
Journal of Cloud Computing:
Advances, Systems and Applications

Peng et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:47
https://doi.org/10.1186/s13677-021-00262-6

RESEARCH Open Access

Security-Aware computation offloading
for Mobile edge computing-Enabled smart
city
Kai Peng1* , Peichen Liu1, Peng Tao2 and Qingjia Huang3

Abstract

Smart city has obtained increasing attention from both academic and industry which has the potential to improve
human living standards. A smart city consists of a great number of smart devices which are generating large amounts
of data and emerging applications all the time. However, the computing capacity of smart devices are limited.
Fortunately, the emergence of MEC can solve the above problem. However, the resources of edge servers in MEC are
limited and the capabilities of edge servers are heterogeneous. It is important to improve the average resource
utilization of all edge servers and keep load balancing of edge server cluster simultaneously. On the other hand, quite
a few numbers of applications are delay-sensitive, it is necessary to ensure the security of these applications. In this
paper, we consider joint optimization of mobile device and edge server in MEC-enabled smart city, improving the
overall performance of the system. Technically, a new multi-objective computation offloading method is
implemented to reduce time consumption, energy consumption, and keep load balancing of edge servers, as well as
increase average resource utilization of edge servers while meeting the deadline constraint of delay-sensitive
applications. Sufficient experiments have been conducted to prove the effectiveness and superiority of our proposed
method in different scenarios.

Keywords: Smart city, MEC, Computation offloading, MOMBI

Introduction
The Internet of Things (IoT) is envisioned to greatly
influenced our daily lives and improve socio-economic
efficiency and effectiveness through a variety of applica-
tions. One of the most promising applications is smart
city which utilizes IoT devices to manage cities without
any manual intervention [1–4]. Smart cities have greatly
changed people’s lifestyles and improved people’s qual-
ity of life with the help of innovative ideas and new
technologies [5, 6].
The concept of smart city is originated from the vision

of smart earth, which is defined formally in numerous
ways [7–9]. The definition of smart city given by IBM is to

*Correspondence: kai.peng@hqu.edu.cn
1College of Engineering, Huaqiao University, Quanzhou, People’s Republic of
China
Full list of author information is available at the end of the article

use information and communication technology to ana-
lyze and integrate various critical information of the whole
city, so as to make intelligent response of people’s various
needs which include people’s livelihood, environmental
protection, public safety, as well as industrial and com-
mercial activities. Sensing devices and intelligent cameras,
as well as computing processing units scattered in every
corner of the city have facilitated many attractive applica-
tions (e.g., autonomous driving, in-vehicle virtual reality
(VR), real-time positioning, machine learning, service rec-
ommendation) [10]-[17]. Additionally, these applications
bring people a lot of convenience while also consuming a
lot of computing resources. Meanwhile, they usually gen-
erate large amounts of data, which brings huge challenges
to insufficient bandwidth [18, 19].
Nevertheless, mobile devices (MDs) in smart city have

finite computing capacity, while the mobile users (MUs)’

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00262-6&domain=pdf
http://orcid.org/0000-0003-4809-2234
mailto: kai.peng@hqu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 2 of 13

demand for services is usually unlimited [20]. Fortu-
nately, mobile edge computing (MEC)-enabled smart city
is regarded as a promising paradigm to solve the above
issue, aiming to deploy a myriad of infrastructures (e.g.,
access points) and edge servers (ESs) in close proximity
to mobile devices for the provision of elastic computing
resources and low-latency services [21–23]. Among them,
computation offloading is an efficient technology to aug-
ment capacity of MDs [24–27]. Meanwhile, quite a few
numbers of applications are delay-sensitive, it is necessary
to ensure the security of these applications [28, 29].
On the other hand, the computing resources in ES are

also limited, and thus it is essential to improve the average
resource utilization of all ESs [30]. Additionally, the ESs
are heterogeneous, namely, they have different amounts of
computing resources, which inevitably increases the diffi-
culty of computation offloading [31]. It is unreasonable to
offload application to an ES randomly. From the perspec-
tive of ES, it is necessary to consider the load balancing of
each ES. In view of this, we consider the joint computa-
tion offloading in MEC-enabled smart city to improve the
overall performance of MEC-enabled smart city [32]. The
main contributions are summarized as follows.

• Both MD and ES have been taken into consideration
in this study. More specifically, the time consumption
and energy consumption of MDs, as well as resource
utilization and load balancing of ES cluster are
regarded as the optimization objectives.

• A multi-objective optimization model is built to
represent the optimization problem, deadline
constraint is considered to ensure the safety of
delay-sensitive applications.

• We implement a new optimization method on the
basis of many-objective metaheuristic based on the
R2 Indicator to obtain the reasonable candidate
strategies. And then simple additive weighting (SAW)
and multi-criteria decision-making (MCDM) are
utilized to obtain the optimal computation offloading
strategy.

• We conduct a large number of experimental
evaluations to verify the effectiveness and superiority
of our proposed method in comparison with other
methods in different scenarios.

The related work is introduced firstly. And then, the sys-
tem model is described. Followed by is our proposed
optimization method. Next, the experiments and result
analysis are discussed. Finally, we present the conclusion
and our future work.

Related work
Computation offloading forMECComputation offload-
ing is an effective technology to augment the computing

capability of MDs in MEC. Liu et al. [33] investigate the
multi-objective optimization problem concerning average
price cost, average execution time, and average energy
consumption inMEC environment. The objective of them
is to maximize the revenue of each MU. Due to the lim-
ited capacity ofMDs, it is hard to compute tasks with large
amounts of data effectively. Therefore, a system model
consisting of the execution time and energy consumption
is established in [34]. Chen et al. [35] focus on the com-
putation offloading for multiple MUs and multiple tasks.
Correspondingly, two different kinds of greedy maximal
scheduling algorithms are proposed to solve such an issue.
Wu et al. focus on the tradeoff between limited com-
puting capacity and high delay, as well as ensuring the
data integrity during the computation offloading. Corre-
spondingly, blockchain technology is used to implement
secure computing offloading [36]. In addition, Feng et al.
[37] propose a collaborative computation offloading and
resource allocation strategy in blockchain-enabled MEC.
Computation offloading for Smart City Aiming at

improving the overall edge computing system execution
performance while preventing privacy leakage of the IoT
devices during the process of service placement. A trust-
oriented IoT service placement approach is proposed [38].
Taking into account of the heterogeneity of ES and remote
cloud servers, Wu et al. [39] consider to jointly optimize
the system utility and the bandwidth resource alloca-
tion in hybrid environment composed of ES and remote
cloud. A distributed deep learning computation offload-
ing method is developed to obtain optimized offloading
solutions.With the aims of preventing the privacy leakage,
improving offloading efficiency, as well as promoting util-
ity of ESs, an intelligent computation offloading approach
for smart city is proposed in [40].
Different from the above research, we investigate com-

putation offloading in MEC-enabled smart city. Consid-
ering the resources of ESs are limited and the ESs are
heterogeneous, the overall performance of the system
needs to taken into consideration. In view of this, both
the MD and the ES have been considered. In particular,
we focus on latency-sensitive applications which have a
critical impact on the performance of the system. Further-
more, the energy consumption, time consumption of MD,
as well as the average resource utilization of ESs and load
balancing of ES cluster are considered to optimize jointly.

Systemmodel and problem formulation
In this section, MEC-Enabled smart city system model
and the multi-objective problem formulation are intro-
duced.

Systemmodel
The architecture of MEC-enabled smart city is shown in
Fig. 1. Remote cloud is often deployed in suburban areas

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 3 of 13

Fig. 1MEC-Enabled Smart City

located geographically away from MDs with mighty com-
puting power and storage capacity, providing powerful
computing resources for MUs. Besides, ESs are deployed
in urban areas, providing a certain amount of computing
resources for MDs. MDs can communicate with the near-
est ES via local area network (LAN). Meanwhile, MDs can
also communicate with the remote cloud center through
wide area network (WAN) directly.
Let ST be the set of computation offloading strategies,

denoted as ST=
{
stn,i|0 ≤ i ≤ |STn|, 1 ≤ n ≤ N

}
, where

stn,i represents offloading strategy of the i-th application
in n − thMD, which is measured as

stn,i =
⎧
⎨

⎩

0, if stn,i is executed locally,
1, ..., S, if stn,i is offloaded to ES,
S + 1, if stn,i is offloaded to cloud.

(1)

where 0 represents the computation task tkn,i is executed
locally, 1 represents the task is offloaded to 1−th ES.
Accordingly, s represents the task is offloaded to s-th ES.
And s + 1 represents the task is offloaded to cloud cen-
ter. In addition, tkn,i represents the i-th application of n-th
MD.

Time consumption model
In this subsection, the time consumption model is intro-
duced. The total time consisting four parts, namely, the
execution time consumption which is represented asTE(),
the waiting time consumption which is represented as
TW (), and the propagation time which is represented as
TP(), as well as the transmission time consumption which
is represented as TT ().

Executing time
The executing time refers to the time cost of performing
tasks, which is calculated as

TE(stn,i) =

⎧
⎪⎪⎨

⎪⎪⎩

wkn,i
fend , stn,i = 0,
wkn,i
fedge , stn,i = 1, 2, ..., S
wkn,i
fcloud , stn,i = S + 1,

(2)

where wkn,i represents the task workload. The compu-
tation frequency of MD is represented as fend and the
computation frequency of ES is represented as fedge, and
fcloud represents the computation frequency of the cloud
center.

Waiting time
Due to the resources of ES are limited, the comput-
ing resources of ESs are represented by a set of vir-
tual machines(VMs). When the tasks which have been
offloaded to the ES exceed the number of VMs, some
of the tasks need to queue up wait for the ES to calcu-
late the previous tasks, which causes time consumption
in the waiting queue. Firstly, we use a double-tuple vsb =
(work, tn) to represent b-th VM in s-th ES, where work
represents a set of total tasks of the k-th VM and the tn
represents the number of tasks in VM. Secondly, accord-
ing to the computation offloading strategy stn,i, tkn,i is
offloaded to the minimum occupancy VM in e-th ES.
Then, the work is updated by work = work+wkn,i and the
tn = tn + 1. Repeat this until the remaining applications
are scheduled to the corresponding VM. Finally, TW (stn,i)
is calculated as

TW (st) =
N∑

n=1

|tkn|∑

i=1
Te(pre(stn,i)) · ℘n,i,q (3)

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 4 of 13

Fig. 2 Crossover operation

where℘n,i,w is to estimate whether tkn,i is scheduled to the
waiting queue in the qw, and the Te(pre(stn,i)) represents
the execution time of previous task.

Propagation time
The propagation time consumption depends on strategy
stn,i, represented by

TP(stn,i) =
⎧
⎨

⎩

0, stn,i = 0,
Ledge, stn,i = 1, 2, ..., S
Lcloud, stn,i = S + 1,

(4)

where Ledge represents the propagation latency between
MUs and ESs, which represents LAN. Lcloud represented
propagation latency between MUs and cloud center,
which represents WAN.

Transmission time
Let TT (stn,i) be the transmission latency which can be
calculated by

TT (stn,i) =

⎧
⎪⎨

⎪⎩

0, stn,i = 0,
wkn,i
Bedge , stn,i = 1, 2, ..., S
wkn,i
Bcloud , stn,i = S + 1,

(5)

If a task is executed locally by MD, there is no time
consumption of transmission. Correspondingly, Bedge and
Bcloud represent bandwidth of ES and cloud, respectively.
Bedge is the bandwidth of a LAN, and Bcloud equals to the
bandwidth ofWAN. The corresponding bandwidth can be
expressed as

B =
{
Bedge = be, stn,i = 1, 2, ..., S
Bcloud = bc, stn,i = S + 1, (6)

Total time consumption
The total time consumption T(st) is obtained by the
offloading strategy of i-th application in n-th MD, calcu-
lated as

T(st)=
N∑

n=1

|tkn|∑

i=1

(
TE(stn,i)+TT(stn,i)+TP(stn,i)+TW(stn,i)

)

(7)

Energy consumption model
There are four kinds of energy consumption, namely, the
execution energy consumption EE(), the waiting energy

Fig. 3Mutation operation

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 5 of 13

Table 1 Parameters Setting

Parameter Value

The active power of MD 0.6 W

The idle power of MD 0.01 W

The transmitted power of MD 0.5 W

The propagation time of LAN 2 ms

The propagation time of WAN 20 ms

The bandwidth of LAN 200 kps

The bandwidth of WAN 150 kps

The computing frequency of MD 500 Mhz

The computing frequency of the remote cloud 2000 MHz

The computing frequency of the ESs 800 MHz

The number of ESs in multi-user experiment 5

The number of ESs in multi-application experiment 5

The number of ESs in large-scale application experiment 20

The value of the time constraint for each application 4.8

The maximum number of VMs in ES 25

The minimum number of VMs in ES 15

consumption EW (), the propagation energy consumption
EP(), and the transmission energy consumption ET ().

Executing energy consumption
Executing energy consumption represents the energy con-
sumption of task executing which can be obtained by
multiplying the power by the execution time. And it can
be calculated as

EE(stn,i) =

⎧
⎪⎪⎨

⎪⎪⎩

wkn,i
fend · pa, stn,i = 0,
wkn,i
fedge · pi, stn,i = 1, 2, ..., S
wkn,i
fcloud · pi, stn,i = S + 1,

(8)

where the execution time can be calculated by Eq. (2), pa
represents active energy, and pi represents idle energy.

Waiting energy consumption
The waiting energy consumption refers to the energy con-
sumption generated by tasks of MD in a waiting queue.
When the waiting time is calculated, it is easier to obtain
the waiting energy consumption. In addition, the waiting
time consumption is calculated by Eq. (3), and the waiting
energy consumption is equal to waiting time multiplying
ideal energy consumption.

EW (st) = TW (stn,i) · pi (9)

Propagation energy consumption
In this part, the propagation energy consumption calcu-
lated by

EP(stn,i) =
⎧
⎨

⎩

0, stn,i = 0,
EC(stn,i), · pi stn,i = 1, 2, ..., S
EC(stn,i), · pi stn,i = S + 1,

(10)

Transmission energy consumption
Energy consumption of transmission is represented by
ET (). The transmission energy consumption of MDs is
related to the transmission time and can be calculated as

ET (stn,i) =

⎧
⎪⎪⎨

⎪⎪⎩

wkn,i
Bend · pt , stn,i = 0,
wkn,i
Bedge · pt , stn,i = 1, 2, ..., S
wkn,i
Bcloud · pt , stn,i = S + 1,

(11)

where pt is represented the energy consumption of trans-
mission.

Total energy consumption
Based on the above analysis, the total energy consumption
E(st) can be calculated as

E(st)=
N∑

n=1

|tkn|∑

i=1

(
EE(stn,i)+ET (stn,i)+EP(stn,i)+EW (stn,i)

)

(12)

Resource utilization model
The computing resources of ESs are limited. Visualization
technology [41] is used to represent the resources of ES.
Thus, Resource utilization can be calculated by the usage
of VMs. The VMs in the ESs are instantiated as multi-
ple VM instances with heterogeneous computing capacity.

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 6 of 13

The resource utilization can be measured by the number
of the active VM instances in the VM pool. It is assumed
that vmm is the number of VM instances of the m-th ES
em. The resource utilization could be expressed as

Cm = 1
vmm

·
I∑

i=1

J∑

j=1
ri,j · Om

i,j (13)

where ri,j is the VM instances occupied by stn,i and Om
i,j

is a binary flag to determine whether the task stn,i is
performed by the ES sm, which is calculated by

Om
i,j =

{
1, if stn,i is performed by the sm,
0, otherwise. (14)

A binary flag Fm is utilized to represent the status of the
ES em which is calculated by

Fm =
{
1, if em is employed,
0, otherwise. (15)

hereafter, the number of the employed ESs can be calcu-
lated by

EE =
M∑

m=1
Fm (16)

Above all, the average resource utilization can be calcu-
lated by

ARU(st) = 1
EE

M∑

m=1
Cm (17)

Load balancing model
Different from the average resource utilization, load bal-
ancing is a negative indicator. When its value is lower, the
state of the ES cluster is much better. Additionally, based
on the average resource utilization illustrated in Eq. (17),
the average load balancing value can be obtained by

LB(st) = 1
UK

·
W∑

w=1
[UV (stn,i)) − UC(stn,i)]2 (18)

Problem formulation
The aim of this paper is to minimize the time consump-
tion and energy consumption of MDs and load balancing
of ESs, and maximize the resource utilization of ES. The
multi-objective optimization issue can be formulated as

Min {T(st)} ,Min {E(st)} ,Min {LB(st)} (19)

Max {UV(st)} (20)

s.t. stn,i ∈ {0, 1, 2, ..., E + 1} (21)

T(st) � deadline (22)

where T(st) represents the time-constraint which means
that the total time consumption should not overstepping
the given deadline.

Algorithm design
In this section, we describe our proposedmethod, namely,
a multi-objective collaborative optimization for smart

Fig. 4 Comparison of time consumption

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 7 of 13

city (MOCOSC)based on the multi-objective optimiza-
tion genetic algorithm MOMBI [42]. Different from the
traditional multi-objective optimization algorithm, the
MOMBI uses the R2 indicator instead of a non-dominated
sort. R2 indicator focuses on the Pareto front rather
than the edge, which can achieve an elite solution set.
By correcting the inherent deviation of the R2 indicator,
MOCOSC achieves different sets of Pareto approximate
solutions as computation offloading strategies.
The main steps of MOCOSC are shown as follows.

Firstly, some initialization work needs to be completed.
Secondly, new populations are created by crossover and
mutation operations. Then, solutions are ranked by R2
ranking and selected to the next population using tourna-
ment selection. Finally, the optimal solution is selected by
using SAW [43] and MCDM [44] in the set of the solution
in the Pareto front.

Initialization
Firstly, some parameters are initialized, such as the size
of population Np, the size of archive set Narc, the proba-
bility of crossover Pc, the probability of mutation Pm, the
number of iterations Gmax, and current iteration index
Gcur .
After setting the above parameters, the algorithm is

ready to run. The first population should be generated
randomly, represented by pop1, and create an empty
archive arc1 to keep archive set of population.

Crossover andmutation
The aim of crossover operation is to retain the character-
istics of the parent population. In the crossover operation,

through the crossover operation at the cross point, a
new offspring population is generated while maintaining
the characteristics of the parent population. In crossover
points, the crossover operation is to exchange the corre-
sponding value of two offloading strategies. An example of
crossover operation is shown in Fig. 2. It can be seen that
the crossover operation occurs between 1 and 5, as well as
between 7 and 3.
The aim of mutation operation is to maintain the diver-

sity of the population. An example of mutation operation
is shown in Fig. 3. The offloading strategy is mutated from
1 to 3 which means the 3−th ES is selected to provide ser-
vices rather than 1−th ES. Similarly, the 3 on the right side
of the figure is mutated to 6 indicating that the 6−th ES
will replace 3−th to provide services.
After these two operators, the new offspring Nn

p ew is
generated and served as the population for the next itera-
tion.

R2 ranking and reference points
In this section, we introduce R2 ranking of MOMBI. R2
ranking is based on R2 indicator. R2 indicator divides the
non-dominated layer by measuring the utility function.
The utility function represents the value of each objective
which is obtained by the weighted Tchebycheff method.
The weighted Tchebychef is defined as

WT(A,W) = − 1
|W |

∑

ω∈W
min
α∈A

μ(α) (23)

where W represents the weight of each fitness function,
A is the set of Pareto approximation and μ represents the
utility functions.

Fig. 5 Comparison of energy consumption

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 8 of 13

In Eq. (23), the utility functions μ need to be updated
in each ranking. The utility function is updated by the
reference point and the objective function. The updating
method of the reference point can be obtained by

f ∗
t (stn,i) = ft(stn,i) − zmin

t
zmax
t − zmin

t
(24)

where zmax
t and zmin

t are the maximum and minimum
objective function value in popt .
Combing with Eqs. (23) and (24), the R2 ranking of

MOMBI can be defined as

rankp =
⋃

w∈W
min

a∈A/Bk
{ max
i∈1,...,t wi| ft(stn,i) − zmin

t
zmax
t − zmin

t
|} (25)

Selection
In this section, the selection operation of MOMBI is
described. The goal of selection operation is to select the
solution with optimal characteristics as the parent pop-
ulation for the next generation population. MOMBI uses
the tournament selection to select solutions. Firstly, two
solutions with the same probability are selected. Then,
the better one is selected as the next generation parent
population by comparing their objective function values.
To repeat the above steps until enough next-generation
populations are generated.

Optimal selection
After the maximum iteration, a set of Pareto solutions is
generated, and SAW [43] andMCDM [44] are exploited to
select the optimal solution as the computation offloading
strategy. According to the core idea of these two methods,
the normalized form of the four goals can be expressed as
follows.
Time consumption of i-th application in n-th MD can

be normalized as

Vs(T(stn,i)) =
{

Tmax−T(stn,i)
Tmax−Tmin

, Tmax − Tmin > 0
1, Tmax − Tmin = 0

}

(26)

Similarly, the energy consumption can be normalized as

Vs(E(stn,i)) =
{

Emax−E(stn,i)
Emax−Emin

, Emax − Emin > 0
1, Emax − Emin = 0

}

(27)

The resource utilization can be normalized as

Vs(ARU(stn,i)=
{ ARUmax−ARU(stn,i)

ARUmax−ARUmin
, ARUmax − ARUmin > 0

1, ARUmax − ARUmin = 0

}

(28)

The load balancing can be normalized as

Vs(LB(stn,i)) =
{

LBmax−LB(stn,i)
LBmax−LBmin

, LBmax − LBmin > 0
1, LBmax − LBmin = 0

}

(29)

In order to select the optimal solution, we need to con-
sider four objectives together. Correspondingly, we use αt ,
αe, αu and αl to represent weight of each objective, respec-
tively. And the constraint of four vectors is defined as αt +
αe + αu + αl = 1. And then, we define the maximum util-
ity value of chromosome in the optimal population Vmax
which is expressed as

Vmax = max [αt · Vs(T(st)) + αe · Vs(E(st))
+αu · Vs(ARU(st) + αl · Vs(LB(st))]

(30)

Method overview
Algorithm 6 illustrates the procedure of MOCOSC, the
goal of MOCOSC is to reduce the time and energy con-
sumption of MDs, and the load balancing while increasing
the resource utilization of ESs. Firstly, the first generation
population of offloading strategies is initialised as POP1
(Line 1). Secondly, evaluate four objectives of population
by Algorithm 1-4. Algorithm 1 and Algorithm 2 calculate
the time and energy consumption of MDs, and Algorithm
3 and Algorithm 4 calculate the resource utilization and
load balancing of ESs (Lines 2-5). Then, calculate refer-
ence points of objective functions (Line 6). Afterwards,
R2 ranking is executed to divide non-dominated solution
set by Algorithm 5. After performing these steps, a set
of reference points and a population are generated, and
the reference points and populations are iterated. Then,
the tournament selection is executed to find best solution
(Line 9), and the mutation and crossover are performed
to generate next generation (Lines 7-8). Repeat the fol-
lowing steps until the maximum number of iterations is
reached. Namely, evaluate population and update the ref-
erence point and execute the R2 ranking by Algorithm
5 (Lines 10-13). Finally, the population size is reduced
to Npop (Line 14). After that, MOCOSC adopt SAW and
MCDM method to select an optimal offloading strategy
(Line 17).

Comparison and analysis of experimental results
In this section, we conduct experiments to prove the
effectiveness and superiority of MOCOSC. Firstly, the
experimental setting is described. Followed by is the
experimental evaluation and discussions.

Experimental setting
In our experiment, by default, it is supposed there are 5
ESs providing service, each of which has heterogeneous
computing capacity. We design three sets of experiments.
The first one is an experiment with different numbers
of MUs, which is set from 2 to 20 and each MU has 10

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 9 of 13

Algorithm 1 Time consumption calculation
Input: Offloading strategy st
Output: Time consumpiton T(st)
1: for n= 1 to N do
2: for i= 1 to |TKn| do
3: TE(stn,i) is calculated by Eq. (2)
4: TW (stn,i) is calculated by Eq. (3)
5: TP(stn,i) is calculated by Eq. (4)
6: TT (stn,i) is calculated by Eq. (5)
7: T(stn,i)= TE(stn,i)+ TT (stn,i)+ TP(stn,i)+

TW (stn,i)
8: If(T(stn,i) > Tddl)
9: Regenerate solution by Algorithm 1

10: end for
11: end for
12: return T(st)

Algorithm 2 Energy consumption calculation
Input: Offloading strategy st
Output: Energy consumpiton E(st)
1: for n= 1 to N do
2: for i= 1 to |TKn| do
3: EE(stn,i) is calculated by Eq. (8)
4: EW (stn,i) is calculated by Eq. (9)
5: EP(stn,i) is calculated by Eq. (10)
6: ET (stn,i) is calculated by Eq. (11)
7: E(stn,i)= EE(stn,i)+ ET (stn,i)+ EP(stn,i)+

EW (stn,i)
8: end for
9: end for

10: return E(st)

applications. A second one is an experiment with differ-
ent application scales, which is set from 10 to 50, and the
number of MUs is fixed at 2. The last one is conducted
to test the situation of large number of applications, the
number of MUs is set from 100 to 300. Under this situa-
tion, the number of ESs has also increased to 20 accord-
ingly. Each experiment is performed 10 times, and the
results of the experiment are the average value of the 10
experiments. More detailed experimental parameters are
shown in Table 1.
Two comparison methods named FCFS and Benchmark

are introduced, the details of which are shown as follows.

• Benchmark All applications are executed locally, or
are offloaded to ES cluster, or cloud randomly.
Especially, the first task and last task of each MU are
executed locally by MD.

• First Come First Service (FCFS) All applications
are executed sequentially, namely, the first one is
executed locally, the second one is executed in ES1,

Algorithm 3 Average resource utilization calculation
Input: Offloading strategy st
Output: Resource utilization variance ARU(st)
1: for n= 1 to N do
2: for tk= 1 to |TKn| do
3: The resource utilization of all ESs is calculated

by Eq. (13)
4: end for
5: end for
6: The average resource utilization is calculated by

Eq. (17)
7: return ARU(st)

Algorithm 4 Load balancing calculation
Input: Offloading strategy st
Output: Load balance variance LB(st)
1: The single load variance is calculated
2: for s= 1 to S do
3: The load balancing of each ES is calculated by

Eq. (18)
4: end for
5: return LB(st)

Algorithm 5 R2 Ranking
Input: population poptweight vectorsW reference point
1: z∗

Output: Ranking of the population popt∗
2: while w ∈ W do
3: while pop ∈ POP do
4: The utility value pop.a is calculated
5: if pop.a < pop.u∗ then
6: pop.u∗ ← pop.a
7: end if
8: end while
9: Sort the population POP rank ← 1

10: if Number of(St)< Npop then pop.rank ← rank
11: end if
12: rank ← rank+1
13: end while

and so on, the N + 1−th one is executed in cloud.
Similarly to Benchmark, the last task of each MU are
executed locally.

The experiments are processed in Eclipse based on
JAVA language on a PC with 8 Intel Core i7-10850H
2.7GHz processors with 16GB RAM and the operating
system is Win10 64bit.

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 10 of 13

Fig. 6 Comparison of average resource utilization

Experimental evaluation and discussion
In this subsection, numerous and rigorous comparison
experiments are conducted to analyze the performance of
the total time consumption, the energy consumption, as
well as the ESs’ average resource utilization and load bal-
ancing of the above three methods. The relevant results
are shown in Figs. 4, 5, 6, 7.

Comparison of time consumption
The total time consumption can be obtained by Eq. (7).
Figure 4 illustrates the comparison results of the total
time consumption of the above three methods under
different number of MDs and different number of appli-
cations. Time consumption comparison results of these
three methods under different numbers of applications
are shown in Fig. 4a. The result of the impact of differ-
ent applications performed by each MU on the total time
consumption is shown in Fig. 4b and Fig. 4c. It can be
seen that MOCOSC outperforms other two approaches
from the perspective of different situations. More specifi-
cally, MOCOSC can widely used for different application
scales. The main reason is that MOCOSC can compre-
hensively consider various factors to allocate application
more reasonably to reduce the total time consumption
in comparison to Benchmark and FCFS. In sum, we can
conclude that MOCOSC is more stable and effective.

Comparison of energy consumption
The total energy consumption can be obtained by Eq. (12).
Figure (5) illustrates the comparison results of the total

energy consumption of the above three methods under
different number of MDs and under different number of
applications. Energy consumption comparison results of
these three methods under different application scale are
shown in Fig. 5a. The result of the impact of different
tasks performed by each MU on the total energy con-
sumption is shown in Fig. 5b and Fig. 5c. It can be seen
that MOCOSC outperforms the other two approaches in
terms of different situations. More specifically, MOCOSC
can widely used for different application scales. The main
reason is that MOCOSC can comprehensively consider
various factors to allocate application more reasonably
to reduce the total energy consumption in compari-
son to Benchmark and FCFS. In conclusion, MOCOSC
is the most energy-efficient method among those
methods.

Comparison of average resource utilization
The average resource utilization is an essential standard
to measure the performance of the ESs. The resource
utilization is measured by the quantity of active VM
instances in the VM pool of each ES. When all the com-
puting applications have been offloaded to ESs via the
offloading method, the occupation of the VM instances
is achieved. Higher resource utilization means fewer idle
VM instances in the VM pool. The resource utilization
can be obtained by Eq. (17).
Figure 6 illustrates the comparison results of the aver-

age resource utilization of the above three methods under
different number of MDs and under different number of

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 11 of 13

Fig. 7 Comparison of load balancing

applications. The average resource utilization comparison
results of these three methods under different application
scale are shown in Fig. 6a. The result of the impact of
different applications performed by each MU on the aver-
age resource utilization is shown in Fig. 6b and Fig. 6c.
It can be seen that MOCOSC outperforms other two
approaches in terms of different situations. More specifi-
cally, MOCOSC can widely used for different application
scales. The main reason is that MOCOSC can compre-
hensively consider various factors to allocate application
more reasonably to improve the average resource uti-
lization in comparison to Benchmark and FCFS. Above
all, MOCOSC can be widely used for the different
situations.

Comparison of load balancing
Similar to the average resource utilization, load balanc-
ing is also an essential standard to measure the perfor-
mance of the ESs. Different from the former one, load
balancing is a negative criteria. When its value is lower,
the state of the ES cluster is much better. According to
the previous mode, Load balancing can be obtained by
Eq. (18).
Figure (7) illustrates the comparison results of load

balancing of the above three methods under different
number of MDs and under different number of appli-
cations. The load balancing comparison results of these
three methods under different application scale are shown
in Fig. 7a. The result of the impact of different applica-
tions performed by each MU on load balancing is shown

in Fig. 7b and Fig. 7c. It can be seen that MOCOSC
outperforms the other two approaches in terms of dif-
ferent situations. Moreover, as the number of user appli-
cations increases or the number of users increases, the
final load balancing values of the three methods are
basically the same. That is because the resources of
all ESs are occupied, each ES is in a balanced state.
Above all, MOCOSC can be widely used for the different
situations.

Conclusion
The combination of smart city and MEC is a promis-
ing way to improve our daily life. In this study, we have
studied computation offloading for MEC-enabled smart
city. Aiming at improve the overall performance of the
smart city system, both the MU and ES have been taken
into consideration. More specifically, we not only aug-
ment the performance of MDs, but also make full use of
the resources of ES cluster. For ES, we not only improve
the average resource utilization of ES, but also keep the
load of the ES cluster in a balanced state. Corresponding,
a multi-objective optimization mode is established and
a new optimization method is proposed to address this
mode. Sufficient experiments and analysis have validated
that our proposed method is effective and superior in
comparison to the other methods in different situations.
In future work, we will focus on privacy-aware compu-
tation offloading for scientific workflow application and
transmission control in MEC-enabled vehicular networks
[45–47].

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 12 of 13

Algorithm 6Amulti-objective collaborative optimization
for smart city
(MOCOSC)
Input: The population size NPOP
Output: The optimal offloading strategy STn,i
1: The optimal time consumption T(st(n, i))
2: The optimal energy consumption E(st(n, i))
3: The optimal resource utilization ARU(st(n, i))
4: The optimal load balance variance LB(st(n, i))
5: Initialize the first generation population
6: Time consumption is calculated by Algorithm 1
7: Energy consumption is calculated by Algorithm 2
8: Average resource utilization is calculated by Algo-

rithm 3
9: load balancing is calculated by Algorithm 4

10: Reference points zmax
t and zmin

t are calculated
11: Execute R2 ranking algorithm by Algorithm 5
12: while i �= NPOP do
13: Perform tournament selection
14: Perform mutation and crossover operation
15: Time consumption is calculated by Algorithm 1
16: Energy consumption is calculated by Algorithm 2
17: Average resource utilization is calculated by Algo-

rithm 3
18: Load balancing is calculated by Algorithm 4
19: Update reference points zmax

t , zmin
t

20: Execute R2 ranking by Algorithm 5
21: Reduce population POPi+1 ← { POPi

⋃
POPi+1 }

22: i + +
23: end while
24: SAW and MCDM are used to select the maximum

utility individual
25: return st(n, i),T(st(n, i)),E(st(n, i)),
26: ARU(st(n, i)),LB(st(n, i))

Acknowledgment
The authors would like to thank all peer reviewers for their good comments.

Authors’ contributions
Kai Peng conceived and designed this study. Peichen Liu conducted
simulation experiments. Kai Peng wrote this paper. All authors reviewed and
edited the manuscript. All authors read and approve the final manuscript.

Funding
This work is supported by the Fundamental Research Funds for the Central
Universities(ZQN-817), the National Science Foundation of China (Grant
No.61902133), the Natural Science Foundation of Fujian Province (Grant
No.2018J05106), Quanzhou Science and Technology Project(No.2020C050R).

Availability of data andmaterials
The details of experimental parameters are given in Table 1.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1College of Engineering, Huaqiao University, Quanzhou, People’s Republic of
China. 2Sincetech (Fujian) Technology Co., Ltd, Quanzhou, China. 3Institute of
Information Engineering, Chinese Academy of Sciences, Beijing, China.

Received: 7 June 2021 Accepted: 17 August 2021

References
1. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015)

Internet of things: A survey on enabling technologies, protocols, and
applications. IEEE Commu Surv Tutor 17(4):2347–2376

2. Li R, Song T, Mei B, Li H, Cheng X, Sun L (2018) Blockchain for large-scale
internet of things data storage and protection. IEEE Trans Serv Comput
12(5):762–771

3. Gheisari M, Pham QV, Alazab M, Zhang X, Fernandez-Campusano C,
Srivastava G (1557) ECA: an edge computing architecture for
privacy-preserving in IoT-based smart city. IEEE Access 7:155779–86

4. Qian B, Su J, Wen Z, Jha DN, Li Y, Guan Y, et al. (2020) Orchestrating the
development lifecycle of machine learning-based iot applications: A
taxonomy and survey. ACM Comput Surv (CSUR) 53(4):1–47

5. Ahmed E, Yaqoob I, Gani A, Imran M, Guizani M (2016)
Internet-of-things-based smart environments: state of the art, taxonomy,
and open research challenges. IEEE Wirel Commun 23(5):10–16

6. Xie J, Tang H, Huang T, Yu FR, Xie R, Liu J, Liu Y (2019) A survey of
blockchain technology applied to smart cities: Research issues and
challenges. IEEE Commun Surv Tutorials 21(3):2794–2830

7. Eckhoff D, Wagner I (2018) Privacy in the smart city-applications,
technologies, challenges, and solutions. IEEE Commu Surv Tutor
20(1):489–516

8. Rostirolla G, Righi R. d. R, Barbosa JLV, da Costa CA (2018) Elcity: An elastic
multilevel energy saving model for smart cities. IEEE Trans Sustain
Comput 3(1):30–43

9. Ramaprasad A, Sanchez-Ortiz A, Syn T (2017) A unified definition of a
smart city. In: Janssen M, et al. (eds). Electronic Government. EGOV 2017.
Lecture Notes in Computer Science, vol 10428. Springer, Cham. pp 13–24.
https://doi.org/10.1007/978-3-319-64677-0_2

10. Qi L, Wang X, Xu X, Dou W, Li S (2020) Privacy-aware cross-platform
service recommendation based on enhanced locality-sensitive hashing.
IEEE Trans Netw Sci Eng. https://doi.org/10.1109/TNSE.2020.2969489

11. Liu Y, Pei A, Wang F, Yang Y, Zhang X, Wang H, Ma R (2021) An
attention-based category-aware GRU model for the next POI
recommendation. Int J Intell Syst. https://doi.org/10.1002/int.22412

12. Calero C, Mancebo J, García F, Moraga MÁ, Berná JAG, Fernández-Alemán
JL, Toval A (2019) 5Ws of green and sustainable software. Tsinghua Sci
Technol 25(3):401–414

13. Wang F, Zhu H, Srivastava G, Li S, Khosravi MR, Qi L (2021) Robust
Collaborative Filtering Recommendation With User-Item-Trust Records.
IEEE Trans Comput Soc Syst:064213. https://doi.org/10.1109/TCSS.2021.3

14. Sánchez MC, de Gea JMC, Fernández-Alemán JL, Garcerán J, Toval A
(2019) Software vulnerabilities overview: A descriptive study. Tsinghua Sci
Technol 25(2):270–280

15. Pedreira O, Garciía F, Piattini M, Cortiñas A, Cerdeira-Pena A (2020) An
architecture for software engineering gamification. Tsinghua Sci Technol
25(6):776–797

16. Maimaiti M, Liu Y, Luan H, Sun M (2020) Enriching the Transfer Learning
with Pre-Trained Lexicon Embedding for Low-Resource Neural Machine
Translation. Tsinghua Sci Technol. https://doi.org/10.26599/TST.2020.
9010029

17. Tekouabou SCK, Hartini S, Rustam Z, Silkan H, Agoujil S (2021)
Improvement in automated diagnosis of soft tissues tumors using
machine learning. Big Data Min Analytics 4(1):33–46

18. Guezzaz A, Asimi Y, Azrour M, Asimi A (2021) Mathematical validation of
proposed machine learning classifier for heterogeneous traffic and
anomaly detection. Big Data Min Analytics 4(1):18–24

19. Mahmud MS, Huang JZ, Salloum S, Emara TZ, Sadatdiynov K (2020) A
survey of data partitioning and sampling methods to support big data
analysis. Big Data Min Analytics 3(2):85–101

20. Zhang Y, Lan X, Li Y, Cai L, Pan J (2018) Efficient computation resource
management in mobile edge-cloud computing. IEEE Int Things J
6(2):3455–3466

https://doi.org/10.1007/978-3-319-64677-0_2
https://doi.org/10.1109/TNSE.2020.2969489
https://doi.org/10.1002/int.22412
https://doi.org/10.1109/TCSS.2021.3
https://doi.org/10.26599/TST.2020.9010029
https://doi.org/10.26599/TST.2020.9010029

Peng et al. Journal of Cloud Computing (2021) 10:47 Page 13 of 13

21. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A (2019) Edge computing:
A survey. Futur Gener Comput Syst 97:219–235

22. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and
challenges. IEEE Int Things J 3(5):637–646

23. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile
edge computing: The communication perspective. IEEE Commun Surv
Tutor 19(4):2322–2358

24. Shakarami A, Shahidinejad A, Ghobaei-Arani M (2020) A review on the
computation offloading approaches in mobile edge computing: A
game-theoretic perspective. Softw: Pract Experience 50(9):1719–1759

25. Xu X, Li Y, Huang T, Xue Y, Peng K, Qi L, Dou W (2019) An energy-aware
computation offloading method for smart edge computing in wireless
metropolitan area networks. J Netw Comput Appl 133:75–85

26. Huang L, Bi S, Zhang YJA (2019) Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing
networks. IEEE Trans Mob Comput 19(11):2581–2593

27. Cheng N, Lyu F, Quan W, Zhou C, He H, Shi W, Shen X (2019)
Space/aerial-assisted computing offloading for IoT applications: A
learning-based approach. IEEE J Sel Areas Commun 37(5):1117–1129

28. Xu X, Huang Q, Zhu H, Sharma S, Zhang X, Qi L, Bhuiyan MZA (2020)
Secure service offloading for Internet of vehicles in SDN-enabled mobile
edge computing. IEEE Trans Intell Transp Syst 22(6):3720–3729

29. Qi L, Hu C, Zhang X, Khosravi MR, Sharma S, Pang S, Wang T (2020)
Privacy-aware data fusion and prediction with spatial-temporal context
for smart city industrial environment. IEEE Trans Ind Inform. https://doi.
org/10.1109/TII.2020.3012157

30. Peng K, Huang H, Wan S, et al. (2020) End-edge-cloud collaborative
computation offloading for multiple mobile users in heterogeneous
edge-server environment. Wirel Netw. https://doi.org/10.1007/s11276-
020-02385-1

31. Peng K, Huang H, Pan W, Wang J (2020) Joint optimisation for time
consumption and energy consumption of multi-application and load
balancing of cloudlets in mobile edge computing. IET Cyber-Phys Syst:
Theory Appl 5(2):196–206

32. Khan LU, Yaqoob I, Tran NH, Kazmi SA, Dang TN, Hong CS (1020)
Edgecomputing-enabled smart cities: A comprehensive survey. IEEE
Internet Things J 7(10):10200–32

33. Liu L, Chang Z, Guo X, Mao S, Ristaniemi T (2017) Multiobjective
optimization for computation offloading in fog computing. IEEE Int
Things J 5(1):283–294

34. Xu X, Liu Q, Luo Y, Peng K, Zhang X, Meng S, Qi L (2019) A computation
offloading method over big data for IoT-enabled cloud-edge computing.
Futur Gener Comput Syst 95:522–533

35. Chen W, Wang D, Li K (2018) Multi-user multi-task computation
offloading in green mobile edge cloud computing. IEEE Trans Serv
Comput 12(5):726–738

36. Wu H, Wolter K, Jiao P, Deng Y, Zhao Y, Xu M (2020) EEDTO: an
energy-efficient dynamic task offloading algorithm for
blockchain-enabled IoT-edge-cloud orchestrated computing. IEEE
Internet Things J 8(4):2163–2176

37. Feng J, Yu FR, Pei Q, Chu X, Du J, Zhu L (2019) Cooperative computation
offloading and resource allocation for blockchain-enabled mobile-edge
computing: A deep reinforcement learning approach. IEEE Int Things J
7(7):6214–6228

38. Xu X, Huang Q, Yin X, Abbasi M, Khosravi MR, Qi L (2020) Intelligent
offloading for collaborative smart city services in edge computing. IEEE
Int Things J 7(9):7919–7927

39. Wu H, Zhang Z, Guan C, Wolter K, Xu M (2020) Collaborate edge and
cloud computing with distributed deep learning for smart city internet of
things. IEEE Int Things J 7(9):8099–8110

40. Xu X, Liu X, Xu Z, Dai F, Zhang X, Qi L (2019) Trust-oriented IoT service
placement for smart cities in edge computing. IEEE Int Things J
7(5):4084–4091

41. Hsieh H-C, Lee C-S, Chen J-L (2018) Mobile edge computing platform
with container-based virtualization technology for IoT applications. Wirel
Pers Commun 102(1):527–542

42. Hernandez Gomez R, Coello Coello C (2013) MOMBI:A New Metaheuristic
for Many-objective Optimization based on the R2indicator. In: Proc. 2013
IEEE Congress on Evolutionary Computation. IEEE, Cancun. pp 2488–2495

43. Afshari A, Mojahed M (2010) Simple additive weighting approach to
personnel selection problem. Int J Innov, Manag Technol 1(5):511

44. Aruldoss M, Lakshmi TM, Venkatesan VP (2013) A survey on multi criteria
decision making methods and its applications. Am J Inf Syst 1(1):31–43

45. Quan W, Liu Y, Zhang H, Yu S (2017) Enhancing crowd collaborations for
software defined vehicular networks. IEEE Commun Mag 55(8):80–86

46. Zhang Y, Pan J, Qi L, He Q (2021) Privacy-preserving quality prediction for
edge-based IoT services. Futur Gener Comput Syst 114:336–348

47. Quan W, Cheng N, Qin M, Zhang H, Chan HA, Shen X (2018) Adaptive
transmission control for software defined vehicular networks. IEEE Wirel
Commun Lett 8(3):653–656

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/TII.2020.3012157
https://doi.org/10.1109/TII.2020.3012157
https://doi.org/10.1007/s11276-020-02385-1
https://doi.org/10.1007/s11276-020-02385-1

	Abstract
	Keywords

	Introduction
	Related work
	System model and problem formulation
	System model
	Time consumption model
	Executing time
	Waiting time
	Propagation time
	Transmission time
	Total time consumption

	Energy consumption model
	Executing energy consumption
	Waiting energy consumption
	Propagation energy consumption
	Transmission energy consumption
	Total energy consumption

	Resource utilization model
	Load balancing model
	Problem formulation

	Algorithm design
	Initialization
	Crossover and mutation
	R2 ranking and reference points
	Selection
	Optimal selection
	Method overview

	Comparison and analysis of experimental results
	Experimental setting
	Experimental evaluation and discussion
	Comparison of time consumption
	Comparison of energy consumption
	Comparison of average resource utilization
	Comparison of load balancing

	Conclusion
	Acknowledgment
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

