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Abstract 

The applications of the Internet of Things in different areas and the resources that demand these applications are on 
the increase. However, the limitations of the IoT devices such as processing capability, storage, and energy are chal-
lenging. Computational offloading is introduced to ameliorate the limitations of mobile devices. Offloading heavy 
data size to a remote node introduces the problem of additional delay due to transmission. Therefore, in this paper, 
we proposed Dynamic tasks scheduling algorithm based on attribute reduction with an enhanced hybrid Genetic 
Algorithm and Particle Swarm Optimization for optimal device selection. The proposed method uses a rank accuracy 
estimation model to decide the rank-1 value to be applied for the decomposition. Then canonical Polyadic decom-
position-based attribute reduction is applied to the offload-able task to reduce the data size. Enhance hybrid genetic 
algorithm and particle Swarm optimization are developed to select the optimal device in either fog or cloud. The pro-
posed algorithm improved the response time, delay, number of offloaded tasks, throughput, and energy consump-
tion of the IoT requests. The simulation is implemented with iFogSim and java programming language. The proposed 
method can be applied in smart cities, monitoring, health delivery, augmented reality, and gaming among others.
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Introduction
The rapid increase in the internet of things applications 
in our daily lives has led to the high production of data 
in different fields. The application areas such as Virtual 
Reality (VR), Augmented Reality (AR), and Elderly Care 
Monitoring involve heavy data and they are also com-
putationally intensive. However, the limited processing 
capability and battery life capacity of the mobile devices 
are their inherent limitations. These limitations make it 
difficult for mobile devices to be used to execute such 

computationally intensive tasks [1–3]. Mobile Cloud 
Computing (MCC) helps to provide on-demand access 
to a shared pull of resources that have almost unlim-
ited capability to assist mobile devices with their limi-
tations [4–8]. Moving a massive volume of data from 
mobile devices to the cloud servers increases the latency. 
Because of the distance between mobile devices and 
cloud infrastructures, it is difficult, sometimes for real-
time responses to be achieved. It is difficult to achieve 
real-time responses when real-time IoT applications are 
needed especially in healthcare, video games, self-driving 
cars, and natural language processing in MCC.

Mobile edge computing (MEC) was introduced to 
reduce the latency by moving the processing point from 
the cloud server to the mobile edge server [9]. MEC is 
characterized by low latency, low cost of processing, and 
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low energy consumption [7]. Computation offloading is 
the technique to offload computationally intensive tasks 
to MEC or MCC because of the inherent limitations of 
the mobile devices [10–13].

In the Internet of Things ecosystem, computation off-
loading is a very important step [14, 15]. It provides 
assisted means of processing a large amount of data gen-
erated by numerous IoT devices, speeds up processing on 
intensive tasks, and saves the battery life of the mobile 
devices [16]. There are so many definitions of computa-
tion offloading by different authors [17, 18]. Some looked 
at it as a means of saving battery life, minimizing pro-
cessing time, or both. Wu, et.al., [19] defined Computa-
tion offloading as the decision on how to improve the IoT 
network quality of service (QoS) by minimizing response 
time, energy consumption, increasing throughput, etc. In 
the computation offloading policy, the decision is made 
based on when to perform the computation locally and 
when to offload the computation to the remote pro-
cessing node. Computation offloading is the process of 
transferring resource-intensive computational tasks to 
a remote processor or external platform such as cloud 
or fog devices [19]. Gnana et.al, defined Computation 
Offloading as a paradigm in IoT applications environ-
ment to improve mobile services capabilities through 
dynamic migration of heavy computational tasks to a 
higher capability server in fogs or clouds. Computation 
offloading provides dynamic offloading that saves energy 
for mobile hosts while executing intensive computational 
services, which are capable of draining a device’s battery 
if executed locally [20, 21]s. The mobile host must decide 
on the tasks to be offloaded to fog or cloud, to reduce 
the energy usage while satisfying a computational time 
constraint [22]. An emerging and prospective comput-
ing paradigm mobile cloud computing can significantly 
enhance the quality of service in the IoT environ-
ment and save energy for smart mobile devices (SMDs) 
through computation offloading. MCC needs to offload 
resource-intensive Computations from smart mobile 
devices (SMDs) to the cloud through wireless access, 
which is called computation offloading [23].

There are two ways we can view computational offload-
ing [24]

▪ Coarse-grained procedure and
▪ Fine-grained procedure

Coarse grain (static) computational offloading con-
siders the task either at the mobile device or in the fog 
or cloud. It does not involve processing at both mobile 
devices and fog or cloud servers. The decision needed 
here is either to execute the whole workload at the 
mobile node or execute the whole workload at the fog or 

cloud by offloading the task. Fine-grain (dynamic) com-
putational offloading executes some part of the task at 
the mobile node while some of the tasks are offloaded to 
the fog or cloud node depending on certain criteria (such 
as the response time, delay, and energy consumption). In 
other to balance delay, network congestion, and energy 
usage in IoT applications, fine-grain computational off-
loading is preferred. This is because in coarse grain pro-
cedure, if you maintain processing at the mobile device, 
some of the computationally intensive tasks will drain off 
the battery life, and the processing time will exceed the 
required response time (latency threshold) of the task, 
whereas if you maintain the processing at the edge or 
cloud server for all the tasks, the network traffic will be 
flooded and some of the less computationally intensive 
tasks with low latency will not meet the response time 
requirement. To balance these issues in IoT applications, 
the dynamic computational offloading procedure is bet-
ter to get the trade-off between network traffic, response 
time, delay, and energy consumption to maximize the 
overall network quality of service and quality of experi-
ence [25]. The decision on the efficient layer to execute 
the task is still challenging. Secondly, the volume of data 
involved in today’s IoT applications if they are to be 
offloaded in their normal data size will keep on slowing 
down the network communication. Therefore, there is a 
need to downsize the offload-able data size before pass-
ing it through the network. This will make the data trans-
fer faster; reduce latency and energy consumption. The 
major issue in computational offloading is the problem 
of transmission delay incurred in the process of offload-
ing the task to the remote processing node. Since the 
transmission delay is a result of heavy data size, apply-
ing the attribute reduction technique during the offload-
ing process will help to downsize the offload-able task 
before the offload. The reduced data size will reduce the 
delay encountered during the offloading. However, few 
researchers have considered downsizing the offload-able 
data size during computational offloading [26].

Some researchers have made several attempts to 
solve the problem of computation offloading and 
scheduling in handling real-time mobile application 
requests and mobile device battery life limitations. Q 
learning has been proposed for task offloading in [16]. 
But the approach is time-consuming because of all the 
possible options to be considered. A Deep Q Learn-
ing-based algorithm is proposed [4] for computation 
offloading, which has high computational complexity. 
PSO for resource allocation is proposed in [27]. PSO 
has its inherent limitation of being trapped in the local 
optima. The genetic algorithm (GA) based approach is 
proposed in [14], but GA has the limitation of taking 
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a long time to converge and works better with a large 
number of iterations.

This work proposes an enhanced hybrid genetic 
algorithm and particle swarm optimization (eh-GA-
PSO) algorithm to eliminate the problem of PSO and 
GA-based algorithms for choosing the optimal device 
for processing. GA-based algorithms produce better 
results than other algorithms especially when the iter-
ation size is big. But with a high iteration size, means 
that the device selection process will take more time 
to reach the optimal solution [28]. On the other side, 
PSO-based algorithms always produce better results 
faster than other algorithms. But the problem of PSO 
based algorithms is that most times their result may 
not be accurate due to the speedy convergences, which 
at times make the PSO based algorithms to be trapped 
in the local optima solution [29–31]. Because of the 
advantages of GA producing a more accurate result and 
PSO converging faster, we, therefore, proposed the eh-
GA-PSO algorithm to eliminate the disadvantages of 
GA taking too much time to converge and PSO being 
trapped in the local optima. The researcher applied an 
enhanced hybrid genetic algorithm and particle swarm 
optimization algorithm for optimal device selection. 
The decision on where to offload the task is based on 
the time it will take to process the task, which is deter-
mined by the processing time at mobile, fog, or cloud 
nodes together with their transmission delay. The main 
contributions of this paper are as follows:

•	 We introduced attribute reduction in computation 
offloading

•	 We developed the rank accuracy estimation model 
(RAEM) in calculating the rank-1 value to be 
applied for the attribute reduction

•	 We proposed an enhanced hybrid Genetic Algo-
rithm and Particle Swarm Optimization (eh-GA-
PSO) for the optimal device selection

•	 We proposed Dynamic tasks scheduling algorithm 
(DTSA) based on attribute reduction for the task 
and resources scheduling

•	 We evaluated the proposed approach based on 
response time, delay, energy consumption, resource 
utilization, and the number of offloaded tasks. 
Our results validate the superiority of our pro-
posed approach compared with the present state of 
the art in task offloading and resource scheduling 
approaches.

The rest of the paper is organized as follows: The 
related works are presented in Section  2. Section  3 is 
the proposed system. Section 4 is the discussion of the 

Simulation and Results. Finally, the conclusion of the 
paper is presented in Section 5.

Review of the related work
Computation offloading in IoT, Fog, and Cloud com-
puting has attracted researchers’ attention recently. The 
major challenge is how to apply the IoT in real-time data 
analysis. Most IoT applications involve sensitive cases 
that need real-time responses for instance self-driving 
cars, medical, monitoring, and traffic control among oth-
ers. The limitations of IoT devices make it difficult to per-
form all the data analysis on the mobile device because 
of the limited processing capability, storage, and battery 
life. Because of these IoT limitations, there is a need for 
offloading to higher processing capability nodes (Fog or 
Cloud). Offloading from IoT to another remote device 
introduces another problem. The problem of delay is 
incurred as the computation is moved from mobile 
devices to Fog or Cloud. To address this problem, some 
researchers have presented different solutions, but none 
of them have considered applying attribute reduction to 
downsize the size of offload-able data. In this section, we 
present the related work to computation offloading in 
IoT- fog and cloud environments.

In [32], provisioning offloading as a service was pre-
sented. The offloading problem of IoT requests was con-
sidered. Large-scale offloading in an IoT environment 
with AutoScaler for task schedule was proposed. They 
also proposed a simulator that uses a mini-max algorithm 
to generate the offloading workload. Though the 
AutoScaler front-end component increases the response 
time of a request by ≈150 milliseconds, it reduces cost 
over the architecture of one IoT device and one server 
which may not be realistic in real life. Introducing fog 
devices will improve that response time. Secondly, intro-
ducing data attribute reduction will improve the trans-
mission time and therefore reduce the overall response 
time. In [16], the problem of computation offloading is 
presented. They proposed secOFF-FCIoT for offloading 
computationally intensive tasks with low data size. The 
paper identified tasks requiring heavy computation with 
minimal data sharing and considered them for offloading. 
They considered tasks with small data sizes because it 
will take little time to be offloaded while the processing 
time will be highly reduced at the higher processing node 
(Fog or Cloud). However, those tasks that require heavy 
computations that have large data sizes were not consid-
ered for offloading in their approach because of high 
transmission time required. Applying attribute reduction 
to reduce the data size during transmission will improve 
the system performance thereby enabling both tasks with 
heavy computational requirement and large data size to 
be offloaded at a minimal transmission delay instead of 
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processing such heavy computation intensive tasks at 
mobile with limited processing capability. This will 
improve the system performance. It will as well allow IoT 
application that involves heavy computations like 
machine learning application with heavy data such as 
images or videos to be applied in low latency applica-
tions, for instance in telemedicine, vehicular network, 
monitoring systems, smart city, etc. Autonomous com-
putation offloading is proposed in [7] to address the chal-
lenges of IoT application issues such as resource-intensive 
and time-intensive applications. Offloading scheme 
based on the combination of Q Learning and Deep Q 
Learning algorithm is proposed [4] to address the prob-
lem of task offloading and caching defined as a nonlinear 
problem to reducing the time and energy of the mobile 
devices. Monitor-Analysis-Plan-Execution control loop 
for mobile edge computing is proposed in [6] to decide 
on whether to execute locally or offload computation of 
the tasks to edge or cloud layer. The proposed method 
executes and updates the parameters of the system in the 
problem space. The decision is made based on the Bayes-
ian learning automata probabilistic method. Latency-
sensitive and resource-hungry issues in IoT application is 
addressed [33]. The paper proposed constrained multi-
objective evolutionary algorithms to address IoT compu-
tation offloading issues in the collaborative edge-cloud 
computing environment. The proposed method 
improved the network quality of service in terms of time 
and energy consumption of the IoT devices. The problem 
of system cost based on delay and energy consumption is 
presented in [34]. The paper used a game-theoretical 
approach to analyze the computation offloading decision 
problem of IoT applications. Nash equilibrium was 
derived based on the definition of the potential game. 
The paper proposed a computation offloading decision 
(COD) algorithm via IoT-Cloudlet-Cloud decentralized 
approach. The proposed method improved the system 
cost in terms of processing delay and energy consump-
tion. The IoT device’s energy consumption in the compu-
tation offloading to the cloud through the base station 
was significantly improved. However, introducing attrib-
ute reduction to the transmitted tasks (especially for 
heavy image and video data) will significantly reduce the 
transmission delay. Deep reinforcement learning-based 
computational offloading for IoT devices with energy 
harvesting was proposed by [35]. The paper presented a 
Q-learning dynamic scheme to decide on an offloading 
policy for the system. The scheme determines a portion 
of the data be offloaded to mobile edge computing (MEC) 
devices following the system bandwidth, battery life level, 
and amount of energy harvested. The scheme was pro-
posed based on a Markov Decision Process (MDP) and 
Q-learning method for optimal policy. But, the approach 

takes a significant time to converge. The Q-learning 
dynamic scheme uses the machine learning concept in 
computational offloading. However, the proposed 
approach doesn’t consider important issues, for example, 
mobility, cost of use of MEC, bandwidths changes, and 
mobility of the devices, Computational offloading based 
on deep reinforcement learning in IoT that enabled 
device-to-device (D2D) communication has been pro-
posed in [36]. The paper presented an optimal decision-
making offloading algorithm for IoT systems in terms of 
user and cloudlet behaviour similar to [35]. But unlike 
[35] where offloading is achieved on one MEC at a time, 
the paper addressed the issue of offloading to several 
cloudlets (edge devices). The paper focused on the com-
posite behavior of the queue in the cloud and the distance 
between the user equipment and the cloudlet. Zhang 
et  al. [27] presented a hybrid computation offloading 
algorithm based on queue theory for workflow and PSO 
for resource allocation. The hybrid computation offload-
ing is between the cloud and the mobile devices while 
cloudlet is used to calculate the waiting time and sched-
ule the task to mobile or cloud-based on whichever place 
it will be processed faster. Analysis of time and energy 
consumption is proposed by leveraging the queue theory. 
The objective function is based on the deadline con-
straints of the mobile request concerning processing time 
and energy consumption. The task scheduling scheme is 
based on the queue model and First Come First Served 
(FCFS) while waiting time in the cloudlet is based on 
M/M/m/ ∞ queue. Particle Swarm Optimization (PSO) 
based heuristic algorithm is implemented to schedule 
mobile services by selecting mobile services which have 
not been scheduled in the workflow. FCFS based sched-
uling is usually slower compared to other scheduling 
approaches while using the PSO for selecting the cloud or 
mobile node sometimes improves network performance. 
Some researchers applied PSO to this kind of problem 
because IoT devices exhibit characteristics of a swarm. In 
[22] a Dynamic Task Offloading (DyTO) is proposed. The 
paper introduced the concept of a surrogate object (SO) 
in computational offloading in mobile cloud computing. 
The surrogate objects represent each mobile host at the 
mobile support station (MSS). The surrogate object takes 
requests from the mobile host and decides where to pro-
cess the task (request) either at the host station, nearby 
station or federated cloud based on the compute, storage, 
and time required by the request. A surrogate object con-
nected to the mobile cloud computing network handles 
the issue of tracking the mobile host thus maintaining the 
consistency of resources to the mobile host as it negoti-
ates or loses connectivity. The surrogate object within the 
mobile cloud computing network preserves the informa-
tion to guarantee suitable distribution of data particularly 
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when the network is unsteady. The proposed Dynamic 
Task Offloading model saves energy. It improves execu-
tion time because disruptions in processing as a result of 
disconnection or differences in available resources 
caused by mobility are avoided. Although the issue of 
tasks sensitivity is not considered, since tasks are consid-
ered on first come first serve basis, some tasks may need 
urgent attention more than the existing ones and need to 
be considered first. The scheduling problem in a compu-
tational grid environment is presented in [37]. The posi-
tion vector is changed from the continuous value to the 
discrete value via small position value (SPV) rule. The 
paper aims at generating an optimal scheduling policy to 
enable the tasks to be completed in a minimum time as 
well as to achieve efficient resources utilization. The 
paper showed that PSO is faster than GA in terms of 
response time. Lei Yang [38] presented task offloading 
based on directed acyclic graph applications in edge 
computing. The paper aims at addressing the issue of 
computational offloading for computation – intensive 
application in industrial resources to offload tasks to edge 
server or cloud. The paper focused mainly on the indus-
trial application that has delay and energy consumption 
constrains. They formulated a task offloading approach 
for industrial services for three layer paradigm of indus-
trial, edge, and cloud layers. The paper proposed a linear 
programming based algorithm called ASO and intelligent 
heuristic based algorithm called Pro-ITGO to address the 
offloading problem. ASO and Pro-ITGO algorithms 
reduced the average energy usage of the industrial 
devices by 35% compared with the existing state of the 
art offloading algorithms.

In summary, it is clear from the literature that achiev-
ing real-time responses from IoT applications is still an 
issue of importance in IoT-Fog-Cloud distributed com-
puting. It is clear also that offloading is a technique in 
MEC and MCC that also comes with its inherent trans-
mission delay. Hence, there is a need to research how to 
minimize the delay resulting from offloading. It will make 
offloading faster and thereby make MEC and MCC more 
efficient in IoT applications.

Proposed system
In this section, the proposed system for dynamic compu-
tation offloading is presented.

Problem statement
The problem of computation offloading is addressed 
in this paper for the IoT-Fog-Cloud system. The prob-
lems of response time, delay, and energy utilization of 
mobile devices are addressed, especially for real-time 
IoT applications such as Smart City, Self-driven Cars, IoT 
Retail Shops, Smart Homes, Farming, Wearable, Smart 

Grids, and Industrial Internet among others. The mobile 
devices’ heavy data generation especially when it involves 
video and images and the limitations of mobile devices in 
terms of processing capability and battery life were con-
sidered. We, therefore, present a dynamic tasks sched-
uling algorithm for IoT-Fog-Cloud task offloading to 
achieve high network performance in terms of response 
time, energy utilization, delay, resource utilization, and 
throughput.

System overview
We consider a network of N IoT devices, J fog devices, 
and K Virtual Machine (VMs) such that n = {1, 2, 3 … 
N}, j = {1, 2, 3 … J}, and k = {1, 2, 3 … K} as in Fig. 1. The 
IoT devices are connected to the Fog nodes through a 
smart gateway. The Fog nodes are connected to the cloud, 
thereby creating a hierarchical network continuum to 
the cloud. When tasks are coming from the IoT, the IoT 
evaluates the task to determine whether the task can be 
processed at the IoT, in fog, or the cloud-based on where 
the response time, energy consumption, and delay will be 
minimized while throughput and resource utilization of 
the network is maximized.

IoT layer
The IoT layer generates and measures the tasks based on 
the data involved in each task. They offload those tasks 
that involve heavy data size and are highly computational 
intensive to a higher processing node (fog or cloud). They 
also receive responses to the processed tasks from fog 
and cloud. IoT devices offload tasks with heavy data size 
and high computational intensive because of their limita-
tions of processing capacity and battery life [39, 40].

Network layer
The network node is made up of a gateway and router 
which sometimes can function as fog devices in a small-
scale network [41–43]. In this work, the smart gateway is 
used for data validation. It secures the network by eval-
uating the data coming from each IoT device using the 
Neuro-Fuzzy logic model [16]. The Neuro-Fuzzy model 
checks the incoming data, if invalid data is detected, the 
data will be discarded while the IoT device that sent the 
data will be requested to resend the data.

Fog layer
The fog layer comprises fog devices. Fog devices are sys-
tems with higher configurations than mobile devices but 
with lesser than cloud infrastructures. Fog devices can 
perform all the functionalities of the cloud, though their 
processing capabilities and storage are lower than that of 
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the cloud systems. They support localized services and 
data analytics closer to the user [44–46]. Fog devices can 
be installed on the roadside unit or on moving cars.

Cloud layer
The cloud layer is made up of high powerful configura-
tion systems. They have infinite processing and storage 
capacity. The cloud devices consist of high computa-
tional intensive devices, which can be public or pri-
vate. The public cloud is provided as a service over the 
internet. The public cloud is based on multi-tenancy 
architecture. The user doesn’t need to purchase any 
hardware or software. The acquisition of hardware and 
software are the responsibilities of the provider. But the 
user has to pay based on their agreed prizing model. 

It can be based on pay-as-you-use, yearly, or based on 
duration, etc.

The private cloud is the cloud infrastructure provided 
and managed by the corporate enterprise. It is always 
deployed within the firewall of their network. The user 
will always have full control of the private cloud. The 
duration of storage and services do not affect the cost 
[47, 48].

Optimal device selection
Multiple objectives optimization problems have been 
attempted by many researchers in different ways [33, 48, 
49]. We adopted the available processing capability (APC) 
of the processing resources in calculating the fitness 
function to determine where to process the request. Our 

Fig. 1  System Model (d represents devices from I to N, Fog devices range from 1 to J, and cloud virtual machines (VM) range from 1 to K). N is the 
number of Mobile devices, J is the number of Fog devices and K is the number of virtual machines in the cloud infrastructure
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proposed device selection approach combined the good 
qualities of genetic algorithm (GA) and particle swarm 
optimization (PSO) in device selection while dynamically 
considering the highest APC of the resources. In this 
subheading, we present the GA part, PSO part, fitness 
function, and finally the proposed algorithm.

GA part of the proposed algorithm
The proposed algorithm begins by initializing tasks 
and the available devices as shown in Fig. 2. After ini-
tialization of the tasks and available resources, the algo-
rithm will check for the fitness function according to 
Eq. (3). If the tasks-resource allocation fits the fitness 
function, the process terminates else, the process will 
continue with the selection operator, crossover opera-
tor, and mutation operator as shown in Figs.  3, 4, and 
5 respectively until the maximum iteration set for GA 
is reached. When the maximum iteration set for GA is 

reached without convergence, which is determined by 
the proposed fitness function, GA will pass its output 
to the PSO part of the proposed algorithm.

PSO part of the eh‑GA‑PSO algorithm
At the PSO part of the proposed algorithm, the chromo-
somes will be initialized based on the result from the GA 
part. The tasks – resources allocation will be checked for 
the fitness function using Eq. (3).

We considered PSO suitable for this study because 
mobile devices behave similarly to a swarm [16]. PSO 
has been applied in similar areas in science and engi-
neering. For instance, in prediction [50], and alignment 
optimization [51]. In a fog environment, connectivity is 
through wireless connection sometimes, the resources 
are dynamic. The changes may be a result of weather, 
mobility of IoT devices, bandwidth fluctuation, and other 
factors in the network. Because of these reasons, the 

Fig. 2  Tasks – Resources Initialization Process (T represents Task while D represents device or cloud VM)

Fig. 3  Selection Operator for the GA part of the eh-GA-PSO Algorithm
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workload at the fog node changes frequently. To ensure 
the reliability of IoT getting responses as when due, there 
is a need to consider the data involved in a particular 
request, the bandwidth, and the processing capability at 
the fog, that can yield the best response time to the IoT 
request. PSO is a meta-heuristic algorithm that imitates 
the intelligence of a swarm. It uses communication and 
learning as its basic principles. Individual particles cre-
ate their route to the optimal solution and communicate 
with every member. Every member of the particles gets 
this information and learns the best course of action to 
take. They will create a single global optimal solution 
for the whole swarm. This cooperation and intelligence 
exhibited by the swarm makes them achieve results 
faster [52]. As stated earlier, it is assumed that the IoT 
devices behave like swarms that can change their location 
thereby affecting the bandwidth and processing capabil-
ity at the fog node or cloud node. The objective of PSO is 
to find the optimal solution through individual particles’ 
cooperation and communication among themselves to 

find the global optimal solution. Assuming we have a cer-
tain number of tasks (I) hereafter referred to as particles 
and J fog nodes or K cloud VMs referred to as dimen-
sional search space, the individual particles changes their 
position and velocity according to Eqs. (1 and 2) [52]

where X(t + 1) is the position for the particle at t + 1 time, 
X(t) is the position of the particle at t time and V(t + 1) is 
the velocity of the particle at t + 1 time.

The new velocity at t + 1 time is calculated in Eq. (2)

where V(t) is the current velocity for the particle, ω is the 
inertia weight, C1 and C2 are the weighting coefficients 
for the personal best and global best positions, respec-
tively. Xpbest is the particle’s best-known position. Xgbest is 
the global best-known position of the particles, and R is a 
random number between 0 and 1.

(1)X(t + 1) = X(t)+ V (t + 1)

(2)V (t + 1) = �V (t) + C1R(0, 1) ∗
(

Xpbest − X(t)
)

+ C2R(0, 1) ∗
(

Xgbest − X(t)
)

Fig. 4  Crossover Operator for the GA part of the eh-GA-PSO Algorithm

Fig. 5  Mutation Operator for the GA part of the eh-GA-PSO Algorithm
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Difference and similarity between PSO and GA
PSO is like a genetic algorithm because both systems are 
initialized with a population of randomly sampled solu-
tions. But PSO is different from GA because each possi-
ble solution is also allocated a randomized velocity and 
the possible solution are then flown among the problem 
space [52].

Fitness function for optimal device selection
We considered the availability of fog node devices or 
VMs by their Available Processing Capability (APC). The 
APC of all available devices will be ranked with a value 
(w1) and optimal device selection will be based on Eq. (3)

where xi represents the particular task in consideration 
and i ranges from 1 to the number of available tasks (I).

The proposed enhanced hybrid genetic algorithm 
and particle swarm optimization algorithm (eh‑GA‑PSO)
In this paper, we proposed an Enhanced hybrid Genetic 
Algorithm and Particle Swarm Optimization Algorithm 
(eh-GA-PSO). The eh-GA-PSO algorithm aims to sched-
ule the workflow tasks over the available fog and cloud 

(3)f (xi) = w1ApC(xi)

VM resources. The eh-GA-PSO algorithm is used for the 
allocation of tasks coming from the IoT devices to the 
optimal fog or VM machines based on where the sys-
tem can achieve higher network performance in terms 
of response time, energy utilization, delay, and resource 
utilization, and throughput. The eh-GA-PSO algorithm is 
presented in Fig. 6. GA-based algorithms produce better 
results than other algorithms especially when the itera-
tion size is big. But with a high iteration size, means that 
the device selection process will take longer to reach the 
optimal solution [28]. On the other side, PSO-based algo-
rithms always produce better results faster than other 
algorithms. But the problem of PSO based algorithms is 
that sometimes their result may not be accurate due to 
the speedy convergences, which at times make the PSO 
based algorithms to be trapped in the local optima solu-
tion [29–31]. Because of the advantages of GA produc-
ing a more accurate result and PSO converging faster, 
we, therefore, proposed the eh-GA-PSO algorithm to 
eliminate the disadvantages of GA taking too much time 
to converge and PSO being trapped in the local optima. 
The eh-GA-PSO uses the available processing capability 
of the resource to determine the fitness function as pre-
sented in Eq. (3). This is achieved by truncating the itera-
tion process of the GA halfway if the fitness function is 

Fig. 6  Enhanced hybrid Genetic Algorithm and Particle Swarm Optimization Algorithm (eh-GA-PSO)
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not yet attained at that level and then feeding the output 
of GA to PSO. With the half-processed result from GA, 
PSO will not start with a random selection. Instead, it 
starts with a nearly optima solution from GA. Because 
PSO did not start with initial random selection, it will 
not be trapped in the local optima solution. Secondly, the 
whole process will converge faster than allowing GA to 
complete the whole iterations process till convergence.

Proposed Dynamic Tasks Scheduling Algorithm (DTSA)
In this paper, we propose Dynamic tasks scheduling algo-
rithm (DTSA) based on attribute reduction. We proposed 
an enhanced hybrid Genetic Algorithm and Particle Swarm 
Optimization for optimal device selection as presented in 
Fig. 7. Given an offload-able task from an IoT device, the 
task needs to be processed and a response received within 
the expected time limit. However, mobile devices are lim-
ited in processing capacity, storage, and energy. The energy 
of the mobile device (IoT device) needs to be maximally uti-
lized. A generalized system model of the proposed attribute 
reduction-based secured offloading scheme is presented in 
Fig. 8. The task from the mobile device involves data that 
can be expressed in the tensor format with a certain r rank 
− 1 for r ϵ {1, 2 … R}. r = 1 means that the tensor is decom-
posed into 1 vector for each dimension of the tensor while 
r = R means that the tensor is decomposed into R vec-
tors for each dimension of the tensor. Canonical Polyadic 
Decomposition (CPD) decomposes original data to a cer-
tain percentage of the original data according to the CPD 
data decomposition ratio presented in our previous work 

[53]. The data transmitted over the network through CPD 
at times result in a slight change in the data accuracy. The 
essence of decomposing the data is to reduce its size during 
transmission over the network to reduce the transmission 
time and improve bandwidth usage. Therefore, to choose 
the r-value that will guarantee certain accuracy (AC), Eq. 
(4) is applied.

AC is the accuracy of the data analysis given R rank-1 
values and β is the constant for estimating the AC [53]. 
Figure 7 presents the algorithm used to schedule the tasks 
generated at the IoT layer among the available devices at 
the IoT, fog, or cloud layer based on the fitness function of 
the task. The fitness function of the tasks is calculated in 
Eq. (3). The objective of the algorithm is to minimize the 
latency. The latency is calculated in Eq. (5)) [16]. While 
Eq. (6) is the enhanced latency when attribute reduction is 
applied during offloading to reduce the data size.

L(xi) ≥ LR(xi) where szi, cxi denotes the size and com-
plexity of the task, sziR is the reduced data size after pass-
ing through CPD, Ui denotes the mean latency of the 

(4)AC = αln(R)+ β

(5)L(xi) =
szi × cxi × ui + bs(xi)

F(xi)

(6)LR(xi) =
sziR × cxi × ui + bs(xi)

F(xi)

Fig. 7  Dynamic tasks scheduling algorithm based on attribute reduction and eh-GA-PSO for optimal device selection algorithms
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task, bs, and F are the current buffer size and CPU fre-
quency of the fog or VM machines.

Simulation and results
The simulation process and its results are presented in 
this section.

Experimental settings
To effectively evaluate the performance of our proposed 
scheduling algorithm, simulation experiments are con-
ducted. We created an IoT-Fog-Cloud system consisting 
of 10 mobile devices, 5 fog nodes, a smart gateway, and 1 
hybrid cloud. We chose this configuration to enable us to 
link the mobile devices to the fog-cloud paradigm, which 
has higher processing capabilities than the mobile device. 
The simulations are conducted with the iFogSim simula-
tor and Java programming. The iFogSim framework is 
designed for an efficient way of evaluating resource man-
agement policies especially as applicable to the fog para-
digm concerning their impact on response time, energy 
consumption, latency, operational costs, and network con-
gestion. It simulates mobile devices, Fog nodes, network 
links, and cloud data centers to measure performance 
metrics [54]. There are n tasks generated at the mobile 
devices which are to be offloaded to either the fog or cloud 
depending on where it will have reduced response time, 
delay, and where more tasks will be offloaded to reduce the 
energy consumption at the mobile nodes.

Performance metrics

	 i.	 Response time (RT): The time between when a user 
places a request and when the response is received.

	 ii.	 Throughput (TP): This is the number of tasks 
offloaded by mobile devices per unit of time (T) 
used.

	TP = # − task Offloaded/T
	iii.	 Delay (DT): The difference in time between the 

actual response time and the expected (calculated) 
response time of a task of the application. It is also 
computed as follows:

	DT = PROT + QueueT + TranT + PropagationT.
	where PROT denotes processing delay, QueueT denotes 

queuing delay, TranT represents transmission delay, 
and PropagationT denotes propagation delay.

	iv.	 Energy consumption (Ec): This is the amount of 
energy consumed by mobile devices to perform a 
particular task. Ec = Epro + Etrans

where Epro is processing energy, Etrans is transmission 
energy.

	xxii.	Resource utilization rate (ReU): This is the total 
amount of resources used as compared with the 
number of resources budgeted for the task. ReU is 
presented as the percentage of time mobile device 
uses the resources in 24 h.

	ReU = Ni/24 × 100, where Ni is the nth resource.

Results
In this section, the results from the simulations are pre-
sented. The results of our proposed offloading schemes 
and other existing algorithms as in [16, 22] are compared. 
The proposed offloading scheme offers a scalable solution 
for the IoT tasks offloading process. In the simulations, 
we set the latency for sensitive tasks to be 1 s while the 

Fig. 8  Generalized system model of the proposed attribute reduction based secured offloading scheme
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non-sensitive task’s latency requirement is set to be 1.5 s 
throughout the simulation process. We also set the num-
ber of tasks to be n ∈ {10, 20, 30, 40, 50}. In each case, the 
maximum simulation period is set to 100 seconds. Sensi-
tive of the tasks here refers to those tasks that have to sat-
isfy certain time constraints to be acceptable to the user. 
In this work, tasks have two categories of time constraints. 
If a task has a time constraint of 1 second (1 s) it is referred 
to as a sensitive task, but if the tasks’ time constraint is 
1.5 seconds (1.5 s) it is categorized as a non-sensitive task.

Response time
Figure  9 shows the result of response time for the pro-
posed (DTSA) offloading algorithm compared with 
SecOFF-FCIoT [16] and DTO-SO [22] algorithms.

The response time of the tasks increases with the increase 
in the number of tasks. Our proposed algorithm takes less 
time to respond to IoT requests. For instance, when the 
number of simulated tasks is 20 for sensitive tasks, the 
response time for our proposed algorithm is 6 ms while 
secOFF-FCIoT and DTO-SO are 8 ms and 11 ms respec-
tively. When the number of simulated tasks increased to 40 
for sensitive tasks, our proposed algorithm response time 
is 11 ms as against 13 ms and 15 ms for secOFF-FCIoT and 
DTO-SO respectively. In the same way, for the non-sensi-
tive tasks, our proposed offloading scheme response time 
is also faster compared with secOFF-FCIoT and DTO-SO. 
When the number of simulated tasks is 30, our proposed 

algorithm response time for the non-sensitive task is 9.5 ms 
as against 11 ms and 15 ms for secOFF-FCIoT and DTO-
SO. Therefore, the proposed approach is faster in terms of 
response time compared with the existing schemes.

Delay
Figure  10 shows the impact on delay for both sensitive 
tasks and non-sensitive tasks of the system. The delay in 
the offloading process increases with an increase in the 
number of IoT requests. For sensitive tasks, our proposed 
offloading scheme reduced the delay by 8% and 21% com-
pared to secOFF-FCIoT and DTO-SO. For the non-sensi-
tive tasks, the delay is reduced by 23% and 35% compared 
to secOFF-FCIoT and DTO-SO respectively. In particular, 
when the number of simulated tasks is 30 for sensitive 
tasks, the delay is 1.1 ms for our proposed scheme while 
it is 1.2 ms and 1.4 ms for secOFF-FCIoT and DTO-SO. In 
the same vein, when the number of simulated tasks is 20 
for non-sensitive tasks, the delay for our proposed scheme 
is 0.9 ms as against 1.1 ms and 1.4 ms for secOFF-FCIoT 
and DTO-SO respectively. This shows that our proposed 
scheme reduces the delay in the offloading process of the 
IoT fog-cloud system compared to the existing schemes.

Offloaded tasks
Figure  11 shows the number of offloaded tasks of our 
proposed scheme compared with that of the secOFF-
FCIoT algorithm. Our proposed dynamic offloading 

Fig. 9  Response time
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scheme increased the number of offloaded tasks to about 
53% on average. This increase in the number of offloaded 
tasks increased the duration of the mobile device’s bat-
tery life since more tasks are offloaded.

Throughput
The throughput increases with the increase in the number 
of simulated tasks (n) as shown in Fig.  12. For instance, 
at n  = 20, the throughput of our proposed scheme is 
55 kb/s for sensitive tasks as against 44 kb/s and 35 kb/s for 
secOFF-FCIoT and DTO-SO. At n = 30, the throughput of 
our proposed scheme for non-sensitive tasks is 64 kb/s as 
against 60 kb/s and 43 kb/s for secOFF-FCIoT and DTO-
SO. At n = 50, the throughput attained by our proposed 
dynamic offloading scheme is 130 kb/s and 110 kb/s for the 
sensitive and non-sensitive tasks as against throughput for 
secOFF-FCIoT which is 120 and 99 for sensitive and non-
sensitive tasks. Therefore, our proposed offloading scheme 
is better compared with the existing schemes.

The increase in the throughput is a result of the effect 
of the attribute reduction method applied on the offload-
able tasks in addition to the enhanced hybrid GA-PSO 
which is applied for optimal device selection.

Energy consumption
Figure 13 shows the impact on the energy consumption 
of IoT devices. Energy is one of the most important con-
straints in IoT applications. Executing complex tasks is 

always at the expense of the battery life of IoT devices. 
Offloading intensive tasks that are computationally inten-
sive to fog and cloud saves energy for the IoT devices. 
Our proposed offloading scheme achieved reduced 
energy consumption at the IoT devices since more tasks 
are offloaded to fog and cloud. The delay is reduced 
because of the reduced data size from our attribute 
reduction method. This results in reduced energy con-
sumption. At n = 40, for instance, our proposed offload-
ing scheme energy consumption is 0.094 J as against 0.1 J 
and 0.13 J for secOFF-FCIoT and DTO-SO on sensitive 
tasks. While at the same n = 40, for non-sensitive tasks, 
our proposed scheme energy consumption is 0.097 J as 
against 0.104 J and 0.14 J for secOFF-FCIoT and DTO-SO.

Resource utilization
The impact on resource utilization is presented in Fig. 14. 
Resource utilization is a very important metric in IoT 
applications. Resource utilization is important for main-
taining high productivity in the network. It ensures that 
resources are not underutilized or over-utilized by work-
loads. Our proposed scheme achieved better resource 
utilization compared with the existing approaches. For 
instance, at n = 20, our proposed system achieved 95% 
as against 93% and 90% for secOFF-FCIoT and DTO-SO. 
Similarly, for non-sensitive tasks at n = 30, our proposed 
offloading scheme attained 93.5% as against 93% and 91% 
for secOFF-FCIoT and DTO-SO resource utilization.

Fig. 10  Delay
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Conclusion
In this paper, we proposed a scalable dynamic offloading 
scheme to mainly minimize IoT requests’ response time, 

energy consumption, and delay. The proposed three-tier 
system architecture for the offloading scheme is good 
for balancing the trade-off between response time and 

Fig. 11  Offloaded Tasks

Fig. 12  Throughput
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energy consumption. We also proposed an enhanced 
hybrid GA-PSO for device selection, while CPD based 
attribute reduction method is applied to downsize the 

offload-able task to minimize the delay during the task 
offloading process. Introducing a new technology as an 
attribute reduction method in task offloading enables the 

Fig. 13  Energy consumption

Fig. 14  Resource utilization
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offloading scheme to offload more tasks faster than the 
existing approaches since data size is reduced. In addi-
tion, the enhanced GA-PSO also reduces the time for 
searching for optimal devices and therefore makes the 
system more efficient and faster.
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