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Abstract

In this paper, we study how an oligopolist influences the coalition structure in federated cloud markets. Specifically,
we use cooperative game theory to model the circumstances under which a cloud provider prefers to join a cloud
federation vis-a-vis consider taking a price offer made by an oligopolist. We consider two price offering strategies for
an oligopolist: non-adaptive and adaptive. In non-adaptive strategy, an oligopolist makes a price offer to all the cloud
providers simultaneously. It can be noted that the oligopolist can buy-out all the cloud providers by making a price
offer which is equal to a core allocation and the total price offer made by the oligopolist is equal to the value of the
grand coalition. In adaptive strategy, the oligopolist approaches the cloud providers one after another in a sequential
manner. We show that by using the adaptive strategy, the oligopolist can buy-out all the cloud providers at a total
price offer which is less than that of the non-adaptive strategy.

Keywords: Federated clouds, Oligopoly, Linear production games

Introduction
The current cloud computing market structure is akin to
oligopoly as few mega cloud providers completely own
the market share. Each of them individually or in collu-
sion has the power to affect the market prices leading to
what is called animperfect competition. Further, due to
the large scale of operations in the data centers owned by
these oligopolists, there is an acute stress on electricity
and other natural resources. Many studies [1, 2] indicated
the resulting adverse impact on the environment due to
carbon emissions and other pollutants.

Since computing has become a common commodity
these days, it is easy to envisage a large number of micro
cloud providers with small to medium scale data centers.
With the presence of a large number of producers, an
oligopolistic market leans towards aperfectly competitive
market. In a market with perfect competition, produc-
ers become price takers and it is not possible for one
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or few cloud providers to affect the market prices. Fur-
ther, as these small data centers are geographically spread
out, the stress on the local resources and the impact
on the micro-climate will be mitigated, especially by the
usage of renewable energy resources and productive use
of dissipated heat energy.

However, such micro cloud providers will be able to
serve only moderate sized consumer requests due to the
limited availability of resources in their data centers. In
order to serve large consumer requests many micro cloud
providers have to come together and form a coalition or
a federation. The federation formation can happen in a
peer-to-peer fashion leading to what is called a Peer-to-
Peer Inter-Cloud Federation (refer Fig.1a) [3]. The other
option is to use the services of a broker as in Fig.1b
resulting in a Multi-Cloud federation model. The broker
is one of the very few oligopolists who owns a substantial
market share. He can generate more revenue and thereby
profit, using the same set of resources when compared
with micro cloud providers. This is due to his market
reach, brand value and other value-added services he can
provide.
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Fig. 1 Cloud Federation Models

Problem statement and contributions
In this section, we briefly outline the problems addressed
in this paper and the later sections provide a detailed
technical discussion regarding the same1.

Peer-to-peer inter-clouds and linear production games
Given a set of cloud providers, we formulate the problem
of peer-to-peer inter-cloud federation formation (refer
Fig.1a) as alinear production game. This is the first contri-
bution of this paper. It is a well-known theorem that every
linear production game has a non-emptycore[5,6]. A core
is a pay-off distribution scheme such that no individual
player or a sub-coalition of players have an incentive to
break-off from the grand coalition. For many cooperative
game theoretic models, there are no known polynomial
time algorithms for computing a core allocation. However,
for linear production games, computing a core involves
solving the dual of a linear programming problem, which
can be done computationally efficiently.

Intervention of an oligopolist
An oligopolist may intervene in the formation of a peer-
to-peer cloud federation and pursue individual cloud
providers to subscribe to the services of a broker, in this
case the oligopolist himself, resulting in the Multi-Cloud
model (refer Fig.1b). When an oligopolist makes a price
offer to each of the cloud providers, some may take up
the offer and others may not. This results in the grand
coalition splitting up into sub-coalitions. We say that a
sub-coalition is feasibleif each member cloud provider
gets a greater pay-off than that offered by the oligopolist.
A collection of such feasible sub-coalitions forms what
we call astable coalition structure. The notion of a sta-
ble coalition structure has hitherto not been considered in
research literature. Further, given a price offer vector from
an oligopolist, we propose an efficient algorithm for the
computation of a stable coalition structure. These ideas

1This paper is an extension of our previous Euro-Par•18 work [4] in which
problems mentioned inPeer-to-peer inter-clouds and linear production
gamesandIntervention of an oligopolistsections are addressed. The current
journal version addresses the problem of oligopolist price determination
formulated inOligopolist price determinationsection.

constitute the second main contribution of the current
paper.

Oligopolist price determination
Thirdly, we study the price offering strategies which an
oligopolist can use to induce the cloud providers to lend
their resources to him while maximizing his profit. The
simplest price determination strategy for an oligopolist
is to compute the core and make a price offer which
is the same as that of a core. This non-adaptive strat-
egy gives a lower bound on the profit an oligopolist can
make. However, an oligopolist can approach the cloud
providers with price offers one after another in a strategic
manner. We call this as anadaptive price offering strat-
egy. In this paper, we show that adaptive price offering
strategies can yield more profit to an oligopolist when
compared with non-adaptive strategies. To the best of our
knowledge, the problem statements inIntervention of an
oligopolist and Oligopolist price determination section
are completely novel and no prior related work exists.

In Backgroundsection, we provide the necessary back-
ground on cooperative game theory and linear production
games; inFederation formation and payoff distribution
using linear production gamessection, we formulate the
cloud federation formation and payoff distribution prob-
lems using linear production games; inIntervention of
an oligopolist in federation formationsection, we show
the impact of an oligopolist on federation formation and
how we can arrive at stable coalition structures; related
experimental analysis is provided inExperimental analysis
section; in Oligopolist price determination section, we
present non-adaptive and adaptive price offering strate-
gies of an oligopolist;Related worksection contains the
related work; and finally we conclude withConclusions
section.

Background
In this paper, we model the proposed problem as a linear
production game, a class of games from the cooperative
game theory [5, 6]. Towards this end, we provide a brief
overview of cooperative game theory concepts, which will
be used in the rest of the paper.
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Cooperative game theory
Given a set ofN = { 1,· · · ,n} players, a subsetS � N
of them can pool their resources and form a coalition to
generate an utility or valuev(S). We say that the utility is
transferableif it can be split among the members of the
coalition in an arbitrary fashion.

Definition 1 A cooperative n-person game in coalitional
form is denoted by G= (N,v) where v: 2N � R

+ , with
v(�) = 0. The function v is called the characteristic function
of the game and v(S) is called the value of the coalition S.

A cooperative gameG = (N,v) can induce a subgame
GS = (S,vS) where S � N and vS(T) = v(T) for all
T � S. We say that a cooperative game issuper-additive
if v(S� T) � v(S) + v(T) for all S,T � 2N with S� T =
� . Clearly, when a game is super-additive, then players
find it beneficial to form coalitions of larger size. How-
ever, the formation of a grand coalitionN or any other
coalition depends on the payoff vectors allocated to the
players.

Definition 2 A payoff vector x= (x1, · · · ,xn) � R
n is

called an imputation if it satisfies the following individual
rationality and efficiency conditions.

1 Individual rationality:xi � v({i}) � i � N.
2 Efficiency:

∑n
i= 1 xi = v(N).

The set of imputations associated with a gameG =
(N,v) is denoted byI (G). For a payoff vectorx and a
coalition S � N, let x(S) denote

∑
i� Sxi .

Definition 3 The core of a game G= (N,v) denoted as
C(G) is defined as follows.

C(G) = { x � I (G) | x(F) � v(F) � F � N }.

If the payoff vector is from the core, then there is no
incentive for any sub-coalitionS 	 N to deviate from the
grand coalition N, thus ensuring stability. However, the
core of a game is not necessarily non-empty. Bondareva
[7] and Shapley [8] gave independently a characterization
of games with a non-empty core.

Definition 4 A map � : 2N \ { � } � R
+ is called a

balanced map if

∑

S� 2N \{ � }

�( S)eS = eN ,

where for a coalition S� N the vector eS � R
n is defined

as eSi = 1 if i � S and eSi = 0 if i � N \ S.

Definition 5 A cooperative game G= (N,v) is called a
balanced game if for each balanced map� : 2N \{ � } � R

+

the following condition holds good.

∑

S� 2N \{ � }

�( S)v(S) 
 v(N).

Further, a cooperative game G= (N,v) is called totally
balanced if every induced subgame GS = (S,vS) for all S �
2N \ { � } is balanced.

The following theorem due to Bondareva and Shapley
characterizes the set of games with a non-empty core.

Theorem 1 A cooperative game G= (N,v) will have a
non-empty core if and only if it is a balanced game.

Linear production games
Consider a production situation wherem different types
of products P1, . . . ,Pm can be manufactured usingq dis-
tinct kind of resources G1, . . . ,Gq. Further, there is a
production matrix Am× q whose(j,k)th entry ajk denotes
the number of units of resourceGk required to manu-
facture an unit of product Pj. Overall, thejth row of the
matrix denoted byaj gives the overall resource require-
ments per unit of product Pj. The linearity of the pro-
duction situation comes from the fact that to manufac-
ture � units of product Pj the corresponding resource
requirements scale-up linearly to� aj. Let the jth entry
of the price vector c1× m = (c1, · · · ,cm) denote the
price per unit of product Pj. Given a resource bun-
dle bq× 1 = (� 1, · · · , � q)T with non-negative entries,
the optimal production plan xm× 1 = (x1, · · · ,xm)T is
obtained by solving the following linear programming
problem.

Maximize
x

c · x

subject toAT · x 
 b

x � 0

Consider now an n-player gameG = (N,v) wherein
the resource bundle owned by theith player is denoted
by bi . The resource bundle owned by a coalitionS � N
is defined asb(S) =

∑
i� Sbi . Since eachbi is a resource

vector, the summation denotes the usual vector addition
operation. The valuev(S) associated with the coalitionS
is obtained by solving the following linear programming
problem.

Maximize
x

c · x

subject toAT · x 
 b(S)

x � 0
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The following is an important theorem which we use in
this paper.

Theorem 2 Every linear production game Glp = (N,v)
is totally balanced. Hence not only the core C(Glp) is non-
empty but also the core C(GS) of every induced subgame
GS = (S,vS) where S� N is also non-empty.

The algorithmic idea behind computing a core allo-
cation from C(GS) is to first formulate the dual prob-
lem for the primal problem posed above. The solu-
tion to the dual problem gives the shadow prices for
the q distinct resources used while manufacturingm
distinct products in various quantities so as to maxi-
mize revenue. We can then derive the pay-offs to the
individual players based on their resource contribu-
tion and the shadow prices computed from the dual
problem.

Federation formation and payoff distribution
using linear production games
In this section, we will present a model for peer-to-peer
inter-cloud federation and an efficient payoff distribu-
tion scheme which gives a core allocation using linear
production games.

Federation formation model
Let I = { C1, · · · ,Cn} be a collection of cloud providers.
A cloud provider Ci owns a resource bundlebi =
(bc

i ,b
m
i ,bs

i )
T wherebc

i is the total number of available com-
pute cores;bm

i and bs
i denotes the total available main

memory and secondary storage respectively. The cloud
providers can offerm types of virtual machines denoted
by VMj, 1 
 j 
 m. The core, main memory and storage
requirements for each virtual machine type is given by the
production matrix Am× 3 whosejth row, aj = (ac

j ,a
m
j ,as

j ),
corresponds to the resource configuration vector of a vir-
tual machine of typeVMj. Table 2 gives example virtual
machine types and the associated production matrix used
in the experimental analysis section of this paper. The per
unit market price of different types of virtual machines is
denoted by the price vectorp = (p1, · · · ,pm). Table2 also
provides the hourly rental price for various types of vir-
tual machines considered. Given this market scenario, the
cloud providers have to decide upon a federation structure
such that each of them maximize their respective payoffs.

It can be observed that we can model this problem by
constructing a linear production game which is exactly
similar to the gameG= (N,v) described in theLinear pro-
duction gamessection. We denote the total pooled cores,
memory and storage from a federationS by bc(S), bm(S)
and bs(S) respectively. The valuev(S) associated with a
federation S is obtained by solving the following linear
programming problem OPTLP(S).

Maximize
x

m∑

j= 1

xjpj (1a)

subject to
m∑

j= 1

xjac
j 
 bc(S) (1b)

m∑

j= 1

xjam
j 
 bm(S) (1c)

m∑

j= 1

xjas
j 
 bs(S) (1d)

xj � 0 (1 
 j 
 m) (1e)

Constraints 1b, 1c and 1d denote the capacity con-
straints corresponding to core, memory and storage
respectively. In fact, this game being super additive, we
can infer that the grand coalition generates the maximum
revenue, which is obtained by solving the linear program-
ming problem OPTLP(N). Further, from Theorem2, we
know that there is a core allocation possible as it is a totally
balanced game. In the next section, we show how we
can do payoff distribution using a core allocation, thereby
achieving the stability of the grand coalition.

Payoff distribution
Owen [9] showed that we can compute a core allocation
for a linear production gameGlp = (N,v) by solving
the following dual problem associated with the primal
problem OPTLP(N).

Minimize
y

y1bc(N) + y2bm(N) + y3bs(N) (2a)

subject to y1ac
j + y2am

j + y3as
j � pj (� j, 1 
 j 
 m) (2b)

y � 0 (2c)

We interpret the optimal solution y� = (yc
� ,ym

� ,ys
� ) to

the dual problem as the shadow prices for cores, memory
and storage. Owen proved that we can obtain a core allo-
cation vector by paying theith player with the resource
bundlebi = (bc

i ,b
m
i ,bs

i )
T as follows.

� i (N) =
∑

j�{ c,m,s}

yj
� bj

i

We denote the payoff vector as �( N) =
(� 1(N), · · · , � n(N)) where the parameterN indicates
that the payoff corresponds to the grand coalition. The
subset of core allocations which are formed using optimal
dual solutions is know as the Owen set. InIntervention
of an oligopolist in federation formationsection, we will
present how a broker or an oligopolist can intervene
in the formation of a grand coalition by offering higher
payoff to individual cloud providers.
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Discussion
The idea of carving out virtual machines of different types
by aggregating the cores, memory and storage from differ-
ent cloud providers is used in prior work [10, 11]. In prac-
tice, it is impractical to construct a virtual machine with
cores from one cloud provider and memory from another,
for example. In fact, even within the same premises of a
cloud provider, it is not possible to have a virtual machine
with cores from one physical machine and memory from
another. So a virtual machine has to be carved out using
the resources available on a single physical machine. How-
ever, at the data center level, resources within a phys-
ical machine are usually proportionate. It means that a
physical machine with large number of cores usually
has large memory and storage capacity. In fact, the
storage could be network attached and not associated
with the physical machine directly. From this, we can
intuitively infer that the optimal virtual machine pro-
duction plan (x�

1, · · · ,x�
m) obtained from solving the

OPTLP(S) problem can be almost realized while respect-
ing the practical physical constraints. There could be
some small number of remnant virtual machines which
cannot be realized but the impact on the optimality
of the solution will be minimal. Another approach to
handle remnant virtual machines is by using a small
reserve pool of physical machines at every micro data
centre. Overall, we argue that the linear programming
formulation is a reasonable approximation to estimate
the value of a coalition as it is not only computation-
ally efficient but also lends itself to the computation
and analysis of pay-off distribution schemes through
the framework of linear production games. We validate
this intuitive argument through experimental analysis
in Optimality of linear production games formulation
section.

Intervention of an oligopolist in federation
formation
In order to maintain market control, the oligopolists
may intervene in the peer-to-peer federation forma-
tion, refer Fig. 1a, by offering incentives to the micro
cloud providers to lend their resources to them. The
oligopolists in turn use the lent resources to supply vir-
tual machines to the end consumers potentially at a
higher price due to their wider market reach. During
this process, an oligopolist assumes the role of a bro-
ker leading to a multi-cloud architecture depicted in
Fig. 1b. In the rest of this section, we study how an
oligopolist can affect the structure of cloud federation
and the resulting impact on the payoff to individual cloud
providers.

Let an oligopolist offers a pricemi to rent the entire
resource bundlebi from the cloud provider Ci . In this
paper, we study the restricted problem of an interaction

between a single oligopolist and a set of cloud providers2.
One simple way of considering more than one oligopolist
is to set the price offermi made to the cloud providerCi to
the maximum of the offers made by different oligopolists
in the market, and the rest of the theory proposed in this
section holds good.

Core allocation for subgames
In Payoff distributionsection, we described how the pay-
off distribution vector �( N) can be computed for the
gameGlp = (N,v). Since, every subgameGS = (S,vS)
induced by Glp is also a linear production game, we
can analogously compute the payoff distribution vector
�( S) by solving the dual problem for the primal prob-
lem OPTLP(S). Overall, we have to solve 2n Š 1 linear
programming problems to compute the payoff distribu-
tion vectors for all the induced subgames, which is com-
putationally expensive. However, it can be noted from
the constraints (2b) and (2c), the feasible region for the
dual problem of OPTLP(S) is independent of the federa-
tion S and only the coefficients of the objective function
change. Hence, for practical values ofm, we can enu-
merate the basic feasible solutions, in other words, the
extreme points of the polyhedra defined by the dual
problem constraints. For different objective functions
associated with different subgames, we can exhaustively
check the list of extreme points and find the optimal
solution.

Influence of the oligopolist
Definition 6 The marginal payoff for a cloud provider

Ci with respect to a coalition S and a price offer mi from an
oligopolist is defined as

� i (S) = � i (S) Š mi.

A cloud provider has an incentive to deviate from a fed-
erationSand take up the offer of an oligopolist if and only
if � i (S) < 0. Thus the oligopolist may destabilize the grand
coalition as all the cloud providers whose� i (N) < 0 will
break away from the coalition.

Definition 7 For a cooperative game G= (N,v) and a
price offer vector m= (m1, · · · ,mn), a coalition S� N is
called a feasible coalition if and only if� i (S) � 0 for all
i � S.

From the discussion inCore allocation for subgames
section, we can enumerate the list of all feasible coalitions
in 2N by computing the respective payoff distribution
vectors.

2An alternate way to view this problem is to consider the single oligopolist as a
monopolist by ignoring the market influences due to other oligopolists which
is not the subject matter of this paper.
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Definition 8 Given price offer vector m, we call a parti-
tion CS= { F1, · · · ,FkŠ1,F� } of the player set N as a stable
coalition structure if

1 The coalitionsFi , 1 
 i 
 k Š 1 are feasible coalitions.
2 There exists no subsetS � F� which is a feasible

coalition. Thus all the cloud players fromF� take the
price offer made by the monopolist.

Note that if mi < v({i}), then cloud provider Ci is a
feasible coalition by himself.

Finding a stable coalition structure
There can be many possible stable coalition structures for
a given price offer vector from the oligopolist. We may
prefer one stable coalition structure to other based on
certain criteria. For example, one criteria could be to mini-
mize the number of cloud providers taking up oligopolist•s
offer, i.e., |F� |. Another criteria could be to be maxi-
mize the sum of payoffs of all the cloud providers, i.e.,
∑kŠ1

i= 1
∑

j� Fi
� j (Fi ) +

∑
j� F� mj.

Definition 9 For a feasible coalition F and a price offer
vector m = (m1, · · · ,mn), we associate a goodness value
g(F) which is defined as follows.

g(F) =
∑

i� F

(� i (F) Š mi)/ |F|

In this paper, we propose the following simple greedy
algorithm for stable coalition formation.

1 Let the initial coalition structure beCS= � . Repeat
the following step until it terminates.

2 (ith iteration)

(a) Among all the feasible coalitions, choose a
coalition Fi with a maximum goodness value
g(Fi ) andF � Fi = � for all F � CS.

(b) If there exists no feasible coalition which is
disjoint with the already chosen feasible
coalitions, then exit the algorithm after setting
F� = N Š � F� CSF andCS= CS� { F� }.

The time complexity of the above algorithm is dominated
by the computation of the payoff values� i (F), for 1 
 i 

n and F � N. This involves solving 2n linear optimiza-
tion problems. Further, we can easily note from the above
algorithm, that different goodness functions will yield dif-
ferent coalition structures. In the next section, we do an
experimental analysis on the influence of an oligopolist on
stable coalition formation and overall payoff distribution.

Experimental analysis
In this section, we study how increasing price offers from
an oligopolist to the individual cloud providers impact the

structure of stable coalitions formed. We consider a set
of 12 cloud providersI = { C1, · · · ,C12} whose resource
capacities are given in Table1. These resource capaci-
ties are randomly chosen, first by choosing one of the
three buckets: small, medium and large; and then choos-
ing a capacity randomly within a range determined by
that bucket type. Inspired from Microsoft Azure, we let
each cloud provider offer four types of virtual machines:
General Purpose (B2S), Storage Optimized (L4), Memory
Optimized (E8 v3), and Compute Optimized (F16 v2). The
resource requirements of each type of virtual machine is
given in Table2. The same table also provides the hourly
rental price for each type of virtual machine.

We considerl = 45 different market scenarios. In the
ith market scenario,Mi , 1 
 i 
 l , the oligopolist makes a
price offerm = (m1, · · · ,mj, · · · ,m12) wherein

mj =
(

1 +
i

100

)

× v
({

Cj
})

. (3)

That means the oligopolist is offering a price which isi%
greater than the value a cloud provider can generate by
working all alone. For small values ofi, a cloud provider
can potentially get better payoff by forming a coalition;
whereas for larger values ofi he may be better off tak-
ing up the oligopolist•s offer. This can be observed from
the Fig. 2 which depicts how the stable coalition struc-
ture evolves with the increasing price offers from the
oligopolist. The stable coalition structures are computed
using the greedy algorithm proposed inFinding a stable
coalition structure section. Each track of the semi-circle
represents the coalition structure for a given price offer.
The yellow colored cloud providers are those who take
up the oligopolists offer. Similar colored cloud providers
in a track belong to the same coalition. For example, at
one percent price offer, the coalition structure isCS =

Table 1 Resource capacity of cloud providers. vCPUs are
expressed in 100s of cores, memory and storage in 100 GB units

Cloud Provider vCPU Memory Storage

C1 36 44 1845

C2 55 74 1704

C3 120 165 548

C4 15 133 1906

C5 61 490 2100

C6 110 503 3164

C7 119 900 3468

C8 181 150 3900

C9 182 986 6814

C10 210 610 4654

C11 166 531 13000

C12 239 850 4100
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Table 2 VM instance types, their resource configurations and hourly rental prices

vCPU Memory (in GB) Storage (in GB) Price (per hour)

General Purpose 2 4 8 0.047$

Storage Optimized 4 32 678 0.312$

Memory Optimized 8 64 200 0.532$

Compute Optimized 16 32 128 0.716$

{{1, 2, 5, 11}, {3, 6}, {4, 10}, {8, 9}, {7, 12}}. The members of
the last setF� = { 7, 12} are those who accepted the offer
made by the oligopolist. Further, the semi-circle shows
only those tracks where there is a change in the coalition
structure from the previous market scenario. For exam-
ple, since the coalition structure did not change from the
market scenarioM7 till M17, the intervening coalition
structures are not represented. We can notice the increas-
ing yellow color as we move from inside to outside in
the semi-circle indicating that with increasing price offers
more cloud providers will lean towards the oligopolist.
This is further illustrated by the graph in Fig.3a which
shows the size ofF� , |F� |, with increasing price offers.
Another interesting observation is that a cloud provider
may take an oligopolist•s offer in market scenarioMi
but may change his mind inMi� where i� > i. This is
due to the overall change in the coalition structure. This
phenomenon can be observed by looking at the sector
corresponding to the cloud provider 5 in Fig.2.

Figure 3b shows the average marginal payoff of the
cloud providers who preferred to form a peer-to-peer
coalition. For a given market scenario, ifCS is a stable
coalition structure (refer Definition 8), then the average
marginal payoff is defined as

∑
Fi � CS\ F�

∑
j� Fi

� j (Fi )/ |N \
F� |. As expected, with the increasing price offer from
the oligopolist, the marginal payoff goes down. How-
ever, it needs not be monotonic, as it may increase
locally due to the changes in the stable coalition structure.

Figure 4a shows the total time taken for the computa-
tion of the stable coalition structure for a given market
scenario. It can be noted that overall it is in the order
of milliseconds and hence computationally feasible prob-
lem to solve for all practical purposes. Further, with
increasing price offers, the number of feasible coalitions
go down, which makes the greedy algorithm converge
faster.

For a coalition, we know thatvS(S) is the total pay-
off available for the coalitionS. The combined payoff
from an oligopolist to a coalitionS is

∑
i� Smi . Figure4b

compares the coalitional payoff and the combined broker
payoff for all the coalitions in the market scenarioM1. For
cloud providers 7 and 12, who take up the oligopolist•s
offer, these two values are almost the same (one percent
difference).

Optimality of linear production games formulation
In Discussionsection, we discussed the shortcomings of
the linear production games and why despite that, it is still
a reasonable market model to adopt. The primary issue in
linear production games formulation is that the optimal
solution obtained by solving OPTLP(S) may not be phys-
ically realizable, even when the federation S consists of
only one cloud provider. We compared how far away the
optimal feasible allocation for each cloud providerCi to
that of OPTLP({Ci}). This will also throw light when the
federation S consists of more than one cloud provider.

Fig. 2 Evolution of coalition structure with increasing price offers going from market scenarioM1 toM45 (refer Eq. 3)
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Fig. 3 Analysis of different market scenarios

We assume that the data centers owned by different
cloud providers consist of physical machines with 96
cores, 200 GB RAM, and 2 TB secondary storage. This
type of resource configuration is typical for server class
machines. We computed the optimal feasible allocation
for a cloud provider, DP({Ci}), using a dynamic program-
ming approach. The average percentage over-estimation
of revenue by using linear programming over dynamic
programming is 19.8 percent. The cloud providerC3 has
the worst over-estimation error of 61.2 percent. This is
due to the meager secondary storage availability when
compared to cores and memory. Even cloud providersC4,
C5 and C9 have around 30 percent over-estimation error.

This is due to the imbalance in the core and memory ratio.
These atypical data center configurations are due to our
randomization in the initial resource assignment to cloud
providers in our experimental setup. Without these out-
liers, the average over-estimation error reduces to 10.5
percent.

Oligopolist price determination
In Intervention of an oligopolist in federation formation
section, we studied how the price offer vectorm =
(m1, · · · ,mn) made by an Oligopolist induces a stable
coalition structure CS = { F1, · · · ,FkŠ1,F� }. The cloud
providers in F� would take up the price offer being made

Fig. 4 Left panel depicts time taken to compute stable coalition structure. Right panel compares the payoff from the coalition and the oligopolist in
the first market scenario
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