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Abstract

Modern datacenters provide a wide variety of application services, which generate a mix of delay-sensitive short flows
and throughput-oriented long flows, transmitting in the multi-path datacenter network. Though the existing load
balancing designs successfully make full use of available parallel paths and attain high bisection network bandwidth,
they reroute flows regardless of their dissimilar performance requirements. The short flows suffer from the problems
of large queuing delay and packet reordering, while the long flows fail to obtain high throughput due to low link
utilization and packet reordering. To address these inefficiency, we design a fine-grained load balancing scheme,
namely TR (Traffic-aware Rerouting), which identifies flow types and executes flexible and traffic-aware rerouting to
balance the performances of both short and long flows. Besides, to avoid packet reordering, TR leverages the reverse
ACKs to estimate the switch-to-switch delay, thus excluding paths that potentially cause packet reordering. Moreover,
TR is only deployed on the switch without any modification on end-hosts. The experimental results of large-scale NS2
simulations show that TR reduces the average and tail flow completion time for short flows by up to 60% and 80%, as
well as provides up to 3.02x gain in throughput of long flows compared to the state-of-the-art load balancing schemes.
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Introduction

Guaranteeing application performance is crucial for pro-
viding good user experience in datacenters. Tons of
studies have reported that optimizing the transmission
performance of datacenter network (DCN) is the key
[1-6]. Therefore, to boost the network capacity thus
speeding up data transfer, modern DCNs are usually orga-
nized in multi-rooted tree topologies with rich parallel
paths, such as leaf-spine [7-11], and split the applica-
tion traffic among multiple available paths. Though large
bisection network bandwidth has been achieved by this
way, how to improve the transmission performance of
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application traffic by resorting to efficient load balancing
still remains elusive.

Equal Cost MultiPath (ECMP) [12] is the most typical
flow-level load balancing scheme in production datacen-
ter, but is far from efficient because of hash collision and
the inability to reroute paths [7]. Random Packet Spraying
(RPS) [11] and DRB [13] adopts fine-grained rerouting,
hence are more flexible and efficient than ECMP. How-
ever, they are oblivious to path condition thus suffering
from serious packet reordering. LetFlow [8] and Presto
[14] make a good balance between packet reordering and
link utilization by adopting per-flowlet and per-flowcell
switching granularity to reroute flows. Nonetheless, both
of them are inherently passive and fail to timely react
to the change of path condition. What’s more, none of
the above schemes is aware of the mixed heterogeneous
traffic, thereby leading to the unsatisfied flow-level trans-
mission performance.
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Current datacenter supports a large number of soft real-
time applications, including advertising, recommender
system, retail and web search [6, 15, 16]. They generate
huge amounts of data flows with varying sizes and dissim-
ilar performance requirements. Many works have shown
that these heterogeneous data flows take the form of a
heavy tail distribution, i.e., more than 80% delay-sensitive
short flows containing only about 10% data mix with less
than 20% throughput-oriented long flows possessing near
90% data [17-19]. Therefore, when short and long flows
coexist and compete for the bandwidths of parallel paths,
their diverse performance requirements put the existing
load balancing schemes in a dilemma.

On the one hand, fine-grained load balancing achieves
uniform load distribution, which contributes to provid-
ing relatively low queuing delay for short flows. How-
ever, they easily result in serious packet reordering,
greatly impairing the transmission performances of both
short and long flows. On the other hand, coarse-grained
load balancing effectively eliminates packet reorder-
ing, while easily causes the unbalanced load distribu-
tion and low link utilization. Some paths are highly
congested, but the remained ones are unused. Once
some unlucky short flows enter the congested paths,
their flow completion times are inevitably increased,
resulting in large tail latency. Besides, casually select-
ing path regardless of flow types and path condi-
tions when rerouting fails to attain efficient bandwidth
allocation.

Therefore, in this paper, we first investigate the key fac-
tors that impact the transmission performances of short
and long flows in load balancing. Then, we propose a
fine-grained load balancing scheme TR, which identifies
flow types and avoids packet reordering, as well as car-
ries out flexible and traffic-aware rerouting to balance the
performances of both short and long flows.

Our contributions are summarized as follows:

e We conduct extensive simulation-based studies to
show that adopting inflexible rerouting cannot
provide low latency for short flows and high
throughput for long flows simultaneously.

® e propose TR to improve the transmission
performances of short and long flows. TR first
leverages the reverse ACKs to estimate the switch-to-
switch delay, thus excluding paths that potentially
cause packet reordering. Then, TR performs flexible
and traffic-aware rerouting to balance the
performances of both short and long flows.

e We run large-scaled NS2 simulation tests to evaluate
the performance of TR. The results show that TR
effectively reduces the average and tail flow
completion time of short flows by up to 60% and 80%,
as well as increases the throughput of long flows by
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up to 3.02x compared with the state-of-the-art
datacenter load balancing schemes.

The rest of the paper is organized as follows. We present
the design motivation in Design motivation section.
The algorithm and details of TR are elaborated in
TR design section. We make performance evaluation in
Performance evaluation section, and discuss the related
works in Related works section. Finally, we offer conclud-
ing remarks in Conclusion section.

Design motivation

In this section, we investigate the key factors impact the
transmission performance of short and long flows in load
balancing. To illustrate the problem, we conduct extensive
NS2-based simulation tests and choose ECMP [12], Let-
Flow [8], and RPS [11] as the representatives of flow-level,
flowlet-level, and packet-level load balancing schemes,
respectively. The network topology used in the tests is
leaf-spine.

As shown in Fig. 1, two groups of hosts (each has
10 hosts) are connected via two leaf switches, ten spine
switches, and many links. The switch buffer size is set as
250 packets [6]. We randomly choose 5 parallel paths as
the bad paths, while the remained 5 paths are the good
paths. Each link of the good paths is with 1Gbps band-
width and 25us propagation delay, and thus the round
trip propagation delay (RTT) of good paths between two
groups is 200us. For the bad paths, we gradually increase
the propagation delay of their links to enlarge the degree
of topology asymmetry. Therefore, the ratio of bad path’s
RTT to good path’s RTT varies from 1.5 to 3.5. In our
tests, the hosts in Group 1 send 100 DCTCP flows gen-
erated based on Data Mining workload (see Table 1) to
the hosts in Group 2 by following a Poisson process.
The threshold of flowlet using in LetFlow is set as 500us
[8]. We evaluate the performance of three representative
schemes in terms of the average flow completion times
(AFCTs) of short flows (<100KB), the total throughput
of long flows (>100KB) [17, 18, 20], average queuing
delay, the ratio of retransmission packets caused by packet
reordering, etc.

In Fig. 2(a), due to using fine-grained packet scattering,
traffic under RPS is evenly distributed to all the available
paths, hence the short flows experience the lowest queu-
ing delay. Nonetheless, flows in the asymmetric scenario
also have a high risk of experiencing packet reordering,
which confuses the control logic of TCP stack deployed
on end-hosts, generating many extra retransmission pack-
ets. As shown in Fig. 2(b), the short flows under RPS
always have much higher retransmission ratio across all
the test cases compared to ECMP and LetFlow. Note
that no packet dropping happens throughout the whole
test, hence all the retransmission packets are attributed to
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Fig. 1 The leaf-spine topology

packet reordering. Figure 2(c) shows that although pos-
sessing much lower queuing delays, the AFCTs of short
flows under RPS are significantly higher than those under
ECMP and LetFlow, and the performance gaps are widen-
ing as enlarging the degree of asymmetry.

On the other hand, it is known that the long flows
require high goodput, meaning that the load balanc-
ing scheme should help them travel through as many
parallel paths as possible because more parallel paths
provide larger bisection bandwidth. The fine-grained
scheme such as RPS can achieve that since traffic can
equiprobably select each path at packet level. However,
the result is completely opposite. Figure 3(a) presents
the calculated standard deviation after measuring the
throughput of long flows transmitted on each path. As
expected, RPS achieves much more balanced load distri-
bution compared to the other schemes. LetFlow performs
between RPS and ECMP. Nonetheless, the retransmis-
sion ratio of long flows under RPS is again pronouncedly
higher than those under LetFlow and ECMP, as shown
in Fig. 3(b). Consequently, the results shown in Fig. 3(c)
imply that, due to taking into account both avoiding
the packet reordering and improving the path utiliza-
tion, LetFlow achieves higher total throughput of long
flows compared to the fine-grained RPS and the coarse-
grained ECMP. Moreover, with the rising of asymmetric
degree, the total throughput of long flows under RPS
falls precipitously, and the path utilization is even only
about 0.12.

The above observations lead us to conclude that: fine-
grained packet scattering can provide uniform load dis-
tribution and low queuing delay, but easily leads to
serious packet reordering, which greatly impairs the
transmission performances of both short and long flows.
Coarse-grained path switching at flow- or flowlet-level

effectively alleviates packet reordering, but may generate
high queuing delay and cannot guarantee high link uti-
lization. Besides, the transmission performances of short
and long flows could be further improved if flow types and
path condition can be taken into account during traffic
rerouting. In the following part, we design a fine-grained
load balancing scheme TR to balance the performance
requirements of short and long flows under dynamic net-
work conditions.

TR design

In this section, we first introduce the basic idea of TR.
Then, we present its algorithm and elaborate the design
details. Finally, we present a model to analyze TR’s perfor-
mance gain.

Basic insight

As mentioned earlier, both long and short flows are neg-
atively affected by the out-of-order problem, hence the
design of TR includes an out-of-order prediction mech-
anism. To be specific, for each packet, TR estimates the
time at which it reaches the next leaf switch via each alter-
native output queue, called Time to Next Leaf (TNL), and
compares it with the corresponding time of the previous

Table 1 The proportions of flows in different size ranges under
realistic workloads

Flow type Data Mining Web Search Cache Web Server
Follower

0-10KB 78% 59% 50% 68%

10KB-1T00KB 5% 3% 3% 18%

100KB-TMB 8% 18% 18% 14%

>1MB 9% 20% 29%
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packet in the same flow. If the computed TNL of an out-
put queue for the current packet is smaller than the stored
TNL of its previous packet, the current packet will prob-
ably reach the next leaf switch earlier than its previous
packet once using this output queue, resulting in packet
reordering. Otherwise, TR considers this output queue as
an alternative output queue to forward the current packet.
By this way, TR ensures the orderly transmission for each
flow.

On the other hand, to make TR be traffic-aware, the
first thing is to identify if a flow is a short or long flow
in advance. However, it is not feasible for many applica-
tions and host stack to know how much data involved in
a flow before finishing its data transfer. As done by many
previous works [18, 20-22], TR identifies flow types by
counting how much data has been sent. when the amount

of data has been sent in a flow exceeds a threshold of
100KB, it is identified as a long flow. Otherwise, it is a
short flow. This threshold value is chosen in accordance
with many existing papers [6, 17, 18, 20-27]. One problem
of this method is that long flow will be mistakenly con-
sidered as short flow when transmitting the first 100KB
of data. Fortunately, this kind of negative impact is trivial
since the number of long flows are very small under the
data center traffic [17, 18, 20], hence such misjudgment
does not happen very often. Furthermore, the duration of
this process is transient since short flow generally has a
very small life time.

With the knowledge of flow types, TR executes flexible
and traffic-aware rerouting under orderly transmission.
Specifically, each packet of short flows chooses the fastest
path to forward, while long flows should use more parallel
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paths to maintain high link utilization and not block the
short flows as much as possible.

The algorithm of TR

In this section, we first present the overview of TR, and
then describe its pseudocode, in which the used variables
are explained in Table 2.

TR overview

TR is deployed on switch. By calculating TNL for the
newly arrived packet and comparing with that of the last
arrived packet within the same flow, TR picks out those
output queues which do not cause packet reordering and
uses them to forward packets. Meanwhile, TR adaptively
adjusts the granularity of path switching and routing strat-
egy according to the flow types and path condition, so

as to ensure the performance of long and short flows
simultaneously.

As shown in Fig. 4, when a packet arrives at the leaf
switch, TR first updates the size of data sent by current
flow to identify its type. Then, TR computes the TNL
value of each available output queue for the current packet
and compares it with the TNL value of the last arrived
packet within the same flow. After finding out those out-
put queues that packets can be delivered in order, TR
picks out one that meets the performance requirements of
current flow according to its type for forwarding. Specif-
ically, the short flow selects the output queue that can
reach the next leaf switch earlier for forwarding, thus
achieving low latency transmission. Long flow minimizes
its negative impact on the transmission of short flows,
and take full advantage of all available paths to increase
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Table 2 The descriptions of variables in TR algorithm

Variable Description
i The flow number
j The output queue number

fs (measured in bytes) The size of data sent in current flow

ps (measured in bytes) The packet size

p_TNL The TNL of previous packet

c_TNL The TNL of current packet

Ty The size threshold of long flow

S The set of output queues without
introducing packet reordering

a The output queue with the minimal
c_TNL

b The output queue with the fewest
short flows

network utilization, obtaining high throughput. We show
the pseudocode of TR in the following part.

Pseudocode of TR

As shown in algorithm 1, when establishing the TCP con-
nection of flow i, the switch assigns it an entry of flow
table based on the hash result of its 5-tuple and performs
initialization. When a packet P of flow i arrives at the
switch, the size of data sent by flow i is updated. Then,
TR calculates the TNL for each available output queue of
flow i. If an output queue’s TNL is larger than the TNL of
P’s previous packet, it is added into S;, which is the set of
output queues without introducing packet reordering for
flow i. After S; is updated and flow i’s type is identified, TR
determines the forwarding path for P. If flow i is a short
flow, TR selects the output queue a; from S; to forward P
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such that the TNL of g; is the smallest in S;. If flow i is a
long flow, TR finds out the output queue b; from S; to for-
ward P such that there exist the fewest short flows in b;
compared to the remained output queues in S;. Besides,
there may exist multiple output queues with the fewest
short flows. In this case, the fastest one among them will
be chosen to forward P.

Details

Next, we elaborate the implementation details of TR and
answer the following questions: why and how to calcu-
late TNL for each arriving packet, and how to obtain the
number of short flows existing in each output queue.

TNL calculation
The two-level structure of leaf-spine topology has been
widely used in modern data centers [7—11]. In this kind of
network, the number of leaf switches on the path between
any pairs of hosts is at most 2 [7-9], which means that if
two adjacent packets in a flow can be delivered in order
between two leaf switches, they also arrive at the receiver
in order. We use an example to illustrate this observation.
In Fig. 5, assuming that H2 sends a flow F to H8. F’s
data packets may travel through different spine switches
(from K to V), and then gather at leaf switch E. There is
only one path from E to H8, hence the sequence of F’s data
packets arrive at E will not be changed when they reach
to H8. Similarly, since there is only one path from H2 to
M, the sequence of data packets arriving at M certainly
follows the sending order of H2. Therefore, as long as F’s
data packets are delivered in order from M to E, packet
reordering does not happen. To avoid packet reordering,
when a data packet arrives at the leaf switch near to its
sender, TR needs to predict if it reaches to the leaf switch

(Switch _________________ T e
[} | a
: /—'—\ Selection III
Computing
N
Input Flow 7 Availaby J || Output
Trafﬁc. Flow Out-of-order -~ | "vahave Traffic
Classification Prediction \ Output jl >
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# [0
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_ J
Output queue that may
---# Short flow cause packet disordering.
— Long flow Output queue that packets
can be delivered in order.
Fig. 4 The overview of TR
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Algorithm 1 Pseudocode of TR:

1: Initialization:

2: T; < 100KB;
3: Once the connection of flow i is established:
4 fs; < 0; p_TNL; < 0; ¢_TNLjj < 0;§; < @5
5. //updating the size of data sent in flow i.
6
7
8

: On receiving a packet P from flow i:
s Jsi < fsi+ psi;
: //generating the set of output queues without intro-
ducing packet reordering.
9: for each available output queue j of flow i do
10: computing c_TNL,'j;
11: if ¢_TNLj; > p_TNL, then
12: adding the jth output queue into S;;
13: //carrying out the traffic-aware path selection.
14: if f5; < T; then

15: finding out a; from S;;

16: forwarding P via a;;

17: p_TNL; < the TNL of a;;

18: else

19: finding out b; from S;;

20: if b; is not unique then

21: select b; with the smallest TNL;
22: forwarding P via b;;

23: p_TNL; < the TNL of b;;

near to its receiver earlier than its previous packet once
choosing a parallel path to forward. Namely, the TNL of
current packet is supposed to be not smaller than that of
its previous packet in F.

TNL generally includes two parts. The first part is the
basic propagation delay between two leaf switches, called
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pd, which can be measured by leaf switch when network
is idle. This operation does not incur non-trivial overhead
since pd is usually unchanged unless link failure happens.
In fact, link failure does not happen very often [7-9]. The
second part is the total queuing delay of the output queues
in the leaf switch near to the sender and the spine switch.
The former one can be obtained based on the local infor-
mation including the queue length of output queue Ig/
and its forwarding bandwidth /gw. Similarly, for the spine
switch, with the queue length sg/ and forwarding band-
width sqw of its output queue, we can also compute its
queuing delay. Both /gw and sqw are static and can be
obtained in advance. However, since each packet needs to
calculate TNL before selecting path, the leaf switch near
the sender is supposed to learn the queue length of spine
switch timely, which is not easy.

To address this problem, TR resorts to the reverse ACKs
(acknowledgement packets) to carry the queue length of
spine switch. In Fig. 5, H8 continues to send ACKs to H2.
ACK 3 and ACK 4 are modified when traveling through K
and V. The corresponding modifications is to carry their
queue lengths to notify M. After understanding the queue
lengths of K and V, M restores the modified regions in
ACKs 3 and 4, making the modifications be transparent
to H2. As shown in Fig. 5, when ACK 1 and ACK 2 arrive
at H2, H2 will be unaware that they have ever been modi-
fied since M have already restored their modified regions
when they pass through.

Another problem is which region can be modified in
the ACK packet. TR responds that by resorting to the
field of Time To Live (TTL), which generally has 8 bits.
For the scale of current DCN, the number of hops that
a packet experiences between its sender and receiver is
commonly smaller than 7 [8, 9, 28], which just needs 3

T
b
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S

@Leaf switch %Spine switch

[ |Normal ACK packet

Fig. 5 Out-of-order prediction

[ |Data packet

ﬁHost
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bits to store. Hence, we can use the remained 5 bits to
carry the information of queue length. The leaf switch
and spine switch need to negotiate how to use the 5
bits to represent the specific queue length in advance.
There are much coding methods to achieve that, while
TR employs a very simple approach to minimize the over-
head. Specifically, if the buffer size of spine switch is BS
and k bits is used to represent the queue length, the
actually increased queue size is BS/2¥ when the code of
queue length received by leaf switch increases 1. Note
that the reverse ACK packet is not the unique option to
carry the information of queue length. The reason that
TR selects the reverse ACK packet is that it usually has
very high priority to be forwarded by switch thus mini-
mizing the effect of reverse delay. One can also use the
reverse data packet or other ways to achieve the same
functionality.

Finally, according to the above discussion, the TNL
of the jth output queue in a leaf switch (TNL;) can be
calculated by

TNL,':ct+pdj+lqil]+ﬂ. (1)
lgw; ~ sqw;
wherein ct is the time at which the current packet arrives
at the leaf switch.

Counting the number of short flows

To perceive path condition and the number of short flows
exist in an output queue, TR constructs a table to store two
important information for each available output queue.
Each entry of the table includes the obtained queue length
of spine switch corresponding to the current output queue
and the number of short flows exist in current output
queue, called ns. The former one is updated when the leaf
switch receives a reverse ACK from the spine switch, while
ns is refreshed according to several conditions. Specifi-
cally, if a new flow i emerges in the corresponding output
queue j, ns; is increased by 1. If the size of data sent by
flow i (fs;) is greater than the size threshold of long flow
(T}), ns; is decreased by 1. If fs; is still less than T7, but it
has been a long time since the last packet arrived at the
jth output queue (in TR, the duration threshold is set as
one RTT), flow i is considered as inactive and us; is also
decreased by 1. Once flow i becomes active again, while
J5i is also less than Tj, us; is increased by 1. By this way,
TR timely understands how many short flows exist in an
output queue.

Model analysis

Packet reordering greatly impairs the transmission perfor-
mances of both long and short flows, especially to those
packet-level schemes. TR also works at packet level, but
can effectively avoid packet reordering. Therefore, in this
part, we discuss the performance gain of TR in terms of
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avoiding packet reordering by comparing with RPS. We
first analyze the impact of packet reordering on flow com-
pletion time for RPS and TR, respectively. Then, we verify
our analysis by conducting the NS2 simulation tests. The
parameters in our model are listed in Table 3.

Suppose that N TCP flows (each of which has S data)
are synchronously transmitted in an asymmetric scenario.
Assuming that there are # parallel paths in total, and they
are divided into two categories, i.e., good paths and bad
paths. The number of good paths is n,, while there are
np bad paths. The packets transmitted on the good paths
always arrive at the receiver earlier than those transmit-
ted on the bad paths. Meanwhile, the paths belonging to
the same kind have the similar delay that does not cause
packet reordering.

Consider a flow f belongs to one of those TCP flows.
During f’s each round of transmission, if the average size
of congestion window is w and the end-to-end delay is r,
we can calculate the flow completion time of f under RPS,

S
Frps » by

Pf S wxr 4xSxr
= X = (2)
RPS ™ 3xw? 2 3xw
8

Table 3 Parameters used in model analysis

Parameters Description

n The total number of parallel paths

Ng The number of good paths

Ny The number of bad paths

dg The propagation delay of good
path

dp The propagation delay of bad path

S (measured in packets) The flow size

H (measured in packets) The threshold of TCP fast retrans-
mission

w (measured in packets) The average size of congestion win-
dow in each transmission round

under RPS

W (measured in packets) The average size of congestion win-

dow in each transmission round

under TR

r The end-to-end delay under RPS

7 The end-to-end delay under TR

p The end-to-end propagation delay
under RPS

b The end-to-end propagation delay
under TR

q The end-to-end queuing delay
under RPS

q The end-to-end queuing delay
under TR
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The reason is that in each round of transmission,
f’s sender spends *3* RTTs to increase its congestion
window from % to w, and the total number of transmitted
packets is 3 X8W2
to get wand r.

Generally, if the packet reordering does not happen, the
sender increases its congestion window until the switch
buffer is full. Since there are n parallel paths, the num-
ber of queuing buffers at the switch is also #n. Hence, when
packet reordering does not exist, the maximum conges-
tion window of f is "KIB , wherein B is the buffer size
of each output port at the switch. However, once packet
reordering occurs, the sender will decrease its congestion
window to ”X . Give the probability Py of fast retrans-

mission due to paCket reordering, w can be computed by

during this process. Then, we discuss how

nxB
N
Next, we discuss how to get Pf,. For any packet i (1 <
i < § — H) in f, we assume that the packets (whose num-
ber is i — 1 in total) before i have been received in order,
but i is transmitted on one of the bad paths. If the fol-
lowing kK (H < k < § — i) packets are transmitted on
the good paths, the fast retransmission will be triggered.
Thus, under this CIrcumstance, the number of possibilities
of fast retransmission is Zk i Ck i, 14k 5 ni_i_kﬂ,
wherein 7, and #;, are the number of good and bad paths,
respectively. Since i can be any packet selected from the
first S — H packets in all the packets of f, there also exist
S — H possibilities corresponding to the above case. In
addition, in the typical multi-path transmission like RPS,
there are #5 possible path assignments in total. Therefore,
we can calculate Py by

S—H ~~S—i k i—14k
1 D2 r—m Co_; X My X 1

nS

w= x (1—

Pfr) + X Pfr (3)

S—i—k+1
b

(4)

Pf, =
Then, with Eq. (4), Eq. (3) can be rewritten by
nxB o (11— ZS i Ck fg Ik 5 ni_i_k+l
N nS

S—i—k+1
ny

w=

nxB ZSLCk

l 1+/<X
g

X

2x N nS

(5)

In addition, the end-to-end delay in DCN is mainly com-
posed of the end-to-end propagation delay and the end-
to-end queuing delay. Given the average congestion win-
dow w, the probability that all the packets in w does not
select the bad path can be calculated by (%g)w. Accord-
ingly, the probability that at least one packet in w selects
the bad path is 1 — ( ) Thus, the average end-to-end

propagation delay can be computed by (1 - (%g) ) xdp+

(%g)w X dg, wherein d, and d, are the propagation delays
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of good and bad paths, respectively. Besides, since there
are N flows that share # queuing buffers, and each of them
possesses the average congestion window of w, the aver-
age queuing delay can be expressed as YX¥XL herein ¢
is the transmission delay of each packet. Then, r can be
calculated by

= (1= (%) ")yt (22) " gt L )

Finally, with Egs. (2), (5), and (6), we obtain the flow
completion time of f under RPS as

g 83 (12 C0) <t ()" + e

RPS —

3xw

(7)

Since TR can effectively avoid packet reordering, flow f
does not experience packet retransmission unless packets
are dropping by switch, which means that the network is
congested. Therefore, during f’s transmission under TR,
the maximum congestion window is %, and the average
congestion window w is BZ:;\([B. As to the end-to-end delay
7 under TR, there are two possibilities, i.e., the first packet
of f selects the good path or the bad path. In this model
scenario, the worst case is the latter case, which means
that all the packets of f will select the bad paths, resulting
in the maximum end-to-end delay. For simplicity, we cal-

culate f's flow completion time FJ;R under the worst case
of TR. Then, based on Eq. (2), we get

Nx3xnxBxt
4% 5 x <db + )

F/;R = 3xnxB
3 x Zflf[ (8)

_ SxNx(16xd,+12xBxt)
- 9xnxB )

Finally, we conduct both model and NS2 tests based on
the scenario in Design motivation section to verify our
analysis. In Fig. 6(a), the number of flows is set as 20, and
the data size of flow f is gradually increased from 100KB
to 350KB. The results show that, under both RPS and TR,
f takes more time to finish its transmission as its data size
is enlarged. In Fig. 6(b), the data size of flow f is fixed to
300KB, and we introduce more flows to make tests. Flow f
still spends more and more time accomplishing its trans-
mission since its available bandwidth becomes scarcer as
increasing the number of flows. Nonetheless, with the
help of out-of-order prediction, TR always outperforms
RPS due to effectively avoiding packet retransmission.
Overall, the results of simulation are basically close to
the corresponding theoretical values, verifying the above
analysis.
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Implementation

The existing common Commercial Off The Shelf (COTS)
switch has limited scalability and can not support rela-
tively complex schemes (e.g., PIAS [20]), due to its poor
reconfigurability and limited on-chip memory [20, 29,
30]. Similarly, TR is also hard to deploy on the exist-
ing common COTS switch directly. Fortunately, the pro-
grammable switches that can realize complex processing
logic are becoming more commonplace [30]. TR can be
deployed on these programmable switches, such as the
Tofino switch, which is a kind of end-user Ethernet switch
with powerful programmability, and built using a P4-
programmable Protocol Independent Switch Architecture
(PISA) [31]. With the programmable switch, the new for-
warding logic does not have to be baked into the silicon,
but resides in the P4 program that provides the logic
for handling all supported protocols [31]. When deploy-
ing TR, the network operator or switch manufacturer can
easily add the TR logic to the P4 program.

TR needs to track the per-flow state, including counting
the bytes of data sent and comparing the flow sizes. For-
tunately, these two requirements have already been met
by the current programmable switches [29-33]. Mean-
while, there also exist many sketch-based methods to
decrease the overhead for network measurement tasks
[31, 34], and TR can combine them to further reduce the
implementation overhead during deployment.

Performance evaluation

In this section, we conduct numerous NS2 simulation
tests and introduce another two state-of-the-art data cen-
ter load balancing schemes, i.e., DRB[13] and Presto [14],

to evaluate the performance of TR. We also install four
typical datacenter workloads including Data Mining, Web
Search, Cache Follower, and Web Server to make a com-
prehensive evaluation. The threshold of flowlet emerging
is set to 500us in LetFlow[8], and the data size of flowcell
is 64KB for Presto[14]. DCTCP is used as the conges-
tion control scheme at TCP senders, and the initial TCP
window size is set to 10 packets.

Micro-Benchmark

Firstly, we redo the micro-benchmark in Design motiva-
tion section to observe whether TR performs as expected.
Figure 7(a) compares the average queuing delay of short
flows under different schemes. Since the coarse-grained
ECMP and LetFlow lead to the unevenly load on each
path, their short flows experience larger queuing delay.
Although Presto is medium-grained (flow-cell based), its
queuing delay of short flows is still non-trivial. By con-
trast, the finer-grained schemes, including RPS, DRP, and
TR, have much lower queuing delay across all cases. In
Fig. 7(b), however, the rising of asymmetric degree causes
RPS and DRB to experience increasingly serious packet
reordering, generating much higher retransmission ratio
compared to the other schemes. TR also works at packet
level, but its retransmission ratio is always 0. The reason
is that TR can filter out those output queues potentially
cause packet reordering before forwarding each packet.
Consequently, RPS performs much worse than the other
schemes in terms of short flows” AFCT. DRB is also trou-
bled by packet reordering, and its performance is not good
either. On the contrary, TR can keep queuing delay at low
level, and effectively control packet reordering, as well as
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allow long flows to avoid short flows for further speeding
up the short flow’s data transfer, thus always obtaining the
shortest average and tail flow completion times compared
to the other schemes across all cases, as shown in Fig. 7(c)
and (d).

On the other hand, the long flows performance is
closely related to packet retransmission. As shown in
Fig. 8, RPS and DRB can distribute load in the most bal-
anced way, but possess high retransmission ratio, which in
turn leads to the lowing of total throughput of long flows
as increasing the asymmetric degree. ECMP and LetFlow
can completely avoid packet reordering, while fail to fully
utilize all parallel paths. As a whole, though only TR and
Presto can cover both sides, TR still outperforms Presto.
The reason is that TR carries out traffic-aware rerouting
and is aware of path station, especially effectively avoids

packet reordering. Therefore, it is not affected by the
rising of asymmetric degree, and always maintains the
highest total throughput for long flows compared to the
other schemes.

Threshold discussion

TR employs a threshold to identify flow types, and then
carries out different operations for the short flows and
long flows, respectively. However, if the value of threshold
is improper, TR’s performance will be probably impaired.
Therefore, in this part, we evaluate the performance of TR
under five different thresholds (i.e., 10KB, 50KB, 100KB,
500KB, and 1MB). To make a comprehensive compari-
son, we install four typical realistic workloads, including a
Data Mining workload, a Web Search workload, a Cache
Follower workload and a Web Server workload [19]. The



Zhang et al. Journal of Cloud Computing (2021) 10:37

Page 12 of 20

o
e
bl

o
N

-0- ECMP O- LetFIow—A— RPS
—*— Presto -v— DRB —0— TR

©
—

o.o-g:i:i: — 2

15 2.0 25 3.0 35
RTT ratio of bad path to good path

Standard deviation

(a) Sd of path throughput

< —[O- ECMP-O- LetFlow—A\— RPS
< 10.01-*~— Presto—y—DRB-9-TR

S A—A—b—D

© T

e A s, e
250l T
€ 7 P

2] | s *—k @

E 25' """"" *—_— i i_ : / """"""
7 &«

® 0.0{--0—0—0—0—0Q-

15 2.0 25 3.0 3.5
RTT ratio of bad path to good path

(b) Retransmission ratio

Fig. 8 The performances of long flows

[ JECMP ] LetFlow XY RPS
QG.O-E Presto 5553 DRB [l TR
Ko}
Q
= 4.0 7 7
Q.
S N\
=]
© 2.0 N . -
0.0 N | N
1.5 2 2.5 3 3.5
RTT ratio of bad path to good path

(c) Total throughput

specific proportions of flows belonging to different size
ranges in each workload are shown in Table 1.

Web Server has the most short flows (<100KB) and
the fewest long flows (>100KB) compared to the other
workloads. Meanwhile, the data sizes of long flows in the
Web Server workload are all smaller than 1MB. Cache
Follower is just the opposite for which has the most
long flows and the fewest short flows. In the Data Min-
ing workload, the proportion of extremely short flows
(<10KB) is the largest. Except the Web Server workload,
the proportions of short flows whose data size is between
10KB and 100KB in the other workloads are very low (5%
at most). Overall, across four workloads, their propor-
tions of short flows are always higher than those of long
flows, following the heavy-tail distribution of data center
traffic [16—18, 20].

We continue to use the asymmetric scenario described
in the section of “Design motivation’, and change the link
bandwidth to 10Gbps. We increase the link propagation
delay of bad path so that the ratio of bad path’s propaga-
tion RTT is 3.5x times the good path’s propagation RTT.
The hosts in Group 1 send 1000 DCTCP flows to the hosts
in Group 2 by following a Poisson process. These flows
are generated based on four realistic data center work-
loads mentioned before. Besides, according to the method
described in Ref. [35], we maintain the network load at 0.3
since most DCNs operate at this load [17, 20].

Figure 9 presents the normalized average FCTs and tail
ECTs of all flows through using the results of thresh-
old of 100KB as the baseline. In all cases, we observe
that both the average FCTs and tail FCTs are increased
when the threshold becomes very large or small. The
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main reasons are as follows. If the threshold is too large,
some long flows are mistakenly identified as short ones,
resulting in the sharp increase of queueing delay of short
flows. Thus, the performance of short flows is seriously
degraded. Conversely, under a too small threshold, some
short flows are mistakenly distinguished as long ones. The
short flows handled as long ones probably fail to flexibly
utilize multiple paths to finish quickly.

Large-scale evaluation

In this section, we construct a large-scale leaf-spine
network in which 200 hosts are connected via 10 leaf
switches, 10 spine switches, and many 40Gbps links. The
switch buffer size is set to 375KB [19]. To generate asym-
metry, we randomly choose half of the parallel paths and
consider them as the good paths, and the remained paths
are converted into the bad paths by increasing their links’
propagation delay. Consequently, the round-trip propa-
gation delay of bad path is 1.5x times the round-trip
propagation delay of good path.

During the whole test, 100 hosts are randomly selected
to send 50000 DCTCP flows to the remained hosts. All
flows start by following a Poisson process. We vary the
load intensity from 0.2 to 0.8 in each test by following the
method described in Ref. [35], and continue to install the
representative data center workloads mentioned before.

Their respective flow size distributions are shown in
Fig. 10.

To make a comprehensive performance comparison, we
divide all flows into three classes according to different
flow size ranges, including (0,100KB], (100KB,1MB], and
(IMB,00) [19, 20]. We compute and compare the aver-
age FCT for all flows, the average FCT of flows in each
class, and the tail FCT of flows belonging to (0,100KB]. All
results are normalized to those achieved by LetFlow (the
normalized FCTs for LetFlow are always 1).

For the short flow whose data sizes are in (0,100KB],
we find that TR performs better than LetFlow, and greatly
outperforms ECMP, Presto, DRB, and RPS. For exam-
ple, when compared to LetFlow, TR improves the average
ECTs for short flows across four workloads by around 20
percent, as shown in Figs. 11(a), 12(a), 13(a), and 14(a).
Moreover, the tail FCTs of short flows under four work-
loads are also improved by up to 50 percent, as shown
in Figs. 11(b), 12(b), 13(b), and 14(b). This is because
that TR is aware of the different flow requirements and
real-time path conditions.

In addition, for the flows whose data sizes are between
100KB and 1MB, TR still manages to outperform LetFlow
by about 20 percent in average for both Data Mining work-
load and Web Search workload. Although the advantage
of TR slightly diminishes when it comes to deal with the
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Cache Follower workload and the Web Server workload,
the improvement is still up to 20 percent, as shown in
Figs. 11(c), 12(c), 13(c), and 14(c).

As to those flows larger than 1MB, TR slightly outper-
forms LetFlow, and the improvement is about 10 percent,
as shown in Figs. 11(d), 12(d), and 13(d). Although the
delay-sensitive short flows dominate the data traffic in
DCN and TR gives them more priorities, the performance
of the other flows can still be guaranteed as much as pos-
sible since TR effectively alleviates packet reordering and
helps these flows flexibly utilize multiple paths to finish
quickly. Note that there does not exist the flows larger
than 1MB in the Web Server workload (see Table 1), hence
the corresponding results are not presented.

Finally, we observe the overall performance of all flows.
In Figs. 11(e), 12(e), 13(e), and 14(d), we find that the per-
formances of fine-grained schemes, such RPS and DRB,
are always worse than the other schemes. This is mainly
caused by plenty of retransmission packets since in the
asymmetric network, flows are very prone to experience
packet reordering. By contrast, DRB performs a little bet-
ter than RPS, which is also because that DRB is slightly
better at controlling packet reordering compared to RPS.
For TR, its mechanism of out-of-order prediction effec-
tively controls the packet reordering, greatly reducing the
packet retransmissions. Meanwhile, it can timely perceive
the change of path condition, and legitimately assign par-
allel paths to short and long flows according to their
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Fig. 13 Cache follower workload

different performance requirements. As a consequence,
its overall performance is better than those of the other
schemes under different load intensities.

Implementation overhead

In this part, we run some tests based on Mininet [36] to
show the implementation overhead of TR. Mininet is a
network emulation system with high fidelity on Linux ker-
nel [36], and its behavior is similar to the real hardware
elements [37]. With the limitation of single-machine CPU,
Mininet only supports tens of Mbps link bandwidth, and
has smaller test scale compared to the real DCNs [18].
However, in view that its codes and test scripts can be
deployed on a real network scenario, Mininet is widely
used as a flexible testbed for networking experiments [37].

In the test, we implement the packet processing pipeline
of TR with P4 program (P4;¢ 1.0) [38], and use Mininet
2.3.0 to create a leaf-spine network in which two leaf
switches and ten spine switches are connected via many
links. The bandwidth of each link is set to 20Mbps as rec-
ommended in Ref. [18]. We install BMv2 to generate the
software programmable switches, and the switch buffer
size is set as 256 packets [18]. Each leaf switch connects
to 10 servers, and there are ten equal-cost paths in total
between two leaf switches. To create the topology asym-
metry, five equal-cost paths are randomly chosen as the
good paths, while the remained paths are considered as
the bad paths. The round trip propagation delay of good
path is 1ms, while the corresponding delay of bad path is
set to 4ms. We generate 100 DCTCP flows with 90% short
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flows and 10% long flows by following a Poisson process
[17]. The network load is also varied from 0.2 to 0.8 in
each test according to the method described in Ref. [35].

To evaluate the system overhead of TR, we measure the
maximum, minimum and average CPU and memory uti-
lizations at the leaf switch. In Fig. 15(a), since RPS and
DRB simply spray all the packets to all the equal cost
paths, their CPU utilizations are very low. For ECMP,
LetFlow, and Presto, due to their simple operations at
switches, their CPU utilizations are also relatively low.
Also, TR does not incur excessive CPU overhead to switch
compared with the other schemes. The reason is that
the computing overhead of TNL can be greatly decreased
by some pretreatment operations. For example, the cal-
culation of queuing delay when computing TNL can be
simplified through table look-up, which only generates a
tiny fraction of CPU load. On the other hand, Fig. 15(b)
shows that even at 80% load, TR’s memory utilization is
only around 5%. Therefore, compared with the perfor-
mance gain of TR, its system overhead, on the whole, is
acceptable.

Related works

In recent years, researchers have designed plenty of trans-
port protocols to improve the transmission performance
of datacenter networks [1-6, 18, 21, 39—45]. Nonetheless,
with the sharp increase of network capacity, various load

balancing mechanisms have also been proposed to facili-
tate parallel data transmission across multiple paths, thus
further obtaining performance enhancements.

ECMP [12] leverages several fields in packet headers
to calculate a hash value, which is mapped to one of the
equal-cost paths. However, the key problem of ECMP
is that the flow-to-path assignment is static and eas-
ily causes congestion due to the hash collisions of large
flows. Since the congested flows can not be rerouted
to the paths with low utilization, it inevitably degrades
the network performance. To address this problem, vari-
ous fine-grained mechanisms are designed to split traffic
across multiple paths. These fine-grained solutions can
be roughly classified into two categories: per-packet and
per-flowlet/flowcell mechanisms.

RPS [11] is an intuitive and simple per-packet scheme,
which randomly allocates one available path for each
packet. DRILL [46] implements a random packet allo-
cation mechanism based on switch local information.
Specifically, when a switch receives one packet, it ran-
domly picks two available ports and compare their queue
length with a recorded port. Then the switch chooses the
port with the lowest buffer to forward the packet. These
per-packet solutions can achieve high network utilization
and near-optimal tail latency in symmetric topologies.
However, in production data center, there are a multi-
tude of uncertainties such as highly dynamic traffic and
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link/switch failures [7, 47], which inevitably makes net-
work topology become asymmetric and results in serious
packet reordering.

MMPTCP [21] initially scatters packets to exploit all
available paths and increases fast retransmission thresh-
old to handle packet reordering. Then MMPTCP switches
to the MPTCP [43] when the amount of data transmit-
ted by sender is larger than a given threshold. JUGGLER
[48] leverages the re-sequence buffer at the receiver to
absorb out-of-order packets, which are delivered to upper
layer when the buffer is full or a timer expires. However,
setting a suitable threshold value is not trivial, especially
in data center networks with highly dynamic traffic. APS
[49] adopt isolate mechanism to achieve adaptive packet
spraying. QDAPS [50] is a delay-aware mechanism. When
a packet arrives at the switch, it is assigned to the output
port, which has larger queueing delay than the recorded
port that forwards the last arrival packet in the same
flow. Unfortunately, if one packet is assigned to a con-
gested path, then subsequent packets in the same flow
will be assigned to one more congested path, potentially
increasing flow completion time.

Furthermore, researchers design lots of per-flowlet
solutions such as AMR [51] and LetFlow [8] to achieve
the tradeoff between packet reordering and network

performance. The basic idea of per-flowlet solutions is
that for each flow, when the time interval between two
adjacent packets is larger than a predetermined threshold,
it suggests that the transmission path becomes congested.
Then, the switch either shifts traffic to less-congested
paths or picks a path at random for subsequent packets
of the flow. For example, both MLAB [52] and CONGA
[9] are congestion-aware approaches that leverage path
congestion to achieve better load balancing.

Presto [14] splits data of each flow into equal-size units
called flowcell, whose default size is set to 64KB. Since
Presto is insensitive to path conditions, it adopts round-
robin way to blindly assign one path for each flowcell.
Moreover, since Presto has to record all flows’ states, it
may cause overhead issue. Luopan [53] is a congestion-
aware method. It periodically samples some paths and
picks the least congested path for new flowcells. Given the
that most flows in data center are smaller than flowcell,
they fail to take advantage of multiple paths, which may
cause low link utilization.

Conclusion

This paper presents the design and analysis of a fine-
grained load balancing scheme TR to simultaneously
improve the transmission performances of both short
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and long flows in data center networks. To avoid packet
reordering, TR leverages the reverse ACKs to quickly
feedback the queue length of spine switch, so that the
source leaf switch can predict the delay from itself to
destination leaf switch and excludes paths that poten-
tially cause packet reordering. Moreover, TR uses flexible
switching granularity and rerouting decision to make a
good trade-off among queuing delay, packet reordering
and link utilization. Although working at packet level, TR
can be applied to both symmetric and asymmetric sce-
narios, while is only deployed on the switch without any
modification on end-hosts. We evaluate TR through large-
scale NS2 simulation tests under a wide range of data
center workloads. The experimental results show that TR
reduces the average and tail flow completion time for
short flows by up to 60% and 80%, as well as provides 3.02x
gain in throughput of long flows over the state-of-the-art
load balancing schemes, respectively.
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