
Nwogbaga et al. Journal of Cloud Computing (2022) 11:15
https://doi.org/10.1186/s13677-022-00288-4

RESEARCH

Attribute reduction based scheduling
algorithm with enhanced hybrid genetic
algorithm and particle swarm optimization
for optimal device selection
Nweso Emmanuel Nwogbaga1,2, Rohaya Latip1*, Lilly Suriani Affendey3 and Amir Rizaan Abdul Rahiman1 

Abstract 

The applications of the Internet of Things in different areas and the resources that demand these applications are on
the increase. However, the limitations of the IoT devices such as processing capability, storage, and energy are chal-
lenging. Computational offloading is introduced to ameliorate the limitations of mobile devices. Offloading heavy
data size to a remote node introduces the problem of additional delay due to transmission. Therefore, in this paper,
we proposed Dynamic tasks scheduling algorithm based on attribute reduction with an enhanced hybrid Genetic
Algorithm and Particle Swarm Optimization for optimal device selection. The proposed method uses a rank accuracy
estimation model to decide the rank-1 value to be applied for the decomposition. Then canonical Polyadic decom-
position-based attribute reduction is applied to the offload-able task to reduce the data size. Enhance hybrid genetic
algorithm and particle Swarm optimization are developed to select the optimal device in either fog or cloud. The pro-
posed algorithm improved the response time, delay, number of offloaded tasks, throughput, and energy consump-
tion of the IoT requests. The simulation is implemented with iFogSim and java programming language. The proposed
method can be applied in smart cities, monitoring, health delivery, augmented reality, and gaming among others.

Keywords:  Computation offloading, Mobile edge computing, Task and resource scheduling, Attribute reduction

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The rapid increase in the internet of things applications
in our daily lives has led to the high production of data
in different fields. The application areas such as Virtual
Reality (VR), Augmented Reality (AR), and Elderly Care
Monitoring involve heavy data and they are also com-
putationally intensive. However, the limited processing
capability and battery life capacity of the mobile devices
are their inherent limitations. These limitations make it
difficult for mobile devices to be used to execute such

computationally intensive tasks [1–3]. Mobile Cloud
Computing (MCC) helps to provide on-demand access
to a shared pull of resources that have almost unlim-
ited capability to assist mobile devices with their limi-
tations [4–8]. Moving a massive volume of data from
mobile devices to the cloud servers increases the latency.
Because of the distance between mobile devices and
cloud infrastructures, it is difficult, sometimes for real-
time responses to be achieved. It is difficult to achieve
real-time responses when real-time IoT applications are
needed especially in healthcare, video games, self-driving
cars, and natural language processing in MCC.

Mobile edge computing (MEC) was introduced to
reduce the latency by moving the processing point from
the cloud server to the mobile edge server [9]. MEC is
characterized by low latency, low cost of processing, and

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: rohayalt@upm.edu.my

1 Department of Communication Technology and Network, Faculty
of Computer Science and Information Technology, Universiti Putra Malaysia,
Seri Kembangan, Malaysia
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00288-4&domain=pdf

Page 2 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

low energy consumption [7]. Computation offloading is
the technique to offload computationally intensive tasks
to MEC or MCC because of the inherent limitations of
the mobile devices [10–13].

In the Internet of Things ecosystem, computation off-
loading is a very important step [14, 15]. It provides
assisted means of processing a large amount of data gen-
erated by numerous IoT devices, speeds up processing on
intensive tasks, and saves the battery life of the mobile
devices [16]. There are so many definitions of computa-
tion offloading by different authors [17, 18]. Some looked
at it as a means of saving battery life, minimizing pro-
cessing time, or both. Wu, et.al., [19] defined Computa-
tion offloading as the decision on how to improve the IoT
network quality of service (QoS) by minimizing response
time, energy consumption, increasing throughput, etc. In
the computation offloading policy, the decision is made
based on when to perform the computation locally and
when to offload the computation to the remote pro-
cessing node. Computation offloading is the process of
transferring resource-intensive computational tasks to
a remote processor or external platform such as cloud
or fog devices [19]. Gnana et.al, defined Computation
Offloading as a paradigm in IoT applications environ-
ment to improve mobile services capabilities through
dynamic migration of heavy computational tasks to a
higher capability server in fogs or clouds. Computation
offloading provides dynamic offloading that saves energy
for mobile hosts while executing intensive computational
services, which are capable of draining a device’s battery
if executed locally [20, 21]s. The mobile host must decide
on the tasks to be offloaded to fog or cloud, to reduce
the energy usage while satisfying a computational time
constraint [22]. An emerging and prospective comput-
ing paradigm mobile cloud computing can significantly
enhance the quality of service in the IoT environ-
ment and save energy for smart mobile devices (SMDs)
through computation offloading. MCC needs to offload
resource-intensive Computations from smart mobile
devices (SMDs) to the cloud through wireless access,
which is called computation offloading [23].

There are two ways we can view computational offload-
ing [24]

▪ Coarse-grained procedure and
▪ Fine-grained procedure

Coarse grain (static) computational offloading con-
siders the task either at the mobile device or in the fog
or cloud. It does not involve processing at both mobile
devices and fog or cloud servers. The decision needed
here is either to execute the whole workload at the
mobile node or execute the whole workload at the fog or

cloud by offloading the task. Fine-grain (dynamic) com-
putational offloading executes some part of the task at
the mobile node while some of the tasks are offloaded to
the fog or cloud node depending on certain criteria (such
as the response time, delay, and energy consumption). In
other to balance delay, network congestion, and energy
usage in IoT applications, fine-grain computational off-
loading is preferred. This is because in coarse grain pro-
cedure, if you maintain processing at the mobile device,
some of the computationally intensive tasks will drain off
the battery life, and the processing time will exceed the
required response time (latency threshold) of the task,
whereas if you maintain the processing at the edge or
cloud server for all the tasks, the network traffic will be
flooded and some of the less computationally intensive
tasks with low latency will not meet the response time
requirement. To balance these issues in IoT applications,
the dynamic computational offloading procedure is bet-
ter to get the trade-off between network traffic, response
time, delay, and energy consumption to maximize the
overall network quality of service and quality of experi-
ence [25]. The decision on the efficient layer to execute
the task is still challenging. Secondly, the volume of data
involved in today’s IoT applications if they are to be
offloaded in their normal data size will keep on slowing
down the network communication. Therefore, there is a
need to downsize the offload-able data size before pass-
ing it through the network. This will make the data trans-
fer faster; reduce latency and energy consumption. The
major issue in computational offloading is the problem
of transmission delay incurred in the process of offload-
ing the task to the remote processing node. Since the
transmission delay is a result of heavy data size, apply-
ing the attribute reduction technique during the offload-
ing process will help to downsize the offload-able task
before the offload. The reduced data size will reduce the
delay encountered during the offloading. However, few
researchers have considered downsizing the offload-able
data size during computational offloading [26].

Some researchers have made several attempts to
solve the problem of computation offloading and
scheduling in handling real-time mobile application
requests and mobile device battery life limitations. Q
learning has been proposed for task offloading in [16].
But the approach is time-consuming because of all the
possible options to be considered. A Deep Q Learn-
ing-based algorithm is proposed [4] for computation
offloading, which has high computational complexity.
PSO for resource allocation is proposed in [27]. PSO
has its inherent limitation of being trapped in the local
optima. The genetic algorithm (GA) based approach is
proposed in [14], but GA has the limitation of taking

Page 3 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

a long time to converge and works better with a large
number of iterations.

This work proposes an enhanced hybrid genetic
algorithm and particle swarm optimization (eh-GA-
PSO) algorithm to eliminate the problem of PSO and
GA-based algorithms for choosing the optimal device
for processing. GA-based algorithms produce better
results than other algorithms especially when the iter-
ation size is big. But with a high iteration size, means
that the device selection process will take more time
to reach the optimal solution [28]. On the other side,
PSO-based algorithms always produce better results
faster than other algorithms. But the problem of PSO
based algorithms is that most times their result may
not be accurate due to the speedy convergences, which
at times make the PSO based algorithms to be trapped
in the local optima solution [29–31]. Because of the
advantages of GA producing a more accurate result and
PSO converging faster, we, therefore, proposed the eh-
GA-PSO algorithm to eliminate the disadvantages of
GA taking too much time to converge and PSO being
trapped in the local optima. The researcher applied an
enhanced hybrid genetic algorithm and particle swarm
optimization algorithm for optimal device selection.
The decision on where to offload the task is based on
the time it will take to process the task, which is deter-
mined by the processing time at mobile, fog, or cloud
nodes together with their transmission delay. The main
contributions of this paper are as follows:

•	 We introduced attribute reduction in computation
offloading

•	 We developed the rank accuracy estimation model
(RAEM) in calculating the rank-1 value to be
applied for the attribute reduction

•	 We proposed an enhanced hybrid Genetic Algo-
rithm and Particle Swarm Optimization (eh-GA-
PSO) for the optimal device selection

•	 We proposed Dynamic tasks scheduling algorithm
(DTSA) based on attribute reduction for the task
and resources scheduling

•	 We evaluated the proposed approach based on
response time, delay, energy consumption, resource
utilization, and the number of offloaded tasks.
Our results validate the superiority of our pro-
posed approach compared with the present state of
the art in task offloading and resource scheduling
approaches.

The rest of the paper is organized as follows: The
related works are presented in Section 2. Section 3 is
the proposed system. Section 4 is the discussion of the

Simulation and Results. Finally, the conclusion of the
paper is presented in Section 5.

Review of the related work
Computation offloading in IoT, Fog, and Cloud com-
puting has attracted researchers’ attention recently. The
major challenge is how to apply the IoT in real-time data
analysis. Most IoT applications involve sensitive cases
that need real-time responses for instance self-driving
cars, medical, monitoring, and traffic control among oth-
ers. The limitations of IoT devices make it difficult to per-
form all the data analysis on the mobile device because
of the limited processing capability, storage, and battery
life. Because of these IoT limitations, there is a need for
offloading to higher processing capability nodes (Fog or
Cloud). Offloading from IoT to another remote device
introduces another problem. The problem of delay is
incurred as the computation is moved from mobile
devices to Fog or Cloud. To address this problem, some
researchers have presented different solutions, but none
of them have considered applying attribute reduction to
downsize the size of offload-able data. In this section, we
present the related work to computation offloading in
IoT- fog and cloud environments.

In [32], provisioning offloading as a service was pre-
sented. The offloading problem of IoT requests was con-
sidered. Large-scale offloading in an IoT environment
with AutoScaler for task schedule was proposed. They
also proposed a simulator that uses a mini-max algorithm
to generate the offloading workload. Though the
AutoScaler front-end component increases the response
time of a request by ≈150 milliseconds, it reduces cost
over the architecture of one IoT device and one server
which may not be realistic in real life. Introducing fog
devices will improve that response time. Secondly, intro-
ducing data attribute reduction will improve the trans-
mission time and therefore reduce the overall response
time. In [16], the problem of computation offloading is
presented. They proposed secOFF-FCIoT for offloading
computationally intensive tasks with low data size. The
paper identified tasks requiring heavy computation with
minimal data sharing and considered them for offloading.
They considered tasks with small data sizes because it
will take little time to be offloaded while the processing
time will be highly reduced at the higher processing node
(Fog or Cloud). However, those tasks that require heavy
computations that have large data sizes were not consid-
ered for offloading in their approach because of high
transmission time required. Applying attribute reduction
to reduce the data size during transmission will improve
the system performance thereby enabling both tasks with
heavy computational requirement and large data size to
be offloaded at a minimal transmission delay instead of

Page 4 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

processing such heavy computation intensive tasks at
mobile with limited processing capability. This will
improve the system performance. It will as well allow IoT
application that involves heavy computations like
machine learning application with heavy data such as
images or videos to be applied in low latency applica-
tions, for instance in telemedicine, vehicular network,
monitoring systems, smart city, etc. Autonomous com-
putation offloading is proposed in [7] to address the chal-
lenges of IoT application issues such as resource-intensive
and time-intensive applications. Offloading scheme
based on the combination of Q Learning and Deep Q
Learning algorithm is proposed [4] to address the prob-
lem of task offloading and caching defined as a nonlinear
problem to reducing the time and energy of the mobile
devices. Monitor-Analysis-Plan-Execution control loop
for mobile edge computing is proposed in [6] to decide
on whether to execute locally or offload computation of
the tasks to edge or cloud layer. The proposed method
executes and updates the parameters of the system in the
problem space. The decision is made based on the Bayes-
ian learning automata probabilistic method. Latency-
sensitive and resource-hungry issues in IoT application is
addressed [33]. The paper proposed constrained multi-
objective evolutionary algorithms to address IoT compu-
tation offloading issues in the collaborative edge-cloud
computing environment. The proposed method
improved the network quality of service in terms of time
and energy consumption of the IoT devices. The problem
of system cost based on delay and energy consumption is
presented in [34]. The paper used a game-theoretical
approach to analyze the computation offloading decision
problem of IoT applications. Nash equilibrium was
derived based on the definition of the potential game.
The paper proposed a computation offloading decision
(COD) algorithm via IoT-Cloudlet-Cloud decentralized
approach. The proposed method improved the system
cost in terms of processing delay and energy consump-
tion. The IoT device’s energy consumption in the compu-
tation offloading to the cloud through the base station
was significantly improved. However, introducing attrib-
ute reduction to the transmitted tasks (especially for
heavy image and video data) will significantly reduce the
transmission delay. Deep reinforcement learning-based
computational offloading for IoT devices with energy
harvesting was proposed by [35]. The paper presented a
Q-learning dynamic scheme to decide on an offloading
policy for the system. The scheme determines a portion
of the data be offloaded to mobile edge computing (MEC)
devices following the system bandwidth, battery life level,
and amount of energy harvested. The scheme was pro-
posed based on a Markov Decision Process (MDP) and
Q-learning method for optimal policy. But, the approach

takes a significant time to converge. The Q-learning
dynamic scheme uses the machine learning concept in
computational offloading. However, the proposed
approach doesn’t consider important issues, for example,
mobility, cost of use of MEC, bandwidths changes, and
mobility of the devices, Computational offloading based
on deep reinforcement learning in IoT that enabled
device-to-device (D2D) communication has been pro-
posed in [36]. The paper presented an optimal decision-
making offloading algorithm for IoT systems in terms of
user and cloudlet behaviour similar to [35]. But unlike
[35] where offloading is achieved on one MEC at a time,
the paper addressed the issue of offloading to several
cloudlets (edge devices). The paper focused on the com-
posite behavior of the queue in the cloud and the distance
between the user equipment and the cloudlet. Zhang
et al. [27] presented a hybrid computation offloading
algorithm based on queue theory for workflow and PSO
for resource allocation. The hybrid computation offload-
ing is between the cloud and the mobile devices while
cloudlet is used to calculate the waiting time and sched-
ule the task to mobile or cloud-based on whichever place
it will be processed faster. Analysis of time and energy
consumption is proposed by leveraging the queue theory.
The objective function is based on the deadline con-
straints of the mobile request concerning processing time
and energy consumption. The task scheduling scheme is
based on the queue model and First Come First Served
(FCFS) while waiting time in the cloudlet is based on
M/M/m/ ∞ queue. Particle Swarm Optimization (PSO)
based heuristic algorithm is implemented to schedule
mobile services by selecting mobile services which have
not been scheduled in the workflow. FCFS based sched-
uling is usually slower compared to other scheduling
approaches while using the PSO for selecting the cloud or
mobile node sometimes improves network performance.
Some researchers applied PSO to this kind of problem
because IoT devices exhibit characteristics of a swarm. In
[22] a Dynamic Task Offloading (DyTO) is proposed. The
paper introduced the concept of a surrogate object (SO)
in computational offloading in mobile cloud computing.
The surrogate objects represent each mobile host at the
mobile support station (MSS). The surrogate object takes
requests from the mobile host and decides where to pro-
cess the task (request) either at the host station, nearby
station or federated cloud based on the compute, storage,
and time required by the request. A surrogate object con-
nected to the mobile cloud computing network handles
the issue of tracking the mobile host thus maintaining the
consistency of resources to the mobile host as it negoti-
ates or loses connectivity. The surrogate object within the
mobile cloud computing network preserves the informa-
tion to guarantee suitable distribution of data particularly

Page 5 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

when the network is unsteady. The proposed Dynamic
Task Offloading model saves energy. It improves execu-
tion time because disruptions in processing as a result of
disconnection or differences in available resources
caused by mobility are avoided. Although the issue of
tasks sensitivity is not considered, since tasks are consid-
ered on first come first serve basis, some tasks may need
urgent attention more than the existing ones and need to
be considered first. The scheduling problem in a compu-
tational grid environment is presented in [37]. The posi-
tion vector is changed from the continuous value to the
discrete value via small position value (SPV) rule. The
paper aims at generating an optimal scheduling policy to
enable the tasks to be completed in a minimum time as
well as to achieve efficient resources utilization. The
paper showed that PSO is faster than GA in terms of
response time. Lei Yang [38] presented task offloading
based on directed acyclic graph applications in edge
computing. The paper aims at addressing the issue of
computational offloading for computation – intensive
application in industrial resources to offload tasks to edge
server or cloud. The paper focused mainly on the indus-
trial application that has delay and energy consumption
constrains. They formulated a task offloading approach
for industrial services for three layer paradigm of indus-
trial, edge, and cloud layers. The paper proposed a linear
programming based algorithm called ASO and intelligent
heuristic based algorithm called Pro-ITGO to address the
offloading problem. ASO and Pro-ITGO algorithms
reduced the average energy usage of the industrial
devices by 35% compared with the existing state of the
art offloading algorithms.

In summary, it is clear from the literature that achiev-
ing real-time responses from IoT applications is still an
issue of importance in IoT-Fog-Cloud distributed com-
puting. It is clear also that offloading is a technique in
MEC and MCC that also comes with its inherent trans-
mission delay. Hence, there is a need to research how to
minimize the delay resulting from offloading. It will make
offloading faster and thereby make MEC and MCC more
efficient in IoT applications.

Proposed system
In this section, the proposed system for dynamic compu-
tation offloading is presented.

Problem statement
The problem of computation offloading is addressed
in this paper for the IoT-Fog-Cloud system. The prob-
lems of response time, delay, and energy utilization of
mobile devices are addressed, especially for real-time
IoT applications such as Smart City, Self-driven Cars, IoT
Retail Shops, Smart Homes, Farming, Wearable, Smart

Grids, and Industrial Internet among others. The mobile
devices’ heavy data generation especially when it involves
video and images and the limitations of mobile devices in
terms of processing capability and battery life were con-
sidered. We, therefore, present a dynamic tasks sched-
uling algorithm for IoT-Fog-Cloud task offloading to
achieve high network performance in terms of response
time, energy utilization, delay, resource utilization, and
throughput.

System overview
We consider a network of N IoT devices, J fog devices,
and K Virtual Machine (VMs) such that n = {1, 2, 3 …
N}, j = {1, 2, 3 … J}, and k = {1, 2, 3 … K} as in Fig. 1. The
IoT devices are connected to the Fog nodes through a
smart gateway. The Fog nodes are connected to the cloud,
thereby creating a hierarchical network continuum to
the cloud. When tasks are coming from the IoT, the IoT
evaluates the task to determine whether the task can be
processed at the IoT, in fog, or the cloud-based on where
the response time, energy consumption, and delay will be
minimized while throughput and resource utilization of
the network is maximized.

IoT layer
The IoT layer generates and measures the tasks based on
the data involved in each task. They offload those tasks
that involve heavy data size and are highly computational
intensive to a higher processing node (fog or cloud). They
also receive responses to the processed tasks from fog
and cloud. IoT devices offload tasks with heavy data size
and high computational intensive because of their limita-
tions of processing capacity and battery life [39, 40].

Network layer
The network node is made up of a gateway and router
which sometimes can function as fog devices in a small-
scale network [41–43]. In this work, the smart gateway is
used for data validation. It secures the network by eval-
uating the data coming from each IoT device using the
Neuro-Fuzzy logic model [16]. The Neuro-Fuzzy model
checks the incoming data, if invalid data is detected, the
data will be discarded while the IoT device that sent the
data will be requested to resend the data.

Fog layer
The fog layer comprises fog devices. Fog devices are sys-
tems with higher configurations than mobile devices but
with lesser than cloud infrastructures. Fog devices can
perform all the functionalities of the cloud, though their
processing capabilities and storage are lower than that of

Page 6 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

the cloud systems. They support localized services and
data analytics closer to the user [44–46]. Fog devices can
be installed on the roadside unit or on moving cars.

Cloud layer
The cloud layer is made up of high powerful configura-
tion systems. They have infinite processing and storage
capacity. The cloud devices consist of high computa-
tional intensive devices, which can be public or pri-
vate. The public cloud is provided as a service over the
internet. The public cloud is based on multi-tenancy
architecture. The user doesn’t need to purchase any
hardware or software. The acquisition of hardware and
software are the responsibilities of the provider. But the
user has to pay based on their agreed prizing model.

It can be based on pay-as-you-use, yearly, or based on
duration, etc.

The private cloud is the cloud infrastructure provided
and managed by the corporate enterprise. It is always
deployed within the firewall of their network. The user
will always have full control of the private cloud. The
duration of storage and services do not affect the cost
[47, 48].

Optimal device selection
Multiple objectives optimization problems have been
attempted by many researchers in different ways [33, 48,
49]. We adopted the available processing capability (APC)
of the processing resources in calculating the fitness
function to determine where to process the request. Our

Fig. 1  System Model (d represents devices from I to N, Fog devices range from 1 to J, and cloud virtual machines (VM) range from 1 to K). N is the
number of Mobile devices, J is the number of Fog devices and K is the number of virtual machines in the cloud infrastructure

Page 7 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

proposed device selection approach combined the good
qualities of genetic algorithm (GA) and particle swarm
optimization (PSO) in device selection while dynamically
considering the highest APC of the resources. In this
subheading, we present the GA part, PSO part, fitness
function, and finally the proposed algorithm.

GA part of the proposed algorithm
The proposed algorithm begins by initializing tasks
and the available devices as shown in Fig. 2. After ini-
tialization of the tasks and available resources, the algo-
rithm will check for the fitness function according to
Eq. (3). If the tasks-resource allocation fits the fitness
function, the process terminates else, the process will
continue with the selection operator, crossover opera-
tor, and mutation operator as shown in Figs. 3, 4, and
5 respectively until the maximum iteration set for GA
is reached. When the maximum iteration set for GA is

reached without convergence, which is determined by
the proposed fitness function, GA will pass its output
to the PSO part of the proposed algorithm.

PSO part of the eh‑GA‑PSO algorithm
At the PSO part of the proposed algorithm, the chromo-
somes will be initialized based on the result from the GA
part. The tasks – resources allocation will be checked for
the fitness function using Eq. (3).

We considered PSO suitable for this study because
mobile devices behave similarly to a swarm [16]. PSO
has been applied in similar areas in science and engi-
neering. For instance, in prediction [50], and alignment
optimization [51]. In a fog environment, connectivity is
through wireless connection sometimes, the resources
are dynamic. The changes may be a result of weather,
mobility of IoT devices, bandwidth fluctuation, and other
factors in the network. Because of these reasons, the

Fig. 2  Tasks – Resources Initialization Process (T represents Task while D represents device or cloud VM)

Fig. 3  Selection Operator for the GA part of the eh-GA-PSO Algorithm

Page 8 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

workload at the fog node changes frequently. To ensure
the reliability of IoT getting responses as when due, there
is a need to consider the data involved in a particular
request, the bandwidth, and the processing capability at
the fog, that can yield the best response time to the IoT
request. PSO is a meta-heuristic algorithm that imitates
the intelligence of a swarm. It uses communication and
learning as its basic principles. Individual particles cre-
ate their route to the optimal solution and communicate
with every member. Every member of the particles gets
this information and learns the best course of action to
take. They will create a single global optimal solution
for the whole swarm. This cooperation and intelligence
exhibited by the swarm makes them achieve results
faster [52]. As stated earlier, it is assumed that the IoT
devices behave like swarms that can change their location
thereby affecting the bandwidth and processing capabil-
ity at the fog node or cloud node. The objective of PSO is
to find the optimal solution through individual particles’
cooperation and communication among themselves to

find the global optimal solution. Assuming we have a cer-
tain number of tasks (I) hereafter referred to as particles
and J fog nodes or K cloud VMs referred to as dimen-
sional search space, the individual particles changes their
position and velocity according to Eqs. (1 and 2) [52]

where X(t + 1) is the position for the particle at t + 1 time,
X(t) is the position of the particle at t time and V(t + 1) is
the velocity of the particle at t + 1 time.

The new velocity at t + 1 time is calculated in Eq. (2)

where V(t) is the current velocity for the particle, ω is the
inertia weight, C1 and C2 are the weighting coefficients
for the personal best and global best positions, respec-
tively. Xpbest is the particle’s best-known position. Xgbest is
the global best-known position of the particles, and R is a
random number between 0 and 1.

(1)X(t + 1) = X(t)+ V (t + 1)

(2)V (t + 1) = �V (t) + C1R(0, 1) ∗
(

Xpbest − X(t)
)

+ C2R(0, 1) ∗
(

Xgbest − X(t)
)

Fig. 4  Crossover Operator for the GA part of the eh-GA-PSO Algorithm

Fig. 5  Mutation Operator for the GA part of the eh-GA-PSO Algorithm

Page 9 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

Difference and similarity between PSO and GA
PSO is like a genetic algorithm because both systems are
initialized with a population of randomly sampled solu-
tions. But PSO is different from GA because each possi-
ble solution is also allocated a randomized velocity and
the possible solution are then flown among the problem
space [52].

Fitness function for optimal device selection
We considered the availability of fog node devices or
VMs by their Available Processing Capability (APC). The
APC of all available devices will be ranked with a value
(w1) and optimal device selection will be based on Eq. (3)

where xi represents the particular task in consideration
and i ranges from 1 to the number of available tasks (I).

The proposed enhanced hybrid genetic algorithm
and particle swarm optimization algorithm (eh‑GA‑PSO)
In this paper, we proposed an Enhanced hybrid Genetic
Algorithm and Particle Swarm Optimization Algorithm
(eh-GA-PSO). The eh-GA-PSO algorithm aims to sched-
ule the workflow tasks over the available fog and cloud

(3)f (xi) = w1ApC(xi)

VM resources. The eh-GA-PSO algorithm is used for the
allocation of tasks coming from the IoT devices to the
optimal fog or VM machines based on where the sys-
tem can achieve higher network performance in terms
of response time, energy utilization, delay, and resource
utilization, and throughput. The eh-GA-PSO algorithm is
presented in Fig. 6. GA-based algorithms produce better
results than other algorithms especially when the itera-
tion size is big. But with a high iteration size, means that
the device selection process will take longer to reach the
optimal solution [28]. On the other side, PSO-based algo-
rithms always produce better results faster than other
algorithms. But the problem of PSO based algorithms is
that sometimes their result may not be accurate due to
the speedy convergences, which at times make the PSO
based algorithms to be trapped in the local optima solu-
tion [29–31]. Because of the advantages of GA produc-
ing a more accurate result and PSO converging faster,
we, therefore, proposed the eh-GA-PSO algorithm to
eliminate the disadvantages of GA taking too much time
to converge and PSO being trapped in the local optima.
The eh-GA-PSO uses the available processing capability
of the resource to determine the fitness function as pre-
sented in Eq. (3). This is achieved by truncating the itera-
tion process of the GA halfway if the fitness function is

Fig. 6  Enhanced hybrid Genetic Algorithm and Particle Swarm Optimization Algorithm (eh-GA-PSO)

Page 10 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

not yet attained at that level and then feeding the output
of GA to PSO. With the half-processed result from GA,
PSO will not start with a random selection. Instead, it
starts with a nearly optima solution from GA. Because
PSO did not start with initial random selection, it will
not be trapped in the local optima solution. Secondly, the
whole process will converge faster than allowing GA to
complete the whole iterations process till convergence.

Proposed Dynamic Tasks Scheduling Algorithm (DTSA)
In this paper, we propose Dynamic tasks scheduling algo-
rithm (DTSA) based on attribute reduction. We proposed
an enhanced hybrid Genetic Algorithm and Particle Swarm
Optimization for optimal device selection as presented in
Fig. 7. Given an offload-able task from an IoT device, the
task needs to be processed and a response received within
the expected time limit. However, mobile devices are lim-
ited in processing capacity, storage, and energy. The energy
of the mobile device (IoT device) needs to be maximally uti-
lized. A generalized system model of the proposed attribute
reduction-based secured offloading scheme is presented in
Fig. 8. The task from the mobile device involves data that
can be expressed in the tensor format with a certain r rank
− 1 for r ϵ {1, 2 … R}. r = 1 means that the tensor is decom-
posed into 1 vector for each dimension of the tensor while
r = R means that the tensor is decomposed into R vec-
tors for each dimension of the tensor. Canonical Polyadic
Decomposition (CPD) decomposes original data to a cer-
tain percentage of the original data according to the CPD
data decomposition ratio presented in our previous work

[53]. The data transmitted over the network through CPD
at times result in a slight change in the data accuracy. The
essence of decomposing the data is to reduce its size during
transmission over the network to reduce the transmission
time and improve bandwidth usage. Therefore, to choose
the r-value that will guarantee certain accuracy (AC), Eq.
(4) is applied.

AC is the accuracy of the data analysis given R rank-1
values and β is the constant for estimating the AC [53].
Figure 7 presents the algorithm used to schedule the tasks
generated at the IoT layer among the available devices at
the IoT, fog, or cloud layer based on the fitness function of
the task. The fitness function of the tasks is calculated in
Eq. (3). The objective of the algorithm is to minimize the
latency. The latency is calculated in Eq. (5)) [16]. While
Eq. (6) is the enhanced latency when attribute reduction is
applied during offloading to reduce the data size.

L(xi) ≥ LR(xi) where szi, cxi denotes the size and com-
plexity of the task, sziR is the reduced data size after pass-
ing through CPD, Ui denotes the mean latency of the

(4)AC = αln(R)+ β

(5)L(xi) =
szi × cxi × ui + bs(xi)

F(xi)

(6)LR(xi) =
sziR × cxi × ui + bs(xi)

F(xi)

Fig. 7  Dynamic tasks scheduling algorithm based on attribute reduction and eh-GA-PSO for optimal device selection algorithms

Page 11 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

task, bs, and F are the current buffer size and CPU fre-
quency of the fog or VM machines.

Simulation and results
The simulation process and its results are presented in
this section.

Experimental settings
To effectively evaluate the performance of our proposed
scheduling algorithm, simulation experiments are con-
ducted. We created an IoT-Fog-Cloud system consisting
of 10 mobile devices, 5 fog nodes, a smart gateway, and 1
hybrid cloud. We chose this configuration to enable us to
link the mobile devices to the fog-cloud paradigm, which
has higher processing capabilities than the mobile device.
The simulations are conducted with the iFogSim simula-
tor and Java programming. The iFogSim framework is
designed for an efficient way of evaluating resource man-
agement policies especially as applicable to the fog para-
digm concerning their impact on response time, energy
consumption, latency, operational costs, and network con-
gestion. It simulates mobile devices, Fog nodes, network
links, and cloud data centers to measure performance
metrics [54]. There are n tasks generated at the mobile
devices which are to be offloaded to either the fog or cloud
depending on where it will have reduced response time,
delay, and where more tasks will be offloaded to reduce the
energy consumption at the mobile nodes.

Performance metrics

	 i.	 Response time (RT): The time between when a user
places a request and when the response is received.

	 ii.	 Throughput (TP): This is the number of tasks
offloaded by mobile devices per unit of time (T)
used.

	TP = # − task Offloaded/T
	iii.	 Delay (DT): The difference in time between the

actual response time and the expected (calculated)
response time of a task of the application. It is also
computed as follows:

	DT = PROT + QueueT + TranT + PropagationT.
	where PROT denotes processing delay, QueueT denotes

queuing delay, TranT represents transmission delay,
and PropagationT denotes propagation delay.

	iv.	 Energy consumption (Ec): This is the amount of
energy consumed by mobile devices to perform a
particular task. Ec = Epro + Etrans

where Epro is processing energy, Etrans is transmission
energy.

	xxii.	Resource utilization rate (ReU): This is the total
amount of resources used as compared with the
number of resources budgeted for the task. ReU is
presented as the percentage of time mobile device
uses the resources in 24 h.

	ReU = Ni/24 × 100, where Ni is the nth resource.

Results
In this section, the results from the simulations are pre-
sented. The results of our proposed offloading schemes
and other existing algorithms as in [16, 22] are compared.
The proposed offloading scheme offers a scalable solution
for the IoT tasks offloading process. In the simulations,
we set the latency for sensitive tasks to be 1 s while the

Fig. 8  Generalized system model of the proposed attribute reduction based secured offloading scheme

Page 12 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

non-sensitive task’s latency requirement is set to be 1.5 s
throughout the simulation process. We also set the num-
ber of tasks to be n ∈ {10, 20, 30, 40, 50}. In each case, the
maximum simulation period is set to 100 seconds. Sensi-
tive of the tasks here refers to those tasks that have to sat-
isfy certain time constraints to be acceptable to the user.
In this work, tasks have two categories of time constraints.
If a task has a time constraint of 1 second (1 s) it is referred
to as a sensitive task, but if the tasks’ time constraint is
1.5 seconds (1.5 s) it is categorized as a non-sensitive task.

Response time
Figure 9 shows the result of response time for the pro-
posed (DTSA) offloading algorithm compared with
SecOFF-FCIoT [16] and DTO-SO [22] algorithms.

The response time of the tasks increases with the increase
in the number of tasks. Our proposed algorithm takes less
time to respond to IoT requests. For instance, when the
number of simulated tasks is 20 for sensitive tasks, the
response time for our proposed algorithm is 6 ms while
secOFF-FCIoT and DTO-SO are 8 ms and 11 ms respec-
tively. When the number of simulated tasks increased to 40
for sensitive tasks, our proposed algorithm response time
is 11 ms as against 13 ms and 15 ms for secOFF-FCIoT and
DTO-SO respectively. In the same way, for the non-sensi-
tive tasks, our proposed offloading scheme response time
is also faster compared with secOFF-FCIoT and DTO-SO.
When the number of simulated tasks is 30, our proposed

algorithm response time for the non-sensitive task is 9.5 ms
as against 11 ms and 15 ms for secOFF-FCIoT and DTO-
SO. Therefore, the proposed approach is faster in terms of
response time compared with the existing schemes.

Delay
Figure 10 shows the impact on delay for both sensitive
tasks and non-sensitive tasks of the system. The delay in
the offloading process increases with an increase in the
number of IoT requests. For sensitive tasks, our proposed
offloading scheme reduced the delay by 8% and 21% com-
pared to secOFF-FCIoT and DTO-SO. For the non-sensi-
tive tasks, the delay is reduced by 23% and 35% compared
to secOFF-FCIoT and DTO-SO respectively. In particular,
when the number of simulated tasks is 30 for sensitive
tasks, the delay is 1.1 ms for our proposed scheme while
it is 1.2 ms and 1.4 ms for secOFF-FCIoT and DTO-SO. In
the same vein, when the number of simulated tasks is 20
for non-sensitive tasks, the delay for our proposed scheme
is 0.9 ms as against 1.1 ms and 1.4 ms for secOFF-FCIoT
and DTO-SO respectively. This shows that our proposed
scheme reduces the delay in the offloading process of the
IoT fog-cloud system compared to the existing schemes.

Offloaded tasks
Figure 11 shows the number of offloaded tasks of our
proposed scheme compared with that of the secOFF-
FCIoT algorithm. Our proposed dynamic offloading

Fig. 9  Response time

Page 13 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

scheme increased the number of offloaded tasks to about
53% on average. This increase in the number of offloaded
tasks increased the duration of the mobile device’s bat-
tery life since more tasks are offloaded.

Throughput
The throughput increases with the increase in the number
of simulated tasks (n) as shown in Fig. 12. For instance,
at n = 20, the throughput of our proposed scheme is
55 kb/s for sensitive tasks as against 44 kb/s and 35 kb/s for
secOFF-FCIoT and DTO-SO. At n = 30, the throughput of
our proposed scheme for non-sensitive tasks is 64 kb/s as
against 60 kb/s and 43 kb/s for secOFF-FCIoT and DTO-
SO. At n = 50, the throughput attained by our proposed
dynamic offloading scheme is 130 kb/s and 110 kb/s for the
sensitive and non-sensitive tasks as against throughput for
secOFF-FCIoT which is 120 and 99 for sensitive and non-
sensitive tasks. Therefore, our proposed offloading scheme
is better compared with the existing schemes.

The increase in the throughput is a result of the effect
of the attribute reduction method applied on the offload-
able tasks in addition to the enhanced hybrid GA-PSO
which is applied for optimal device selection.

Energy consumption
Figure 13 shows the impact on the energy consumption
of IoT devices. Energy is one of the most important con-
straints in IoT applications. Executing complex tasks is

always at the expense of the battery life of IoT devices.
Offloading intensive tasks that are computationally inten-
sive to fog and cloud saves energy for the IoT devices.
Our proposed offloading scheme achieved reduced
energy consumption at the IoT devices since more tasks
are offloaded to fog and cloud. The delay is reduced
because of the reduced data size from our attribute
reduction method. This results in reduced energy con-
sumption. At n = 40, for instance, our proposed offload-
ing scheme energy consumption is 0.094 J as against 0.1 J
and 0.13 J for secOFF-FCIoT and DTO-SO on sensitive
tasks. While at the same n = 40, for non-sensitive tasks,
our proposed scheme energy consumption is 0.097 J as
against 0.104 J and 0.14 J for secOFF-FCIoT and DTO-SO.

Resource utilization
The impact on resource utilization is presented in Fig. 14.
Resource utilization is a very important metric in IoT
applications. Resource utilization is important for main-
taining high productivity in the network. It ensures that
resources are not underutilized or over-utilized by work-
loads. Our proposed scheme achieved better resource
utilization compared with the existing approaches. For
instance, at n = 20, our proposed system achieved 95%
as against 93% and 90% for secOFF-FCIoT and DTO-SO.
Similarly, for non-sensitive tasks at n = 30, our proposed
offloading scheme attained 93.5% as against 93% and 91%
for secOFF-FCIoT and DTO-SO resource utilization.

Fig. 10  Delay

Page 14 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

Conclusion
In this paper, we proposed a scalable dynamic offloading
scheme to mainly minimize IoT requests’ response time,

energy consumption, and delay. The proposed three-tier
system architecture for the offloading scheme is good
for balancing the trade-off between response time and

Fig. 11  Offloaded Tasks

Fig. 12  Throughput

Page 15 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

energy consumption. We also proposed an enhanced
hybrid GA-PSO for device selection, while CPD based
attribute reduction method is applied to downsize the

offload-able task to minimize the delay during the task
offloading process. Introducing a new technology as an
attribute reduction method in task offloading enables the

Fig. 13  Energy consumption

Fig. 14  Resource utilization

Page 16 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15

offloading scheme to offload more tasks faster than the
existing approaches since data size is reduced. In addi-
tion, the enhanced GA-PSO also reduces the time for
searching for optimal devices and therefore makes the
system more efficient and faster.

Acknowledgments
The authors would like to thank all the staff and pg students of the Faculty of
Computer Science and Information Technology, Universiti Putra Malaysia for
their contribution during this research process.

Authors’ contributions
Data curation, Nweso Emmanuel Nwogbaga; Conceptualization, Nweso
Emmanuel Nwogbaga; Software, Nweso Emmanuel Nwogbaga; Formal
analysis, Nweso Emmanuel Nwogbaga; Funding acquisition, Rohaya Binti
Latip, and Amir Rizaan Abdul Rahiman; Investigation, Nweso Emma-
nuel Nwogbaga; Methodology, Nweso Emmanuel Nwogbaga; Project
administration, Rohaya Binti Latip and Lilly Suriani Affendey; Supervision,
Rohaya Binti Latip, Lilly Suriani Affendey, and Amir Rizaan Abdul Rahi-
man; Resources, Lilly Suriani Affendey, and Amir Rizaan Abdul Rahiman;
Writing – original draft, Nweso Emmanuel Nwogbaga; Writing – review&
editing, Nweso Emmanuel Nwogbaga, Rohaya Binti Latip, Lilly Suriani
Affendey, and Amir Rizaan Abdul Rahiman. The author(s) read and
approved the final manuscript.

Funding
This work is supported by UPM Journal Publishing Grant (Grant No: 9001103),
University Putra Malaysia, and the Ministry of Education Malaysia.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None.

Author details
1 Department of Communication Technology and Network, Faculty of Com-
puter Science and Information Technology, Universiti Putra Malaysia, Seri
Kembangan, Malaysia. 2 Ebonyi State University, Abakaliki, Nigeria. 3 Depart-
ment of Computer Science, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia.

Received: 25 January 2022 Accepted: 21 May 2022

References
	1.	 Abou-Nassar EM, Iliyasu AM, El-Kafrawy PM, Song OY, Bashir AK, El-Latif

AAA (2020) DITrust chain: towards Blockchain-based trust models for
sustainable healthcare IoT systems. IEEE Access 8:111223–111238. https://​
doi.​org/​10.​1109/​ACCESS.​2020.​29994​68

	2.	 El-Latif AAA, Abd-El-Atty B, Mazurczyk W, Fung C, Venegas-Andraca SE
(2020) Secure data encryption based on quantum walks for 5G internet
of things scenario. IEEE Trans Netw Serv Manag 17(1):118–131. https://​
doi.​org/​10.​1109/​TNSM.​2020.​29698​63

	3.	 Liu Y, Peng J, Kang J, Iliyasu AM, Niyato D, El-Latif AAA (2020) A secure
federated learning framework for 5G networks. IEEE Wirel Commun
27(4):24–31. https://​doi.​org/​10.​1109/​MWC.​01.​19005​25

	4.	 Elgendy IA, Zhang WZ, He H, Gupta BB, Abd El-Latif AA (2021) Joint
computation offloading and task caching for multi-user and multi-task
MEC systems: reinforcement learning-based algorithms. Wirel Netw
27(3):2023–2038. https://​doi.​org/​10.​1007/​s11276-​021-​02554-w

	5.	 Farahbakhsh F, Shahidinejad A, Ghobaei-Arani M (2021a) Context-
aware computation offloading for mobile edge computing. J Ambi-
ent Intell Humaniz Comput 0123456789. https://​doi.​org/​10.​1007/​
s12652-​021-​03030-1

	6.	 Farahbakhsh F, Shahidinejad A, Ghobaei-Arani M (2021b) Multiuser
context-aware computation offloading in mobile edge computing
based on Bayesian learning automata. Trans Emerg Telecommun Technol
32(1):1–26. https://​doi.​org/​10.​1002/​ett.​4127

	7.	 Shakarami A, Shahidinejad A, Ghobaei-Arani M (2021) An autonomous
computation offloading strategy in Mobile edge computing: a deep
learning-based hybrid approach. J Netw Comput Appl 178. https://​doi.​
org/​10.​1016/j.​jnca.​2021.​102974

	8.	 Zhang Q, Gui L, Zhu S, Lang X (2021) Task offloading and resource sched-
uling in hybrid edge-cloud networks. IEEE Access 9:85350–85366. https://​
doi.​org/​10.​1109/​access.​2021.​30881​24

	9.	 Nwogbaga NE, Emewu BM, Ogbaga IN (2016) Critical analysis of cloud
computing and its advantages over other computing techniques. J
Multidiscip Eng Sci Technol 3(2):3955–3960

	10.	 Alshahrani A, Elgendy IA, Muthanna A, Alghamdi AM, Alshamrani A
(2020) Efficient multi-player computation offloading for VR edge-cloud
computing systems. Appl Sci 10(16):1–19. https://​doi.​org/​10.​3390/​app10​
165515

	11.	 Huynh LNT, Pham QV, Pham XQ, Nguyen TDT, Hossain MD, Huh EN (2020)
Efficient computation offloading in multi-tier multi-access edge comput-
ing systems: a particle swarm optimization approach. Appl Sci 10(1):1–17.
https://​doi.​org/​10.​3390/​app10​010203

	12.	 Khan PW, Abbas K, Shaiba H, Muthanna A, Abuarqoub A, Khayyat
M (2020) Energy-efficient computation offloading mechanism in
multi-server mobile edge computing—an integer linear optimization
approach. Electronics (Switzerland) 9(6):1–20. https://​doi.​org/​10.​3390/​
elect​ronic​s9061​010

	13.	 Liu J, Lian X, Liu C (2021) Research on task-oriented computation offload-
ing decision in a space-air-ground integrated network. Future Internet
13(5). https://​doi.​org/​10.​3390/​fi130​50128

	14.	 Fang J, Shi J, Lu S, Zhang M, Ye Z (2021) An efficient computation offload-
ing strategy with mobile edge computing for IoT. Micromachines 12(2).
https://​doi.​org/​10.​3390/​mi120​20204

	15.	 Huang M, Zhai Q, Chen Y, Feng S, Shu F (2021) Multi-objective whale opti-
mization algorithm for computation offloading optimization in mobile
edge computing. Sensors 21(8):1–24. https://​doi.​org/​10.​3390/​s2108​2628

	16.	 Alli AA, Alam MM (2019) SecOFF-FCIoT: machine learning-based secure
offloading in fog-cloud of things for smart city applications. Internet
Things 7(2019):100070. https://​doi.​org/​10.​1016/j.​iot.​2019.​100070

	17.	 Li L, Wen X, Lu Z, Jing W (2020) An energy-efficient design of computa-
tion offloading enabled by UAV. Sensors (Switzerland) 20(12):1–19.
https://​doi.​org/​10.​3390/​s2012​3363

	18.	 Wei D, Xi N, Ma J, He L (2021) UAV-assisted privacy-preserving online
computation offloading for internet of things. Remote Sens 13:1–18

	19.	 Wu H, Sun Y, Wolter K (2018) Energy-efficient decision making for Mobile
cloud offloading. IEEE Transact Cloud Comput 7161(2). https://​doi.​org/​10.​
1109/​TCC.​2018.​27894​46

	20.	 Ismail L, Materwala H (2021) Escove: energy-SLA-aware edge–cloud com-
putation offloading in vehicular networks. Sensors 21(15):1–20. https://​
doi.​org/​10.​3390/​s2115​5233

	21.	 Koubaa A, Ammar A, Alahdab M, Kanhouch A, Azar AT (2020) Deep brain:
experimental evaluation of cloud-based computation offloading and
edge computing in the internet-of-drones for deep learning applications.
Sensors (Switzerland) 20(18):1–25. https://​doi.​org/​10.​3390/​s2018​5240

	22.	 Gnana Jeevan AN, Maluk Mohamed MA (2018) DyTO: dynamic task
offloading strategy for Mobile cloud computing using surrogate object
model. Int J Parallel Prog 48(3):399–415. https://​doi.​org/​10.​1007/​
s10766-​018-​0563-0

	23.	 Guo S, Xiao B, Yang Y, Yang Y (2016) Energy-efficient dynamic offloading
and resource scheduling in mobile cloud computing. In: Proceedings - IEEE
INFOCOM, 2016-July. https://​doi.​org/​10.​1109/​INFOC​OM.​2016.​75244​97

https://doi.org/10.1109/ACCESS.2020.2999468
https://doi.org/10.1109/ACCESS.2020.2999468
https://doi.org/10.1109/TNSM.2020.2969863
https://doi.org/10.1109/TNSM.2020.2969863
https://doi.org/10.1109/MWC.01.1900525
https://doi.org/10.1007/s11276-021-02554-w
https://doi.org/10.1007/s12652-021-03030-1
https://doi.org/10.1007/s12652-021-03030-1
https://doi.org/10.1002/ett.4127
https://doi.org/10.1016/j.jnca.2021.102974
https://doi.org/10.1016/j.jnca.2021.102974
https://doi.org/10.1109/access.2021.3088124
https://doi.org/10.1109/access.2021.3088124
https://doi.org/10.3390/app10165515
https://doi.org/10.3390/app10165515
https://doi.org/10.3390/app10010203
https://doi.org/10.3390/electronics9061010
https://doi.org/10.3390/electronics9061010
https://doi.org/10.3390/fi13050128
https://doi.org/10.3390/mi12020204
https://doi.org/10.3390/s21082628
https://doi.org/10.1016/j.iot.2019.100070
https://doi.org/10.3390/s20123363
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.1109/TCC.2018.2789446
https://doi.org/10.3390/s21155233
https://doi.org/10.3390/s21155233
https://doi.org/10.3390/s20185240
https://doi.org/10.1007/s10766-018-0563-0
https://doi.org/10.1007/s10766-018-0563-0
https://doi.org/10.1109/INFOCOM.2016.7524497

Page 17 of 17Nwogbaga et al. Journal of Cloud Computing (2022) 11:15 	

	24.	 Estlin TA, Mooney RJ (1997) Learning to improve both efficiency and
quality of planning. In: Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pp 1227–1232

	25.	 Kumar K, Liu J, Lu YH, Bhargava B (2013) A survey of computation offload-
ing for mobile systems. Mobile Netw Appl 18(1):129–140. https://​doi.​org/​
10.​1007/​s11036-​012-​0368-0

	26.	 Li H, Ota K, Dong M (2018) Learning IoT in edge: deep learning for the
internet of things with edge computing. IEEE Netw 32(1):96–101. https://​
doi.​org/​10.​1109/​MNET.​2018.​17002​02

	27.	 Zhang J, Zhou Z, Li S, Gan L, Zhang X, Qi L et al (2017) Hybrid computa-
tion offloading for smart home automation in mobile cloud computing.
Pers Ubiquit Comput

	28.	 Katoch S, Chauhan SS, Kumar V (2021) A review on the genetic algorithm:
past, present, and future. In: Multimedia Tools and Applications, vol 80.
https://​doi.​org/​10.​1007/​s11042-​020-​10139-6

	29.	 Babanezhad M, Behroyan I, Nakhjiri AT, Marjani A, Rezakazemi M, Heyda-
rinasab A, Shirazian S (2021) Investigation of the performance of particle
swarm optimization (PSO) algorithm-based fuzzy inference system
(PSOFIS) in a combination of CFD modeling for prediction of fluid flow.
Sci Rep 11(1):1–14. https://​doi.​org/​10.​1038/​s41598-​021-​81111-z

	30.	 Jahandideh-Tehrani M, Jenkins G, Helfer F (2021) A comparison of particle
swarm optimization and genetic algorithm for daily rainfall-runoff
modeling: a case study for Southeast Queensland, Australia. Optimization
Engin 22(1):29–50. https://​doi.​org/​10.​1007/​s11081-​020-​09538-3

	31.	 Manasrah AM, Ali HB (2018) Workflow scheduling using hybrid GA-PSO
algorithm in cloud computing. Wirel Commun Mob Comput 2018.
https://​doi.​org/​10.​1155/​2018/​19347​84

	32.	 Flores H, Su X, Kostakos V, Ding AY, Nurmi P, Tarkoma S et al (2017) Large-scale
offloading in the internet of things. In: 2017 IEEE international conference on
pervasive computing and communications workshops, PerCom workshops
2017, pp 479–484. https://​doi.​org/​10.​1109/​PERCO​MW.​2017.​79176​10

	33.	 Peng G, Wu H, Wu H, Wolter K (2021) Constrained multi-objective optimi-
zation for IoT-enabled computation offloading in collaborative edge and
cloud computing. IEEE Internet Things J. https://​doi.​org/​10.​1109/​JIOT.​
2021.​30677​32

	34.	 Ma X, Lin C, Zhang H, Liu J (2018) Energy-aware computation offload-
ing of IoT sensors in cloudlet-based mobile edge computing. Sensors
(Switzerland) 18(6):1–12. https://​doi.​org/​10.​3390/​s1806​1945

	35.	 Min M, Xiao L, Chen Y, Cheng P, Wu D, Zhuang W (2019) Learning-based
computation offloading for IoT devices with energy harvesting. IEEE Trans
Veh Technol 68(2):1930–1941. https://​doi.​org/​10.​1109/​TVT.​2018.​28906​85

	36.	 Van Le D, Tham C (2018) A deep reinforcement learning based offloading
scheme in ad-hoc Mobile clouds. In: IEEE INFOCOM 2018 - IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS), pp
760–765

	37.	 Zhang L, Chen Y, Sun R, Jing S, Yang B (2008) A task scheduling algorithm
based on PSO for grid computing. Int J Comput Intell Res 4(1). https://​
doi.​org/​10.​5019/j.​ijcir.​2008.​123

	38.	 Yang L, Zhong C, Yang Q, Zou W, Fathalla A (2020) Task offloading for
directed acyclic graph applications based on edge computing in indus-
trial internet. Inf Sci 540:51–68. https://​doi.​org/​10.​1016/j.​ins.​2020.​06.​001

	39.	 Dastjerdi AV, Buyya R (2016) Fog computing: helping the internet of
things realize its potential. Computer 49(8):112–116. https://​doi.​org/​10.​
1109/​MC.​2016.​245

	40.	 Varghese B, Wang N, Barbhuiya S, Kilpatrick P, Nikolopoulos DS (2016)
Challenges and opportunities in edge computing. In: Proceedings - 2016
IEEE International Conference on Smart Cloud, SmartCloud 2016, pp
20–26. https://​doi.​org/​10.​1109/​Smart​Cloud.​2016.​18

	41.	 Atlam HF, Walters RJ, Wills GB (2018) Fog computing and the internet of
things: a review. Big Data Cogn Comput 2(2):1–18. https://​doi.​org/​10.​
3390/​bdcc2​020010

	42.	 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role
in the internet of things. In: MCC’12 - proceedings of the 1st ACM Mobile
cloud computing workshop, pp 13–15. https://​doi.​org/​10.​1145/​23425​09.​
23425​13

	43.	 Kumari S, Singh S, April M (2017) Fog computing: characteristics and chal-
lenges. 6(2):113–117

	44.	 Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015)
Internet of things: a survey on enabling technologies, protocols, and
applications. IEEE Commun Surv Tutorials 17(4):2347–2376. https://​doi.​
org/​10.​1109/​COMST.​2015.​24440​95

	45.	 Luan TH, Gao L, Li Z, Xiang Y, Wei G, Sun L (2016) Fog computing: focusing
on Mobile users at the edge, pp 1–11 Retrieved from http://​arxiv.​org/​abs/​
1502.​01815

	46.	 Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy,
survey and future directions, pp 103–130. https://​doi.​org/​10.​1007/​
978-​981-​10-​5861-5_5

	47.	 Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT):
a vision, architectural elements, and future directions. Futur Gener Com-
put Syst 29(7):1645–1660. https://​doi.​org/​10.​1016/j.​future.​2013.​01.​010

	48.	 Han P, Du C, Chen J, Ling F, Du X (2021) Cost and makespan scheduling
of workflows in clouds using list multiobjective optimization technique. J
Syst Archit 112. https://​doi.​org/​10.​1016/j.​sysarc.​2020.​101837

	49.	 Chen J, Du T, Xiao G (2021) Multi-objective optimization for resource
allocation of emergent demands in cloud computing. J Cloud Comput
10(1). https://​doi.​org/​10.​1186/​s13677-​021-​00237-7

	50.	 Samanataray S, Sahoo A (2021) A comparative study on prediction of
monthly Streamflow using hybrid ANFIS-PSO approaches. KSCE J Civ Eng.
https://​doi.​org/​10.​1007/​s12205-​021-​2223-y

	51.	 Song T, Pu H, Schonfeld P, Zhang H, Li W, Hu J et al (2021) Bi-objective
mountain railway alignment optimization incorporating seismic risk
assessment. Comput Aided Civ Infrastruct Engin 36(2):143–163. https://​
doi.​org/​10.​1111/​mice.​12607

	52.	 Eberhart RC, Shi Y (2001) Particle swarm optimization: developments,
applications, and resources. In: Proceedings of the IEEE Conference on
Evolutionary Computation, ICEC, 1(February 2001), pp 81–86. https://​doi.​
org/​10.​1109/​cec.​2001.​934374

	53.	 Nwogbaga NE, Latip R, Affendey LS, Rizaan ARA (2021) Investigation into
the effect of data reduction in off loadable task for distributed IoT-fog-
cloud computing. J Cloud Comput 10:1–2

	54.	 Gupta H, Dastjerdi AV, Ghosh SK, Buyya R (2016) iFogSim : a toolkit for
modeling and simulation of resource management techniques in the
internet of things. Edge Fog:1–22

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1038/s41598-021-81111-z
https://doi.org/10.1007/s11081-020-09538-3
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1109/PERCOMW.2017.7917610
https://doi.org/10.1109/JIOT.2021.3067732
https://doi.org/10.1109/JIOT.2021.3067732
https://doi.org/10.3390/s18061945
https://doi.org/10.1109/TVT.2018.2890685
https://doi.org/10.5019/j.ijcir.2008.123
https://doi.org/10.5019/j.ijcir.2008.123
https://doi.org/10.1016/j.ins.2020.06.001
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1109/MC.2016.245
https://doi.org/10.1109/SmartCloud.2016.18
https://doi.org/10.3390/bdcc2020010
https://doi.org/10.3390/bdcc2020010
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
http://arxiv.org/abs/1502.01815
http://arxiv.org/abs/1502.01815
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1016/j.future.2013.01.010
https://doi.org/10.1016/j.sysarc.2020.101837
https://doi.org/10.1186/s13677-021-00237-7
https://doi.org/10.1007/s12205-021-2223-y
https://doi.org/10.1111/mice.12607
https://doi.org/10.1111/mice.12607
https://doi.org/10.1109/cec.2001.934374
https://doi.org/10.1109/cec.2001.934374

	Attribute reduction based scheduling algorithm with enhanced hybrid genetic algorithm and particle swarm optimization for optimal device selection
	Abstract
	Introduction
	Review of the related work
	Proposed system
	Problem statement
	System overview
	IoT layer
	Network layer
	Fog layer
	Cloud layer

	Optimal device selection
	GA part of the proposed algorithm
	PSO part of the eh-GA-PSO algorithm
	Difference and similarity between PSO and GA
	Fitness function for optimal device selection
	The proposed enhanced hybrid genetic algorithm and particle swarm optimization algorithm (eh-GA-PSO)

	Proposed Dynamic Tasks Scheduling Algorithm (DTSA)

	Simulation and results
	Experimental settings
	Performance metrics
	Results
	Response time
	Delay
	Offloaded tasks
	Throughput
	Energy consumption
	Resource utilization

	Conclusion
	Acknowledgments
	References

