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Abstract 

The navigation and positioning subsystem offers important position information for an autonomous underwater 
vehicle (AUV) system. It plays a crucial role during the underwater exploration and operations of AUV. Many scholars 
research underwater navigation and positioning. Various improved methods and systems were presented. However, 
as the diversity of the ocean environment, the random drift of the gyroscope, error accumulation, the variety of tasks, 
and other negative factors, the navigation and positioning results are uncertain and incredible. The accuracy, stabil-
ity, and robustness are not guaranteed, which cannot meet the increasing application requirement. Therefore, we 
put forward a SINS/DVL/USBL integrated navigation and positioning IoT system with multiple resource fusion and a 
federated Kalman filter. In this method, we first present an improved SINS/DVL combined subsystem with a filtering 
gain compensation strategy. So we can enhance the accuracy and stability of the navigation and position system. 
Secondly, we proposed a USBL positioning subsystem with the Kalman filtering acoustic signals to improve USBL 
positioning performance. Lastly, we present a federated Kalman filter to fuse the positioning information from the 
SINS/DVL combined positioning subsystem and the USBL positioning subsystem. Through the three methods, we 
can enhance the positioning accuracy and robustness. Comprehensive simulation results indicated the feasibility and 
effectiveness of the proposed SINS/DVL/USBL integrated navigation and positioning system, which provides critical 
reference for other positioning method, and it also offers crucial position information for AUV to achieve high accu-
racy and efficiency tasks.

Keywords:  Underwater positioning, Federated Kalman filters, Integrated positioning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In marine-related research fields, autonomous underwa-
ter vehicle (AUV) is applied widely to both civil and mil-
itary-strategic areas [1, 2]. And navigation or positioning 
information is the key for the AUV to figure out where 
it is and where to go [2–4]. The navigation and position-
ing system determines the efficiency and accuracy when 
AUV performs underwater missions [5]. However, as the 

diversity of the ocean environment and the AUV’s limi-
tation, it is hard to realize the high-precision navigation 
and positioning for AUV. And this can not satisfy the 
increasing needs of applications [5, 6]. There are many 
different kinds of navigation and positioning subsystems, 
such as SINS, DVL, visual navigation, and USBL [7]. They 
have specific characteristics respectively [8]. We can inte-
grate these subsystems to enhance the overall accuracy 
and the robustness of the positioning system. Through 
an integrated approach, we can get higher accuracy and 
stability of the navigation and positioning system in a 
long time by performing information fusion and filter 
correction.
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The amount of computation in an integrated sys-
tem increases with the number of navigation and 
positioning subsystems. The required computation 
resource maybe not be exceptionally high if there 
are only two navigation and positioning subsystems 
in an integrated system [9, 10]. However, when three 
or more subsystems integrate into one system, the 
dimension will increase to a large scale which causes 
computation resources to rise at an excessively high 
level [11]. Under such circumstances, an ordinary fil-
ter can not meet the requirement. But the federated 
filter has the merit of compatibility and decentralized 
filter processing, which can simplify the computation 
and increase the stability of navigation and position-
ing systems.

Mumerous scholars have researched the combina-
tion of multiple navigation subsystems based on the 
federated filter [12, 13]. When the information of 
three or more navigation subsystems is fused, the 
dimension of the multi-sensor information fusion 
method will be very high, resulting in the conven-
tional filtering methods not meeting the needs [14]. 
In that case, the federated filter method simplifies 
the calculation and improves the system stability 
through its robust compatibility and dispersion of fil-
ters [15].

For these problems, with an IoT system of mul-
tiple positioning subsystems, we proposed a SINS/
DVL/USBL integrated navigation and positioning sys-
tem based on a federated filter, which combines an 
improved SINS/DVL integrated positioning subsystem 
and an improved USBL positioning subsystem with 
Kalman filtering phase-difference. So we can improve 
the positioning accuracy and error tolerance ability of 
the navigation and positioning system. In this paper, we 
make the following contributions:

(1)	 We present a SINS/DVL positioning subsystem 
based on the filtering gain compensation strategy to 
enhance the navigation accuracy and the dynamic 
tracking ability.

(2)	 We propose a phase difference filtering USBL navi-
gation subsystem to achieve a higher positioning 
accuracy.

(3)	 To fuse the improved SINS/DVL subsystem and the 
USBL subsystem, we present a SINS/DVL/USBL 
integrated navigation and positioning system with 
multiple resource fusion and federated Kalman fil-
ter.

Related works and basics
Related works
With high accuracy and robust requirement from under-
water applications and the complex working environ-
ment, challenges are present for scholars and researchers 
on underwater navigation and positioning. They focus on 
researching the federated filter. That is a multiple-source 
information fusion filter developing continuously.

We list these methods with their contributions in 
Table  1. Lei G et  al. proposed a new federated Kalman 
adaptive filter [16]. During the information fusion stage, 
the weighted coefficient was assigned to different states 
adaptive to enhance the accuracy and robustness. Tang 
et al. presented a new federated adaptive filter [17]. When 
there was an outlier during navigation and positioning, 
factors could be adjusted automatically. The algorithm 
could restrain the outlier of navigation and positioning 
and improve the fault-tolerant ability of the position-
ing system. Gong et  al. presented a transfer alignment 
method based on a federated filter [18], which divided 
the high-dimensional state vector into two parts. This 
method reduced the dimension of the system state vector 

Table 1  The MSE comparison of different methods

Method Contribution

AFKF [16] weighted coefficient

Improved AFKF [17] factors adjusted automatically

Transfer alignment [18] divided the high-dimensional state vector into two parts

Improved covariance [19] derived a real-time estimates of improved covariance

SINS/GPS/CNS/Radar integrated system [11] calculated the state parameters with dual-state detection

Joint filter to fuse data [20] INS/CNS/DVL combined system

Federated unscented Kalman filter [21] with different vehicle motion models to estimate

Federated hybrid filter [22] utilizes a minimum variance criterion to fuse

An adaptive filter [23] conquer the performance degradation

Federated filter with a feedback scheme [24] GNSS/INS/visual odometry combined positioning system

Federated Kalman filter for indoor positioning distance is estimated through RSS
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and improved the calculation speed. Ma et al. presented 
a federated adaptive filter based on improved covari-
ance [19], which derived real-time estimates of improved 
covariance according to maximum likelihood estimation 
criteria. And it introduced a scaling factor in each local 
filter to enhance the adaptive capability of the whole sys-
tem. Xu et  al. took a SINS/GPS/CNS/Radar integrated 
system as an example [11]. It calculated the parameters 
corresponding to each state with a dual-state detection. 
Wang Q et al. introduced a joint filter to fuse data [20]. 
When the speed-accuracy of DVL decreased. And the 
CNS could not work under severe weather conditions. 
The INS/CNS/DVL combined system could operate sta-
bly. Xu Q et al. designed a federated unscented Kalman 
filter (FUKF) with different vehicle motion models to 
estimate the vehicle attitude [21]. The result is promis-
ing. Li et al. designed a federated hybrid filter. In the fil-
ter [22], a minimum variance criterion is utilized to fuse 
the estimate of each local filter. Wang et al. presented a 
federated filter for a multiple-sensor cross-correlations 
strategy [23]. An adaptive filter was utilized as a local fil-
ter, which can conquer the performance degradation. To 
enhance the accuracy and robustness, Yue Z et  al. pro-
posed a federated filter with a feedback scheme for a 
GNSS/INS/visual odometry combined positioning sys-
tem [24]. In [25], a federated Kalman filter (FKF) was 
applied to indoor positioning. The FKF estimates the tar-
get’s location. And the distance is estimated through the 
received signal strength (RSS), which may lead to a large 
positioning error.

There are some navigation and position subsystems 
with the respective characteristics. We can connect them 
to form a positioning IoT system with data links. With 
the fusion of position information from these subsys-
tems, we make full advances of them to enhance the posi-
tion performance of the system.

For the problem of low accuracy and poor fault toler-
ance under complex tasks, we can utilize a federated filter 
based on multiple source information fusion to optimize 
the system and improve the system performance. Based 
on the above analysis, we study the information fusion 
technology of underwater vehicles in a complicated task 
environment. To achieve higher positioning accuracy, 
stability, and robustness, we put forward a SINS/DVL/
USBL integrated navigation and positioning system with 
a federated Kalman filter.

Basics
We introduce the concepts related to filter and Kalman 
filter as follows.

We always utilize a filter to filter the noise and interfer-
ence in the data or signals. We classify it into the linear 
filter and the non-linear filter. The ordinary filter includes 

Kalman filter, medium filter, adaptive filter, Wiener filter, 
particle filter, etc.

Among these filters, the Kalman filter is a high-effi-
ciency recursive filter. It can estimate the states of a 
dynamic system in a noisy environment or none complete 
measurement. Due to low computation complexity, data 
simplicity, and easy storage characteristics, the Kalman 
filter is applied widely in many fields, including combined 
navigation and positioning, information fusion, optimi-
zation control, object tracking, and fault diagnosis.

In the positioning subsystem, the Kalman filter esti-
mates the position of the next moment based on the 
current observation position value. We define the state 
equation and observation equation of the classic linear 
Kalman filter:

Here k denotes the moment value. Xk is the system state 
value of moment k. Fk, k − 1 is the transfer matrix of the 
system from moment k-1 to moment k. Wk − 1 represents 
the system state value of moment k-1. Zk is the system 
state value. Hk denotes the system observation matrix. Vk 
is the systematic observation noise.

The time update equations are illustrated as (3) and (4).

Here X̂
-
k denotes the prior estimated value of sys-

tem state at moment k-1. A is the transfer coefficient of 
system. X̂k−1 is the estimated value of system state at 
moment k-1. P−

k  denotes the covariance of the prior esti-
mated error. Pk − 1 is the covariance of the posterior esti-
mated error. Q is the covariance coefficient of process 
excitation noise.

The state update equations are illustrated as (5) to (7), 
respectively.

Here Kk is the Kalman gain at the moment k. Pk denotes 
covariance of the posterior estimated error. H is the coef-
ficient of the observation model. R is the covariance coef-
ficient of process noise. X̂k is the estimated value of the 

(1)Xk = F k ,k−1Xk−1 +W k−1

(2)Zk = HkXk + V k

(3)X̂
-
k = AX̂k−1

(4)P−
k = APk−1A

T +Q

(5)K k = PkH
T HP−

k H
T + R

−1

(6)X̂k = X̂
−

k + K k

(

Zk −HX̂−
k

)

(7)Pk = (I − KkH)P−
k
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system state at the moment k. Zk is the observation value 
of the system.

The operation of the Kalman filter consists of two 
parts: estimation and update. As shown in Fig. 1, at the 
estimation stage denoted as circle 2, the Kalman filter 
estimates the current state based on the state value of the 
last moment shown as (1); At the update stage denotes as 
circle 1, the Kalman filter optimizes the estimation value 
obtained at the estimation stage based on the current 
observation of system state. In this way, we can minimize 
the negative effect of noise and interference and gain an 
accurate result.

The federated Kalman filter
To gain relatively high positioning accuracy, we take full 
advantage of the SINS, DVL, and USBL for navigation 
and positioning information fusion. As shown in Fig.  2, 
the framework of the proposed integrated navigation 
and positioning system is composed of three subsystems: 
an integrated SINS/DVL subsystem, an improved USBL 

subsystem, and a global combined federated Kalman fil-
ter. The navigation and positioning output is also fed 
back to the improved SINS/DVL integrated subsystem 
for correction and compensation. So we can enhance the 
positioning accuracy and robustness.

Integrated SINS/DVL
We integrated a SINS and a DVL navigation and posi-
tioning model with a SINS/DVL local filter. In this local 
filter, we make full use of a filter gain compensation-
based Kalman adaptive filter for rapid changing of AUV 
working status. In this case, we can obtain high position-
ing accuracy and stability. The SINS part serves as a criti-
cal reference for the SINS/DVL local filter and the SINS/
USBL local filter at the same time.

Improved USBL
Due to environmental noise and multi-path propaga-
tion of sonar signal, the phase difference information is 
affected by different degrees of noise, which leads to low 
positioning accuracy. In the subsystem, considering the 

Fig. 1  The filtering process of the linear Kalman filter

Fig. 2  The framework of the combined navigation and positioning system
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error sources and their affecting mechanism, we pre-
sent a USBL positioning subsystem through the phase 
difference and Kalman filtering to enhance positioning 
performance.

Global combined federated Kalman filter
To fuse the SINS/DVL and USBL positioning subsystem, 
we utilize a federated Kalman filter, which performs as 
a multi-source fusion center of the positioning informa-
tion. We can get the global best estimation of navigation 
and positioning. The global positioning results are also 
fed back to the SINS subsystem to correct positioning 
errors.

Integrated SINS/DVL
In this subsystem, we utilize an indirect filter to perform 
information fusion. In the indirect filter, we treat the 
deviation between the output of the SINS and the DVL as 
a reference value. We provide the error estimation result 
of combined navigation to SINS for correcting. We call 
this an output correction. Also, the error estimation is a 
feedback filter for system correction. We call it a feed-
back correction. We combine the output correction and 
the feedback correction. We show the framework of the 
proposed improved SINS/DVL navigation and position-
ing subsystem in Fig. 3.

As shown in Fig.  3, the framework of the integrated 
SINS/DVL positioning subsystem is composed of a 
SINS, a DVL, and a SINS/DVL filter. To improve the 
accuracy and stability of the integrated navigation and 
positioning subsystem, we present a filter gain compen-
sation adaptive filter to perform information fusion. In 
this section, we first model the SINS/DVL integrated 
navigation and positioning through error analysis. 
Then we present a filtering gain compensation-based 
adaptive filter to handle the navigation and positioning 
parameters. And we can achieve accurate positioning 

error information. Finally, with the error information, 
we obtain accurate navigation and positioning results 
through resolving.

SINS/DVL integrated positioning modeling  The error 
model of the combined navigation and positioning sub-
system comprises the SINS error model and DVL error 
model. We select the positioning error, the velocity 
error, the drift angle error, the velocity offset error, and 
the scale factor error as the state variables to the filer. In 
addition, the DVL provides the velocity and drift angle of 
the AUV.

We denote the system state variable as X = [δvE δvN α β 
γ  δL  δλ  εE  εN  εU  δvd  δΔ  δC]T. Here δvE and δvN are the 
speed error in the east and the north. α, β, γ represent the 
AUV misalignment angle, δL and δλ denote latitude and 
longitude error, εE, εN, εU are gyroscope drift in the east, 
the north and the up direction. δvd is measuring velocity 
offset error for Doppler, δΔ is bias angle error， δC is the 
scale factor error.

We define the east speed error δvE and north speed error 
δvN:

We calculate the platform misalignment angle in (3–5):

(8)

δvE = vN tan L · δvE/RN + (2� sin L+ vE tan L/RN)δvN
+

(

2� cos LvN + vNvEsec
2L/RN

)

δL− βg +�aE

(9)
δvN = (2� sin L+ vE tan L/RN)δvE
+

(

2� cos LvE + v2E · sec2L/RN

)

δL+ αg +�aN

(10)� = −�vN ∕R − �
(

Ω cosL + vE∕R
)

+ �
(

Ω sin L + vE tan L∕R
)

+ �E

(11)

β = −α(� sin L+ vE tan L/R)− δL� sin L+ δvE/R
− γ vE/R+ εN

Fig. 3  The framework of the integrated SINS/DVL subsystem
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We define the position error in (13):

We calculate the gyro drift in the east, in the north and in 
the up direction as follows:

Here β−1
E  , β−1

N  , β−1
U  is error related time of the gyroscope 

in the east, the north, and the up direction.

We define the Speed error δvd, the drift angle error δΔ 
and the scale error δC of the Doppler log as follows:

We describe the state equation in (21):

We define the state equation of SINS in (22):

In (21), we calculate the transfer matrix as follow:

(12)

γ = δL
(

� cos L+ vEsec
2L/R

)

+ δvE tan L/R+ βvN /R
+ α(� cos L+ vE/R)+ εU

(13)δL = δvN /R

(14)δ� = δvE sec L/R+ vE tan L sec LδL/R

(15)εE = −βEεE + wE

(16)εN = −βN εN + wN

(17)εU = −βUεU + wU

(18)δvd = −βdδvd + wd

(19)δ� = −β�δ�+ w�

(20)δC = 0

(21)
ẊSINS/DVL = FSINS/DVLXSINS/DVL +GSINS/DVLWSINS/DVL

(22)
WSINS = [0 0 aE aN 0 0 0 wE wN wU wd w� 0]

T

(23)

The difference between the velocity error of SINS and 
DVL is taken as the observation of the measurement 
equation which is defined as follow:

We define the transfer matrix in (20):

We define the variance matrix of noise:

We calculate the variance matrix of measurement noise:

Filtering gain compensation  The gain K determines the 
correction value of state estimation on each moment. 
It correlates positively with the correction value. As the 
system state changes with time constantly. The estimated 
value of the state cannot track the state changing in time, 
which will lead to a significant positioning error, espe-
cially when the state changes rapidly. So we combine the 
gain compensation and adaptive Kalman filter. And we 
present a gain compensation-based adaptive Kalman fil-
tering method, where the gain compensation and adap-
tive Kalman filter are combined.

We denote the filter gain as Kn. At the time k, we com-
pensate the original filtering gain with Kg:

We update the filter equation in (25):

(24)F7×7 =



















0 0 0 F14 0 0 0

F21 0 F23 0 0 0 0

F31 0 F33 F34 0 −g 0

F41 0 F43 0 g 0 0

0 0 0 F54 0 F56 F57
F61 0 F63 0 F65 0 F67
F71 0 F73 0 F75 F76 0



















(25)

ZSINS/DVL =

[

δvE − δvdE
δvN − δvdN

]

= HSINS/DVLXSINS/DVL + VSINS/DVL

(26)�SINS∕DVL =

⎡

⎢

⎢

⎣

0 0 1 0 0 0 −vN 0 0 0 − sinKd −vN −vE

0 0 0 1 0 0 vE 0 0 0 − cosKd vE −vN

⎤

⎥

⎥

⎦

(27)VSINS/DVL =
[

vE vN
]T

(28)
Q = diag

(

RδVERδVN RαRβRγRδLRδ�

RεERεNRεURδVdRδ�RδC

)

(29)R = diag
(

RVN RVE

)

(30)Kn(k) = K(k)+ Kg (k)

(31)
K̂(k + 1) = K̂(k + 1/k)+ K̂(k + 1)

[

Ẑ(k + 1)− Ẑ(k + 1/k)
]
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For the stability and robustness of the positioning system, 
the filtering gain Kn should increase to track the rapid 
changing of motion and the system state. When the state 
is stable, the filtering gain can decrease to Kg. We also 
define the Kg in (32):

Here λ is lower than 1. It determines the increasing scale 
of the filtering gain. k0 is the moment of the state chang-
ing rapidly.

SINS/DVL local filter  The state equation of the SINS/
DVL local filter is defined as follows:

Where the Fk is state transfer matrix, which is deter-
mined by the error model of SINS/DVL. Wk denotes the 
system noise.

For the SINS/ DVL integrated positioning subsystem, 
we take the difference between the calculated velocity of 
the SINS system and the velocity of DVL as the observa-
tion of the measurement equation. And the measurement 
equation of the SINS/DVL local filter is:

Where HSINS/DVL and VSINS/DVL are defined as follows:

The subsystem adopts the improved adaptive filtering 
algorithm based on filter gain compensation. Here Hk is 
the observation coefficient matrix of the subsystem and 
Vk is the observation noise matrix. Firstly, Fk, Gk, Wk, Hk, 
Vk and the initial state variable X are substituted into the 
state equation and measurement equation of the system 
for one-step prediction, through which the estimation 
measurement value Ẑk and X̂k ,k−1 predicted at time k 
can be obtained. And the error of measurement value Z̃k 
at time k is calculated as follow:

Then we judge the system is stable or not according to 
the stable criterion:

(32)K g = K z�
(k−k0)

(33)Ẋk = F kXk +W k

(34)ZSINS∕DVL =

⎡

⎢

⎢

⎣

dvE − dvdE

dvN − dvdN

⎤

⎥

⎥

⎦

= HSINS∕DVLXSINS∕DVL + V SINS∕DVL

(35)HSINS∕DVL =

⎡

⎢

⎢

⎣

0 0 1 0 0 0 −vN 0 0 0 − sinKd −vN −vE

0 0 0 1 0 0 vE 0 0 0 − cosKd vE −vN

⎤

⎥

⎥

⎦

(36)V SINS/DVL =
[

vE vN
]T

(37)Z̃k = Ẑk −Hk X̂k ,k−1

(38)Z̃k Z̃
T

k ≤ γTr
[

HkPkH
T
k + Rk

]

If the criterion (36) holds, the system diverges. And we 
should adopt the gain compensation adaptive filter. Oth-
erwise, the system converges. And we should take the 
gain compensation-based strong-tracking Kalman filter.

1)	 Gain compensation based adaptive Kalman filter

By substituting the corresponding parameters and quan-
tities into formulas (39) to (48) for calculation, the steps 
of the gain compensation-based adaptive filter are as 
follow:

Here X̂k is the system state variable. X̂k ,k−1 denotes 
the estimation value of the system state variable at the 
moment k from the k-1 moment. Fk, k − 1 represents the 
state transfer coefficient on X̂k-1 . Kk is Kalman coefficient 
of the filtering gain compensation. H denotes the coeffi-
cient of the system observation equation. Zk is the obser-
vation value at the k moment. Ẑk denotes the estimation 
value of observation at the k moment. Pk, k − 1 is the covar-
iance of the prior state estimation. Pk denotes the covari-
ance of the post-state estimation.

In formulas (39) to (44), r̂k , R̂k , q̂k and Q̂k are calculated 
from the time-varying noise estimation equation as 
follows:

(39)X̂k = X̂k ,k−1 + K k Z̃k

(40)X̂k ,k−1 = F k ,k−1X̂k−1 + q̂k

(41)Ẑk = Zk −Hk X̂k ,k−1 − r̂k

(42)K k = Pk ,k−1H
T
k

(

HkPk ,k−1H
T
k + R̂k

)−1

(43)Pk ,k−1 = F k ,k−1Pk−1F
T
k ,k−1 + Q̂k−1

(44)
Pk = (I− K kHk)Pk ,k−1(I− K kHk)

T + K k R̂kK k

(45)
r̂k =

(

I− dk−1

)

r̂k−1 + dk−1

(

Zk −Hk ,k−1X̂k ,k−1

)

(46)
R̂k =

(

I− dk−1

)

R̂k−1 + dk−1

(

Z̃k Z̃
T

k −Hk ,k−1PkH
T
k

)

(47)q̂k =
(

I− dk−1

)

R̂k−1 + dk−1

(

X̂k − F k X̂k−1

)
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2)	 Gain compensation-based strong tracking Kalman 
filter

By substituting the corresponding parameters and values 
into formulas (49) to (57) for calculation, the steps of the 
gain compensation-based strong tracking Kalman filter 
are as follows:

In this way, the one-step filtering operation is realized 
through the above adaptive filtering and strong-tracking 
filtering to obtain the estimated value X̂k of the state vari-
able at the next time.

Finally, the federated filter subsystem gains the state 
variable sequence X̂={ X̂1 , X̂2,…, X̂k,…, X̂n }, whose 
final output and output the final result X̂n is the state 
result after filtering correction at the current time. And 
the X̂n =

[

𝛿vEn 𝛿vNn 𝛼n 𝛽n 𝛾n 𝛿Ln 𝛿𝜆n 𝜀En 𝜀Nn 𝜀Un 𝛿vdn 𝛿Δn 𝛿Cn

]T is the cor-
rect result of the error. Then we combine the current 
moment observation value Yn = [vEn  vNn  Ln  λn  vdn]T of 
the integrated positioning subsystem. And we achieve the 

(48)Q̂k =
(

I − dk−1

)

Q̂k−1 + dk−1

(

K k Z̃k Z̃
T

k
K T

k
+ Pk − F kPk−1F

T

k

)

(49)v0(k+1) =







Z̃1Z̃
T

1 (k = 0)
ρv0(k)+Z̃k+1Z

T
k+1

1+ρ
(k ≥ 1, 0 ≤ ρ < 1)

(50)Ck+1 =
Tr

[

v0(k+1) − Rk+1 −Hk+1QkH
T
k+1

]

n
∑

i=1

αi
[

�k+1Pk+1�
T
k+1

HT
k+1Hk+1

]

(51)�i(k+1) =

{

αiCk+1

(

αiCk+1 > 1
)

1
(

αiCk+1 < 1
)

(52)�k+1 = diag
[

�1(k+1), �2(k+1), . . . , �m(k+1)

]

(53)Pk ,k−1 = �k−1�k ,k−1Pk ,k−1�
T
k ,k−1 + Q̂k−1

(54)K k = Pk ,k−1H
T
k

(

HkPk ,k−1H
T
k + R̂k

)−1

(55)X̂k = X̂k ,k−1 + K k Z̃k

(56)X̂k ,k−1 = F k ,k−1X̂k−1 + GW k ,k−1

(57)
Pk = (I− K kHk)Pk ,k−1(I− K kHk)

T + K k R̂kK k

corrected east, north velocity information, longitude and 
latitude information, and velocity information of DVL.

Improved USBL
We improve the USBL positioning method through the 
phase difference acquisition of the Kalman filter (KF) 
algorithm. As shown in Fig.  4, the system structure 
mainly consists of three parts: the array element setup 
part, the signal noise reduction part, and the positioning 
calculation part.

Firstly, in the array element setup part, we adopt a non-
equidistant quaternary [26]. It reuses a specific element 
three times, improving the efficiency and accuracy of the 
acoustic signals captured from the underwater target. We 
utilize the array to obtain the time delay of the received 
signals from a target object to different elements.

Secondly, in the signal noise reduction part, we adopt a 
KF algorithm to filter out the white Gaussian noise in the 
acoustic signals. So we can obtain accurate phase differ-
ence information through a phase difference calculation 
sub-module to provide data for the next step.

Finally, in the positioning calculation part, we obtain 
the positioning result through the coordinate calculation 
formula according to the positioning model based on 
the obtained phase difference between signals with high 
accuracy.

Array element setup  The non-equidistant quaternary 
array of the USBL system is composed as shown in Fig. 5. 
The distance between array element 1 and element 3 
is d, which is less or equal to λ/2, where λ = 80mm and 
the x-axis angle θ = 45∘. The distance between array ele-
ment 2 and array element 3 is the same as that between 
array element 4 and array element 3, which is L = 8d. 
The advantage of this method is that the acoustic sig-
nal received by element 3 is reused three times, which 
reduces the number of redundant elements, enhances the 
length of the baseline, and further improves the position-
ing accuracy of the system.

We indicate the arrangement of the arrays in Fig. 5. Ele-
ment 3 and 2 are two elements in the x-axis, which can 
receive acoustic signals from the positioning project. As 
different propagation distance between two received sig-
nals, there is a phase difference between the two received 
acoustic signals. Considering this case, the specific pro-
cess of solving the USBL positioning coordinates is as 
follows:

(58)xL =
(

�φ23R
)

/2πL
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Where xL is the mapping coordinate of the object in the 
array. φ23 denotes the phase difference between the arrays 
on the x-axis. R is the distance between the target and the 
array, which can be obtained directly by the measure-
ment instrument.

In the same calculation manners, we obtain the mapping 
coordinate xd of element 1 on the x-axis through element 
3 and element 1.

(59)xd =
(

�φ13R
)

/2πd

Assuming the noise background of each array element in 
the USBL system is independent, the phase differences φij 
and ψij have the same measurement accuracy Δφ, which 
meets the equation Δφ13 = Δφ23 = Δφ.

Equation (59) is the positioning solution formula of the 
traditional USBL array, and Eq. (58) is the positioning 
solution formula of the new USBL array. After differential 
treatment of Eqs. (1) and (2), we can get:

Formulas (60) and (61) show that choosing an array 
arrangement with large spacing L = 8d can improve posi-
tioning accuracy by eight times. For the new array used 
in this paper, the problem of multi-value ambiguity of 
the phase difference can be solved by d-spacing ele-
ments (elements 1 and 3), and positioning accuracy can 
be solved by L-spacing elements (elements 2 and 3). The 
combination of the two methods can ultimately improve 
the system’s accuracy.

Signal filtering  Noise will cause significant interference 
to the positioning of underwater objects, so it is usually 
necessary to denoise the obtained underwater acous-
tic signals to achieve the positioning of underwater tar-
gets. To minimize noise interference and improve the 
positioning accuracy, the minimum mean square error 
is selected as the best estimation criterion to reduce the 
noise received by the sensor. Based on this idea, this 

(60)∆xd =
�R

2πd
∆φ13 =

�R

2πd
∆φ

(61)∆xL =
�R

2πL
∆φ23 =

�R

2πL
∆φ

Fig. 4  The framework of the underwater positioning

Fig. 5  The USBL positioning system array diagram [26]
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paper uses the KF algorithm to process the obtained sig-
nal based on minimum mean square error estimation.

When receiving the signals, we get the sampling sequence 
S = {s1, s2, s3, …, sk, …, sn} by sampling them. In the above 
equation, k denotes a serial number, 1 ≤ k ≤ n. And the 
sampling sequence can be normalized as follows:

In this paper, the KF algorithm is used to filter the sam-
pling sequence { uk }to reduce the noise.

Where k is the discrete-time, X = {X1, X2, X3, …, Xk, …, 
Xn} is the state value of the system and Xk is the state 
value of the system at time k. u = {u1, u2, u3, …, uk, …, 
un} is the observation signal of the system. W = {W1, W2, 
W3,…, Wk,…, Wn} is the input white noise; and Wk is the 
noise value of the system at time k, H = 1 is the measure-
ment matrix, and the specific value of the observed value 
u is the value of the input signal.

KF algorithm mainly consists of two parts: prediction 
and update. In the prediction part, the filter estimates the 
state of the current moment based on the state estimates 
of the previous moment. In the update section, the filter 
optimizes the predicted values from the prediction sec-
tion based on the observations of the system state at the 
current time, and the final more accurate state estimate is 
obtained. The specific equations of the KF algorithm are 
as following:

We define the time update equation:

State update equation follows:

Where A is the state transition factor of the state variable. 
The B denotes the input control factor matrix of the con-
trol vector. The H represents the system state observation 

(62)uk = sk/(max(S)−min(S))

(63)Xk = H∗Xk−1 + G∗Wk−1

(64)uk = H∗Xk

(65)X̂k = AX̂k−1

(66)P−
k = APk−1A

T + Q

(67)Kk = P−
k H

T
(

HP−
k H

T + R
)−1

(68)X̂k = X̂−
k + Kk

(

uk −HX̂−
k

)

(69)Pk = (I − KkH)P−
k

matrix. The P−
k
 is the system prior estimate covariance 

matrix. The Pk denotes the system posterior estimate 
covariance matrix. The Q is the process excitation noise 
covariance coefficient. The R is the covariance coefficient 
of process noise. The I denotes the unit matrix. And the 
Kk is the Kalman filter gain factor.

Then we can get the equation as following:

Here the X̂k is the estimation value of the state variable. 
The X̂−

k  is the prior estimation of the state obtained from 
the state variable.

We utilize the KF algorithm described above to estimate 
the state variables of a random process represented by 
a linear random difference equation. The magnitude of 
the observed value of the system is the input signal value 
after adding noise. Combining with the established sys-
tem state equation, the optimal input X̂k value is esti-
mated by re-cursing the variance continuously, and the 
signal is smoothed.

Positioning calculation  First, we introduce the tradi-
tional phase difference positioning principle. For single-
frequency CW signals, the most common information is 
based on the phase information obtained when the USBL 
target is positioned. Then, we calculate the target posi-
tion through the phase difference of the acoustic signals 
between the elements. When multiple targets need to be 
located, different frequencies of acoustic signals can be 
used to distinguish them. The principle of USBL posi-
tioning based on acquiring phase difference of a single-
frequency signal is described below in Fig. 6.

The array elements of the USBL system are placed on the 
xoy plane, where element 1 is located at the origin of the 
xoy coordinate system. Element 2 is located on the posi-
tive semi-axis of the x-axis with a distance of d from the 
origin of the coordinates. And element 3 is located on the 
positive semi-axis of the y-axis, with a distance of d from 
the origin of the coordinates. The target is located at S 
with specific coordinates (x, y, z). After the target emits 
an acoustic signal, the array element receives the acous-
tic signal to locate the target. The system processes the 
received acoustic signal to get the specific location of the 
target.

From Fig. 5, the (x, y, z) direction cosine can be expressed 
as:

(70)ûk = X̂k

(71)R cosα = x
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Where α is the angle between the OS and the x- axis. β 
denotes the angle between the OS and the y- axis, and R 
is the target distance.

In Fig. 5, S′ is the projection of the target S on the hori-
zontal plane of xoy. And its angle to the x- axis is the hor-
izontal azimuth θ of the target, which is determined by 
the formula (74):

Where R is the target horizontal slant range, and z is the 
target depth.

Formulas (71) to (76) are the formulas for the positioning 
solution of USBL. We can calculate the corresponding 
parameters of the target object according to the above 
formulas.

Since the USBL array has a tiny size, we can approximate 
it by formulas (77) and (78):

(72)R cosβ = y

(73)R =

√

x2 + y2 + z2

(74)θ = tg−1
(

y/x
)

= tg−1(cosβ/ cosα)

(75)r =

√

x2 + y2

(76)z =
√

R2 − r2

Where λ is the wavelength of the acoustic signal in the 
water, d denotes the distance between the elements of the 
array, φ represents the phase difference between signals 
received by two adjacent arrays on the x- axis, and ψ is 
the phase difference of the received signal for two adja-
cent arrays on the y- axis.

By substituting formulas (77) and (78) into formula (71) 
and (72), we can obtain the following results:

Where R meets the equation R = c × Δt/2, in which c 
is the speed of sound propagation in water and Δt is 
the time difference between signal transmission and 
reception.

Global combined federated Kalman filter
Suppose the state variable of the federated filter from 
moment k-1 to moment k with state equation:

The observation equation of the ith subsystem is as 
follows:

Then the estimation of the local filter in the two sub-
systems is X̂1 and X̂2 . The corresponding estimation vari-
ance matrix is P1, and P2. And the covariance matrix of 
noise is Q1and Q2. The time update value of federated fil-
ter is X̂m . The estimated error variance matrix is Pm. The 
covariance matrix is Qm. The optimal global estimation of 
the system X̂ gand Pgcan be gained from (83)-(85).

The feedback to each subsystem can be allocated 
according to the following rules:

(77)φ = (2πd cosα)/�

(78)� = (2πd cosβ)/�

(79)x = (�φR)/(2πd)

(80)y = (�ϕR)/(2πd)

(81)Xk = F k ,k−1Xk−1 +W k−1

(82)Zik = H ikX ik + V ik

(83)P−1
g X̂ g = P−1

1 X̂1 + P−1
2 X̂2

(84)Q−1
g = Q−1

1 +Q−1
2

(85)P−1
g = P−1

1 + P−1
2

Fig. 6  The principle of positioning
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The federated filter consists of two parts: filtering 
& estimation of local state, and information fusion of 
global state. As shown in Fig.  7, the SINS/DVL and 
USB navigation subsystem outputs local estimation X̂1 
and X̂2 of the system, the estimated variance matrix 
P1 and P2, and the noise variance matrix Q1 and Q2, 
respectively. Then we input the local estimation value 
into the main federated filter and fuse with the refer-
ence subsystem from the SINS. Finally, we get X̂ g and 
Pg, which is the best estimation of the global state. 
Finally, the federated filter output the global navigation 
and positioning result and feedback to the SINS/DVL 
subsystem.

The federated Kalman filter includes two stages: time 
update and information fusion. During the time update 
stage, the global status estimation X̂m , estimated vari-
ance matrix of error Pm, and covariance matrix Qmwill 
be updated. And during the information fusion stage, 
we combine the status estimation of the global feder-
ated main filter and the local state estimation of each 
subsystem. Finally, the filter assigns information in a 
specific way, feedback the best estimation of global sta-
tus and its variance matrix to each navigation and posi-
tioning system.

(86)X̂ i = X̂ g

(87)Q−1
i = ξiQ

−1
g

(88)P−1
i = ξiP

−1
g

(89)ξ1 + ξ2 = 1 0 ≤ ξi ≤ 1

Performance evaluation
In this section, we evaluate the performance of the inte-
grated navigation and positioning system based on a 
federated Kalman filter. We first set up the evaluation 
environment. Then we measure the performance, includ-
ing the positioning accuracy, stability, and performance. 
We also make comparisons with other related methods.

Simulation setup
Evaluation environment
We first set up a Matlab simulation environment. To 
validate and evaluate the accuracy and stability of the fil-
tering procedure, we set up a motion model with time-
varying motion states. We indicate a motion velocity 
and a motion trace in Figs.  8 and 9. More specifically, 
the total time of motion is 2000 s. An AUV first moves 
in the direction of the northeast. The speed in the north 
is 2.57 m/s, while the speed in the east is 0.27 m/s. After 
1000 s, the AUV changes the direction to the east in the 
sale of 3°/s. After 600 s, the AUV changes direction to the 
north at the scale of 3°/s. It lasts 25 s. Finally, the AUV 
moves straightly. From 1000s to 2000 s, the velocity is 
2.57 m/s. We conduct simulations based on the motion 
model and the data.

Evaluation parameters
We evaluate the positioning accuracy regarding the posi-
tioning error, the eastern velocity error, and the mean 
square error. The lower the positioning error is, the 
higher the positioning accuracy is.

For positioning efficiency, we evaluate the computation 
time of navigation and positioning. Short processing time 
indicates high positioning efficiency.

Fig. 7  The framework of the improved federated combined filtering based navigation and positioning system
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Reference methods
We select the improved SINS/DVL positioning method 
[4] and the federated Kalman filter-based positioning [25] 
(note as classic FKF) as the reference methods. We call 
our proposed federated-filter-based positioning method 
as improved FKF.

Positioning accuracy evaluation
We evaluate the position accuracy with the improved 
SINS/DVL positioning method, the classical federated-
filter-based positioning method.

Compare with improved SINS/DVL
With the simulation environment and the motion model 
of AUV, we simulate the movement of AUV and perform 

the federated-filter-based positioning. We evaluate the 
positioning accuracy of the positioning method and com-
pare it with that of the improved SINS/DVL positioning 
method as shown in Fig. 10.

From Fig. 10, we can conclude that the proposed feder-
ated filter-based positioning method gains higher accu-
racy. More specifically, the average distance error of the 
improved SINS/DVL is 0.20m in the direction of the east, 
while that of our proposed SINS/DVL/USBL federated-
filter is 0.02m. Positioning accuracy is improved almost 
ten times. We also compare the positioning error of the 
two positioning methods. The average positioning error 
of the proposed SINS/DVL/USBL federated-filter is less 
than 0.01m, while the average positioning error of the 
improved SINS/DVL is 0.27m. Although the improved 
SINS/DVL method can restrain the positioning error 
when the state changes rapidly at the time of 1000s. How-
ever, it can not restrain the positioning error caused by 
the state change rapidly at the time of the 1600s. But the 
proposed SINS/DVL/USBL federated filter-based posi-
tioning system can strain the positioning error caused by 
the state change rapidly at the time of 1000s and 1600s. 
So the SINS/DVL/USBL federated filter-based position-
ing system can gain higher stability and reliability, espe-
cially when a complex environment.

Compare with the federated filter‑based positioning method
We also compare our proposed method with the clas-
sic federated filter. With the same simulation setting, we 
compare the positioning error of the proposed integrated 
system with that of the classic federated filter-based navi-
gation and positioning system in Fig. 11.

Figure 11 illustrates that the proposed improved feder-
ated filter-based navigation and positioning system gain 

Fig. 8  The motion velocity of evaluation

Fig. 9  The motion of the combined navigation and positioning 
system velocity of evaluation
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lower positioning error than the classic federated filter. It 
can enhance the positioning accuracy on a scale of 4–5 
times on average. That’s because based on the classic fed-
erated filter, we conduct optimization on the navigation 
and positioning system. More specifically, we utilize the 
filtering-gain-compensation-based adaptive filter, which 
can improve the positioning accuracy of the subsystem at 
a large scale. And the positioning accuracy of the whole 
navigation and positioning system is improved.

We illustrate the east velocity error of the classical 
federated filter in Fig. 12. We can see that the improved 
federated filter-based navigation method gains higher 
accuracy. More specifically, the east velocity error of the 
improved federated filter-based method is 1/3 of that of 

the classic federated filter. And the velocity error fluc-
tuates is also tiny. That’s because the subsystem in the 
improved federated filter adopts an improved adaptive 
filter making the system more stable and more accurate.

MSE evaluation
We evaluate the mean square error (MSE) of the 
improved federated filter-based positioning system. We 
also compare it with the improved SINS/DVL system [4] 
and FKF [25] in Table 2.

From Table  1, we can note that the two federated fil-
ter-based positioning systems gain a lower MSE than the 
improved SINS/DVL system. And the improved feder-
ated filter has the lowest positioning error among these 

Fig. 10  The comparison between the improved SNIS/DVL and the improved FKF

Fig. 11  The performance comparison of the two methods
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three methods. And the east MSE of the improved FKF 
is less than 2.016 × 10−4. Relative to FKF and improved 
SINS/DVL, the improved FKF can reduce the east MSE 
by 91.38% and 97.58, respectively. And it also less on the 
west MSE by 91.65% and 97.32%, respectively. That is 
mainly due to the validation of the multiple-source infor-
mation fusion. The proposed navigation and positioning 
method has better positioning performance.

From the simulation above, the improved federated 
filter-based navigation and positioning method gains 
high positioning accuracy than the two other positioning 
methods, especially in a complex motion environment.

Positioning efficiency evaluation
We evaluate the efficiency of the improved federated fil-
ter-based navigation and positioning method in terms of 
the processing time. We also compare it with the other 
two methods as illustrated in Table 3.

From Table  2, we can see that the processing time of 
the improved federated method is the highest of the three 
methods. That means that the proposed method has the 
lowest efficiency. We also conclude that the federated 
filter methods including the proposed method and the 
classical method have lower efficiency than the improved 
SINS/DVL method. That is because the federated filter is 
the fusion of multiple positioning subsystems. And the 

processing time of the proposed method is double that 
of the classic federated filter method. That’s because the 
proposed method adopts a more complex filter algo-
rithm, which affects the processing efficiency. However, 
considering the accuracy and the stability improvement 
of the proposed federated filter-based system compre-
hensively, the loss of efficiency is acceptable.

Discussion
To gain higher positioning performance, we utilize the 
federated filter to fuse the positioning information in this 
paper. In each positioning subsystem, we also explore 
the Kalman filter to minimize the negative effect of noise 
and measurement error. We discuss the advantages and 
disadvantages.

Advantages
As shown in the Positioning accuracy evaluation subsec-
tion, we combine some positioning subsystems into a 
new positioning system to gain higher positioning accu-
racy and more robustness of the system. The improved 
federated filter-based positioning system can provide 
critical position information for AUVs and other related 
application systems.

Fig. 12  The velocity error of the two methods

Table 2  The MSE comparison of different methods

Filter Method East MSE (m2) West MSE (m2)

Improved FKF 2.016 × 10−4 2.128 × 10− 4

FKF 2.340 × 10−3 2.547 × 10− 3

Improved SINS/DVL 8.324 × 10−3 7.927 × 10− 3

Table 3  The processing time comparison of different methods

Filter Method Processing time 
of 100 times (s)

Improved FKF 2.2280

Classical FKF 1.0921

Improved SINS/DVL 0.3709
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Disadvantages
The disadvantage of the proposed method is the high 
computation amount, which leads to more process-
ing time shown in Table  2. However, considering the 
improvement of positioning accuracy, the cost of pro-
cessing time is accepted.

For the overlaps and repetition, these subsystems pro-
vide different information, i.e., the DVL provides the 
velocity information. The INS provides estimated posi-
tion information. The USBL provides relative position 
information. So there is no overlap and repetition in the 
federated Kalman filter-based positioning system.

The data in this paper are generated by our positioning 
model. So the data and results are available to us.

Conclusion
To improve the accuracy and stability of AUV, we pre-
sented an improved federated filter-based navigation and 
positioning system in this paper. In the system, we first 
utilized the filtering gain compensation-based SINS/DVL 
subsystem to improve the positioning accuracy. We also 
explore the phase difference filtering-based USBL subsys-
tem. Then with the federated filter, we integrate the SINS/
DVL/USBL positioning subsystem and perform multiple 
sources information fusion to gain higher accuracy and 
more stable navigation and positioning. The simulation 
result illustrated that the presented federated filter-based 
navigation and positioning system could achieve higher 
performance. The contribution of this paper is to propose 
the federated Kalman filter-based combination position-
ing system. So that we can gain more accurate position-
ing results. The method also provides a critical reference 
value for other navigation and positioning method. How-
ever, it should be noted that the improvement is at the 
cost of high processing time. So the proposed method 
can be applied in non-real-time systems.
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