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Abstract

Background: The Internet of Things (IoT) enables the development of innovative applications in various domains
such as healthcare, transportation, and Industry 4.0. Publish-subscribe systems enable IoT devices to communicate
with the cloud platform. However, IoT applications need context-aware messages to translate the data into contextual
information, allowing the applications to act cognitively. Besides, end-to-end security of publish-subscribe messages
on both ends (devices and cloud) is essential. However, achieving security on constrained IoT devices with memory,
payload, and energy restrictions is a challenge.

Contribution: Messages in IoT need to achieve both energy efficiency and secure delivery. Thus, the main
contribution of this paper refers to a performance evaluation of a message structure that standardizes the
publish-subscribe topic and payload used by the cloud platform and the IoT devices. We also propose a
standardization for the topic and payload for publish-subscribe systems.

Conclusion: The messages promote energy efficiency, enabling ultra-low-power and high-capacity devices and
reducing the bytes transmitted in the IoT domain. The performance evaluation demonstrates that publish-subscribe
systems (namely, AMQP, DDS, and MQTT) can use our proposed energy-efficient message structure on IoT.
Additionally, the message system provides end-to-end confidentiality, integrity, and authenticity between IoT devices
and the cloud platform.
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Introduction
The number of Internet of Things (IoT) devices connected
to the Internet continually increases as well as the data
produced by these devices [1–3]. The IoT devices pro-
vide the services of sensing, monitoring, and automation
of activities [4].
Continuous sensory data gathering is essential to support

the IoT applications, where devices periodically sense
their environment and send the data to the cloud [5].

*Correspondence: norisjunior@usp.br
1Laboratório de Sistemas Integráveis, Polytechnic School of Universidade de
São Paulo (USP), São Paulo/SP, Brazil
Full list of author information is available at the end of the article

However, the energy consumption must be in focus [6, 7],
either concerningdevices’ battery life duration or the energy
efficiency of the cloud platform.
Thus, standardized end-to-end messages between the

cloud platform and the IoT devices are essential, whether
for the cloud to send commands or for the devices to send
their measurements [8, 9].
In this scenario, to transmit the IoT application data, var-

ious Machine-to-Machine (M2M) protocols can be used
according to [10–15]: Constrained Application Protocol
(CoAP), Message Queue Telemetry Transport (MQTT),
eXtensible Messaging and Presence Protocol (XMPP),
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Advanced Message Queuing Protocol (AMQP), and Data
Distribution Service (DDS). CoAP is a request/response
RESTful protocol derived from the Hypertext Transfer
Protocol (HTTP) and is designed for constrained devices
[10, 15]. CoAP-enabled devices require a request to send
data to the cloud, for example. However, when cloud-
connected, an important feature of devices is to trans-
mit data without waiting for a request. Therefore, the
publish-subscribe systems (XMPP, MQTT, AMQP, and
DDS) provide the ability to periodically send data to the
cloud [12–14] without the need for receiving a request.
Publish-subscribe systems connect endpoints or clients
(IoT devices and the cloud platform, for instance) using a
Broker.

Problem fundamentals and contribution
Publish-subscribe systems ensure data delivery to the
cloud using TCP as transport and provide two resources
to the messages: the topic (a hierarchical list indicating
which context the data sent refers to) and the payload.
IoT applications’ data must contain some meaningful

context to facilitate interoperability and to help in reduc-
ing the processing effort of cloud applications [16–18].
The context must be present to provide metadata (identi-
fication of devices and their sensors, deployment location)
to the IoT applications’ data.
The context-aware requirement attests to issues related

to publish-subscribe systems: the absent standardization
of the topic and payload. Although the unstructured
nature provides flexibility, it also has drawbacks: topic and
payload vary from tens to hundreds of bytes, as observed
in the works of [12, 19–21].
Two categories of devices can use publish-subscribe sys-

tems: constrained (ultra-low-power) and unconstrained
(high capacity). Both enable remote sensing capabilities
delivering IoT data to the cloud platform. The ultra-low-
power IoT devices are resource-constrained in processing
(16 MHz MCU, for example, once are microcontroller-
based), memory (∼128KB ROM/Flash, ∼20KB RAM),
battery (3V), and payload (∼127 to 256 bytes depend-
ing on the protocol) [10]. For this reason, these devices
require specific link-layer protocols, such as LoRa and
SigFox - for Low-Power Wide Area Network (LPWAN)
or Wireless Sensor Networks (WSN) - the latter mainly
composed by Low-PowerWireless Personal AreaNetwork
(LoWPAN). Conversely, the unconstrained devices com-
monly utilize (Wireless) Local Area Network (W)LAN,
and they are robust enough to use any protocol, whether
for messages or security. However, if battery-powered, the
energy only lasts a few hours, as observed by [10, 19].
Regarding security between the publish-subscribe

clients and the Broker, the Transport Layer Security (TLS)
provides robust security, and it is the primary option.
However, considering the publish-subscribe systems’

architecture, even the Transport Layer Security (TLS) is
not suitable to provide end-to-end security once the IoT
data is secure only between the client and the Broker and
not between the clients. We observe in the literary works
the use of more than one security control [22].
Therefore, the publish-subscribe systems need a mes-

sage structure to provide end-to-end security because,
if the payload does not have security, the Broker can
read the messages. Additionally, only the unconstrained
devices can use TLS, as observed in [23]. The use of
TLS is not an option for ultra-low-power IoT devices
given its constrained nature [24, 25]. Nonetheless, even
without TLS, the ultra-low-power devices must trans-
mit end-to-end secure publish-subscribe messages, using
a security mechanism on the message. In this regard,
LPWAN devices do not provide end-to-end security once
they need a gateway to connect the devices to the Internet
(and consequently to the cloud). LPWANdevices also only
send raw data to the gateway and do not enable the devices
to use any publish-subscribe protocol. LoWPAN devices,
in turn, are natively connected to the Internet (using
6LoWPAN) and can use the publish-subscribe systems to
transmit data to the cloud.
Thus, the main contributions of this paper can be sum-

marized as:

• An energy-efficient, context-aware, and end-to-end
secure publish-subscribe messages (LWPubSub) for
cloud-connected devices;

• An extensive evaluation of the message system using
both ultra-low-power devices and high-capacity
devices;

• A resource comparison (focused on energy
consumption) among devices that uses
publish-subscribe systems;

• A comparison of message size among
publish-subscribe systems for high capacity and
ultra-low-power devices;

• A comparison between the main publish-subscribe
systems (AMQP, DDS, and MQTT) when
communicating between heterogeneous devices
(high-capacity and ultra-low-power) and the cloud
platform.

Figure 1 presents the overview of the use of IoT devices
and the interconnection to the cloud using the LWPubSub
message structure on publish-subscribe systems.

Article organization
The remainder of this paper is organized according to
the following structure. “Related work” section intro-
duces publish-subscribe systems for IoT, focusing on the
necessity of standardization of the messages, review-
ing and discussing relevant techniques. “System model”
section presents the proposed structure of context-aware
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Fig. 1 LWPubSub context-aware and secure message using publish-subscribe systems

and secure messages for publish-subscribe systems. “Sys-
tem evaluation and experiments” section presents the
experimental scenario and the parameters for evaluating
our proposed message system. “Results and discussion”
section presents the results for both ultra-low-power and
high capacity devices. Finally, “Conclusion” section pro-
vides the conclusion and future work suggestions.

Related work
This section reviews the related work regarding publish-
subscribe systems for IoT applications to clarify our con-
tributions.

IoT applications’ devices
Remote sensing provides sensing and actuation capabil-
ities to IoT devices. These tasks involve, for instance,
measuring environmental conditions (inside/outside tem-
perature and humidity, smoke presence, gases, among
others) and health information (for wearables) [3, 28].

The devices send these data to the cloud platform. The
LPWAN and LoWPAN devices provide lower energy con-
sumption when compared to unconstrained devices such
as Single Board Computers (SBC) [19–21]. In Table 1, we
compare the functions and capabilities for remote sens-
ing regarding constrained and unconstrained devices. For
LoWPAN, 6LoWPAN is the main protocol for routing
packets to the Internet.
In Fig. 2, we present a graphic representation compari-

son of the IoT devices presented in Table 1. While being
the most energy-efficient, we observe that LoRa and Sig-
Fox devices do not provide end-to-end connection to the
cloud. In turn, SBC and 6LoWPAN devices provide end-
to-end data transmission to the cloud. 6LoWPAN devices
have an advantage over battery life, which lasts for months
compared to hours of SBC devices.
The 6LoWPAN devices are embedded systems

restricted in processing, memory, payload, and energy
resources [29]. The connection to the Internet (as stated
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Table 1 Overview of the main requirements of platforms of IoT devices

Constrained IoT devices

Platform Battery lifetime [10, 26] Data rate [26, 27] Range [26, 27] Payload [26, 27] End-to-end to the cloud

LoRa Years 50 kbps 20 km 243 bytes No

SigFox Years 100 bps 20 km 12 bytes No

6LoWPAN Months 250 kbps 100 m 127 bytes Yes

Unconstrained IoT devices

Platform Battery lifetime [19, 20] Data rate Range Payload End-to-end to the cloud

SBC Hours >54 Mbps (WLAN) 100 m 2312 bytes Yes

in RFC 6282) requires the use of the 6LoWPAN Border
Router (6LBR) [30]. The 6LBR performs IPv6 packet
routing - using the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL - RFC 6550) - with compressed
headers on IEEE 802.15.4 networks (MTU 127 bytes) -
the 6LBR is more robust equipment when compared to
other nodes in the network.
SBC is microprocessor-based, and this type of device

can run general-purpose Operating Systems (OS), such as
Linux. Thus, SBC is the leading platform used to evaluate
IoT frameworks andmessage systems, as observed in [19–
21, 31].

Message standardization
In publish-subscribe systems, the topic refers to the con-
text of the payload, and both need standardization to
enable interoperability and the correct processing of data.
The works of [32, 33] proposes standardization for the

topic, using different approaches, but none of the pre-
sented works are concerned with interoperability; in con-
trast, the goal of their work is only to present a specific
format.
Tantitharanukul et al. [33] presents the difficulty of

a subscriber understanding non-standardized topics for
open smart cities. Therefore, the topic structure pro-
posed by [33] requires, at least, the fields “Objec-
tive/Location/Owner” and other sub-fields.
Vrettos et al. [32], in turn, proposes topics concerning

“networkName/ nodeID/ country/ districtState/ cityTown/
areaDescription/ area/ building/ room/ control” - a too
large topic for remote sensing by ultra-low-power devices.
Both works expect clients with direct access to the Broker.

Publish-subscribe systems
The XMPP, DDS, MQTT, and AMQP are the main proto-
cols used by publish-subscribe systems [10, 11, 13, 14, 34].

Fig. 2 IoT device’s platform comparison regarding battery life, end-to-end data transmission to the cloud, payload length, QoS, range, and scalability
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These systems are not suitable to discover services to con-
figure the IoT devices automatically [21], and the cloud
platform plays an important role at the orchestration
and provisioning of the devices which use these message
system.
Publish-subscribe systems enable the interaction of

multiple endpoints (Broker, publisher, and subscriber) [19,
21]. Interactions between clients are moderated by the
Broker, so clients do not need to know each other to
exchange messages [21]. A client is a peer, an applica-
tion, or a device that exchanges application messages
about a given topic with another client. The payload is
topic-dependent and does not follow any standard. As
presented by [35, 36] it is common to use JSON at the
payload-agnostic publish-subscribe systems.
XMPP is a communication protocol based on XML,

which supports multiple patterns, including asyn-
chronous messaging and publish-subscribe. Therefore,
according to [25], data communication requires opti-
mized Internet application protocols. XMPP has its
primary use as Instant Messaging (IM), though it also can
be used to deliver data between devices and the cloud.
However, as presented by [37], XMPP is not originally
designed for IoT applications, and it cannot be deployed
in its current form on constrained devices. Besides,
XMPP does not support acknowledged communication.
The main obstacle regarding XMPP is the use of XML
language, which causes longer messages, therefore,
consuming a larger bandwidth [14].
MQTT is a publish-subscribe messaging protocol and

is suitable for devices with resource constraints and net-
works with low bandwidth and high latency [15]. Its sim-
plicity and small header size compared to other protocols
(XMPP, AMQP, and DDS) make it one of the most impor-
tant options for IoT applications [14]. MQTT defines
three Quality-of-Service (QoS) levels for the messages:
0 (at-most-once), 1 (at-least-once), and 2 (exactly-once).
This flexible approach assigns complexity to the Broker,
resulting in a lightweight header and a small code foot-
print [38]. MQTT was also designed for asynchronous
communications, where subscriptions or publishing from
different entities take place in a parallel order [39]. Simi-
lar to XMPP, theMQTT protocol uses TCP as a transport.
Client communication occurs by the Broker’s request to
subscribe or publish messages, specifying the topic and
payload fields of the message. Thus, clients, who want to
receive a message, subscribe to a specific topic with the
message delivered on the payload [3, 14, 21]. Topics are
hierarchically organized in a tree structure using the “/”
separator.
AMQP (such as MQTT) is another ISO/IEC messaging

protocol, developed initially for banking services [34, 38].
Its main purpose is to manage the queues receiving a large
number of transactions and to deliver them reliably later.

Message queues are queues where messages are routed
to and keep them there until the corresponding sub-
scriber reads them. The current version of AMQP enables
peer-to-peer communication, not only client-broker com-
munication. However, AMQP requires the higher header
amongst the other publish-subscribe systems, and its use
for IoT applications is mainly restricted to servers or high
capacity equipment [14].
DDS enables high-performance M2M communication

using the publish-subscribe paradigm [15]. DDS is a stan-
dard presented by the Object Management Group (OMG)
and is brokerless [40]. Therefore, DDS is decentralized,
and publishers and subscribers exchange data directly
between them. Thus, a publisher client publishes data
even if there is no subscriber since publishers do not know
who uses their data [14]. The DDS defines four main enti-
ties: the “Domains” (a virtual entity that allows communi-
cation of devices with the same interests), the “Publisher”
with its “Data Writer” (used by the publisher to send the
data), the “Subscriber” and its “Data Reader” (controlled
by the subscriber to read the data), and the “Topic”. In
contrast to the previous protocols, DDS supports UDP
and TCP, and one of its benefits is the wide range (23) of
available QoS [14]. Moreover, the DDS header requires at
least 56 bytes, and even the DDS for eXtremely Resource
Constrained Environments (DDS-XRCE) [41], require at
least 12 Bytes - 8 bytes at the header plus 4 bytes for
each submessageHeader. For that reason, the works of [10,
40] conclude that DDS consumes at least two times more
bandwidth compared with MQTT.
Table 2 summarizes the key features of the publish-

subscribe message systems under consideration based on
the corresponding literature.
We conclude, regarding the considered publish-

subscribe systems, that the following protocols produce
larger packets (from the largest to the smallest): XMPP,
DDS, AMQP, and MQTT.
Regarding security, high-capacity IoT devices, such as

SBC, can use standard protocol (TLS, for example). How-
ever, ultra-low-power devices are not capable of using
TLS. Consequently, a security mechanism must be in
place to protect the data regardless of the used publish-
subscribe system because the Broker is an intermediary in
this communication. Thus, if the payload does not have
security, the Broker can read the messages. Even using
TLS, the payload needs security not to reveal data to
entities other than the clients.
Thus, we propose a structure for the topic and payload

for publish-subscribe systems that can benefit either con-
strained or high capacity IoT devices (for those capable
of sending end-to-end messages to the Internet without
proxies). The innovation in our message structure is that
the proposed structure for topic and payload is energy-
efficient and secure. The energy efficiency is twofold: for
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Table 2 Key features of the publish-subscribe message systems under consideration

XMPP MQTT AMQP DDS

Transport protocol TCP TCP TCP TCP/UDP

QoS support No 3 levels 3 levels 23 levels

Header size (at least) Variable (XML tags) 2 8 12*

Security TLS TLS TLS TLS/DTLS

Encoding format XML Binary Binary Binary

Low-Power and Lossy networks Fair Good Good Poor

Standard IETF OASIS OASIS OMG

*DDS-XRCE

devices, the message improves battery lifetime, and for
cloud platforms, it reduces network traffic and power con-
sumption. Besides, the messages are end-to-end secure
between devices and the cloud platform once only TLS
cannot deal with end-to-end security between devices and
cloud, considering the Broker’s presence that forwards the
publish-subscribe messages.

Systemmodel
This section presents our LWPubSub message struc-
ture, providing secure and context-aware transmission of
messages by high-capacity (SBC) and constrained (ultra-
low-power) devices to the cloud platform using publish-
subscribe systems.We also point out the energy-efficiency
importance for both devices and the cloud platform.

Context-aware publish-subscribe messages
Publish-subscribe systems are payload-agnostic, and
developers design topics and payload to meet the applica-
tion needs. Nevertheless, IoT devices are diverse, ranging
from high capacity to ultra-low-power. Hence, this diverse
characteristic of devices poses challenges to designing a
structure of topic and payload.
Considering the myriad of sensors and the absence of a

standard, topic and payload range from tens to hundreds
of bytes as observed in [19, 21].
Accordingly, an important discussion arises regarding

standardization. First, the topic must identify the data
source to the cloud platform process and store it. Cloud
platforms, such as Azure 1 and AWS 2 present guidelines
regarding the topic construction. However, these guide-
lines do not focus on the energy efficiency of the topic nor
provide unique identification of devices. Using Azure as
an example, we have a topic with 60 bytes. AWS, in turn,
requires approximately 30 Bytes for telemetry data (topic
can be greater according to the deviceID or other func-
tions at the platform). Both platforms do not provide a
standard for the unique identification of devices.

1https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
2https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-
aws-iot-core/designing-mqtt-topics-aws-iot-core.html

Besides, JSON is one of the main structures used when
there is no standard to follow [35, 36]. Although, the JSON
structure alone requires at least 7 bytes at the payload:
{“”:“”} - without considering the sensor type used. About
IoT sensors, the various types of sensors require efforts to
identify them. For instance, the temperature sensor data,
in a JSON payload can be: {“temperature”:“15.01”}. Also,
a developer can use shorter metadata, like: {“t”:“15.01”},
but it might be a pitfall because for an IoT architecture
with various domains and sensors, the character “t” can
represent other sensors, not only temperature.
Thus, emerged the necessity to standardize the topic

and the payload. As stated by [42], standardization
decreases the gaps and reduces system complexity. Our
LWPubSub message structure goes in this direction once
we provide a unique topic for each device and standard-
ized metadata on the payload.

Cloud-connected devices
Considering the diverse characteristic of IoT devices pre-
sented in the sections “Introduction” and “Related work”
and the necessity of them being able to connect to the
Internet (and to the cloud), the devices that meet these
requirements are: SBC and WSN (6LoWPAN) devices.
LPWAN devices (such as LoRa and SigFox) require a

proxy that receives the message from the devices and
forwards them to the cloud, breaking end-to-end commu-
nication (and security).

Energy-efficiency
Energy efficiency is a crucial characteristic for the devices
and the cloud platform. As presented by [43], the cloud
computing metrics use the amount of data traffic to cal-
culate the Key Performance Indicators (KPIs) related to
energy efficiency and Greenhouse Gases (GHG) emis-
sions.
Regarding corporate-level metrics, we observe some

organizations using the metric Carbon Intensity, repre-
sented by the division of Scope 1 and 2 emissions by
the total amount of data transported over its network
(CO2/Terabyte) [43], as presented in Eq. 1.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html
https://docs.aws.amazon.com/whitepapers/latest/designing-mqtt-topics-aws-iot-core/designing-mqtt-topics-aws-iot-core.html
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Carbon Intensity = GHG emissions Scope 1 and 2
Terabytes of data traffic

(1)

The Power Usage Effectiveness (PUE) is a metric that
shows progress in data center energy efficiency [44],
according to Eq. 2, and it is widely used to observe data
center efficiency, recommended by the GHG Protocol
[44].

PUE = Total Facility Power
IT Equipment Power

(2)

Moreover, concerning the equipment-level metrics at
the cloud platform, the Energy Consumption Rating
Weighted (ECRW) represents the energy necessary to
move n Gbps of data in Watt/Gbps [43], according to the
Eq. 3.

ECRW = ((α × Ef ) + (β × Eh) + (γ × Ei))
Tf

(3)

where Tf is the maximum throughput (in Gbps); Ef is the
energy consumption (in Watts) at maximum capacity; Eh
is the energy consumption at half capacity; Ei is the energy
consumption in idle; α = 0.35, β = 0.4, and γ = 0.25 are
the coefficients to represent the mixed mode of operation.
We observe in Eqs. 1, 2, and 3 that the number of bytes

of the messages directly affect the energy consumption of
the cloud platform. Thus, when constructing the topic and
the payload, it is necessary to optimize the required bytes
of a message.
Therefore, we conclude that reducing the number

of bytes transmitted at each publish-subscribe message
decreases the energy consumption, PUE, and Carbon
Intensity of a cloud platform.
About devices, attention to the number of bytes remains

equally important.
The energy consumption of IoT devices depends on the

platform. High-capacity devices (with the 802.11 interface

on) have the same energy consumption when perform-
ing sensing tasks (except when using CPU at 100% con-
stantly - which is not the case of sensing data) [45]. So,
each characteristic of the devices is considered to con-
sume an amount of energy, for example, video output
and Bluetooth, to calculate high capacity device’s energy
consumption. Moreover, high-capacity devices used for
remote sensing only require processing and transmission
capability. Thus, devices must operate heedlessly.
On the other hand, ultra-low-power devices have more

granularity to measure energy consumption. As presented
by [46, 47] TX and RX are the resources that require
more energy on these devices. Also, it is important to
observe the CPU and Low Power Mode (LPM) energy
consumption on them.
Moreover, for ultra-low-power devices, the application

also needs to consider the 127-bytes MTU of 6LoWPAN
devices.

Message system
Therefore, we present in Fig. 3 the proposed structure
of topic and payload for publish-subscribe systems. The
domains are the vertical markets [3] that enable the wide
range of IoT architectures. A given IoT architecture, can
contain the following domains: school, healthcare, trans-
portation, among others (this work does not restrict the
design of the domain, one can use a numeric sequence).
Each domain has its own devices, uniquely identified
by the deviceID metadata. Our proposal regarding devi-
ceID is that the unique identification of the device must
come from the MAC address. For that reason, the tuple
/domain/deviceID uniquely identify a device at an IoT
Architecture.
Regarding the sensors and actuators of a device, we

propose the use of the IPSO registry [48], using the
tuple objectID/instanceID to uniquely identify the devices’
sensors, where objectID is the type of the sensor and
instanceID is the sensor itself.
The use of IPSO objects requires at most 5 bytes to

identify a sensor, plus an additional byte to identify the

Fig. 3 Structure of the LWPubSub message structure for publish-subscribe messages
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instance of the sensor (in cases where a device has two
or more sensors of the same type). For instance, assum-
ing a device with two LEDs, IPSO defines the objectID
3303, followed by the instanceID 0 for the first and 1
for the other. Thus, compared to the JSON payload, the
proposed use of IPSO objects meets the context-aware
requirements while being energy-efficient.
With the union of /domain/deviceID (at the topic) and

objectIDinstanceID (at the payload), we achieve lower byte
usage for publish-subscribe systems.
When using MQTT, AMQP, or DDS publish-subscribe

messages, the LWPubSub message structure sends the
topic in plain text, which guarantees the end-to-end trans-
mission of messages between clients without the need for
an intermediate proxy.
Besides, the payload needs encryption to guarantee end-

to-end security. Even using the standard best practices
(TLS or DTLS), if the payload remains unencrypted, the
Broker (MQTT/AMQP) or a subscriber (DDS) can read
the message - resulting in data leakage. For this rea-
son, LWPubSub applies confidentiality, authenticity, and
integrity (CIA) to the payload.

Security
Without security on the payload, an intermediary between
the cloud and the devices (like the Broker) can read
the messages, even when using TLS. Thus, the payload
requires security. Applying confidentiality only, although
possible, does not offer non-repudiation of the data trans-
mitted. For this reason, it is crucial to use the CIA on
the messages, providing Authenticated Encryption (AE).
The LWPubSub message structure provides CIA to the
publish-subscribe message payload using the Advanced
Encryption Standard (AES) Counter Mode with Cipher
Block Chaining Message Authentication Code (CCM)
[25]. Besides, authenticated encryption provides security
against chosen-ciphertext attacks.

The AES-CCM authenticates but does not encrypt the
topic (the associated data), generating the authentica-
tion tag. The LWPubSub encrypts the payload, ensuring
CIA. Further, AES-CCM requires a unique Nonce, and it
provides a reduced message size and absence of padding.
The LWPubSub message structure encrypts and gener-

ates the payload according to these steps:

1. The first 13 bytes refer to the Nonce;
2. The following 8 bytes refer to the Message Integrity

Code (MIC) - or authentication tag;
3. The subsequent bytes refer to the encrypted message.

About the IoT Architecture, we consider end-to-end
secure the messages transmitted between the devices and
the IoT Agent at the cloud platform.

System evaluation and experiments
In this section, we introduce simulation scenarios, includ-
ing parameter settings. We conducted several experi-
ments to evaluate the proposed message system.
We observe and evaluate, with the execution of the

experiments, the following metrics regarding the use of
LWPubSub on MQTT, AMQP, and DDS:

• Header overhead;
• Energy consumption (observation of the behavior of

devices in different operating conditions, obtaining
measurements in poll frequency variations – various
measurements by minute such as a wearable, or a few
measurements by day as an environmental sensor);

• Number of bytes required for topic and payload.

For the LWPubSub message structure validation and
to collect the results, we use the experimental scenario
presented in Fig 4.
In Table 3, we summarize the characteristics of the

equipment, devices, sensors, and parameters used in our
proposed message structure.

Fig. 4 Experimental scenario
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Table 3 Experiment parameters

Equipment and Devices
Cloud platform Microsservices/docker containers

MQTT Broker Mosquitto on the Huawei cloud

AMQP Broker RabbitMQ on the Huawei cloud

DDS OpenDDS on the Huawei cloud

6LBR Launchpad CC2650

IoT Gateway Raspberry pi model 3B

Ultra-low-power devices Sensortag CC2650

Remote CC2538

High capacity devices Raspberry Pi model 3B

Raspberry Pi Zero W

Cloud platform parameters
Platform FIWARE-based

Context-Broker Orion 2.3.0

Database Mongo DB 3.6

ultra-low-power devices features
Resource Sensortag Remote
TX current 7.9 mA 24 mA

RX current 6 mA 20 mA

LPM current 0.55 mA 0.60 mA

CPU current 3.48 mA 20 mA

Microcontroller CC2650 (48 MHz ARM Cortex M3) CC2538 (32 MHz ARM Cortex M3)

ROM 128 KB 512 KB

RAM 20 KB 32 KB

OS Contiki-NG

TSCH schedule Minimal

High capacity devices features
Resource Rasp. Pi model 3B Rasp. Pi ZeroW
CPU 1.2 GHz 64-bit quad core ARM Cortex-A53 1 GHz ARM11 32-bit

Flash memory 32 GB 32 GB

RAM 1 GB 512 MB

802.11 active (headless)* 225.17 mA 95.15 mA

OS Raspbian release 10

LWPubSubmessage structure parameters
Domain 99

Sensortag deviceID 00124b05257a

Remote deviceID 00124b4a527d

Rasp. Pi 3B deviceID 0012eb00f6d0

Rasp. Pi Zero W deviceID 0012ebc894cb

objectID 3303, 3311, and 3338

ultra-low-power devices security Payload with AES-CCM-8

High capacity devices security TLS + payload with AES-CCM-8

*measured with USB Voltmeter Tester UM24C

To validate the IoT architecture and considering as a
premise the use of open standards, the FIWARE plat-
form [13, 49, 50] provides the needed infrastructure
for an opensource cloud. The FIWARE platform con-
tains Generic Enablers (GE), including services called
IoT Agents that receive IoT measurements. The Orion

Context-Broker (the main GE) is the context-aware ser-
vice provided by FIWARE. Contextualized data enable the
correct processing of information by the cloud platform
[49].
In the cloud platform, the domains and devices are

orchestrated and provisioned, according to Table 3.
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Devices’ sensors are (following the LWPubSub structure
objectIDinstanceID): 33030 (HDC temperature sensor),
33110 (red LED), 33111 (green LED), and 33380 (alarm).
The LWPubSub assembles the message (topic and pay-

load) as shown in Fig. 3. An example of topic used in our
experiments is (using Sensortag deviceID in this exam-
ple) /99/00124b05257a, followed by the encrypted
payload which contains a context-aware temperature
data 33030|15.01.
The publish-subscribe systems, at the cloud platform,

run at the IoT Agent on the Huawei cloud. The devices
transmit their data to the cloud through the IoT gate-
way. The IoT gateway is a Raspberry Pi model 3B, with
an IEEE 802.11 interface connected to the Internet and
an IEEE 802.15.4 interface (via Launchpad, the 6LBR) to
communicate with the 6LoWPAN network.
The ultra-low-power devices of the validation scenario

are the Texas Instruments Sensortag and the Zolertia
Remote rev. b. To comply with the energy-efficient goal of
the LWPubSub, we use the Time Slotted Channel Hopping
(TSCH) as the link-layer protocol since it presents the
lowest energy consumption relating to this layer on 6LoWP
AN networks [51] (we use TSCH minimal schedule). We
use Contiki-NG, an open-source Operating System (OS)
for constrained devices. As presented in section “Related
work”, ultra-low-power devices can run onlyMQTT at the
application layer.
In contrast, high-capacity devices run MQTT, AMQP,

and DDS in the experiments.
Regardless of devices’ capacity, we implement AES-

CCM-8 at the payload, ensuring end-to-end security
between the devices and the cloud platform.
Moreover, IoT applications require different time inter-

vals when collecting sensor measurements, ranging
from wearable (which requires many measurements per
minute) to environmental conditions measures (which
require only a few measurements per day). Therefore, to
observe the behavior of IoT in different operating con-
ditions, the experiments conducted include the following
poll frequencies to obtain and send measurements:

• Very high: one measurement every 5 seconds (17280
per day);

• High: one measurement every quarter of a minute
(5760 per day);

• Medium: one measurement every quarter of an hour
(96 per day);

• Low: one measurement every quarter of a day (4 per
day);

• Very low: one measurement per day.

Results and discussion
In this section, we analyze the impact of the publish-
subscribe message systems considering several significant

parameters and discuss the performance of the proposed
message system through experiments.

Publish-subscribe message size
About the topic, the LWPubSub message structure
requires 16 bytes for sending measurements and 20 bytes
to receive commands from the cloud platform. Con-
cerning the payload presented in the section “System
model”, to send telemetry data such as temperature or
humidity, the secure payload is 32 bytes long. Thus, the
entire LWPubSub message (topic+payload with end-to-
end security) requires 52 bytes to send one-sensor data
(temperature, for instance).
There are differences between the header overhead

of the AMQP, DDS, and MQTT protocols when using
LWPubSub. We present the overhead based on the
required bytes in the header and the total message size.
Thereupon, we need to observe the header overhead per-
centage, which we calculate using the Eq. 4, considering
the header size presented in the section “Related work”.

Header overhead(%) = Header
Header + Payload

× 100 (4)

In Fig. 5 we observe the header overhead required by
AMQP, DDS, and MQTT when using LWPubSub topic
and payload. The dashed line in Fig. 5 represents the
header overhead with the use of LWPubSub to send tem-
perature data. MQTT presents the lower header overhead
(3.70%), followed by AMQP (13.33%) and DDS (18.75%).
It is important to highlight the relevance of the pro-
tocol overhead, given the constrained payload of ultra-
low-power devices (127 bytes), where only 104 bytes are
available. Thus, above 104 bytes, the message requires
fragmentation, increasing the number of messages to send
the data and energy consumption.
Regarding SBC, which does not have payload-size

restrictions, the header overhead is not significant for
larger messages. For example, the header overhead of a
payload of 1185 bytes is below 1% for MQTT, AMQP, and
DDS.
The structure design of our message proposes a short

and lightweight (and yet, complete) topic. We assume
the cloud platform as the main entity that publicly pro-
vides the IoT data to the users. The publish-subscribe
system (MQTT, AMQP, DDS) is only accessible between
the devices and the cloud platform and not by other users.
In contrast, [33] proposes a topic naming criteria for

smart cities requiring users’ access to the Broker. The
topic structure proposed by [33] requires, at least, the
fields “Objective/Location/Owner” and its sub-fields. For
instance, in the example provided by the authors, a tem-
perature measurement topic requires 61 bytes. The topic
proposed by [32] requires 72 bytes - we consider “country”
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Fig. 5 Header overhead using LWPubSub messages

and “state” fields with 2 bytes to reduce the number of
bytes on the topic. On the other hand, our proposed
topic for sending temperature requires 16 bytes. Figure 6
presents the topic comparison with the main related
works.
In the works of [32, 33], the client needs to know the

Broker’s address and to subscribe to the desired top-
ics. Our work, in turn, proposes cloud computing as the
primary entity which provides the IoT data to the users.
Regarding the ultra-low-power devices (which use

only MQTT), to send one-sensor telemetry data, the
LWPubSub message (with CIA) generates a 6LoWPAN
packet of 113 bytes in the experiments. Thus, there is
no fragmentation of messages sent by the ultra-low-
power devices (which have a messaging limit of 127

bytes). For high-capacity devices, the payload is 106-bytes
long.
We present in Fig. 7 the comparison of the message

size among the main related works. We consider our
context-aware and secure payload (32 bytes) for all works
compared; however, each work has its respective topic.
The LWPubSub message presents a smaller message size,
thus, requiring the transmission of fewer bytes and saving
energy.

Energy consumption
On the subject of energy consumption, we apply the Eq. 5
to observe the energy consumption considering idle and
active periods of the IoT devices; thus, the parameter n
varies depending on the type of IoT device used.

Fig. 6 Topic results comparison with the main related works
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Fig. 7Message size comparison with the main related works

EnergyIoTdevice =
n∑

i=1
n × V × I (5)

In Eq. 5, n is the time spent for device resource, V is
the voltage, and I is the current. Regarding high capac-
ity devices, we deploy a headless Raspberry Pi model 3B
and Raspberry Pi Zero W. We measure the energy con-
sumption with the devices in idle and active (transmission
and reception using the 802.11 radio). According to Eq. 5,
the energy consumption presents the time spent consid-
ering V = 5, the current (I) as presented in Table 3, and
n = (Idle, TX/RX).
About the energy consumption calculation of 6LoW-

PAN devices (ultra-low-power), we proceed according to
Eq. 5, using the Contiki-NG Energest [52] module.We cal-
culate the energy (in millijoules) from the time spent (in
seconds) of each device resource (CPU, LPM, TX, RX).
The voltage is fixed at 3 V (when supplied by two AA bat-
teries), and the current (I) for each resource is shown in
Table 3, and n = (CPU, LPM, TX, RX).
The SBC devices evaluated, as presented in Fig. 4, are

capable of running MQTT, AMQP, and DDS. However,

the ultra-low-power devices are only capable of running
MQTT, given their constrained nature.
We present in Fig. 8 the energy consumption for an IoT

device to send and receive one-sensor LWPubSub mes-
sages. It is important to note the y-axis limits because,
for ultra-low-power devices, the energy required is under
10mJ; nevertheless, SBC devices require much more
energy, reaching almost 200 mJ. Moreover, in Fig. 8, we
consider the actions “send a measurement” and “receive a
command”, not considering the idle time.
Additionally, Fig. 9 represents the comparison of

the required daily energy of ultra-low-power and SBC
devices.
Besides, Fig. 9a shows the ultra-low-power devices con-

suming less than 400 J (Sensortag is more constrained and
consumes less than 300 J). We observe that sleep time
(LPM) and listening (RX) drive ultra-low-power devices’
energy consumption. The CPU and TX energy consump-
tion is almost the same amount for medium, low, and very
low poll frequencies.
Regarding the energy consumption of SBC presented

in Fig. 9b, it reaches approximately 8,000 J for Rasp-
berry Pi Zero W and almost 20,000 J for the Raspberry
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Fig. 8 Energy consumption to send measurements and receive commands

Pi 3B, regardless of the publish-subscribe message system
(MQTT, AMQP, or DDS). SBC spends most of its time in
“idle”, even for the poll frequency “very high”.
We observe the previous comparison of energy con-

sumption when looking at the battery life of the devices at
each poll frequency. Let us consider the energy provided
by two AA batteries: 30780 J (2.85Ah∗1.5V ∗3600secs.∗2).
With this energy, the Raspberry Pi 3B and Raspberry Pi

Zero W run for 1.5 and 3.7 days, respectively, regardless
of the poll frequency. In contrast, ultra-low-power devices
present a different behavior. Figure 10 illustrates the bat-
tery lifetime of ultra-low-power devices at the evaluated
poll frequencies. The “very high” and “high” poll frequen-
cies presented in Fig. 10 (which demand more energy)
present lower battery life than the other poll frequencies.
However, sending 96, 4, or 1 message per day (medium,
low, and very low poll frequencies) consumes nearly the
same amount of energy - even for those that wait longer
between measurements such as “low” and “very low”.
Thus, high-capacity devices must have an uninterrupt-

ible power supply; in contrast, ultra-low-power devices
can run on a battery for months, enabling mobility.
Regarding security, for an IoT application that requires

the best security practices, SBC is the device to use.
On the other hand, TLS is not an option for ultra-low-

power devices once they cannot run this heavy-weight
security protocol. However, as presented in the section
“System model”, the LWPubSub message structure applies
confidentiality, integrity, and authenticity to the payload.

IoT applications
A smart healthcare IoT architecture can be benefited
from the use of ultra-low-power devices using LWPub-
Sub. A tracking system for vaccine temperature control
is an example of an application. It is possible to mea-
sure the temperature of a vaccine box from the pro-
duction to the destination once the LWPubSub appli-
cation periodically publishes these data. Besides, these
devices can join 6LoWPAN networks when in their
range; in contrast, an SBC device (which uses the 802.11
radio) requires a previous wireless network configura-
tion to transmit data. If there is a 6LoWPAN network
in the industry, at the transportation, and the destina-
tion, it is possible to track the vaccine box temperature
end-to-end because the device joins the respective net-
work and keeps sending the data. In addition, making
the measured temperature publicly available to citizens
and the scientific community increases the transparency
of information, especially with respect to the Covid-19
pandemic.
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Fig. 9 Daily energy consumption of IoT devices

Healthcare for the elderly is another domain of smart
healthcare that can be benefited from the ultra-low-power
devices using LWPubSub. Even collecting data at a higher
poll frequency, ultra-low-power devices runmonths with-
out requiring battery replacement.
High-capacity devices are helpful to send a large amount

of data, for instance, a security camera that detects an
anomaly and sends the images to the cloud so that author-
ities can analyze them.
These applications, using LWPubSub, transmit context-

aware and end-to-end secure messages between the IoT
devices and the cloud platform, and the Broker (or any
intermediary subscriber on DDS networks) is unable to
read the message.

Conclusion
This paper proposes and evaluates an energy-efficient,
context-aware, and end-to-end secure message structure
for publish-subscribe systems. Both ultra-low-power and
high-capacity devices benefit from the optimized topic
and payload proposed.
The context-aware topic guarantees the unique device

identification on its domain. The context-aware pay-
load ensures the standardization of each device’s sensors,
including end-to-end security between the devices and
the cloud platform.
We highlight the importance of the reduced number of

bytes at the topic and the payload of messages to reduce
energy consumption because carbon footprint and power
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Fig. 10 Ultra-low-power devices battery lifetime on the evaluated poll frequencies

effectiveness metrics are based on the number of bytes
transmitted.
The proposed message system does not require cus-

tomizing the protocols (MQTT, AMQP, or DDS) or the
Broker. Thus, it is possible to use any Broker available to
forward the secure messages to the cloud platform.
Experimental evaluation shows that our message sys-

tem can run for months on ultra-low-power devices. We
also present IoT applications that can benefit from the
message system. To achieve this contribution, we execute
several experiments applying different poll frequencies to
evaluate the diverse characteristics of IoT applications.

Limitations and Future works Although the results
obtained prove the low energy consumption and the mes-
sage size without resorting to fragmentation for ultra-
low-power devices, the evaluation comprises one mea-
surement from one sensor at a time. An extension of
this work could be evaluating the message size to ver-
ify if sending measurements from more than one sensor
in the same message requires fragmentation, its impact
on energy consumption, and other implications this may
cause. Additionally, for ultra-low-power devices, explore
other encryption models that can be adopted when con-
sidering security, using key derivation functions and fea-
tures to deliver the static keys, requiring analysis of the
message size and energy consumption. Regarding total
energy consumption, future works may include evaluating
another TSCH Schedule.
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