10.1109/BigData.2017.8258272
https://doi.org/10.1109/JIOT.2018.2805263
https://doi.org/10.1109/ACCESS.2017.2778504
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.1109/ACCESS.2017.2780087
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1109/CIOT.2018.8627114
https://doi.org/10.1109/JIOT.2020.3039359
https://doi.org/10.1016/j.dcan.2017.07.001
https://doi.org/10.1016/j.dcan.2017.07.001
https://doi.org/10.1109/EDGE.2018.00009
https://doi.org/10.1109/CloudNet.2017.8071529
https://doi.org/10.1109/SECONW.2016.7746807
https://doi.org/10.1109/ACCESS.2017.2704444
https://doi.org/10.1109/MNET.2018.1700175
https://doi.org/10.1186/s13677-016-0071-y

Rong et al. Journal of Cloud Computing

27.

28.

29.

30.

31

32.

(2021) 10:36

Futur Gener Comput Syst 95:522-533. https://doi.org/10.1109/JI0T.2017.
2767608

ChenY, Zhang N, Zhang Y, Chen X (2018) Dynamic computation
offloading in edge computing for internet of things. IEEE Internet Things J
6(3):4242-4251. https://doi.org/10.1109/JI0T.2018.2875715

Shen S, Han Y, Wang X, Wang Y (2019) Computation offloading with
multiple agents in edge-computing—supported iot. ACM Trans Sensor
Netw (TOSN) 16(1):1-27. https://doi.org/10.1145/3372025

Debauche O, Mahmoudi S, Mahmoudi SA, Manneback P, Lebeau F (2020)
A new edge architecture for ai-iot services deployment. Procedia Comput
Sci 175:10-19. https://doi.org/10.1016/j.procs.2020.07.006

Li H, Ota K, Dong M (2018) Learning iot in edge: Deep learning for the
internet of things with edge computing. IEEE Netw 32(1):96-101. https:.//
doi.org/10.1109/MNET.2018.1700202

Xiong J, Chen H (2020) Challenges for building a cloud native scalable
and trustable multi-tenant aiot platform. In: 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE. pp 1-8

Chiu T-C, Shih Y-Y, Pang A-C, Wang C-S, Weng W, Chou C-T (2020) Semi-
supervised distributed learning with non-iid data for aiot service platform.
IEEE Internet Things J. https://doi.org/10.1109/JI0T.2020.2995162

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 14 of 14

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1109/JIOT.2017.2767608
https://doi.org/10.1109/JIOT.2017.2767608
https://doi.org/10.1109/JIOT.2018.2875715
https://doi.org/10.1145/3372025
https://doi.org/10.1016/j.procs.2020.07.006
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/JIOT.2020.2995162

	Abstract
	Keywords

	Introduction
	Related work
	Edge computing for IoT
	Applying AI to IoT

	The sophon edge platform
	Unified device model
	Pipelined computation task
	Edge-cloud collaborative architecture
	Agile AIoT

	An application example
	Background
	Implementation
	Results

	Discussion
	Advantages
	The status of the Sophon edge platform

	Conclusion
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

