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Abstract

Blockchain technology has the characteristics of decentralization and tamper resistance, which can store data safely
and reduce the cost of trust effectively. However, the existing blockchain system has weak performance in data
management, and only supports traversal queries with transaction hashes as keywords. The query method based on
the account transaction trace chain (ATTC) improves the query efficiency of historical transactions of the account.
However, the efficiency of querying accounts with longer transaction chains has not been effectively improved. Given
the inefficiency and single method of the ATTC index in the query, we propose a subchain-based account transaction
chain (SCATC) index structure. First, the account transaction chain is divided into subchains, and the last block of each
subchain is connected by a hash pointer. The block-by-block query mode in ATTC is converted to the
subchain-by-subchain query mode, which shortens the query path. Multiple transactions of the same account in the
same block are merged and stored, which simplifies the construction cost of the index and saves storage resources.
then, the construction algorithm and query algorithm is given for the SCATC index structure. Simulation analysis
shows that the SCATC index structure significantly improves query efficiency.
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Introduction
With the advancement of computer science, the devel-
opment of technologies such as big data [1], blockchain
[2, 3], and the Internet of Things [4–6] has been pro-
moted, and many convenient services [7] have also been
brought to users. However, there are still many problems,
such as user data privacy leakage [8–10], low algorithm
efficiency [11], search efficiency [12], and other issues.
Since traditional centralized institutions are not com-
pletely credible, users’ data may be leaked. Blockchain
with decentralized characteristics can store data safely and
protect users’ data privacy [13].
In 2008, Bitcoin was proposed by Satoshi Nakamoto

in “Bitcoin: A Peer-to-Peer Electronic Cash System” [14],
marking the emergence of blockchain technology. As the
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underlying technology of Bitcoin, blockchain has received
extensive attention [15–18]. Blockchain is a distributed
database technology that has the characteristics of decen-
tralization [19–21], traceability, tamper-proof, collective
maintenance, etc. [22]. The emergence of this technol-
ogy solves a series of problems such as high cost, low
efficiency, and low trust brought by centralized institu-
tions [23]. However, the blockchain is a chain structure,
which will cause the query efficiency to decrease as the
number of blocks grows. Take the Bitcoin blockchain as
an example. As of June 7, 2021, the block height has
reached 674,000, which means that when querying his-
torical data, hundreds of thousands of blocks may be
traversed. Such a query method cannot meet the current
query requirements.
Level-DB is the mainstream database in the blockchain

system, which is based on the storage structure of the
LSM tree. This leads to the lower reading performance
of the blockchain [24]. Besides, Level-DB only supports
simple Key-Value queries, not relational queries [25, 26].
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When querying transactions, users can only traverse in
block order, which further reduces query efficiency [27].
The blockchain system only supports related queries with
transaction hashes as keywords and does not query with
account hashes as keywords. The query method is sin-
gle. In response to this problem, some current solutions
are to transfer the data on the chain to the off-chain
storage [28, 29] to improve query efficiency, but the off-
chain storage violates the decentralized characteristics of
the blockchain. Third-party databases are faced with trust
issues, and they may also be attacked with a single point of
failure, data loss, data tampering, and other issues. There
are huge security holes in off-chain storage [25]. There-
fore, under the premise of ensuring security, improving
the retrieval efficiency on the chain is a current research
hotspot.
You et al. [30].designed a hybrid index mechanism that

supports blockchain transaction traceability based on the
Ethereum state tree. In this mechanism, a hash pointer
is embedded in the account transaction, which points to
the block where the previous transaction. Through the
pointer, the Account Transaction Trace Chain (ATTC)
can be quickly traced. The query method based on ATTC
improves the query efficiency of account transactions, but
for some active accounts with longer transaction chain
length, a longer chain still needs to be traversed. Besides,
users do not always want to find all the historical trans-
actions of an account, and it is still difficult to find target
transactions in massive account data. In this regard, we
improve the query scheme based on ATTC and propose
a SCATC index structure, which solves the shortcomings
of the ATTC index structure in the query effectively. The
main contributions of this paper are as follows:
1. We divide the transaction chain into subchains and

connect different subchains with hash pointers to shorten
the query path when querying early historical transac-
tions. This solution is not a query mode that uses space
for time. While reducing the time complexity, the space
complexity does not increase significantly.
2. We design a constructing algorithm and query algo-

rithm for the SCATC index structure. The simulation
results show that the SCATC-based query is more effi-
cient when querying the early transactions of accounts.
3. Multiple transactions of an account in the same block

are merged into one, and at most one index is built within
each block for the same account. This reduces the cost of
index construction and storage overhead.
The paper is organized as follows. “Related works”

section of this article introduces the related work of
blockchain in the data query; “Preliminaries” section
introduces some preliminary knowledge of blockchain;
“SCATC index structure” section elaborates on the con-
struction method and query algorithm of SCATC index
structure; “Experiment and analysis” section is efficiency

analysis and simulation experiment. The full text is sum-
marized in “Conclusions” section.

Related works
In order to improve the efficiency of blockchain query,
many researchers have made relevant studies. Xu et
al. [31]. proposed an Educational Certificate Blockchain
(ECBC) in response to the issue of education certificate
management. ECBC has built a tree structure (MPT-
Chain), which not merely supports effective query of
transactions, but also supports historical transaction
query of accounts. The index structure improves the effi-
ciency of querying account transactions.
Morishima et al. [32]. propose to accelerate blockchain

search through GPU using the higher computing power
of GPU. Utilizing the feature that blockchain data does
not need to be updated or deleted, an array-based Patri-
cia tree structure is introduced, which is suitable for GPU
processing. To study the identity verification and range
query issues in the hybrid storage blockchain, Zhang et al.
[33].used a unique gas cost model to design an authen-
tication data structure GEM2-tree that can be effectively
maintained by the blockchain. It not only saves gas con-
sumption in smart contracts but also effectively supports
identity verification queries. Aiming at the inefficient
query of the Elastic-Chain [34] model on the blockchain,
Jia et al. [35].propose an ElasticQM (elastic query model)
query method based on the model. In the user layer, the
model catches the user’s first query result to improve
the efficiency of the second query. In the data layer, the
B-tree is combined with the Merkle tree to construct
the blockchain data storage structure of the B-M tree.
This storage structure improves the query efficiency of
the internal data of the block. Jiao et al. [36]. propose a
blockchain database system framework, which realizes the
application of data management on the blockchain. Com-
bining red-black trees with Merkle trees, they propose a
tamper-resistance index based on hash pointers. Through
the index can realize the fast positioning of the data in
the block. Zheng et al. [37] divides the data attributes
on the blockchain into discrete attributes and continuous
attributes and proposed a MHerkle tree index structure
for different attributes, which supports range query. H
et al. [38].proposed the Ethereum data index structure
EBTree based on the B+ tree index. The EBTree index
supports real-time top-k query and range query. In addi-
tion, EBTree only stores the identifier of the blockchain
data, which occupies a relatively small storage space and
has better search and insertion performance. Ren et al.
[39] introduce a DCOMB (Dual Combination Bloom fil-
ter) scheme, which converts the computing power used
for Bitcoin mining into the computing power for data
query. DCOMB has higher random read performance and
lower error rate than COMB (Combination Bloom filter).
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The encrypted signature tree data structure of the Merkel
Block Space Index (BSI) [27] modifies the Merkle KD-
tree to support fast Spatio-temporal query processing. In
Ethereum, when a user initiates a transaction, the system
checks the status of the account. Wan et al. [40]. built
a Merkle Patricia tree account storage structure GMPT
(Group Merkel Patricia Tree) to speed up the query of
account status. However, GMPT does not support fast
queries of historical transactions. For this, an index direc-
tory BKV (B-Key-Value) is constructed in combination
with the B-tree index [41].

Preliminaries
Blockchain is a chain structure, as shown in Fig. 1. The
internal structure of the block is divided into two parts:
the block header and the block body. The block header
records some information such as the timestamp, the
hash value of the previous block, and the Merkle Root.
A Merkle tree is recorded in the block body, the user’s
transaction is hashed to obtain the leaf node hash value.
Combine the hash values of the two leaf nodes and per-
form a hash operation to obtain a new hash value, which
is used as the hash value of the parent node. Through con-
tinuous iteration and hash operation, the hash value of
Merkle Root can be finally obtained, which can be used to
verify the transactions in the block.
Unlike traditionally linked lists, the pointers used in

the blockchain are hash pointers, which store hash values
instead of addresses in memory. The blocks are connected
into a chain by hash pointers, and the pointers point from
the new block to the old block in chronological order.
When querying transactions, users can only traverse

from the new block to the old block through the hash
pointer. The data in the block body is queried through
the Merkle tree. First, check the Merkle Root, and then

traverse the Merkle tree from top to bottom through the
hash pointer in the Merkle Root. The hash pointer of the
leaf node can locate the transaction storage location. If the
target transaction is not found in the current block, the
next block will be inquired until the target transaction is
found. When querying early historical transactions, it is
necessary to traverse a longer blockchain. If the transac-
tion does not exist in the chain, the query will proceed
to traverse the complete blockchain. This block-by-block
traversal query method is extremely inefficient.

SCATC index structure
In this section, we have optimized the ATTC scheme and
designed the SCATC index scheme on the basis of this
scheme. The details of the SCATC index structure are
introduced in detail. In addition, we also designed a con-
struction algorithm and query algorithm for the SCATC
index structure.

Index design
Given ATTC’s shortcomings in retrieval, we improve it
based on the index structure. In ATTC, the transactions
of accounts in different blocks are connected by hash
pointers. The hash pointers here are called FHP (First
Hash Pointer). In the SCATC index structure, transaction
chain is divided into subchains. Every k(k > 1) block is
divided into a subchain, and each subchain has a subchain
number. Each transaction of the account will identify the
location of the transaction when it enters the chain. For
example, Accountn,k(Account is the account name, n and
k are both positive integers)means that the account is in
the kth block in the nth subchain of the transaction chain.
Every time a user participates in a transaction of k blocks,
another hash pointer is added to the account branch
leaf node in the block Accountn,k pointing to the block

Fig. 1 Block internal structure
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Accountn−1,k . The hash pointer connecting the blocks at
the last block of the two subchains is SHP (Second Hash
Pointer). The index structure of SCATC is shown in Fig. 2.
Figure 2 shows the chain structure of the blockchain. In

the blockchain, each block connected by the FHP consti-
tutes the transaction chain of the account, and each SHP
will span a complete subchain. The FHP in SCATC is not
embedded in the transaction but embedded in the leaf
nodes of the Merkle tree. When querying early historical
transaction, the system will directly filter the user’s recent
transaction data. For accounts with low activity, the lat-
est transaction may exist in the earlier part of the chain.
In the SCATC scheme, the state tree not only maintains
the account balance status but also maintains the sub-
chain number of the latest transaction. Through the status
tree, users can quickly locate the block location where the
latest transaction. The same account may generate mul-
tiple transactions in a short time, and transactions with
higher transaction fees usually enter the chain first, so
the same account may have multiple transactions in the
same block. To simplify the construction of the index, we
merge multiple transactions of the account in the same
block for storage, and the account branch leaf nodes can
directly access all the transaction of the target account in
the block. The storage diagram is shown in Fig. 3.
Taking Account_A as an example, regardless of whether

the transaction of Account_A is included in the latest
block, the leaf node of the account branch of the latest
block will maintain a hash pointer pointing to the latest
transaction of the account in the block. While maintain-
ing the global state, the state tree will also record the
specific transaction records of each account whose state
has changed in the block. All transaction records of the

same account in the same block are combined and stored
together, such as the transactions Tx_A1 and Tx_A2 of
Account_A in block N, the transactions Tx_A3, Tx_A4
and Tx_A5 of block K. Specific account transactions can
be accessed through the state tree, without the need to
build a separate transaction tree, which reduces the cost
of index construction.

Algorithm design
We first designed the index construction algorithm, and
then designed the query algorithm according to the
SCATC index structure.

Index construction algorithm
The algorithm traverses all the accounts whose status has
changed and judge whether the accounts are new users
one by one. If it is a new user, assign the value of one
to the subchain number of the transaction chain and the
block number in the subchain. If not, judge whether the
block number of the subchain of the previous block in the
account transaction chain is less than k − 1. If less than
k − 1, the subchain number of the new transaction is the
same as the previous block, and the block number in the
subchain is increased by one. If the block number in the
subchain where the previous block is located is equal to
k − 1, the subchain number of the new transaction is the
same as the previous block, and the block number in the
subchain is assigned the value k. Then, add SHP to the
account branch node corresponding to the new transac-
tion, pointing to the kth block of the previous subchain.
Through SHP, users can directly access the data of the
previous subchain. If the block number of the previous
block in the subchain is equal to k, the subchain number in

Fig. 2 SCATC index diagram
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Fig. 3 Consolidated storage structure

the new transaction will increase by 1, and the block num-
ber is assigned a value of 1. The block with block number
1 is the first block of the new subchain.

SCATC Index Construction Algorithm
input : The account transaction whose status has

changed
output : SCATC index
1 : for i in ACCOUNTS :
2 : if i is new Account :
3 : SubchainNum = 1
4 : SubchainBlockNum = 1
5 : if i is not new Account :
6 : if PreSubchainBlockNum < k − 1 :
7 : SubchainNum = PreSubchainNum
8 : SubchainBlockNum

= PreSubchainBlockNum + 1
9 : if PreSubchainBlockNum == k − 1 :
10 : SubchainNum = PreSubchainNum
11 : SubchainBlockNum = k
12 : SHP = PreHashvalue
13 : if PreSubchainBlockNum == k :
14 : SubchainNum

= PreSubchainNum + 1
15 : SubchainBlockNum = 1
16 : end for

Query algorithm
When inquiring about historical transactions, users can
directly access the kth block of the previous subchain from

the kth block of the latest subchain according to the SHP
until the target subchain. Then traverse the blocks in the
target subchain to obtain the transaction.

SCATC Index Query Algorithm
input : Target account subchain
output : Account transaction
1 : TargetAccountData =[ ]
2 : p = LatestBlock.data
3 : if p.SubchainBlockNum < k :
4 : for i in range(LatestBlock,

LatestSubchainFirstBlock,−1) :
5 : q = i.data
6 : for j in q :
7 : ifj.Account == TargetAccount :
8 : TargetAccountData.append(j)
9 : for i in range(LatestSubchainKBlock,

TargetSubchainKBlock,−k) :
10 : q = i.data
11 : for j in q :
12 : if j.Account == TargetAccount :
13 : TargetAccountData.append(j)
14 : for i in range(TargetSubchainKBlock,

TargetSubchainFisrtBlock,−1) :
15 : q = i.data
16 : for j in q :
17 : if j.Account == TargetAccount :
18 : TargetAccountData.append(j)
19 : return TargetAccountData
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The algorithm first creates a list TargetAccountData
to save the data of the target accounts that have been
accessed. Lines 2-8 of the algorithm visit the latest block
in the account transaction chain. If the sequence number
of the block is less than k, traverse from the latest block to
the first block in the subchain. Lines 9-13 of the algorithm,
according to the hash pointer in the kth block, access the
kth block of the previous subchain until the kth block of
the target subchain. During this process, only one block
is visited in each subchain. Lines 14-18 of the algorithm
traverse all the blocks in the target subchain. Before the
query reaches the target subchain, only one block is visited
in all subchains except the latest subchain. The block-
by-block traversal query method is transformed into a
subchain-by-subchain query, which shortens the access
path in the search process.

Experiment and analysis
Efficiency analysis
The length of the subchain affects the scope and efficiency
of the query. Assuming that the transaction chain length
of the current target account is s, the number of blocks
in each subchain is k(k > 1, k ∈ Z), and the number of
subchains is n(n > 1, n ∈ Z). When the transaction chain
length s is determined, the number of subchains n and k
are inversely proportional.

n = s
k

(1)

When k increases, the number of block accesses in the
subchain will increase, and the query range will increase.
The number n of subchains will continue to decrease
as k increases, thereby reducing the frequency of SHP
construction, because each subchain only constructs an
SHP once for the transaction chain of the account. If k
decreases, the length of the subchain becomes shorter,
and the query range of a single subchain is reduced. If the
user wants to increase the query range, the range from the
initial subchain to the end subchain of the query needs to
be given. In addition, the number of subchains will con-
tinue to increase with the k decrease, and the frequency of
SHP construction will increase.
We define access to the block where the target transanc-

tion is located as valid queries, and queries other than
valid queries as invalid queries. Invalid queries are repre-
sented by the symbol ψ . If ψ is larger, the query efficiency
is lower, and it also means that more computing resources
are wasted. In the SCATC-based query method, the num-
ber of blocks to be accessed by the initial subchain for
querying is μ

μ = s
k

+ k − 1 (2)

The number of blocks of irrelevant subchains accessed is
ψ1 ,then

ψ1 = n − 1 (3)

Because when the query proceeds to the target sub-
chain, other subchains only access the last block, which
reduces the number of irrelevant blocks that need to be
visited when locating the target subchain. The transac-
tion chain query method requires access to the complete
transaction chain when querying the data of the initial
subchain. The number of irrelevant blocks accessed is ψ2

ψ2 = n(k − 1) (4)

As s keeps increasing, n presents amonotonous increasing
trend. Eqs. (3) and (4) can be regarded as a linear func-
tion. In Eq. (3), the coefficient of the independent variable
n is 1, and in Eqs. (4), the independent variable coeffi-
cient is k − 1(k > 1). With the n continuous growth,
ψ2 >> ψ1 . Invalid queries based on the transaction chain
have a faster growth rate, while invalid queries based on
the SCATC query have a slower growth. The larger the
n, the more obvious the advantages of the SCATC-based
query.

Simulation experiment
The simulation environment is a host computer, where
the CPU is Intel(R) Core(TM) i7-5500U, 12GB memory,
and the 64-bit operating system Windows10 Professional
Edition. The SCATC index structure is written and imple-
mented in python language. The blockchain requires each
full node to maintain a complete ledger, so the data
retrieval of the simulation is performed locally.
The simulation compares the query efficiency of ATTC,

MPT-Chain and SCATC query methods under different
transaction chain lengths. Set the subchain length k to 10.
The length of the transaction chain is set to 1000-6000
blocks, and the corresponding number of subchains is
100-600. The simulation experiments are divided into six
groups according to different transaction chain lengths,
and each group of simulations is repeated eight times.
To better highlight the effect of simulation comparison,
each query is tested with the initial Subchain. Three query
methods start from the latest block to the earliest block,
so the query time in the method in SCATC includes the
time to locate the subchain. The simulation experimental
data obtained are shown in Tables 1, 2 and 3.
The average value of simulation experimental data of

ATTC, MPT-Chain and SCATC is plotted as a line chart
shown in Fig. 4. As the length of the transaction chain con-
tinues to grow, the query time based on the ATTC and
MPT-Chain query method is constantly increasing. How-
ever, the query method based on SCATC has not changed
significantly in query efficiency.
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Table 1 ATTC

Number
of blocks

Query time/ms AVG Mean
deviation

1000 21 25 13 13 19 20 12 23 18.3 33.4

2000 32 42 30 35 61 56 48 43 43.4 69.8

3000 52 55 47 42 56 39 50 49 48.8 36.4

4000 46 54 73 88 56 69 75 61 65.3 88.0

5000 85 99 88 65 73 79 92 87 83.5 67.0

6000 74 109 85 77 83 95 88 101 89.0 76.0

The subchain length k is 10, and AVG is the average query time

For active users in the blockchain system, the length of
the transaction chain has increased at a faster rate. From
a theoretical analysis, no matter which of the above query
methods, as the transaction chain grows, the length of
the transaction chain that needs to be traversed will be
longer, and the query efficiency will show a downward
trend. However, after the SCATC index structure divides
the transaction chain into subchains, it greatly reduces the
number of block visits. The limited length of the transac-
tion chain cannot cause a significant change in SCATC’s
query efficiency.
Take K to 50 and 100 to conduct a simulation exper-

iment again, and compare the query efficiency of the
three query methods when k takes different values. The
simulation results obtained are shown in Figs. 5 and 6.
Compared with Figs. 4, 5 and 6 show no significant

change in query efficiency. The query method based on
ATTC and MPT-Chain has no obvious change in query
efficiency. The main reason is that no matter how the
value of k changes, the method needs to traverse a com-
plete transaction chain. The SCATC-based query method
has no obvious change in query efficiency. The reason is
that after the transaction chain is divided into subchains,
the number of blocks that need to be accessed is sig-
nificantly reduced. The length of the transaction chain
that needs to be accessed is not long enough to cause a
significant drop in query efficiency.

Table 2 MPT-Chain

Number
of blocks

Query time/ms AVG Mean
deviation

1000 15 21 18 12 16 19 22 18 17.6 19.8

2000 38 34 31 39 29 45 41 39 37.0 34.0

3000 53 58 45 56 49 44 39 51 49.4 41.0

4000 63 56 62 53 51 64 66 65 60.0 40.0

5000 78 73 85 81 76 75 77 75 77.5 23.0

6000 82 89 87 87 92 83 93 86 87.4 23.8

The subchain length k is 10, and AVG is the average query time

Table 3 SCATC

Number
of blocks

Query time/ms AVG Mean
deviation

1000 15 12 16 15 15 17 13 13 14.5 11.0

2000 17 14 15 14 12 15 12 16 14.4 11.0

3000 16 18 14 13 15 17 16 13 15.3 12.0

4000 15 13 15 16 14 13 15 16 14.6 7.8

5000 17 17 17 13 16 16 19 18 16.6 9.8

6000 10 12 16 12 18 21 17 19 17.4 11.8

The subchain length k is 10, and AVG is the average query time

Time complexity
For an algorithm, its efficiency is related to the language it
implements and the hardware configuration of the com-
puter. Putting aside these factors related to software and
hardware, it can be considered that the efficiency of the
algorithm is only related to the scale of the problem.
In the traditional traversal query method, it is assumed

that the block height is h1, and the number of nodes of
the Merkle tree in the block is p1. As the transactions of
users in the system continue to increase, h1 will continue
to increase, while p1 will be relatively unchanged, so h1
is the scale of the problem. Since there may be multiple
transactions in the same block in the same account, the
traversal query method needs to traverse a complete tree.
In addition, the system does not know whether the next
block also contains the target account transaction, so the
system will continue to traverse the next block until the
entire blockchain. So in the process of traversal query, the
number of query operations that the system will execute
is λ(h1) = p1 × h1 . Since the block size usually varies
little, the number of nodes p1 can be regarded as a con-
stant. Then the time complexity of the algorithm can be
expressed as

T(h1) = O(h) (5)

In ATTC, assuming that the block height of ATTC is h2, as
the transactions of the account continue to increase, the
length of the transaction chain continues to grow, so h2 is
the scale of the problem. The Merkle Patricia tree in the
block is generated by the account ID, so the length of the
query path is fixed. Suppose the number of fields in the
transaction is g, and the number of query operations that
the system will execute is also λ(h2) = p2 × h2 × g. The
number of fields in each transaction fluctuates slightly, so
g can be regarded as a constant. Then the time complexity
of the algorithm can be expressed as

T(h2) = O(h) (6)

In MPT-Chain, suppose the height of the MPT-Chain
block is h3, and the length of the query path p3 in the
Merkle Patricia tree remains unchanged. Compared with



Xing et al. Journal of Cloud Computing           (2021) 10:52 Page 8 of 11

Fig. 4 k=10

the ATTC scheme, MPT-Chain pointers are not embed-
ded in specific transactions, so there is no need to access
specific transactions. The number of query operations
performed by the system is λ(h3) = p3 × h3, and the time
complexity of the algorithm can be expressed as

T(h3) = O(h) (7)

In SCATC, the index is also constructed based on the
Merkle Patricia tree. Assuming that the height of the
transaction chain of the target transaction to be checked

Fig. 5 k=50
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Fig. 6 k=100

is h4, the length of the query path within the block is
p4, and the length of the subchain is k. Then the num-
ber of query operations that the system will perform is
λ(h4) = 1

k × h4 × p4.Then the time complexity of the
algorithm can be expressed as

T(h4) = O(h) (8)

From the above analysis, it can be seen that the time com-
plexity of any query method is linear order O(h), and it
cannot reach the ideal constant orderO(1). But in the case
of linear order time complexity, the most important fac-
tor affecting query efficiency is the block height h. In the
above-mentioned several query methods, there is p4

k <

p3 < p2g < p1, so λ(h4) < λ(h3) < λ(h2) < λ(h1).
Therefore, in the above scheme, SCATC needs to perform
the least number of query operations during the query
process, and the query efficiency is higher.

Conclusions
We improve the query efficiency of the ATTC index struc-
ture and proposes a SCATC index structure that supports
querying account subchain data. We divide the trans-
action chain into subchains, add hash pointers to the
account branch nodes of the block at the last block of
each subchain, and each subchain is connected by hash
pointers. Through this pointer, the query mode of travers-
ing the transaction chain is converted to the subchain
query mode, which effectively reduces the access to irrele-
vant block data and reduces the computational overhead.
All transactions of the same account in the same block

are merged and stored together, which simplifies the con-
struction cost of the index and reduces the storage over-
head. Besides, we also design a query algorithm for the
SCATC index. Simulation experiments and analysis show
that the index structure based on SCATC can improve
the query efficiency of account transactions effectively.
However, the improvement in query efficiency of this
solution is only for accounts with a longer account trans-
action chain, and there is no significant improvement for
accounts with a shorter account transaction chain. At the
same time, this solution is only for retrieval optimization
in the plaintext state, and the data privacy of blockchain
users cannot be guaranteed. Our next step will be dedi-
cated to the optimization of ciphertext data retrieval in the
blockchain.
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