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Abstract 

Much research has focused on task offloading in fog-enabled IoT networks. However, there is an important offload‑
ing issue that has hardly been addressed—the impact of different virtualization modes on task response (TR) time. In 
the present article, we bridge this gap, introducing three virtualization modes, and characterizing the TR time under 
each. In each mode the virtual machines (VM) at the fog are customized differently, leveraging VM elasticity. In the 
perfect virtualization mode, the VM is customized to match exactly the computational load of the incoming task. This 
ensures that each task, regardless of which VM it goes to, will have the same service time. In the semiperfect virtualiza‑
tion mode, a less stringent, thus more practical, alternative, the VM is customized to match roughly the computational 
load of the incoming task. This results in a uniformly distributed task service time. Finally, in the baseline virtualization 
mode, the VM is customized to just be fast, with no regard to the computational load of the incoming task. This mode, 
which just re-scales the processing time of the task, is the default in existing research, and is re-introduced here for 
only comparison purposes. We characterize the TR time for the three modes leveraging M/G/1 and M/G/m queueing 
models, with the queueing stability condition identified for each mode. The obtained analytical results are success‑
fully validated by discrete event Monte Carlo simulation. The numerical results show that the first mode results in the 
shortest TR time, followed by the second mode, then the third mode. That is, if virtualization is managed adequately, 
significant improvement in TR time can be gained.
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Introduction
The Internet of Things (IoT) is fast becoming a reality, 
especially in smart home/city implementations. The key 
for its success is its ability to provide reliable connectiv-
ity for a huge number of terminal devices (TDs), such 
as laptops, tablets, sensors, smart appliances, industrial 
equipment or smart phones [1]. A key performance met-
ric for IoT is the task response (TR) time, defined as the 
time from the instant a TD application generates a task to 
the instant the application receives the response (result) 
of this task. Many factors can impact the TR time, but in 

general the shorter it is the better the TD performance 
especially if the TD runs real time applications. However, 
due to the limited computational resources of the TD, the 
latter may need to seek the help of a more powerful para-
digm such as cloud computing [2].

Cloud computing has proved a good solution to reduce 
the TR time, as clouds are equipped with mighty data 
centers having immense processing and storage capa-
bilities [3]. However, the long distance to the cloud adds 
heavy communications cost and time, which is a draw-
back that can potentially defeat the purpose. One solu-
tion to mitigate this drawback is fog computing.

Fog Computing can be seen as a bridge between TDs 
and the cloud. The fog brings the cloud services closer to 
the TDs, greatly reducing communications and energy 
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problems and costs. Physically situated between the 
cloud and the TDs, each fog serves a finite number of 
TDs deployed in a finite geographical area called the fog 
cell. Fog computing is especially critical for IoT because 
it prevents resource-limited IoT TDs from the inconven-
ience of frequently getting to the resource-rich cloud. 
Supporting limited computing and storage capabilities 
of TDs by offloading resource-intensive tasks to nearby 
resource-rich fog nodes guarantees shorter TR times. A 
relevant solution to decrease TR time is to use a cloud-
let, which can be looked upon as a micro data center. The 
cloudlet can be a cluster of multicore processors with a 
high-bandwidth wireless network. It can be of help to 
mobile devices for light data storage and retrieval as well 
as for computationally-intensive tasks [4]. An even better 
solution is to use a fog in the presence of a cloud, forming 
the 3-tier model shown in Fig. 1. In this model, based on 
the computational, storage and energy constraints of the 
TD as well as the TR time of the application, a task may 
be processed locally at the TD, nearby at the fog, or far 
away at the cloud.

Fog computing guarantees short TR time by dispens-
ing with the long round trip to the cloud. It addition-
ally secures sensitive IoT data by processing the latter 
within company limits. As such, companies that embrace 
fog computing gain greater and quicker insights, lead-
ing to expanded trade agility, higher service levels, 
and enhanced security [5]. To succeed, however, fog 
computing requires an efficient and effective resource 

management of fog resources to improve the quality of 
service (QoS) for the underlying IoT [6]. The fog not only 
guarantees low latency, i.e. low TR time, but also saves 
on TD energy consumption and allows efficient manage-
ment of IoT services. Accordingly, we emphasize the role 
of virtualization in the present work with the aim to opti-
mize TR time for the TDs served by the fog.

If a TD generates a task that can be processed locally in 
a short TR time, it does so immediately. However, if the 
task is so computationally intensive that its TR time will 
exceed some limit beyond the tolerance of the TD, e.g. 
due to time or energy constraints, the TD would be bet-
ter off offloading the task to the fog. In such case, the TR 
time can be reduced immensely, given the greater com-
putational capabilities at the fog and the power of virtu-
alization. Traffic offloading has been proposed to handle 
the anticipated high growth rate in cellular systems and 
reduce the predicted performance debasement [7]. Cau-
tion should be made, however, as the benefits gained 
from offloading can be refuted in case offloading itself 
results in a transient loss of service [8].

One of the most vital topics in fog/cloud comput-
ing is virtualization [9]. It allows making maximum use 
of existing hardware, by sharing existing assets, leading 
to decreased capital cost and increased network effi-
ciency [10]. Virtualization allows creating an abstraction 
layer that shares hardware elements, such as proces-
sors, memory, storage and networks, to multiple soft-
ware defined computers, called virtual machines (VMs). 

Fig. 1  3–tier fog-enabled IoT network
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With adequate virtualization, a VM can be customized 
to finish a certain task in a desired amount of time [11]. 
Specifically, the virtualization software, usually called a 
hypervisor, can allocate just enough hardware resources 
to the VM providing the latter with the computational 
power needed to finish the task in the required time, and 
that is what the present work capitalizes on.

Once a VM finishes processing a task, its resources 
are released so that they can be utilized to create other 
VMs if needed. This remarkable flexibility allows for bet-
ter resource economy, energy consumption, availability, 
scalability, reliability and cost [12]. In fact, virtualization 
allows automated deployment, configuration and mainte-
nance, dispensing with cumbersome, time-consuming and 
error-prone chores associated with doing those activities 
manually. In general, it allows faster provisioning (buying, 
installing, and configuring) of hardware. If the hardware 
is already in place, creating VMs to execute tasks is sig-
nificantly faster. Finally, it can allocate as much computing 
power to each VM as the task assigned to the latter needs, 
which is the principal motive of the present work [13].

Our study is novel in that it characterizes the TR time, 
using queueing theory, under three different virtualiza-
tion modes: perfect virtualization, semiperfect virtu-
alization and baseline. These modes can currently be 
implemented easily, as virtualization technology has 
advanced in recent years to the point that not only VMs 
can be placed [14] with the desired configuration, but 
also can be resized [15] up and down after placement 
to cope with changes in workloads. The resizing prop-
erty, often called elasticity, is the crux of present work 
as each VM should be resized before receiving the next 
task based on the time requirements of that task. In par-
ticular, if the time is long the VM is scaled up, and if it 
is short it is scaled down. If the resizing is perfect, i.e. 
exactly what is desired, then we have perfect virtualiza-
tion. If it is approximate, i.e. close to what is desired, then 
we have semiperfect virtualization. The performance of 
both is the theme of the present work.

Thus, elasticity is key to provisioning resources 
dynamically, thus enabling a VM to cope with changes 
in the workload. It can be implemented to provision 
resources either in a coarse-grained manner or in a 
fine-grained manner, by adequately placing available 
computational resources, e.g. CPU, memory, I/O and 
communications bandwidth. In [15] the authors present 
a framework for elastic VMs implemented by the cloud 
layer model, based on a Grey relational analysis (GRA) 
policy. The framework has the capability to provision 
resources required to yield a predefined computational 
power. It can provision the resources at different granu-
larities, both at the physical machine level or at the vir-
tual machine level. The authors of [16] set forward an 

autoscaler, called EPMA, (Elastic Platform for Micros-
ervice-based Applications), to automatically rescale 
a VM up or down based on the task demand. It first 
detects and identifies the cause of performance degra-
dation due to, say, workload increase. Then, it offers an 
optimized elasticity plan for resource provisioning to 
get back to normal performance.

In recent years VM elasticity has become acces-
sible even to the ordinary person via two commercial 
products. VMWare [17] provides a free tool, Virtual 
Machine Desired State Configuration (VMDSC), which 
allows the modification of the configuration of a VM 
that needs CPU or memory changes. The changes are 
stored in the VM’s configuration file and then used 
for reconfiguration at the next reboot, which can be 
made before loading the new task. VMDSC is actually 
an API, so integration with automation tools is pos-
sible. Those changes are pushed via API calls into the 
VM that needs to be resized. As such, VMDSC allows 
virtual administrators to specify the VM CPU/Memory 
state which will take effect upon the loading of the next 
task. On the other hand, Microsoft Azure [18] allows 
one, after creating a VM, to rescale the VM up or down 
by changing the VM size. With this capability, one can 
rescale the VM at the fog before receiving the next task 
based on the time requirements of the latter.

The rest of this article is organized as follows. In the 
Related work section, recent relevant research is reviewed. 
In the System model section, the system model is devel-
oped, and in the Performance analysis section the model 
is analyzed. In the Numerical results section, the analyti-
cal results as well as the simulation results obtained for 
the three virtualization modes are illustrated by numeri-
cal examples. Finally, the Conclusions section provides 
our concluding remarks and possible directions for future 
work. The descriptions of abbreviations and acronyms 
used throughout the article are given in Table 1.

Related work
Much research work has been carried out on fog com-
puting and its merits, especially in minimizing TR time, 
in recent years [19]. In [20], the authors present methods 

Table 1  List of the abbreviations used in the article

Abbreviation Explanation

IoT Internet of Things

QoS Quality of Service

TR Task Response

RV Random Variable

TD Terminal Device

VM Virtual Machine
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to create simulation models of the fog computing infra-
structure to evaluate the performance. They employ dif-
ferent traffic patterns to assess how the infrastructure 
components perform. In [21], the authors develop a theo-
retical framework to analyze the performance and energy 
consumption, giving recommendations of how to balance 
the time and energy consumption for delay-tolerant and 
delay-sensitive applications. They define two types of off-
loading models, partial offloading whereby some tasks 
are offloaded and the remaining are processed locally, 
and full offloading whereby all tasks are offloaded. In [22], 
the authors propose methods based on Markov Decision 
Processes and Q-learning to help TDs offload tasks to the 
best fog node or to the cloud based on the requirements 
of the applications and the conditions of the nearby fog 
nodes. In addition, fog nodes can offload tasks to each 
other or to the cloud to balance the load and improve TR 
time. In [23], the authors explore the impact of offload-
ing on TR time in 3-tier IoT systems considering such 
parameters as application characteristics, system com-
plexity, communication cost, and data flow configuration. 
In [24], the authors assert that fog computing can reduce 
TR time drastically. In particular, they compare the TR 
time and energy costs for the different options of offload-
ing a task to the edge or the cloud, as well as of carrying it 
out on the TD itself. A TD can make the offloading deci-
sion dynamically as a new task is generated, based on the 
available information on the network connections and 
the states of the edge and the cloud. Using simulation, 
they show that leveraging customization and dynamic 
offloading decision can decrease the TR time drastically. 
The present work is superior in that it shows the same 
thing but analytically.

Various approaches have been taken to reduce TR 
time, among them improving the resource allocation 
policy at the fog. For example, in [25], the authors dis-
cuss the problem of allocating computing resources at 
the fog, assuming that each user gets its own VM, which 
is not shared with others. Two offloading strategies are 
proposed to minimize TR time, one considering the 
resource management and the other determining the 
optimal number of VMs allocated to the task. In [26], 
the authors propose an approach aiming at reducing TR 
time and the whole processing time as well as the cost of 
VMs by assigning user requests in an efficient manner. 
The proposed model is implemented to find all available 
resources and help in load balancing leading to minimum 
execution time and VM cost for the cloud users by opti-
mally allocating tasks to the available resources. In [27], 
the authors design an application placement strategy 
based on dynamic scheduling that can effectively uti-
lize the schedule gaps in the virtual machines of the dif-
ferent layers to minimize the makespan that meets the 

deadlines. The strategy overcomes the problem found in 
placement strategies based on the directed acyclic graph 
(DAG) for rapid execution in the hierarchical fog-cloud 
environment, known to be an NP-hard optimization 
problem.

Another approach to reduce TR time is to manage vir-
tualization at the fog, which is the strategy adopted by 
the present work. In [28], the authors focus on minimiz-
ing the transmission time to the fog, through a greedy 
approach concerning the data to be transferred, which 
indirectly saves communications bandwidth and energy 
on TDs. Their approach uses a container-based virtual-
ization technique. In [29], the authors propose virtualiza-
tion of a minimum set of functions to support specific 
IoT services, placing a computing node and a network 
slice close to the TD, obviating the need for the traffic of 
the TD to travel to the cloud. They show that the trans-
mission time can be halved if a fog, rather than a cloud, 
is used. Network slicing is also used in [30], where the 
authors propose a resource utilization based framework 
for vehicular fog computing equipped with network slic-
ing and load-balancing. The fog nodes are placed on the 
road side where they made available to tasks offloaded 
from vehicles. The framework can manage the whole net-
work, and use network function virtualization to manage 
the data plane. It can handle a mix of slicing configura-
tions, capable of balancing the loads between various 
slices per node, and can support multiple fog computing 
nodes. In [31], the authors propose a virtual fog frame-
work consisting of three layers, object virtualization, 
network function virtualization and service virtualiza-
tion. A fog for IoT systems is developed by a virtual fog 
framework. With the help of a fog, object virtualization 
addresses issues commonly existing in IoT, such as het-
erogeneity, interoperability, multi-tenancy, scalability, 
counter-productivity, mobility and protocol inconsist-
ency. The proposed virtual fog allows to maximize the 
utilization of hardware and improve productivity by 
effectively managing and dynamically sharing the hard-
ware among TDs and applications.

For the analysis of fog performance, much research 
work resort to optimization techniques. For example, in 
[32], the authors aim to maximize the expected profit of 
the network service provider through admitting as many 
TDs as possible. They formulate a quadratic integer pro-
gramming problem for the service function chain place-
ment and obtain an exact solution when the size is small 
or moderate. Furthermore, they develop a Markov based 
approximation algorithm that delivers a near-optimal 
solution with a bounded moderate gap without measure-
ment perturbation caused by resource demand uncer-
tainties. They finally extend the proposed approach to the 
measurement perturbation case, for which the solution 
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exhibits a near-optimal gap with a guaranteed error 
bound. By contrast, a stochastic mixed-integer nonlin-
ear programming problem is formulated in [33] to jointly 
optimize the task offloading decision, elastic computa-
tion resource scheduling, and radio resource allocation. 
Lyapunov optimization theory is employed to decom-
pose the original problem into four subproblems which 
are then solved by convex decomposition and matching 
game. The authors analyze the trade-off between energy 
efficiency and TR time and study the system parame-
ters that impact them. They also propose and analyze a 
scheme for task offloading and resource allocation, aim-
ing at optimizing network energy efficiency. Further-
more, integer linear programming is leveraged in [34] to 
produce offline an optimal solution of edge server place-
ment, serving as stage I in a two stage approach. In stage 
II, an online stage, a game theory based scheme of base 
station remapping is developed to deal with the mobility 
of users. The authors study the both the overall TR time 
of the entire system and the fairness in expected TR time 
of individual base station.

Queueing theory has also been used in the characteri-
zation of TR time, as is done in the present article. In 
[35], the authors proposed an offloading model based 
on the amount of required work for each task which dif-
fers from one task to the other. Formulas for key per-
formance measures are derived using queueing theory, 
where the TDs are described as an M/G/1 system and 
the fog and cloud nodes are as an M/G/m system. The 
local waiting system is modeled as an M/G/1 queue-
ing system while the waiting process at the fog node 
is modeled as an M/G/m queuing system. In [36], the 
model is extended with an offloading strategy based on 
the processing needs and data size, taking into consid-
eration that tasks differ from each other. They present 

a framework for TR time and energy consumption 
evaluation. The proposed model assumes that the trans-
mission delay between the TD and the fog node is negli-
gibly small. When all VMs at the fog node are occupied, 
an arriving task is sent to the remote cloud with a con-
stant transmission delay. The cloud serving process is 
modeled as an M/G/∞ queuing system. A related work 
using the same queueing systems is provided in [37] to 
derive expressions for the TR time under the baseline 
virtualization mode. In [38], fog nodes are modeled as 
an open Jackson queueing network that can be utilized 
to decide and measure the QoS guarantees with respect 
to the TR time. The analysis is performed according to 
diverse parameters, such as the task arrival rate and task 
service rate. In [7], a queueing theory approach to traf-
fic offloading in heterogeneous cellular networks is pre-
sented. The authors propose offloading algorithms that 
maximize the overall network throughput and energy 
efficiency by taking users’ traffic load into considera-
tion when making the offloading decision. The opti-
mization problem aims to find the optimal offloading 
decision and the transmit powers of each user based on 
the obtained offloading decision while maintaining the 
queue stability.

System model
In the present work, we model a fog system comprising 
a finite number of TDs, spread randomly in a fog cell, 
and has computational facilities, in the form of virtual 
machines (VMs), as shown in Fig. 2. The applications in 
the TD continually generate tasks that need processing. 
Based on whether a task is light or heavy, based on a user 
defined criterion, the task is processed either locally, at 
the TD, or offloaded to the fog for remote processing. 
The other system assumptions are as follows.

Fig. 2  Proposed queueing model. It comprises an M/G/1 queue at the TD and an M/G/m queue at the fog. The forwarder F offloads long tasks to 
the fog for remote processing, and retains short tasks at the TD for local processing
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	 1.	 The fog cell has N TDs which can be either static or 
mobile within the cell.

	 2.	 The fog node, serving the fog cell, has m VMs.
	 3.	 Each TD generates tasks according to a Poisson 

process with rate (parameter) λ. Consequently, if 
G denotes the task inter-generation time, then G is 
exponentially distributed, i.e. fG(t)=λe−λt, t≥0.

	 4.	 Each task requires a certain amount of time T if 
executed locally on the CPU of the TD. This time is 
assessed by the application that generates the task and 
is attached as a tag to the task (a meta-data field).

	 5.	 The task processing time T is a random variable 
(RV) of exponential distribution with parameter μ, 
i.e. fT(t)=μe−μt, t≥0.

	 6.	 Based on the value of T and a user defined thresh-
old τ, a forwarding routine (F) at the TD forwards 
the task either to the local buffer, to be executed by 
the TD itself, or to the remote buffer at the fog, to 
be executed remotely by one of the m VMs there. 
In particular, if T<τ, the task is executed locally, 
and if T≥τ, it is executed remotely. In the present 
work, the former is called a local task and the latter 
is a remote task.

	 7.	 Via virtualization, each VM can be tailored to pro-
cess a remote task in a certain amount of time. If 
this time is denoted by the RV SR, then the service 
rate of the VM is 1/E[SR].

	 8.	 The local buffer size of each TD is infinite, and so is 
the remote buffer size at the fog. In modern times, 
memory units have become drastically inexpensive, 
encouraging the installation of gigantic buffers, 

which can be readily approximated as infinite with 
no loss of accuracy.

	 9.	 The task size in bytes is constant for all tasks. Con-
sequently, for each task, the transmission time 
from the generating TD to the fog is also constant, 
and we will denote it by ξ.

	10.	 Similarly, the task response size in bytes is constant 
for all tasks. Consequently, for each remote task 
response the transmission time from the fog to the 
TD that generated the task is also constant, and we 
will denote it by ψ.

Based on the forwarding threshold τ, and referring to 
Fig. 3, the fraction α of tasks that will be local is the area 
under the curve fT(t)=μe−μt from t=0 to t=τ. That is,

Accordingly, α = 1− α is the fraction of tasks that 
will be remote. We can also look at α as the probability 
that a generated task will be local, and α = 1− α  the 
probability that it will be remote. Accordingly, based 
on the splitting property of the Poisson process [39], 
the task arrival process at the local queue is Poisson 
with parameter

As the value of τ determines the amount of task off-
loading, it is a significant factor in determining the task 

(1)
α =

τ

0
fT (u)du

= µ
τ

0
e−µudu

= 1− e−µτ

(2)�L = α�

Fig. 3  The offloading threshold, τ, partitions the exponential curve into two truncated exponentials. Under the curve, the shaded area represents 
the fraction α of tasks that are local, while the complementary white area represents the fraction α of tasks that are remote
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response (TR) time. In turn, it has also a crucial impact 
on the TD energy consumption of the entire system. Spe-
cifically, lowering τ decreases CPU consumption, while it 
increases communications consumption, and vice versa.

Performance analysis
In this section, we will characterize the TR time at three 
different levels: local task, remote task, and task in gen-
eral. Based on the assumptions in the preceding section, 
for a local task, the task service time is the same as its 
processing time. That is because, the task processing 
time is estimated based on the CPU of the TD where the 
task is generated. On the other hand, for a remote task, 
the two times are different, unless the fog is running the 
baseline virtualization mode with a unity speedup factor, 
k=1. We note also that although the task processing time 
is exponential at the time of generation, due to the for-
warding process it is no longer exponential for both local 
and remote tasks. That is because the processing time 
for local tasks is upper bounded by τ, which represents a 
lower bound for remote tasks. Since the processing time 
needed by each task determines the service time of that 
task, whether locally or remotely, queueing models with 
general, rather than exponential (or Markovian) service 
times will be resorted to.

Local TR time
The local TR time will be the queueing time plus the 
service time at the local queueing system, which per 
the assumptions discussed above is an M/G/1 model 
[39]. The task service time SL of this task will be exactly 
its task processing time, i.e. truncated exponential with 
parameter μ, upper bounded by τ. To find the distribu-
tion of SL, consider for the moment an exponentially 
distributed RV A with parameter μ. The cumulative dis-
tribution of A given that A is upper bounded by some 
value τ is given by

where t<τ. Since

then

 Using this result, the distribution fSL(t) of the service 
time SL of a local task is given by

FA|A<τ (t) = P[A < t|A < τ ]

=
P[A<t]
P[A<τ ]

,

(3)P[A < t] = µ

∫ t

0

e−µxdx = 1− e−µt ,

FA|A<τ (t) =
1− e−µt

1− e−µτ
.

With this distribution at hand, we can find the expecta-
tion E[SL] of SL as

Integrating by parts, we get

In a similar manner, using integration by parts twice in 
the process, we can find the second moment of SL to be

We are now in a position to find the expected TR time 
E[RL] of a local task, which is the expected queueing time 
E[QL] , i.e. the expected time spent at the local buffer 
before going to the local CPU, plus the expected service 
time E[SL] at the local CPU. That is,

Based on the assumptions outlined above, the queueing 
model at the TD is an M/G/1 system, for which it can be 
shown [39] that

Using (7), (2), (5), (6), and (8), we can easily find the 
expected TR time of a local task to be

To validate this result, we will take its limit as τ→∞, 
which makes the fog inaccessible, getting

This result is greatly reassuring, as it is the response 
(sojourn) time of an M/M/1 queueing system [39]. Indeed, 
without a fog all the TD generated tasks would go to the 
local queue which would then have exponential inter-
arrival time (with parameter λ) and exponential service 
time (with parameter μ), both being the defining character-
istics of an M/M/1 queueing system.

(4)
fSL(t) = d

dx
FA|A<τ (t)

=
µe−µt

1−e−µτ .

E[SL] =
∫ τ

0
tf SL(t)dt

=
µ

1−e−µτ

∫ τ

0
te−µtdt.

(5)E[SL] =
1− e−µτ (1+ µτ)

µ
(

1− e−µτ
) .

(6)

E
[

S2L
]

=
∫ τ

0
t2fSL(t)dt

=
µ

1−e−µτ

∫ τ

0
t2e−µtdt

=
2−

(

µ2τ 2+2µτ+2
)

e−µτ

µ2(1−e−µτ )
.

(7)E[RL] = E[QL]+ E[SL].

(8)E[QL] =
�LE

[

S2L
]

2(1− �LE[SL])
.

(9)�
[

RL

]

=
�
(

2 −
(

(1 + ��)2 + 1
)

e−��
)

2�(� − �(1 − e−�� (1 + ��)))
+

1 − e−�� (1 + ��)

�(1 − e−�� )
.

(10)

lim�→∞�
[

RL

]

= lim�→∞

(

�(2−((1+��)2+1)e−��)
2�(�−�(1−e−�� (1+��)))

)

+ lim�→∞

(

1−e−�� (1+��)

�(1−e−�� )

)

=
1

�−�
.
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The stability of the local queueing system is ensured by 
keeping its arrival rate strictly less than its service rate, or 
�L < 1/E[SL] , which is equivalent to the task generation 
rate λ satisfying

Remote TR time
At each TD, a fraction α = e−µτ of the Poisson stream 
of tasks generated is offloaded to the fog for remote 
execution. Based on the splitting (thinning) property of 
Poisson processes [40], a Poission stream with param-
eter α� arrives at the fog from each TD. Thus, N Pois-
son streams arrive at the fog from the N TDs of the 
cell. Based on the merging (superposition) property of 
Poisson processes [40], the arrival process at the remote 
queue is Possion with parameter

The expected remote TR time is the sum of the expected 
remote queueing time, expected remote service time, and 
both the transmission time ξ of the task from the TD to 
the fog, and the transmission time ψ of the task’s response 
from the fog back to the TD. Let RR, QR and SR be the TR 
time, task queueing time and task service time, respec-
tively, at the fog. Accordingly, the expected TR time E[RR] 
is given by

Since the arrival process at the fog is Poisson, and since 
the processing time is not exponential, but rather a trun-
cated exponential, then the remote queueing system at 
the fog is a perfect M/G/m system [39]. To evaluate the 
expected queueing time at the fog there is a very good 
approximation [41]

where ̥  is given by

 with E[SR] and E
[

S2R
]

 being the first moment (expecta-
tion) and the second moment, respectively, of the remote 
task service time SR. Incidentally, this approximation is so 
good that it yields, if we substitute in it m=1, the exact 
expression (5) of the M/G/1 system.

The stability of the remote queueing system is ensured by 
making its arrival rate strictly less than its service rate, i.e.

(11)� <
µ

1− e−µτ (1+ µτ)
.

(12)�R = Nα� = N�e−µτ

(13)E[RR] = E[QR]+ E[SR]+ ξ + ψ .

(14)E[QR] ≈
�
m
R E

[

S2R
]

(E[SR])
m−1

2(m− 1)!(m− �RE[SR])
2
̥
,

̥ =

m−1
∑

i=0

(�RE[SR])
i

i!
+

(�RE[SR])
m

(m− 1)!(m− �RE[SR])
,

Next, we will consider three modes for the remote TR 
time, corresponding to three virtualization modes. For 
each mode, the task service time will be different due to 
the change in the virtualization mode. The change will be 
reflected in the two moments E[SR] and E

[

S2R
]

 needed in 
Eq. (14).

Perfect virtualization (constant service time):
In the perfect virtualization mode, the fog will place for 
each incoming task a VM with computational power 
exactly proportional to the computational needs of the 
arriving task. For example, if a task is computationally 
heavy, the fog will place for it an equally computation-
ally heavy VM and if it is computationally light, the fog 
will place for it an equally computationally light VM, such 
that the task service time is always a constant c>0. Conse-
quently, the queueing model at the fog for this mode is of 
an M/D/m system.

Let RRP , QRP and SRP be the TR time, queueing time and ser-
vice time, respectively, of remote tasks under the perfect vir-
tualization mode. Given the fact that SRP is a degenerate RV of 
value c, then the queueing model at the fog for this mode is an 
M/D/m system, with the first two moments of SRP being

and

Using (13), (14), (16), (17), and (12), we can find the 
expected TR time in the perfect virtualization mode to be

where

Using (15), the stability condition of the remote queue-
ing system for the perfect virtualization mode is

Semiperfect virtualization (uniform service time):
The semiperfect virtualization mode is more flex-
ible than the perfect virtualization mode. Here, the 

(15)�R <
m

E[SR]
.

(16)E
[

SRP
]

= c

(17)E

[

S2RP

]

= c2.

(18)

E
[

RRP

]

≈
�
m
R c

m+1

2(m− 1)!(m− �Rc)
2
̥RP

+ c + ξ + ψ ,

̥RP =

m−1
∑

i=0

(�Rc)
i

i!
+

(�Rc)
m

(m− 1)!(m− �Rc)
.

�R <
m

c
.
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fog cannot guarantee all arriving tasks the same ser-
vice time, as was the case in the perfect virtualization 
mode. Rather, it guarantees service times that are uni-
formly distributed between pre-defined limits a and 
b, with a<b. Any remote task, no matter how heavy or 
how light will be served by a VM at the fog within these 
two limits, with any value between the two limits being 
equally likely.

Let RRS , QRS and SRS be the TR time, queueing time 
and service time, respectively, of remote tasks under the 
semiperfect virtualization mode. Given the fact that SRS is 
uniformly distributed, SRS ∼ U [a, b] , then the queueing 
model at the fog for this mode is an M/U/m system, with 
the first two moments of SRS being

and

Using (13), (14), (19), (20), and (12), we can find the 
expected TR time in the perfect virtualization mode to be

where

Using (15), the stability condition of the remote queue-
ing system for the semiperfect virtualization mode is

Baseline virtualization (truncated exponential service time):
Unlike the above two modes, which are novel, this 
mode is the default in the literature. In this mode, the 
arriving tasks are served at the fog by midentical VMs, 
each having the same computational power. That is, the 
computational power of a VM is the same as any other 
VM in the fog, and generally is k≥1 times the computa-
tional power of a TD. In other words, the computational 
power of any VM is not related to the computational 
needs of the arriving task. The computational needs of 
a remote task are related to the processing time of that 
task, where the latter is a truncated exponential time 

(19)E[SRS ] =
a+ b

2
,

(20)E[S2RS ] =
b2 + ab+ a2

3
.

(21)

E
[

RRS

]

≈
�
m
R

b2+ab+a2

3

(

a+b
2

)m−1

2(m− 1)!

(

m− �R
a+b
2

)2

̥RS

+
a+ b

2
+ ξ + ψ ,

̥RS =

m−1
∑

i=0

(

�R
a+b
2

)i

i!
+

(

�R
a+b
2

)m

(m− 1)!

(

m− �R
a+b
2

) .

�R <
2m

a+ b
.

with parameter μ and is lower bounded by some value 
τ>0, as shown in Fig. 3.

Let RRB , QRB and SRB be the TR time, queueing time 
and service time, respectively, of remote tasks under 
the baseline virtualization mode. Given the fact that SRB 
is generally distributed, then the queueing model at the 
fog for this mode is of the M/G/m system, and the first 
two moments of SRB will be obtained next.

Before computing the moments, consider for a 
moment an exponential RV A with parameter μ and 
lower bounded by a positive value τ. Then for t≥τ, we 
have the conditional cumulative distribution

This result can be used to find the conditional 
distribution

Re-scaling the distribution to account for the VM 
speedup factor k, gives the distribution of the task ser-
vice time

This result can be validated by integrating from τk  to 
∞ to obtain 1.

Now that we have the distribution fSRB (t) at hand, the 
first moment of SRB is

Using integration by parts, we get

This result is logical, since without the speedup fac-
tor the expectation of a truncated exponential would be 
E[SR] = τ + 1

µ
.

In a similar manner, utilizing integration by parts 
twice in the process, the second moment of SRB is

Using (13), (14), (24), (25), and (12), we can find the 
expected TR time in the baseline virtualization mode to be

FA|A≥τ (t) = P[A < t|A ≥ τ ]

= e−µτ−e−µt

e−µτ

(22)
fA|A≥τ (t) = d

dt
FA|A≥τ (t)

=
µe−µt

e−µτ , t ≥ τ .

(23)fSRB (t) =
kµe−kµt

e−µτ
, t ≥

τ

k
.

E
[

SRB
]

=
∫∞
τ
k

tf SRB
(t)dt

=
kµ
e−µτ

∫∞
τ
k

te−kµtdt

(24)

E
[

SRB
]

=
kµ

e−µτ

[

e−µτ

k2µ

(

τ +
1

µ

)]

=
1

k

(

τ +
1

µ

)

=
τµ+ 1

kµ

(25)

E

[

S2RB

]

=
∫∞
τ
k

t2fSR(t)dt

=
kµ
e−µτ

∫∞
τ
k

t2e−kµtdt

=
(µτ)2+2µτ+2

(kµ)2
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where

Using (15), the stability condition of the remote 
queueing system for the baseline virtualization mode is

Overall TR time
Above we have calculated the expected TR time for both 
local and remote tasks. However, since task offloading 
is an internal activity, the metric that the end user cares 
about is the overall TR time, which is the time between 
the instant a task is generated by an application at the 
TD and the instant the response of that task is received 
back by the application. Indeed, the end user does not, 
and should not, care much about whether the task was 
executed locally or remotely. What the end user cares 
about is the overall TR time defined next.

Definition 1  (Overall TR time): The overall TR time, RO, 
is the amount of time between the instant a task is generated 
by an application at the TD and the instant the response of 
that task is received back by the application, regardless of 
whether the task was served locally or remotely.

From Definition 1, it is clear that the expected overall 
TR time E[RO] is the weighted sum of the expected local 
and remote TR times. That is,

Using this formula and Eq. (9), we can generate three 
equations for the overall TR times corresponding to the 
three modes above: perfect, semiperfect and baseline 
virtualization.

Perfect virtualization (constant service time):
Using (27), the expected overall TR time, E

[

ROP

]

 , for the 
perfect virtualization mode is given by

where α is given by (1), E[RL] by (9), and E
[

RRP

]

 by (18).

(26)

�
[

RRB

]

≈

�m
R

(��)2+2��+2

(k�)2

(

��+1

k�

)m−1

2(m − 1)!

(

m − �R
��+1

k�

)2

ϝRB

+
�� + 1

k�
+ � + � ,

̥RB =

m−1
∑

i=0

(

�R
τµ+1
kµ

)i

i!
+

(

�R
τµ+1
kµ

)m

(m− 1)!

(

m− �R
τµ+1
kµ

) .

�R <
kmµ

τµ+ 1
.

(27)E[RO] = αE[RL]+ αE[RR],

(28)E
[

ROP

]

= αE[RL]+ αE
[

RRP

]

,

Semiperfect virtualization (uniform service time):
Using (27), the expected overall TR time, E

[

ROS

]

 , for the 
semiperfect virtualization mode is given by

where α is given by (1), E[RL] by (9), and E
[

RRS

]

 by (21).

Baseline virtualization (truncated exponential service time):
Using (27), the expected overall TR time, E

[

ROB

]

 , for the 
baseline virtualization mode is given by

where α is given by (1), E[RL] by (9), and E
[

RRB

]

 by (26).

Numerical results
The aim of this section is two fold. First, we will vali-
date the analytical results obtained in the preceding 
section using simulation. To this end, we have devel-
oped a discrete event Monte Carlo simulation pro-
gram to compute the TR time for each of the three 
virtualization modes considered. The program is writ-
ten in Python (We have made the code publicly avail-
able at https://​github.​com/​Virtu​aliza​tion-​Fog/​FogV.​
git). It was run on a PC having an Intel i7 processor @ 
2.4 GHz, with 16 GB of main memory. Each simula-
tion experiment comprised 4 million runs, which were 
found enough to reach convergence.

The second aim of this section is to investigate the 
impact of system parameters on the TR time. To this 
end, numerous fog examples have been assumed. For 
each example, the TR time has been calculated for dif-
ferent sets of parameters twice, once using the equations 
obtained in the preceding section and once using the 
simulation program. As will be seen in the figures below, 
the match between the analytical results and the simula-
tion results is quite spectacular.

All the factors that impact the TR time were incorporated 
in the experiments. Seven of these factors that are common 
in all modes are shown in Table 2. Besides these seven fac-
tors, there are four that are mode specific: c in the perfect 
mode, a and b in the semiperfect mode, and k in the base-
line mode. In all the experiments, we fixed the task trans-
mission time from a TD to the fog at ξ=20 sec, and the 
response transmission time form the fog to the TD at ψ=10 
sec. This means that we implicitly assume that the task size 
in bytes is twice as large as the response size. Furthermore, 
we fixed the expected task processing time at 909 sec, or 
μ=1/909=0.0011 task/sec. Recall that the processing time 
of a task is estimated at the computational power of the TD.

For each of the three considered modes, we carried out 
four experiments, each designed to validate an analyti-
cal result on the one hand, and assess the impact of some 

(29)E
[

ROS

]

= αE[RL]+ αE
[

RRS

]

,

(30)E
[

ROB

]

= αE[RL]+ αE
[

RRB

]

,

https://github.com/Virtualization-Fog/FogV.git
https://github.com/Virtualization-Fog/FogV.git
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parameter on the TR time on the other hand. For each 
of these four experiments, we end up displaying three 
types of curves: one for the expected local TR time, one 
for the expected remote TR time, and one for the overall 
TR time. Each type has two curves, one from the simula-
tion experiment and one from the corresponding analyti-
cal equation. As the Figures below illustrate, for all three 
modes, the expected local TR time is substantially larger 
than the expected remote TR time. This confirms the fea-
sibility of using a fog in general and the proposed virtu-
alization modes in particular. It can also be seen that in 
each mode the expected overall TR time curve, which is 
what the end user cares about, falls between the local and 
remote curves as anticipated.

At the end of this section, we provide a Figure compar-
ing the overall TR time for all three modes. The Figure 
shows vividly that proper virtualization, either perfectly 
or semiperfectly, is more fruitful for TR time reduction 
than using VMs each of them nineteen times faster than 
a TD.

Remote TR time under perfect virtualization
The perfect virtualization mode is characterized by hav-
ing a constant service time c at the fog all remote tasks. 
In this section, we use c=40 sec in all four experiments 
pertaining to this mode. The analytical and simulation 
results for this mode are displayed in Fig.  4. The ana-
lytical results are obtained from Eqs. (18), (9) and (28), 
which provide the expected remote TR time E[RRP ] , 
expected local TR time E[RL] , and expected overall TR 
time E[ROP ] , respectively, for the semiperfect virtualiza-
tion mode. The simulation results are obtained from run-
ning our simulator 4 million runs.

First, Fig.  4a displays the impact of the task genera-
tion rate λ on the TR time. The system parameters are 
fixed at N=500 TDs, m=5 VMs, and τ=900 sec. As can 
be seen in the Figure, the TR time, for all three curves, 
increases almost linearly with λ until just before the 
instability point at the end of the λ range. To understand 
this curve behavior, recall that the TR time is made up 

of three components: queueing time, service time and 
round trip transmission time. For the perfect mode, the 
last two components are constant. It is only the first com-
ponent that increases with λ, slightly and linearly at the 
beginning then heavily and non-linearly as the queueing 
system at the fog approaches its instability point (at the 
end of the curve). Second, Fig. 4b displays the impact of 
the task off-loading threshold τ on the expected TR time. 
The system parameters are fixed at N=500 TDs, m=5 
VMs, and λ=0.0001 task/sec. As can be seen in the Fig-
ure, the remote TR time is roughly a straight line. That 
is because every task, regardless of its computational 
needs, is completed in exactly the same time, 40 sec. On 
the other hand, as τ increases, more tasks are processed 
locally, resulting in a longer local TR time. It is only the 
local TR time that increases with τ non-linearly, since the 
service times of local tasks are exponentially distributed. 
Third, Fig. 4c displays the impact of the number N of TDs 
in the fog cell on the TR time. The system parameters 
are fixed at τ=900 sec, m=5 VMs, and λ=0.0001 task/
sec. From this Figure we note that the local TR time does 
not change over the range of N. This is intuitive because 
processing in each TD is independent of other TDs in 
the cell. When N is high (in our experiment, N>1500), 
the remote TR time, on the other hand, increases sig-
nificantly since much traffic pours into the fog, increas-
ing the queueing time there somewhat. Finally, Fig.  4d 
displays the impact of the number m of VMs in the fog 
node on the expected TR time. The system parameters 
are fixed at τ=900 sec, N=500 VMs, and λ=0.0001 task/
sec. This Figure has two observations. First, changing 
the number m of VMs has no influence on the local TR 
time E[RL] , which is intuitive. Second, the impact of m on 
the remote TR time, E

[

RRP

]

 , is almost unchanged after a 
small value of m, here after m=5. That is because as m 
increases the queueing time in the fog decreases, at some 
point becoming negligible compared to the other two 
constant components of the TR time: round trip trans-
mission time and service time.

Remote TR time under semiperfect virtualization
The semiperfect virtualization mode is characterized by 
having a uniformly distributed service time, with param-
eters a and b, where a<b, for all remote tasks. We fixed 
a=30 sec and b=100 sec in all four experiments pertain-
ing to this mode. The analytical and simulation results for 
this mode are displayed in Fig.  5. The analytical results 
are obtained from Eqs. (21), (9) and (29), which provide 
the expected remote TR time E[RRS ] , expected local TR 
time E[RL] , and expected overall TR time E[ROS ] , respec-
tively, for the perfect virtualization mode. The simulation 
results are obtained from running our simulator 4 million 

Table 2  Main system parameters

Parameter Description

λ Task Arrival Rate

μ Task processing time

m Number of Fogs

N Number of TDs

τ Processing time threshold

ξ Transmission time from TD to fog

ψ Transmission time from fog to TD

a,b Uniform distribution parameters
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runs. We can notice that the behavior of the curves of this 
Figure is very close to that of the curves of the preced-
ing one, Fig. 4. That is because the processing time now is 
confined uniformly in the interval [30,100]. Therefore, we 
will not repeat below the detailed comments given above 
for the perfect mode.

Figure  5a displays the impact of the task generation 
rate λ on the expected TR time. The system param-
eters for this experiment are fixed at N=500 TDs, m=5 
VMs, μ=0.0011 task/sec, and τ=900 sec. Figure  5b 
displays the impact of the task off-loading threshold τ 
on the expected TR time. The system parameters for 
this experiment are fixed at N=500 TDs, m=5 VMs, 
μ=0.0011 task/sec, and λ=0.0001 task/sec. Figure  5c 
displays the impact of the number N of TDs in the fog 

cell on the expected TR time. The system parameters 
for this experiment are fixed at τ=900 sec, m=5 VMs, 
μ=0.0011 task/sec, and λ=0.0001 task/sec. Figure  5d 
displays the impact of the number m of VMs in the 
fog node on the expected TR time. The system param-
eters for this experiment are fixed at τ=900 sec, N=500 
VMs, μ=0.0011 task/sec, and λ=0.0001 task/sec.

Remote TR time under baseline virtualization
The baseline virtualization mode is characterized by hav-
ing a truncated exponential service time for all remote 
tasks, with a speedup factor k. We fixed k=19 in all four 
experiments pertaining to this mode. The analytical and 
simulation results for this mode are displayed in Fig.  4. 
Note that the speedup factor k impacts only the remote 

Fig. 4  TR time for perfect virtualization mode, where μ=0.0011 task/sec, α=0.63, c=40 sec, ξ=20 sec, and ψ=10 sec. a TR time versus the task 
inter-generation λ. b TR time versus the off-loading threshold τ. c TR time versus the number of TDs N. d TR time versus the number of VMs m 
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TR time. As k increases, the remote TR time decreases, 
and vice versa. The analytical and simulation results for 
this mode are displayed in Fig. 6, where we can see that 
the match between both is remarkable. The analytical 
results are obtained from Eqs. (26), (9) and (30), which 
provide the expected remote TR time E[RRB ] , expected 
local TR time E[RL] , and expected overall TR time 
E[ROB ] , respectively, for the baseline virtualization mode. 
The simulation results are obtained from running our 
simulator 4 million runs.

Figure  6a displays the impact of the task generation 
rate λ on the expected TR time. The system param-
eters for this experiment are fixed at N=500 TDs, m=5 
VMs, and τ=900 sec. From this Figure draw the follow-
ing two points. First, the local TR time is largely linear, 
increasing with λ very slightly. This is to be expected 
since the local queueing system is of the M/G/1 type. 

Second, the remote TR time is almost linear at the 
beginning, increasing slightly with λ till some point, 
roughly λ=0.0028, where it increases dramatically. This 
is also intuitive as when λ reaches that dramatic point it 
produces, in light of the large number of TDs, N=500, 
huge traffic into the fog, jacking up queueing time 
there drastically. Figure  6b displays the impact of the 
task off-loading threshold τ on the expected TR time. 
The system parameters for this experiment are fixed 
at N=500 TDs, m=5 VMs, and λ=0.0001 task/sec. It 
is interesting to note that the higher the τ, the higher 
both the local TR time and remote TR time, which 
is justified as follows. First, as τ increases more tasks 
with potentially long service times (potentially as long 
as τ) are retained for local processing, which increases 
the local TR time. Second, as τ increases it is true that 
the number of tasks offloaded to the fog will be less, 

Fig. 5  TR time for the semiperfect virtualization mode, where μ=0.0011 task/sec, α=0.63, a=30, b=100, ξ=20 sec. a TR time versus the task 
inter-generation λ. b TR time versus the off-loading threshold τ. c TR time versus the number of TDs N. d TR time versus the number of VMs m 
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but their service times will be large, specifically larger 
than τ. Figure 6c displays the impact of the number N 
of TDs in the fog cell on the expected TR time. The 
system parameters for this experiment are τ=900 sec, 
m=5 VMs, and λ=0.0001 task/sec. We first note that 
the local TR time is independent of N which is intuitive 
since each TD operates independently of all the TDs 
of the fog cell no matter what their number is. We also 
note that the remote TR time exceeds the local TR time 
over the range of N until some value, roughly N =130 
TDs. That is because the fog receives traffic from the 
N TDs, so the higher the N the higher the remote TR 
time. This problem was not seen by the way in the other 
two modes, which confirms their superiority over the 
baseline mode. Finally, Fig.  6d displays the impact of 
the number m of VMs in the fog node on the expected 

TR time. The system parameters for this experiment are 
fixed at τ=900 sec, N=500 VMs, and λ=0.0001 task/
sec. The Figure illustrates, like in the other two modes, 
that increasing the number m of VMs after some mini-
mum, here m=4, is pointless.

Comparison of overall TR time under all three virtualization 
modes
Now it is time to compare the overall TR time in all 
three modes. We plot in Fig.  7 the expected overall TR 
times: E[ROP ] given by (28), E[ROS ] given by (29) and 
E[ROB ] given by (30). The other parameters here have 
the values: μ=0.0011 task/sec, α=0.63, k=19, ξ=20 sec, 
ψ=10 sec, a=30, b=100, and c=40 sec. Plotted also are 
the simulation results which match the analytical results 
spectacularly.

Fig. 6  TR time for the baseline mode, where μ=0.0011 task/sec, α=0.63, k=19, ξ=20 sec, and ψ=10 sec. a TR time versus the task inter-generation 
λ. b TR time versus the off-loading threshold τ. c TR time versus the number of TDs N. d Response times versus the number of VMs m 
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Figure 7a displays the impact of the task generation rate 
λ on the expected TR time. The system parameters for 
this graph are fixed at N=500 TDs, m=5 VMs, μ=0.0011 
task/sec, and τ=900 sec. Figure 7b displays the impact of 
the task off-loading threshold τ on the expected TR time. 
The system parameters for this graph are fixed at N=500 
TDs, m=5 VMs, μ=0.0011 task/sec, and λ=0.0001 task/
sec. Figure  7c displays the impact of the number N of 
TDs in the fog cell on the expected TR time. The sys-
tem parameters for this graph are fixed at τ=900 sec, 
m=5 VMs, μ=0.0011 task/sec, and λ=0.0001 task/sec. 
Figure  7d displays the impact of the number m of VMs 
in the fog node on the expected TR time. The system 
parameters for this graph are fixed at τ=900 sec, N=500 
VMs, μ=0.0011 task/sec, and λ=0.0001 task/sec. As all 
four graphs show, using virtualization either perfectly or 

semiperfectly gives rise to substantial improvement in 
the overall TR time.

Conclusions
In this article we have presented a novel study to char-
acterize the TR time in a fog enabled IoT network under 
three different virtualization modes, departing from pre-
vious studies, which have focused on such traditional fog 
issues as scheduling, load balancing and live migration. 
The main mathematical tool used in our work is queue-
ing theory, which lends itself elegantly to the task waiting 
phenomenon, either locally at the TD or remotely at the 
fog. Two queueing models in particular have been princi-
pally considered, the M/G/1 and M/G/m. To validate the 
analytical results obtained by queueing theory, we have 
developed simulation software, in the Python language, 

Fig. 7  Comparison of the overall TR times for perfect, semiperfect and baseline modes, E[ROP
] represented in (28), E[ROS

] represented in (29) and 
E[ROB

] represented in (30) where μ=0.0011 task/sec, α=0.63, k=19, ξ=20 sec, ψ=10 sec, a=30, b=100, and c=40 sec
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applying Monte Carlo and discrete event notions. The 
experimental work shows clearly that the match between 
the analytical and simulation results is excellent.

The main conclusion of this study is that virtualization 
can be used favorably to reduce TR time. In particular, 
the perfect mode is the best in this regard. However, is 
admittedly hard to implement practically. Therefore, the 
semiperfect mode comes in as a viable alternative, as it 
is easy to implement while it can reduce the TR time sig-
nificantly in comparison with the baseline mode.

Directions where our work can be extended in the 
future include repeating the study with variable transmis-
sion times, from the TD to the fog and from the fog to 
the TD, using reasonable distributions. They also include 
considering mobile TDs, i.e. TDs that move across differ-
ent cells, rather than just within a single cell.

Acknowledgments
None.

Authors’ contributions
All four authors read, edited, revised and approved the final manuscript. They 
also participated in the design of the framework, the running of the experi‑
mental work and the analysis of the numerical results.

Funding
Open access funding provided by The Science, Technology & Innovation 
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank 
(EKB).

Availability of data and materials
We have developed a discrete event Monte Carlo simulation program to 
simulate the fog environment and compute the TR time for all considered 
virtualization modes. The program is written in Python and code is publicly 
available at https://​github.​com/​Virtu​aliza​tion-​Fog/​FogV.​git.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 1 January 2022   Accepted: 28 June 2022

References
	1.	 Khan AUR, Othman M, Madani SA, Ullah KS (2014) A survey of mobile 

cloud computing application models. IEEE Commun Surv Tutor 
16(1):393–413. https://​doi.​org/​10.​1109/​SURV.​2013.​062613.​00160.

	2.	 Sanaei Z, Abolfazli S, Gani A, Buyya R (2014) Heterogeneity in mobile 
cloud computing: Taxonomy and open challenges. IEEE Commun Surv 
Tutor 16(1):369–392. https://​doi.​org/​10.​1109/​SURV.​2013.​050113.​00090.

	3.	 Ray B (2019) The Role of Cloud Computing and Fog Computing in IoT. 
https://​www.​iotfo​rall.​com/​cloud-​fog-​compu​ting-​iot. Accessed 24 Oct 2021.

	4.	 Marinescu DC (2018) Cloud Computing - Theory and Practice, Second 
Edition. Elsevier, San Francisco.

	5.	 Hanes D, Salgueiro G, Grossetete P, Barton R, Henry J (2017) IoT Funda‑
mentals: Networking Technologies, Protocols, and Use Cases for the 
Internet of Things, First Edition. Cisco Press, Indianapolis.

	6.	 Tadakamalla U, Menascé Daniel A (2018) Fogqn: An analytic model for fog/
cloud computing In: 2018 IEEE/ACM International Conference on Utility 
and Cloud Computing Companion, UCC Companion 2018, Zurich, Swit‑
zerland, December 17-20, 2018, 307–313.. IEEE. https://​doi.​org/​10.​1109/​
UCC-​Compa​nion.​2018.​00073.

	7.	 Abdelradi YM, El-Sherif AA, Afify LH (2021) A queueing theory approach 
to traffic offloading in heterogeneous cellular networks. AEU Int J Elec‑
tron Commun 139:153910. https://​doi.​org/​10.​1016/j.​aeue.​2021.​153910.

	8.	 Abdul Majeed A, Kilpatrick P, Spence ITA, Varghese B (2020) Modelling 
fog offloading performance In: 4th IEEE International Conference on 
Fog and Edge Computing, ICFEC 2020, Melbourne, Australia, May 11-14, 
2020, 29–38.. IEEE. https://​doi.​org/​10.​1109/​ICFEC​50348.​2020.​00011.

	9.	 Rista A, Ajdari J, Zenuni X (2020) Cloud computing virtualization: A 
comprehensive survey In: 43rd International Convention on Information, 
Communication and Electronic Technology, MIPRO 2020, Opatija, Croatia, 
September 28 - October 2, 2020, 462–472.. IEEE. https://​doi.​org/​10.​23919/​
MIPRO​48935.​2020.​92451​24.

	10.	 Chaudhari S, Mani RS, Raundale P (2016) Sdn network virtualization 
survey In: 2016 International Conference on Wireless Communications, 
Signal Processing and Networking (WiSPNET), 650–655. https://​doi.​org/​
10.​1109/​WiSPN​ET.​2016.​75662​13.

	11.	 Mahmud MR, Afrin M, Razzaque MA, Hassan MM, Alelaiwi A, AlRubaian 
MA (2016) Maximizing quality of experience through context-aware 
mobile application scheduling in cloudlet infrastructure. Softw Pract Exp 
46(11):1525–1545. https://​doi.​org/​10.​1002/​spe.​2392.

	12.	 Bahl P, Han RY, Li E, Satyanarayanan M (2012) Advancing the state of mobile 
cloud computing In: The Third ACM Workshop on Mobile Cloud Computing 
and Services, ACM, 21–28. https://​doi.​org/​10.​1145/​23078​49.​23078​56.

	13.	 Al-Fuqaha AI, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) 
Internet of things: A survey on enabling technologies, protocols, and applica‑
tions. IEEE Commun Surv Tutorials 17(4):2347–2376. https://​doi.​org/​10.​1109/​
COMST.​2015.​24440​95.

	14.	 Usmani Z, Singh S (2016) A survey of virtual machine placement 
techniques in a cloud data center. Procedia Comput Sci 78:491–498. 
https://​doi.​org/​10.​1016/j.​procs.​2016.​02.​093.

	15.	 Feng D, Wu Z, Zuo D, Zhang Z (2019) Erp: An elastic resource provisioning 
approach for cloud applications. PLoS ONE 14:0216067. https://​doi.​org/​
10.​1371/​journ​al.​pone.​02160​67.

	16.	 Fourati M, Marzouk S, Jmaiel M (2022) Epma: Elastic platform for 
microservices-based applications: Towards optimal resource elasticity. J 
Grid Comput 20. https://​doi.​org/​10.​1007/​s10723-​021-​09597-5.

	17.	 Virtual Machine Desired State Configuration. https://​flings.​vmware.​com/​
virtu​al-​machi​ne-​desir​ed-​state-​confi​gurat​ion. Accessed 22 Jul 2022.

	18.	 Nottingham C (2021) Change the size of a virtual machine. https://​docs.​
micro​soft.​com/​en-​us/​azure/​virtu​al-​machi​nes/​resize-​vm?​tabs=​portal. 
Accessed 13 Mar 2022.

	19.	 Saeik F, Avgeris M, Spatharakis D, Santi N, Dechouniotis D, Violos J, 
Leivadeas A, Athanasopoulos N, Mitton N, Papavassiliou S (2021) Task 
offloading in edge and cloud computing: A survey on mathemati‑
cal, artificial intelligence and control theory solutions. Comput Netw 
195:108177. https://​doi.​org/​10.​1016/j.​comnet.​2021.​108177.

	20.	 Ushakova M, Ushakov Y, Bolodurina I, Shukhman A, Legashev L, Parfenov 
D (2021) Creation of adequate simulation models to analyze perfor‑
mance parameters of a virtual fog computing infrastructure. Procedia 
Comput Sci 186:603–610. https://​doi.​org/​10.​1016/j.​procs.​2021.​04.​182.

	21.	 Wu H, Wolter K (2018) Stochastic analysis of delayed mobile offloading 
in heterogeneous networks. IEEE Trans Mob Comput 17(2):461–474. 
https://​doi.​org/​10.​1109/​TMC.​2017.​27110​14.

	22.	 Aljanabi S, Chalechale A (2021) Improving iot services using a hybrid fog-
cloud offloading. IEEE Access 9:13775–13788. https://​doi.​org/​10.​1109/​
ACCESS.​2021.​30524​58.

	23.	 Shahhosseini S, Anzanpour A, Azimi I, Labbaf S, Seo D, Lim S-S, Liljeberg 
P, Dutt N, Rahmani AM (2021) Exploring computation offloading in iot 
systems. Inf Syst:101860. https://​doi.​org/​10.​1016/j.​is.​2021.​101860.

	24.	 Jaddoa A, Sakellari G, Panaousis E, Loukas G, Sarigiannidis PG (2020) 
Dynamic decision support for resource offloading in heterogeneous 
internet of things environments. Simul Model Pract Theory 101:102019. 
https://​doi.​org/​10.​1016/j.​simpat.​2019.​102019.

https://github.com/Virtualization-Fog/FogV.git
https://doi.org/10.1109/SURV.2013.062613.00160
https://doi.org/10.1109/SURV.2013.050113.00090
https://www.iotforall.com/cloud-fog-computing-iot
https://doi.org/10.1109/UCC-Companion.2018.00073
https://doi.org/10.1109/UCC-Companion.2018.00073
https://doi.org/10.1016/j.aeue.2021.153910
https://doi.org/10.1109/ICFEC50348.2020.00011
https://doi.org/10.23919/MIPRO48935.2020.9245124
https://doi.org/10.23919/MIPRO48935.2020.9245124
https://doi.org/10.1109/WiSPNET.2016.7566213
https://doi.org/10.1109/WiSPNET.2016.7566213
https://doi.org/10.1002/spe.2392
https://doi.org/10.1145/2307849.2307856
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1016/j.procs.2016.02.093
https://doi.org/10.1371/journal.pone.0216067
https://doi.org/10.1371/journal.pone.0216067
https://doi.org/10.1007/s10723-021-09597-5
https://flings.vmware.com/virtual-machine-desired-state-configuration
https://flings.vmware.com/virtual-machine-desired-state-configuration
https://docs.microsoft.com/en-us/azure/virtual-machines/resize-vm?tabs=portal
https://docs.microsoft.com/en-us/azure/virtual-machines/resize-vm?tabs=portal
https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/10.1016/j.procs.2021.04.182
https://doi.org/10.1109/TMC.2017.2711014
https://doi.org/10.1109/ACCESS.2021.3052458
https://doi.org/10.1109/ACCESS.2021.3052458
https://doi.org/10.1016/j.is.2021.101860
https://doi.org/10.1016/j.simpat.2019.102019


Page 17 of 17Mohamed et al. Journal of Cloud Computing           (2022) 11:21 	

	25.	 Sun C, Zhou J, Liuliang J, Zhang J, Zhang X, Wang W (2018) Computation 
offloading with virtual resources management in mobile edge networks 
In: 87th IEEE Vehicular Technology Conference, VTC Spring 2018, Porto, 
Portugal, June 3-6, 2018, 1–5.. IEEE. https://​doi.​org/​10.​1109/​VTCSp​ring.​
2018.​84176​81.

	26.	 Rekha PM, Dakshayini M (2018) Dynamic cost-load aware service broker 
load balancing in virtualization environment. Procedia Comput Sci 
132:744–751. https://​doi.​org/​10.​1016/j.​procs.​2018.​05.​086.

	27.	 Maiti P, Sahoo B, Turuk AK, Kumar A, Choi BJ (2021) Internet of things 
applications placement to minimize latency in multi-tier fog computing 
framework. ICT Express. https://​doi.​org/​10.​1016/j.​icte.​2021.​06.​004.

	28.	 Chebaane A, Spornraft S, Khelil A (2020) Container-based task off‑
loading for time-critical fog computing In: 3rd IEEE 5G World Forum, 
5GWF 2020, Bangalore, India, September 10-12, 2020, 205–211.. IEEE. 
https://​doi.​org/​10.​1109/​5GWF4​9715.​2020.​92214​86.

	29.	 Hwang J, Nkenyereye L, Sung N, Kim J, Song J (2021) Iot service slic‑
ing and task offloading for edge computing. IEEE Internet Things J 
8(14):11526–11547. https://​doi.​org/​10.​1109/​JIOT.​2021.​30524​98.

	30.	 Hejja K, Berri S, Labiod H (2021) Network slicing with load-balancing 
for task offloading in vehicular edge computing. Veh Commun:100419. 
https://​doi.​org/​10.​1016/j.​vehcom.​2021.​100419.

	31.	 Li J, Jin J, Yuan D, Zhang H (2018) Virtual fog: A virtualization enabled 
fog computing framework for internet of things. IEEE Internet Things J 
5(1):121–131. https://​doi.​org/​10.​1109/​JIOT.​2017.​27742​86.

	32.	 Li J, Liang W, Ma Y (2021) Robust service provisioning with service func‑
tion chain requirements in mobile edge computing. IEEE Trans Netw Serv 
Manag 18(2):2138–2153. https://​doi.​org/​10.​1109/​TNSM.​2021.​30626​50.

	33.	 Zhang Q, Gui L, Hou F, Chen J, Zhu S, Tian F (2020) Dynamic task offload‑
ing and resource allocation for mobile-edge computing in dense cloud 
RAN. IEEE Internet Things J 7(4):3282–3299. https://​doi.​org/​10.​1109/​JIOT.​
2020.​29675​02.

	34.	 Cao K, Li L, Cui Y, Wei T, Hu S (2021) Exploring placement of heterogene‑
ous edge servers for response time minimization in mobile edge-cloud 
computing. IEEE Trans Ind Inf 17(1):494–503. https://​doi.​org/​10.​1109/​TII.​
2020.​29758​97.

	35.	 Sopin ES, Daraseliya AV, Correia LM (2018) Performance analysis of the 
offloading scheme in a fog computing system In: 10th International 
Congress on Ultra Modern Telecommunications and Control Systems and 
Workshops, ICUMT 2018, Moscow, Russia, November 5-9, 2018, 1–5.. IEEE. 
https://​doi.​org/​10.​1109/​ICUMT.​2018.​86312​45.

	36.	 Sopin ES, Samouylov KE, Shorgin S (2019) The analysis of the computa‑
tion offloading scheme with two-parameter offloading criterion in 
fog computing In: Internet and Distributed Computing Systems - 12th 
International Conference, IDCS 2019, Naples, Italy, October 10-12, 2019, 
Proceedings (Lecture Notes in Computer Science), 11–20.. Springer, 
Cham. https://​doi.​org/​10.​1007/​978-3-​030-​34914-1_2.

	37.	 Ibrahim AS, Al-Mahdi H, Nassar H (2021) Characterization of task response 
time in a fog-enabled iot network using queueing models with general 
service times. J King Saud Univ Comput Inf Sci. https://​doi.​org/​10.​1016/j.​
jksuci.​2021.​09.​008.

	38.	 Vilaplana J, Solsona F, Teixido I, Mateo J, Abella F, Rius J (2014) A queuing 
theory model for cloud computing. J Supercomput 69(1):492–507. 
https://​doi.​org/​10.​1007/​s11227-​014-​1177-y.

	39.	 Bolch G, Greiner S, De Meer H, Trivedi KS (2006) Queueing Networks and 
Markov Chains - Modeling and Performance Evaluation with Computer 
Science Applications, Second Edition. Wiley. http://​eu.​wiley.​com/​Wiley​
CDA/​Wiley​Title/​produ​ctCd-​04715​65253.​html. Accessed 22 Jul 2022.

	40.	 Ross S (1996) Stochastic Processes, 2nd edition. Wiley, New Delhi.
	41.	 Medhi J (2003) Stochastic Models in Queueing Theory. Academic Press, 

Cambridge.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1109/VTCSpring.2018.8417681
https://doi.org/10.1109/VTCSpring.2018.8417681
https://doi.org/10.1016/j.procs.2018.05.086
https://doi.org/10.1016/j.icte.2021.06.004
https://doi.org/10.1109/5GWF49715.2020.9221486
https://doi.org/10.1109/JIOT.2021.3052498
https://doi.org/10.1016/j.vehcom.2021.100419
https://doi.org/10.1109/JIOT.2017.2774286
https://doi.org/10.1109/TNSM.2021.3062650
https://doi.org/10.1109/JIOT.2020.2967502
https://doi.org/10.1109/JIOT.2020.2967502
https://doi.org/10.1109/TII.2020.2975897
https://doi.org/10.1109/TII.2020.2975897
https://doi.org/10.1109/ICUMT.2018.8631245
https://doi.org/10.1007/978-3-030-34914-1_2
https://doi.org/10.1016/j.jksuci.2021.09.008
https://doi.org/10.1016/j.jksuci.2021.09.008
https://doi.org/10.1007/s11227-014-1177-y
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471565253.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471565253.html

	Characterization of task response time in fog enabled networks using queueing theory under different virtualization modes
	Abstract 
	Introduction
	Related work
	System model
	Performance analysis
	Local TR time
	Remote TR time
	Perfect virtualization (constant service time):
	Semiperfect virtualization (uniform service time):
	Baseline virtualization (truncated exponential service time):

	Overall TR time
	Perfect virtualization (constant service time):
	Semiperfect virtualization (uniform service time):
	Baseline virtualization (truncated exponential service time):


	Numerical results
	Remote TR time under perfect virtualization
	Remote TR time under semiperfect virtualization
	Remote TR time under baseline virtualization
	Comparison of overall TR time under all three virtualization modes

	Conclusions
	Acknowledgments
	References


