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Abstract

Mobile edge computing (MEC) is considered to be a promising technique to enhance the computation capability and
reduce the energy consumption of smart mobile devices (SMDs) in the sixth-generation (6G) networks. With the huge
increase of SMDs, many applications of SMDs can be interrupted due to the limited energy supply. Combining MEC
and energy harvesting (EH) can help solve this issue, where computation-intensive tasks can be offloaded to edge
servers and the SMDs can also be charged during the offloading. In this work, we aim to minimize the total energy
consumption subject to the service latency requirement by jointly optimizing the task offloading ratio and resource
allocation (including time switching (TS) factor, uplink transmission power of SMDs, downlink transmission power of
eNodeB, computation resources of SMDs and MEC server). Compared with the previous studies, the task uplink
transmission time, MEC computation time and the computation results downloading time are all considered in this
problem. Since the problem is non-convex, we first reformulate it, and then decompose it into two subproblems, i.e.,
joint uplink and downlink transmission time optimization subproblem (JUDTT-OP) and joint task offloading ratio and
TS factor optimization subproblem (JTORTSF-OP). By solving the two subproblems, a joint task offloading and
resource allocation with EH (JTORAEH) algorithm is proposed to solve the considered problem. Simulation results
show that compared with other benchmark methods, the proposed JTORAEH algorithm can achieve a better
performance in terms of the total energy consumption.

Keywords: Sixth-generation (6G) networks, Mobile edge computing (MEC), Downloading time, Energy harvesting
(EH), Joint task offloading and resource allocation

Introduction
Artificial intelligence (AI), virtual reality (VR), Internet of
things (IoT), and the new generation of wireless communi-
cation technology have promoted a new round of techno-
logical revolution in the world. Although compared with
the fourth-generation (4G) networks, the fifth-generation
(5G) networks can provide a higher information transmis-
sion rate, for the computation-hungry and delay-sensitive
mobile applications, such as autonomous driving and
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online gaming, 5G still cannot guarantee the quality of ser-
vice (QoS) of these applications [1, 2]. In order to solve
this problem, the sixth-generation (6G) networks emerge
as the times require. Mobile edge computing (MEC) is one
of the enabling technologies of 6G [3, 4]. By deploying
the computation resources at the edge of networks, it can
address the issues of insufficient computation capability
and large service delay of mobile devices.
Energy efficiency (EE) is an important performance

of 6G, which is required to be 10 ∼ 100 times that of
5G. Although MEC can reduce energy consumption by
deploying the computation resources at the edge of net-
works, some applications may still be interrupted due to
the limited energy of smart mobile devices (SMDs) batter-
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ies [5, 6]. Using large batteries or recharging the batteries
can be used to mitigate this issue. However, considering
the size and cost of hardware, the battery capacity is finite,
which cannot provide a long-term stable power supply for
the SMDs. Meanwhile, it is impossible to recharge the bat-
teries in some special scenarios, such as the large-scale
deployment of IoT and outdoor wireless sensor networks
(WSN) [7]. To achieve sustainable operation, energy har-
vesting (EH) allows the SMDs to harvest renewable energy
from the environment (e.g., solar radiation, wind, and
mechanical energy) or data communications and task pro-
cessing. EH technology becomes very important for the
green communication and durable operation of SMDs [8].
In the literature, a flurry of studies on task offloading

with EH in MEC networks has been reported, which can
be classified into two categories based on different objec-
tives. The first is to minimize the MEC system power
consumption [9–13]. In [9], the authors investigated the
problem of power consumption for multiuser MEC sys-
tem with EH, where an online algorithm was proposed
based on the Lyapunov optimization method. In [10], the
energy minimization problem is studied for MEC system
considering the channel fluctuations and dynamic task
arrivals over time, where a well-structured optimal solu-
tion is achieved. In [11], the total energy consumption
was minimized for MEC system considering the inde-
pendent variation of the wireless channel conditions and
computing tasks, where a mixed-timescale joint computa-
tion offloading and wireless resource allocation algorithm
is presented. In [12], the access point power consump-
tion was minimized for MEC system with consideration
of the doubly near-far effect for the farther SMDs, where a
two-phase task offloadingmethod is proposed. In [13], the
total energy consumption of access points was minimized
for wireless powered multiuser MEC system subject to
the users individual computation latency, where an opti-
mal resource allocation scheme was designed. The second
is to maximize the EE performance of MEC system [14–
18]. In [14], the system minimum EE was maximized for
a MEC system, where a cooperative scheme among users
was presented. In [15], a partial offloading scheme was
proposed to improve the EE for a wireless powered MEC
system. In [16], the EE in partial offloading and local com-
puting scenarios for a MEC system was maximized, where
a two-phase resource allocation method was proposed. In
[17], the EE was maximized in a MEC-based heteroge-
neous system, where a quantum-behaved particle swarm
optimization algorithm was involved. In [18], the EE was
also maximized for a wireless powered MEC system with
dynamic task arrivals, where the Lagrange duality method
was used.
Nevertheless, the computation results downloading

transmission time is not considered in previous stud-
ies above [9–18]. When the computation outcome with

large sizes, the downloading time cannot be ignored,
such as augmented reality and multi-media transforma-
tion [19]. In addition, when considering the computation
results downloading transmission, the SMDs with EH
components can harvest energy while receiving informa-
tion, the EH-aware decisionmaking should be considered.
Therefore, the resource allocation schemes should be re-
investigated when considering the downloading time and
energy harvesting in MEC system, which motivated this
work.
The motivations of this paper can be summarized as

follows.

• In most previous work [9–18], the downloading
transmission time of the computation results was
ignored. However, for computation outcome with
large sizes, the downloading transmission time is an
important part of task offloading delay, such as
augmented reality and multi-media transformation,
which cannot be ignored for simplify.

• Considering the computation results downloading
transmission, the SMDs with EH components can
harvest energy while receiving information, i.e.,
simultaneous wireless information and power
transfer (SWIPT) [20]. Therefore, how to make full
use of the renewable energy resources to improve
system performance is a challenging issue in the
downlink SWIPT system.

Therefore, in this paper, we mainly focus on the total
energy consumption minimization problem. Since the
problem is a non-convex problem, we reformulate the
problem firstly, and then decompose it into two sub-
problems, which are solved by Lagrangian dual method.
Based on the results of two subproblems, a joint task
offloading and resource allocation with energy harvest-
ing (JTORAEH) algorithm is proposed. Simulation results
demonstrate the effectiveness of the proposed JTORAEH
algorithm. Our main contributions of the paper are sum-
marized as follows.

• To realize green MEC design for 6G networks, the
total energy consumption minimization problem is
formulated, which jointly optimizes the task
offloading ratio and resource allocation with
considering the energy harvesting and computation
results downloading time.

• Due to the coupling of optimization variables and the
nonconvexity of the formulated problem, we
decompose the primal problem into two
subproblems, which can be solved by Lagrangian dual
method. Based on the results of two subproblems, we
propose a JTORAEH algorithm to minimize the total
energy consumption of the system.
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Fig. 1 System Model

• Simulation results are provided, which demonstrate
the accuracy and effectiveness of our proposed
JTORAEH algorithm.

The rest of this paper is organized as follows. In “System
model” section, the system model is described. In “Prob-
lem formulation and reformulation” section, the total
energy consumption minimization problem is formulated
and reformulated. In “Joint task offloading and resource
allocation with eH algorithm: jTORAEH” section, the
JTORAEH algorithm is proposed to solve the considered
problem. Simulation results are provided in “Simulation
results” section. Finally, “Conclusions” section concludes
this paper.

Systemmodel
In this section, we first describe the systemmodel ofMEC,
including network model, uplink transmission model,
computation model, downlink transmission model, and
EH model.

Network model
A multiple EH-enabled users MEC system is considered,
as shown in Fig. 1, which consists of an eNodeB equipped
with a MEC server and I single-antenna SMDs. In order

to achieve sustainable operation, each SMD has EH func-
tion, which can harvest energy from radio frequency (RF)
signals. Besides, in the given time period, each SMD has
one computation-intensive task to be executed. Let I =
{1, ..., I} denote the set of SMD indices, which are also the
set of task indices. Using a 4-tuple {ci, si, oi, tmax

i } to rep-
resent the task i, where ci is the number of CPU-cycle
required to accomplish task i. si is the input computation
file size of task i, oi is the output computation result size of
task i, and tmax

i is the maximal delay requirement of task
i. The output results size is proportional to the input data
size, i.e., oi = βisi, βi ∈ (0, 1].
The partial task offloading is considered in this work.

Therefore, we denote λi as the offloading ratio variable of
task i, which means that λisi bits of task i are offloaded to
the MEC server, and (1 − λi)si bits of task i are executed
by SMDs locally. Let T be the total EH and task offload-
ing time, as shown in Fig. 2. In the EH phase with the
interval of αT , each SMD harvests energy from RF signals
transmitted by the eNodeB, where α is the time switching
(TS) factor. In the task offloading phase with the inter-
val of (1 − α)T , each SMD offloads partial task to the
MEC server or executes partial task locally. Particularly,
when the partial task is offloaded to the MEC server, the

Fig. 2 The process of EH and task offloading
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phase is divided into three parts. The first part is used for
uplink transmission in which a partial task is offloaded to
the eNodeB. The second part is used for computation in
which a partial task is executed by the MEC server. The
third part is used for downlink transmission in which the
eNodeB downloads the computation results to SMDs. The
notations used in this paper are summarized in Table 1.

Table 1 Summary of key notations

Notation Description

I number of SMDs

I set of SMDs

ci number of CPU-cycle required to accomplish
task i

si input computation file size of task i

oi output computation result size of task i

tmax
i maximal delay requirement of task i

λi offloading ratio variable of task i

T total EH and task offloading time

α time switching factor

bi bandwidth between eNodeB and SMD i

hi uplink channel gain from SMD i to eNodeB

pui uplink transmission power of SMD i to eNodeB

rui uplink transmission rate of task i

tui uplink transmission time of the partial task i

Eui uplink transmission energy consumption of
partial task i

f loci CPU-cycle frequency of SMD i allocated to the
task

Fmax
i maximal CPU-cycle frequency of SMD i

tloci local computation time

Eloci local computation energy consumption of SMD i

κ loc
i conversion coefficient of SMD i

Fmax
mec maximal CPU-cycle frequency of MEC server

fmec
i CPU-cycle frequency of MEC server allocated to

the task i

tmec
i MEC server computation time of task i

Emec
i MEC server computation energy consumption of

task i

κmec conversion coefficient of MEC server

pdi downlink transmission power of eNodeB to SMD
i

rdi downlink transmission rate from eNodeB to SMD
i

tdi downlink transmission time from eNodeB to
SMD i

Edi downlink transmission energy consumption of
eNodeB to SMD i

Ehari total energy harvested by SMD i

ηi energy conversion efficiency

Uplink transmission model
Let bi be the bandwidth between eNodeB and SMD i,
and the bandwidth is allocated to each SMD orthogonally
in this system. Thus, there is no interference among the
SMDs. The uplink channel gain from SMD i to eNodeB is
denoted as hi. The uplink transmission power of SMD i to
eNodeB is pui . Therefore, the uplink transmission rate of
task i can be given by

rui = bi log
(
1 + hipui

N0

)
, (1)

where N0 is the noise power. Since λisi bits of task i are
offloaded to theMEC server, the uplink transmission time
of the partial task i can be expressed as

tui = λisi
bi log

(
1 + hipui

N0

) . (2)

Further, the uplink transmission energy consumption of
partial task i is given by

Eui = pui
λisi

bi log
(
1 + hipui

N0

) . (3)

Computation model
Local computation
Denote Fmax

i as the maximal CPU-cycle frequency of
SMD i, and f loci as the CPU-cycle frequency of SMD i allo-
cated to the task. Therefore, the local computation time
can be given by

tloci = (1 − λi)ci
f loci

. (4)

While, the local computation time, i.e., tloci , should sat-
isfy the task delay requirement. That is,

tloci ≤ min
(
tmax
i , (1 − α)T

)
. (5)

Following with (2) in [21], the local computation energy
consumption of SMD i can be given by

Eloci = κ loc
i

(
f loci

)2
(1 − λi)ci, (6)

where κ loc
i is the conversion coefficient of SMD i, which

is determined by the SMD i CPU chip architecture. Based
on the practical measurement, we set κ loc

i = 10−27 in the
sequel [22].

MEC Server Computation
Denote Fmax

mec as the maximal CPU-cycle frequency of
MEC server, and fmec

i as the CPU-cycle frequency ofMEC
server allocated to the task i. Therefore, the MEC server
computation time can be given by

tmec
i = λici

fmec
i

. (7)
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Considering the leakage power can take more than 30% of
the total power of the modern CPU. We need to consider
the leakage power of MEC server. According to [23, 24],
the leakage power can be expressed as

Pstaic = Vdd(Ileak + Igate), (8)

where Vdd is bias voltage, Ileak is sub-threshold leakage
current, Igate is current due to gate tunneling effect.
Following with (6), the MEC server computation energy

consumption of task i is expressed as

Emec
i = κmec(fmec

i )2λici + Pstaictmec
i , (9)

where κmec is the conversion coefficient of MEC server,
which is determined by the MEC server CPU chip archi-
tecture. Similar to [22], we set κmec = 10−28 in the
paper.

Downlink transmission model
After finishing the MEC server computation, the eNodeB
downloads the computation results to SMDs. Let gi be the
downlink channel gain from eNodeB to SMD i, and the
downlink transmission power of eNodeB to SMD i be pdi .
Therefore, the downlink transmission rate from eNodeB
to SMD i can be given by

rdi = bi log
(
1 + gipdi

N0

)
, (10)

and the downlink transmission time from eNodeB to SMD
i can be expressed as

tdi = βiλisi

bi log
(
1 + gipdi

N0

) . (11)

Meanwhile, the downlink transmission energy con-
sumption of eNodeB to SMD i is given by

Edi = pdi
βiλisi

bi log
(
1 + gipdi

N0

) . (12)

Moreover, when the partial task i is offloaded to the
MEC server, the task offloading delay should satisfy the
task delay requirement

tui + tmec
i + tdi ≤ min(tmax

i , (1 − α)T). (13)

EHmodel
The energy harvested by SMD i includes two parts. In
the first part, SMD i harvests energy from RF signals
transmitted by eNodeB over αT , which is given by

Ehari,1 = αTηigipdi , (14)

where ηi ∈ (0, 1) is the energy conversion efficiency
[25]. The second part is that SMD i collects energy from
the eNodeB downlink transmission of the computation
results with SWIPT. That is,

Ehari,2 = ηitdi gip
d
i , (15)

Therefore, the total energy harvested by SMD i can be
given by

Ehari = Ehari,1 + Ehari,2 . (16)

As a result, the total energy consumption can be given
by

Etot =
I∑

i=1

(
Eloci + Eui + Emec

i + Edi
)
. (17)

Problem formulation and reformulation
In this section, a total energy consumption minimiza-
tion problem is formulated firstly. And then, due to the
nonconvexity of the primal problem, we reformulate the
problem.

Problem formulation
Based on the system model, the total energy consumption
minimization problem can be formulated as

(P1) min
α,λ,f loc,fmec,pu,pd

Etot (18a)

s.t. tloci ≤ min
(
tmax
i , (1 − α)T

)
,∀i ∈ I , (18b)

tui + tmec
i + tdi ≤ min

(
tmax
i , (1 − α)T

)
,∀i ∈ I ,

(18c)

0 ≤ f loci ≤ Fmax
i , ∀i ∈ I , (18d)

I∑
i=1

fmec
i ≤ Fmax

mec , (18e)

pui ≤ Pmax
i , ∀i ∈ I , (18f)

I∑
i=1

pdi ≤ Pmax
e , (18g)

Eloci + Eui ≤ Ehari + Eoi , ∀i ∈ I , (18h)
0 < α < 1, (18i)
0 ≤ λi ≤ 1,∀i ∈ I , (18j)

where λ = {λi, i ∈ I}, f loc = {
f loci , i ∈ I

}
, f mec ={

fmec
i , i ∈ I

}
, pu = {

pui , i ∈ I
}
, pd = {pdi , i ∈ I} are

the vectors of task offloading ratio, SMDs CPU-cycle fre-
quency allocation, MEC server CPU-cycle frequency allo-
cation, SMDs uplink power allocation, and eNodeB down-
link power allocation, respectively. Pmax

i is the maximal
transmission power of SMD i. Pmax

e is the maximal down-
link transmission power of eNodeB. Eoi is the initial energy
of SMD i. Constraints (18b) and (18c) are the task offload-
ing delay requirement of local computing and MEC com-
puting, respectively. Constraints (18d) and (18e) are the
SMD andMEC computation resource constraints, respec-
tively. Constraints (18f) and (18g) are the transmission
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power constraints of SMD and eNodeB, respectively. Con-
straint (18h) means that the total energy consumption of
SMDs should be no more than the harvested energy. Due
to the product relationship between λi and pui as well as
pdi , problem (P1) is non-convex, which is difficult to solve.

Problem reformulation
In order to solve problem (P1), we need to reformulate
the problem. For (6), given α and λ, the local computation
energy consumption of SMD is monotonously increas-
ing with f loci . This means that the smaller f loci is, the
less local computation energy consumption is. For con-
straint (18b), when the optimal solution is obtained, tloci =
min(tmax

i , (1−α)T) should be held. Therefore, the optimal
local CPU-cycle frequency of SMD i can be given by

f loc∗i = (1 − λi)ci
min(tmax

i , (1 − α)T)
. (19)

Similarly, for (9), given α and λ, the MEC server com-
putation energy consumption of SMD is monotonously
increasing with fmec

i . For constraint (18c), when the opti-
mal solution is obtained, tloci = min(tmax

i − tui − tdi , (1 −
α)T−tui −tdi ) should be held. Therefore, the optimalMEC
server CPU-cycle frequency to SMD i is given by

fmec∗
i = λici

min(tmax
i − tui − tdi , (1 − α)T − tui − tdi )

.

(20)

Then, constraint (18e) can be transformed as

I∑
i=1

λici
min(tmax

i − tui − tdi , (1 − α)T − tui − tdi )
≤ Fmax

mec .

(21)

Following (3) and (12), let f (x) = x 1
log2(1+x) , where f (x)

is monotonously increasing with x ≥ 0. That is, given
λ, the smaller pu and pd are, the less uplink and down-
link transmission energy consumption are. With (2) and
(11), the optimal uplink transmission power of SMD i, and
downlink transmission power to SMD i are given by

pu∗
i = N0

hi

(
2

λisi
bitui − 1

)
, (22)

and

pd∗
i = N0

gi

(
2

βiλisi
bitdi − 1

)
, (23)

respectively.

Therefore, the problem (P1) can be reformulated as

(P2) min
α,λ,tu,td

ϕ(α, λi, tui , tdi ) (24a)

s.t.
(1 − λi)ci

min(tmax
i , (1 − α)T)

≤ Fmax
i ∀i ∈ I , (24b)

I∑
i=1

θi(α, λi, tui , tdi ) ≤ Fmax
mec , (24c)

N0
hi

(
2

λisi
bitui − 1

)
≤ Pmax

i , ∀i ∈ I , (24d)

I∑
i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
≤ Pmax

e , (24e)

κ loc
i

(1 − λi)3c3i
(min(tmax

i , (1 − α)T))2
+ N0

hi

(
2

λisi
bitui − 1

)
tui

≤ ηiN0

(
2

βiλisi
bitdi − 1

)
(αT + tdi ) + Eoi , ∀i ∈ I ,

(24f)
0 < α < 1, (24g)
0 ≤ λi ≤ 1,∀i ∈ I , (24h)

where tu = {tui , i ∈ I} and td = {tdi , i ∈ I} are the vectors
of uplink and downlink transmission time, respectively,

θi
(
α, λi, tui , tdi

)
= λici

min(tmax
i − tui − tdi , (1 − α)T − tui − tdi )

,

and

ϕ(α, λi, tui , tdi ) =κ loc
i

(1 − λi)3c3i
(min(tmax

i , (1 − α)T))2

+ N0
hi

(
2

λi si
bi tui − 1

)
tui + κmecθ2i λici + Pstaic

λici
θi

+ N0
gi

(
2

βiλi si
bi tdi − 1

)
tdi .

However, since the optimal variables are coupled, prob-
lem (P2) is still non-convex, which is difficult to solve.

Joint task offloading and resource allocation with
eH algorithm: jTORAEH
In this section, we first decompose the problem (P2) into
two subproblems: joint uplink and downlink transmis-
sion time optimization subproblem (JUDT-OP) and joint
task offloading ratio and TS factor optimization subprob-
lem (JTORTSF-OP). Then, the Lagrangian dual method
is used to solve the two subproblems. By doing so, an
iterative algorithm is proposed to the primal problem.
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Joint uplink and downlink transmission time optimization
subproblem: jUDTT-OP
By fixing α and λ, the JUDTT-OP can be given by

(P3) min
tu,td

ϕ
(
tui , tdi

)
(25a)

s.t.
I∑

i=1
θi

(
tui , tdi

)
≤ Fmax

mec , (25b)

I∑
i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
≤ Pmax

e , (25c)

N0
hi

(
2

λisi
bitui − 1

)
≤ Pmax

i , ∀i ∈ I , (25d)

κ loc
i

(1 − λi)3c3i(
min

(
tmax
i , (1 − α)T

))2 + N0
hi

(
2

λisi
bitui − 1

)
tui

≤ ηiN0

(
2

βiλisi
bitdi − 1

)(
αT + tdi

)
+ Eoi , ∀i ∈ I .

(25e)

Due to the objective function and constraints in prob-
lem (P3) are convex, problem (P3) is a convex problem.
Therefore, the Lagrangian dual method can be used to
solve the JUDTT-OP [26].
Then, the Lagrangian function of problem (P3) is

expressed as

L1 =L
(
tu, td,μ1,μ2, νi, γi

)

=ϕ
(
tui , tdi

)
+ μ1

( I∑
i=1

θi
(
tui , tdi

)
− Fmax

mec

)

+ μ2

( I∑
i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
− Pmax

e

)

+ νi

(
N0
hi

(
2

λisi
bitui − 1

)
− Pmax

i

)

+ γi

(
κ loc
i

(1 − λi)3c3i(
min

(
tmax
i , (1 − α)T

))2
+ N0

hi

(
2

λisi
bitui − 1

)
tui

− ηiN0

(
2

βiλisi
bitdi − 1

)(
αT + tdi

)
− Eoi

)
,

(26)

where μ1, μ2, νi, and γi are the Lagrange multipliers.

Since the Lagrange function, i.e., L1, is differentiable,
the gradients of the Lagrange multipliers can be respec-
tively given by

∂L1
∂μ1

=
I∑

i=1
θi

(
tui , tdi

)
− Fmax

mec , (27)

∂L1
∂μ2

=
I∑

i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
− Pmax

e , (28)

∂L1
∂νi

=N0
hi

(
2

λisi
bitui − 1

)
− Pmax

i , (29)

∂L1
∂γi

=κ loc
i

(1 − λi)3c3i(
min

(
tmax
i , (1 − α)T

))2 +N0
hi

(
2

λisi
bitui − 1

)
tui

− ηiN0

(
2

βiλisi
bitdi − 1

)(
αT + tdi

)
− Eoi , (30)

Then, the Lagrange multipliers can be obtained by uti-
lizing the gradient method. That is,

μ1(t + 1) =
[
μ1(t) + τ1

∂L
∂μ1

]+
, (31)

μ2(t + 1) =
[
μ2(t) + τ2

∂L
∂μ2

]+
, (32)

νi(t + 1) =
[
νi(t) + τ3

∂L
∂νi

]+
, (33)

γi(t + 1) =
[
γi(t) + τ4

∂L
∂γi

]+
, (34)

where τ1, τ2, τ3, and τ4 are the iteration steps, t is the
iteration number, and [ ·]+ means max(0, ·).
Taking the derivative of L1 w.r.t tui , tdi to be zero respec-

tively, we have

∂L1
∂tui

=(1 + γi)
N0
hi

(
2

λisi
bitui − 1

)

− (1 + γi)
N0
hi

2
λisi
bitui

λisi
bitui

ln 2

+
(

μ1 + 2κmecθiλici − Pstaic
λici
θ2i

)

λici(
min

(
tmax
i − tui − tdi , (1 − α)T − tui − tdi

))2

− νi
N0
hi

2
λisi
bitui

λisi
bi

(
tui

)2 ln 2

= 0, (35)
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∂L1

∂tdi
=(1 − γiηigi)

N0
gi

(
2

βiλisi
bitdi − 1

)

− (1 − γiηigi)
N0
gi

2
βiλisi
bitdi

βiλisi
bitdi

ln 2

+
(

μ1 + 2κmecθiλici − Pstaic
λici
θ2i

)

λici(
min

(
tmax
i − tui − tdi , (1 − α)T − tui − tdi

))2

− (μ2 − γiηigiαT)
N0
gi

2
βiλisi
bitdi

βiλisi

bi
(
tdi

)2 ln 2

= 0. (36)

Thus, tui and tdi can be obtained by (35)) and (36),
respectively.

Joint task offloading ratio and tS factor optimization
subproblem: jTORTSF-OP
By fixing tu and td, the JTORTSF-OP is given by

(P4) min
α,λ

ϕ(α, λi) (37a)

s.t.
(1 − λi)ci

min
(
tmax
i , (1 − α)T

) ≤ Fmax
i ∀i ∈ I , (37b)

I∑
i=1

θi(α, λi) ≤ Fmax
mec , (37c)

I∑
i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
≤ Pmax

e , (37d)

N0
hi

(
2

λisi
bitui − 1

)
≤ Pmax

i , ∀i ∈ I , (37e)

κ loc
i

(1 − λi)3c3i(
min

(
tmax
i , (1 − α)T

))2 + N0
hi

(
2

λisi
bitui − 1

)
tui

≤ ηiN0

(
2

βiλisi
bitdi − 1

)(
αT + tdi

)
+ Eoi , ∀i ∈ I ,

(37f)
0 < α < 1, (37g)
0 ≤ λi ≤ 1,∀i ∈ I . (37h)

However, since the optimal variables are coupled, prob-
lem (P4) is a non-convex problem. In order to solve this
problem, we first fix α to calculate λ. And then, we fix λ to
calculate α, and repeat this process until convergence.

Optimization of task offloading ratio
When the TS factor α is fixed, the task offloading ratio
problem is formulated as

(P5) min
λ

ϕ(λi) (38a)

s.t.
(1 − λi)ci

min(tmax
i , (1 − α)T)

≤ Fmax
i , ∀i ∈ I , (38b)

I∑
i=1

θi(λi) ≤ Fmax
mec , (38c)

I∑
i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
≤ Pmax

e , (38d)

N0
hi

(
2

λisi
bitui − 1

)
≤ Pmax

i , ∀i ∈ I , (38e)

κ loc
i

(1 − λi)3c3i
(min(tmax

i , (1 − α)T))2
+ N0

hi

(
2

λisi
bitui − 1

)
tui

≤ ηiN0

(
2

βiλisi
bitdi − 1

)
(αT + tdi ) + Eoi , ∀i ∈ I ,

(38f)
0 ≤ λi ≤ 1,∀i ∈ I . (38g)

Problem (P5) is a convex problem, the Lagrangian dual
method is used to solve it. Then, the Lagrangian function
of problem (P5) is given by

L2 =L(λ, εi,μ1,μ2, νi, γi, ξi) (39)

=ϕ(λi) + εi

(
(1 − λi)ci

min(tmax
i , (1 − α)T)

− Fmax
i

)

+ μ1

( I∑
i=1

θi(λi) − Fmax
mec

)

+ μ2

( I∑
i=1

N0
gi

(2
βiλisi
bitdi − 1) − Pmax

e

)

+ νi

(
N0
hi

(2
λisi
bitui − 1) − Pmax

i

)

+ γi(κ
loc
i

(1 − λi)3c3i
(min(tmax

i , (1 − α)T))2

+ N0
hi

(
2

λisi
bitui − 1

)
tui

− ηiN0

(
2

βiλisi
bitdi − 1

)
(αT + tdi ) − Eoi )

+ ξi(λi − 1),

where εi, μ1, μ2, νi, γi, and ξi are the Lagrange multipliers.
Since the Lagrange function is differentiable, the gradients
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of the Lagrange multipliers can be respectively given by

∂L2
∂εi

= (1 − λi)ci
min(tmax

i , (1 − α)T)
− Fmax

i , (40)

∂L2
∂μ1

=
I∑

i=1
θi(λi) − Fmax

mec , (41)

∂L2
∂μ2

=
I∑

i=1

N0
gi

(
2

βiλisi
bitdi − 1

)
− Pmax

e , (42)

∂L2
∂νi

=N0
hi

(
2

λisi
bitui − 1

)
− Pmax

i , (43)

∂L2
∂γi

=κ loc
i

(1 − λi)3c3i
(min(tmax

i , (1 − α)T))2
+ N0

hi

(
2

λisi
bitui − 1

)
tui

− ηiN0

(
2

βiλisi
bitdi − 1

)
(αT + tdi ) − Eoi , (44)

∂L2
∂ξi

=λi − 1. (45)

The Lagrange multipliers can be obtained by utilizing
the gradient method, i.e.,

εi(t + 1) =
[
εi(t) + ρ1

∂L
∂εi

]+
, (46)

μ1(t + 1) =
[
μ1(t) + ρ2

∂L
∂μ1

]+
, (47)

μ2(t + 1) =
[
μ2(t) + ρ3

∂L
∂μ2

]+
, (48)

νi(t + 1) =
[
νi(t) + ρ4

∂L
∂νi

]+
, (49)

γi(t + 1) =
[
γi(t) + ρ5

∂L
∂γi

]+
, (50)

ξi(t + 1) =
[
ξi(t) + ρ6

∂L
∂ξi

]+
, (51)

where ρ1, ρ2, ρ3, ρ4, ρ5 and ρ6 are the iteration steps, and
t is the iteration number.

Taking the derivative of L2 w.r.t λi to be zero, we have

∂L2
∂λi

=(1 + γi)
−κ loc

i 3(1 − λi)2c3i(
min

(
tmax
i , (1 − α)T

))2
+ N0

hi
si

bitui
(tui + γitui + νi)2

λi si
bi tui ln 2

− εi
ci

min(tmax
i , (1 − α)T)

+ κmec 3λ2i c3i(
min

(
tmax
i − tui − tdi , (1 − α)T − tui − tdi

))2

+ μ1
ci

min(tmax
i − tui − tdi , (1 − α)T − tui − tdi )

+ N0
βisi
bitdi

2
βiλi si
bi tdi

(
tdi + μ2

gi
− γiηi(αT + tdi )

)
ln 2

+ ξi = 0.

(52)

Therefore, λi can be achieved by (52).

Optimization of tS factor
The TS factor is not only related to EH of SMDs, but
related to the task execution time. In (14), it is observed
that the larger α is, SMDs can harvest more energy. Mean-
while, less time is available for task execution. By fixing λ,
we set the initial α as

α = 1 − mini∈I{tmax
i }

T
. (53)

By substituting (53) into problem (P1), after several iter-
ations, such as M iterations, some task offloading delay
requirements cannot be satisfied due to the time reserved
is not enough, α can be updated by

α = α − �, (54)

where � > 0. Therefore, we can use the offline exper-
iments to determine the iteration numbers to guarantee
each task offloading delay.

JTORAEH algorithm
To solve the primal problem, a JTORAEH algorithm is
proposed, as shown in Algorithm 1.
Simulation results
In this section, some simulation results are provided to
discuss for the system performance with the proposed
JTORAEH algorithm. Unless otherwise stated, the num-
ber of eNodeB and SMDs is set to be 1 and 10, respectively.
SMDs are uniformly distributed over a cell. The band-
width allocated to each SMD is 200 KHz. The noise power
is 10−10 W. The wireless channel hi and gi are respectively
obtained by hi = ζd−3

i h̄i and gi = ζd−3
i ḡi, where h̄i ∼

CN (0, I), ḡi ∼ CN (0, I), di is the distance between the
eNodeB and the SMD i, and ζ = 6.25×10−4 is the channel
power gain at a reference distance of one meter [27]. The
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Algorithm 1 The proposed JTORAEH algorithm

1: Initialize the uplink transmission time tu, the down-
link transmission time td, the task offloading ratio λ,
and the TS factor α.

2: repeat
3: /*JUDTT-OP*/
4: Calculate the uplink transmission time tu, and the

downlink transmission time td by (35) and (36),
respectively.

5: Update the Lagrange multipliers of (26) by (31),
(32), and (34), respectively.

6: /*JTORTSF-OP*/
7: Calculate the task offloading ratio λ by (52).
8: Update the Lagrange multipliers of (39) by (46),

(47), (48), (50), and (51), respectively.
9: The eNodeB determines whether to update the TS

factor α every M iterations. If some task offload-
ing delay requirement cannot be satisfied, α can be
updated by (54); Otherwise, α is unchanged.

10: until Algorithm stopping criterion and convergence.

maximal transmission power of each SMD is 0.1 W, and
the maximal downlink transmission power of eNodeB is
1 W. The maximal CPU-cycle frequency of the SMDs and
MEC server are set to be 50MHz and 1 GHz, respectively.
The conversion coefficients of SMD and MEC server are
10−27 and 10−28, respectively [22]. The initial energy of
SMD E0 = 0.001 J. The time period of a complete EH and
task offloading process T = 3 s. The energy conversion
efficiency η = 0.8107 [25]. The data size of the tasks and

the number of CPU-cycle requirements that follow Gaus-
sian distributions are si ∼ N (1, 0.1) and ci ∼ N (100, 10),
respectively. The data size is measured in MB and the
number of CPU-cycle is measured in Megacycles, respec-
tively. The output data size is 10% of the input data size.
Each task offloading delay tolerance is 2.2 s.

Convergence analysis of the proposed jTORAEH algorithm
Figure 3 shows the convergence of the proposed
JTORAEH algorithm with different M. M can be con-
sidered as updating the value of TS factor α every M
iterations according to (54). We set � = mini∈I {tmax

i }
2T ,M =

2, 4, respectively. It is seen that the proposed JTORAEH
algorithm can achieve convergence within about 16 itera-
tions. Besides, the proposed JTORAEH algorithm nearly
has the same convergence speed no matter whatM takes.
Therefore, we takeM = 4 in the following simulation.
In order to verify the effectiveness of the proposed

JTORAEH algorithm, the following three algorithms are
also simulated in our work for comparison.

• Local computing (LC) algorithm: In this algorithm,
all the tasks are only executed by SMDs locally, where
λi = 0, ∀i ∈ I .

• MEC server computing (MC) algorithm: In this
algorithm, all the tasks are offloaded to the MEC
server, and only executed by the MEC server, where
λi = 1, ∀i ∈ I .

• Based on Hungarian and graph coloring (BHGC)
algorithm: In this algorithm, the task offloading ratio,
uplink power and computation resource allocation
can be obtained by utilizing the same algorithm in

Fig. 3 Total energy consumption versus iterations
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Fig. 4 Total energy consumption versus bandwidth

[28]. To obtain the TS factor α, the same algorithm is
used as this work. For the downlink power allocation,
the power is allocated averagely for each task.

Effect of the bandwidth on the energy consumption
Figure 4 plots the total energy consumption versus band-
width. It can be seen that for the LC algorithm, the
total energy consumption remains unchanged with the

increment of the bandwidth. Because all the tasks are
executed by the SMDs locally, the total energy consump-
tion is independent of bandwidth. For the other three
algorithms, the total energy consumption decreases as
the bandwidth increases. Because higher bandwidth leads
to lower transmission power. Compared with the BHGC
algorithm, when the bandwidth grows from 200 KHz to
600 KHz, the total energy consumption of JTORAEH

Fig. 5 Total energy consumption versus CPU-cycle frequency of MEC server
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Fig. 6 Total energy consumption versus SMDs number

algorithm can achieve the system performance gain
about 14.43%.

Effect of the cPU-cycle frequency of mEC server on the
energy consumption
Figure 5 compares the total energy consumption versus
CPU-cycle frequency of MEC server. For the LC algo-
rithm, because the total energy consumption is indepen-
dent of CPU-cycle frequency of MEC server, the total

energy consumption remains unchangedwith the increase
of the CPU-cycle frequency of MEC server. For the other
three algorithms, with the increasing of CPU-cycle fre-
quency of MEC server, each task can be allocated more
computation resources, and the task computation time
can be reduced. Meanwhile, SMDs have more time to
transmit tasks to the MEC server, therefore, the uplink
transmission energy consumption is reduced. Compared
with the BHGC algorithm, when the CPU-cycle frequency

Fig. 7 Total energy consumption versus input computation file size of task
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of MEC server grows from 1 GHz to 3.5 GHz, the total
energy consumption of JTORAEH algorithm can achieve
the system performance gain about 15.73%.

Effect of the sMDs number on the energy consumption
Figure 6 shows the total energy consumption versus SMDs
number. It can be observed that the total energy con-
sumption increases with respect to the number of SMDs.
Because the resources are limited, when the number of
SMDs increases, each SMD will allocate fewer resources,
the total energy consumption increases. Meanwhile, the
more number of SMDs increases, the faster the total
energy consumption of the MC algorithm, BHGC algo-
rithm and JTORAEH algorithm increases. For the LC
algorithm, since the energy consumption is only related
to the CPU-cycle frequency of SMDs locally, the energy
consumption of LC algorithm increases linearly with the
number of SMDs increases.

Effect of the input computation file size of task on the
energy consumption
Figure 7 plots the total energy consumption versus input
computation file size of task. For the LC algorithm,
because the tasks are only executed by SMDs locally,
and the total energy consumption is independent of the
input computation file size of task, the total energy con-
sumption remains unchanged with the increase of the
input computation file size of task. For the other three
algorithms, with the increment of input computation file
size of task, the SMDs need to consume more energy to
transmit tasks. Therefore, the total energy consumption
increases.

Conclusions
This paper studied the total energy consumption min-
imization problem for EH-enabled MEC networks by
jointly optimizing the task offloading ratio and resource
allocation. For such a problem, the task uplink transmis-
sion time, MEC computation time and the computation
results downloading time were considered at the same
time. Since the problem was non-convex, we first refor-
mulated it, and then decomposed it into two subprob-
lems, i.e., JUDTT-OP and JTORTSF-OP. By solving them,
JTORAEH algorithm was proposed to solve the consid-
ered problem. Simulation results show that compared
with other benchmark methods, the proposed JTORAEH
algorithm can achieve a better performance in terms of
the total energy consumption.
Considering the limited energy of batteries can not

provide SMDs with long-term and stable power sup-
ply, and rechargeable batteries or power supply through
the traditional grid (for example, when SMDs are dis-
tributed in remote or dangerous environment) may even
be impossible or extremely expensive. We can utilize

EH technology to achieve the green communication and
durable operation of the SMDs. This article provides us
with a solution to reduce energy consumption through
EH and resource allocation strategy in the future 6GMEC
network.
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