
Mohamed et al. Journal of Cloud Computing (2022) 11:21
https://doi.org/10.1186/s13677-022-00293-7

RESEARCH

Characterization of task response time
in fog enabled networks using queueing theory
under different virtualization modes
Ismail Mohamed*, Hassan Al‑Mahdi, Mohamed Tahoun and Hamed Nassar 

Abstract 

Much research has focused on task offloading in fog-enabled IoT networks. However, there is an important offload‑
ing issue that has hardly been addressed—the impact of different virtualization modes on task response (TR) time. In
the present article, we bridge this gap, introducing three virtualization modes, and characterizing the TR time under
each. In each mode the virtual machines (VM) at the fog are customized differently, leveraging VM elasticity. In the
perfect virtualization mode, the VM is customized to match exactly the computational load of the incoming task. This
ensures that each task, regardless of which VM it goes to, will have the same service time. In the semiperfect virtualiza‑
tion mode, a less stringent, thus more practical, alternative, the VM is customized to match roughly the computational
load of the incoming task. This results in a uniformly distributed task service time. Finally, in the baseline virtualization
mode, the VM is customized to just be fast, with no regard to the computational load of the incoming task. This mode,
which just re-scales the processing time of the task, is the default in existing research, and is re-introduced here for
only comparison purposes. We characterize the TR time for the three modes leveraging M/G/1 and M/G/m queueing
models, with the queueing stability condition identified for each mode. The obtained analytical results are success‑
fully validated by discrete event Monte Carlo simulation. The numerical results show that the first mode results in the
shortest TR time, followed by the second mode, then the third mode. That is, if virtualization is managed adequately,
significant improvement in TR time can be gained.

Keywords:  IoT, Fog computing, Task offloading, Task response time, Elastic virtual machine, Queueing theory

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The Internet of Things (IoT) is fast becoming a reality,
especially in smart home/city implementations. The key
for its success is its ability to provide reliable connectiv-
ity for a huge number of terminal devices (TDs), such
as laptops, tablets, sensors, smart appliances, industrial
equipment or smart phones [1]. A key performance met-
ric for IoT is the task response (TR) time, defined as the
time from the instant a TD application generates a task to
the instant the application receives the response (result)
of this task. Many factors can impact the TR time, but in

general the shorter it is the better the TD performance
especially if the TD runs real time applications. However,
due to the limited computational resources of the TD, the
latter may need to seek the help of a more powerful para-
digm such as cloud computing [2].

Cloud computing has proved a good solution to reduce
the TR time, as clouds are equipped with mighty data
centers having immense processing and storage capa-
bilities [3]. However, the long distance to the cloud adds
heavy communications cost and time, which is a draw-
back that can potentially defeat the purpose. One solu-
tion to mitigate this drawback is fog computing.

Fog Computing can be seen as a bridge between TDs
and the cloud. The fog brings the cloud services closer to
the TDs, greatly reducing communications and energy

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: ismail.muhammed@ci.suez.edu.eg

Department of Computer Science, Suez Canal University, Ismailia 41522,
Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00293-7&domain=pdf

Page 2 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

problems and costs. Physically situated between the
cloud and the TDs, each fog serves a finite number of
TDs deployed in a finite geographical area called the fog
cell. Fog computing is especially critical for IoT because
it prevents resource-limited IoT TDs from the inconven-
ience of frequently getting to the resource-rich cloud.
Supporting limited computing and storage capabilities
of TDs by offloading resource-intensive tasks to nearby
resource-rich fog nodes guarantees shorter TR times. A
relevant solution to decrease TR time is to use a cloud-
let, which can be looked upon as a micro data center. The
cloudlet can be a cluster of multicore processors with a
high-bandwidth wireless network. It can be of help to
mobile devices for light data storage and retrieval as well
as for computationally-intensive tasks [4]. An even better
solution is to use a fog in the presence of a cloud, forming
the 3-tier model shown in Fig. 1. In this model, based on
the computational, storage and energy constraints of the
TD as well as the TR time of the application, a task may
be processed locally at the TD, nearby at the fog, or far
away at the cloud.

Fog computing guarantees short TR time by dispens-
ing with the long round trip to the cloud. It addition-
ally secures sensitive IoT data by processing the latter
within company limits. As such, companies that embrace
fog computing gain greater and quicker insights, lead-
ing to expanded trade agility, higher service levels,
and enhanced security [5]. To succeed, however, fog
computing requires an efficient and effective resource

management of fog resources to improve the quality of
service (QoS) for the underlying IoT [6]. The fog not only
guarantees low latency, i.e. low TR time, but also saves
on TD energy consumption and allows efficient manage-
ment of IoT services. Accordingly, we emphasize the role
of virtualization in the present work with the aim to opti-
mize TR time for the TDs served by the fog.

If a TD generates a task that can be processed locally in
a short TR time, it does so immediately. However, if the
task is so computationally intensive that its TR time will
exceed some limit beyond the tolerance of the TD, e.g.
due to time or energy constraints, the TD would be bet-
ter off offloading the task to the fog. In such case, the TR
time can be reduced immensely, given the greater com-
putational capabilities at the fog and the power of virtu-
alization. Traffic offloading has been proposed to handle
the anticipated high growth rate in cellular systems and
reduce the predicted performance debasement [7]. Cau-
tion should be made, however, as the benefits gained
from offloading can be refuted in case offloading itself
results in a transient loss of service [8].

One of the most vital topics in fog/cloud comput-
ing is virtualization [9]. It allows making maximum use
of existing hardware, by sharing existing assets, leading
to decreased capital cost and increased network effi-
ciency [10]. Virtualization allows creating an abstraction
layer that shares hardware elements, such as proces-
sors, memory, storage and networks, to multiple soft-
ware defined computers, called virtual machines (VMs).

Fig. 1  3–tier fog-enabled IoT network

Page 3 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

With adequate virtualization, a VM can be customized
to finish a certain task in a desired amount of time [11].
Specifically, the virtualization software, usually called a
hypervisor, can allocate just enough hardware resources
to the VM providing the latter with the computational
power needed to finish the task in the required time, and
that is what the present work capitalizes on.

Once a VM finishes processing a task, its resources
are released so that they can be utilized to create other
VMs if needed. This remarkable flexibility allows for bet-
ter resource economy, energy consumption, availability,
scalability, reliability and cost [12]. In fact, virtualization
allows automated deployment, configuration and mainte-
nance, dispensing with cumbersome, time-consuming and
error-prone chores associated with doing those activities
manually. In general, it allows faster provisioning (buying,
installing, and configuring) of hardware. If the hardware
is already in place, creating VMs to execute tasks is sig-
nificantly faster. Finally, it can allocate as much computing
power to each VM as the task assigned to the latter needs,
which is the principal motive of the present work [13].

Our study is novel in that it characterizes the TR time,
using queueing theory, under three different virtualiza-
tion modes: perfect virtualization, semiperfect virtu-
alization and baseline. These modes can currently be
implemented easily, as virtualization technology has
advanced in recent years to the point that not only VMs
can be placed [14] with the desired configuration, but
also can be resized [15] up and down after placement
to cope with changes in workloads. The resizing prop-
erty, often called elasticity, is the crux of present work
as each VM should be resized before receiving the next
task based on the time requirements of that task. In par-
ticular, if the time is long the VM is scaled up, and if it
is short it is scaled down. If the resizing is perfect, i.e.
exactly what is desired, then we have perfect virtualiza-
tion. If it is approximate, i.e. close to what is desired, then
we have semiperfect virtualization. The performance of
both is the theme of the present work.

Thus, elasticity is key to provisioning resources
dynamically, thus enabling a VM to cope with changes
in the workload. It can be implemented to provision
resources either in a coarse-grained manner or in a
fine-grained manner, by adequately placing available
computational resources, e.g. CPU, memory, I/O and
communications bandwidth. In [15] the authors present
a framework for elastic VMs implemented by the cloud
layer model, based on a Grey relational analysis (GRA)
policy. The framework has the capability to provision
resources required to yield a predefined computational
power. It can provision the resources at different granu-
larities, both at the physical machine level or at the vir-
tual machine level. The authors of [16] set forward an

autoscaler, called EPMA, (Elastic Platform for Micros-
ervice-based Applications), to automatically rescale
a VM up or down based on the task demand. It first
detects and identifies the cause of performance degra-
dation due to, say, workload increase. Then, it offers an
optimized elasticity plan for resource provisioning to
get back to normal performance.

In recent years VM elasticity has become acces-
sible even to the ordinary person via two commercial
products. VMWare [17] provides a free tool, Virtual
Machine Desired State Configuration (VMDSC), which
allows the modification of the configuration of a VM
that needs CPU or memory changes. The changes are
stored in the VM’s configuration file and then used
for reconfiguration at the next reboot, which can be
made before loading the new task. VMDSC is actually
an API, so integration with automation tools is pos-
sible. Those changes are pushed via API calls into the
VM that needs to be resized. As such, VMDSC allows
virtual administrators to specify the VM CPU/Memory
state which will take effect upon the loading of the next
task. On the other hand, Microsoft Azure [18] allows
one, after creating a VM, to rescale the VM up or down
by changing the VM size. With this capability, one can
rescale the VM at the fog before receiving the next task
based on the time requirements of the latter.

The rest of this article is organized as follows. In the
Related work section, recent relevant research is reviewed.
In the System model section, the system model is devel-
oped, and in the Performance analysis section the model
is analyzed. In the Numerical results section, the analyti-
cal results as well as the simulation results obtained for
the three virtualization modes are illustrated by numeri-
cal examples. Finally, the Conclusions section provides
our concluding remarks and possible directions for future
work. The descriptions of abbreviations and acronyms
used throughout the article are given in Table 1.

Related work
Much research work has been carried out on fog com-
puting and its merits, especially in minimizing TR time,
in recent years [19]. In [20], the authors present methods

Table 1  List of the abbreviations used in the article

Abbreviation Explanation

IoT Internet of Things

QoS Quality of Service

TR Task Response

RV Random Variable

TD Terminal Device

VM Virtual Machine

Page 4 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

to create simulation models of the fog computing infra-
structure to evaluate the performance. They employ dif-
ferent traffic patterns to assess how the infrastructure
components perform. In [21], the authors develop a theo-
retical framework to analyze the performance and energy
consumption, giving recommendations of how to balance
the time and energy consumption for delay-tolerant and
delay-sensitive applications. They define two types of off-
loading models, partial offloading whereby some tasks
are offloaded and the remaining are processed locally,
and full offloading whereby all tasks are offloaded. In [22],
the authors propose methods based on Markov Decision
Processes and Q-learning to help TDs offload tasks to the
best fog node or to the cloud based on the requirements
of the applications and the conditions of the nearby fog
nodes. In addition, fog nodes can offload tasks to each
other or to the cloud to balance the load and improve TR
time. In [23], the authors explore the impact of offload-
ing on TR time in 3-tier IoT systems considering such
parameters as application characteristics, system com-
plexity, communication cost, and data flow configuration.
In [24], the authors assert that fog computing can reduce
TR time drastically. In particular, they compare the TR
time and energy costs for the different options of offload-
ing a task to the edge or the cloud, as well as of carrying it
out on the TD itself. A TD can make the offloading deci-
sion dynamically as a new task is generated, based on the
available information on the network connections and
the states of the edge and the cloud. Using simulation,
they show that leveraging customization and dynamic
offloading decision can decrease the TR time drastically.
The present work is superior in that it shows the same
thing but analytically.

Various approaches have been taken to reduce TR
time, among them improving the resource allocation
policy at the fog. For example, in [25], the authors dis-
cuss the problem of allocating computing resources at
the fog, assuming that each user gets its own VM, which
is not shared with others. Two offloading strategies are
proposed to minimize TR time, one considering the
resource management and the other determining the
optimal number of VMs allocated to the task. In [26],
the authors propose an approach aiming at reducing TR
time and the whole processing time as well as the cost of
VMs by assigning user requests in an efficient manner.
The proposed model is implemented to find all available
resources and help in load balancing leading to minimum
execution time and VM cost for the cloud users by opti-
mally allocating tasks to the available resources. In [27],
the authors design an application placement strategy
based on dynamic scheduling that can effectively uti-
lize the schedule gaps in the virtual machines of the dif-
ferent layers to minimize the makespan that meets the

deadlines. The strategy overcomes the problem found in
placement strategies based on the directed acyclic graph
(DAG) for rapid execution in the hierarchical fog-cloud
environment, known to be an NP-hard optimization
problem.

Another approach to reduce TR time is to manage vir-
tualization at the fog, which is the strategy adopted by
the present work. In [28], the authors focus on minimiz-
ing the transmission time to the fog, through a greedy
approach concerning the data to be transferred, which
indirectly saves communications bandwidth and energy
on TDs. Their approach uses a container-based virtual-
ization technique. In [29], the authors propose virtualiza-
tion of a minimum set of functions to support specific
IoT services, placing a computing node and a network
slice close to the TD, obviating the need for the traffic of
the TD to travel to the cloud. They show that the trans-
mission time can be halved if a fog, rather than a cloud,
is used. Network slicing is also used in [30], where the
authors propose a resource utilization based framework
for vehicular fog computing equipped with network slic-
ing and load-balancing. The fog nodes are placed on the
road side where they made available to tasks offloaded
from vehicles. The framework can manage the whole net-
work, and use network function virtualization to manage
the data plane. It can handle a mix of slicing configura-
tions, capable of balancing the loads between various
slices per node, and can support multiple fog computing
nodes. In [31], the authors propose a virtual fog frame-
work consisting of three layers, object virtualization,
network function virtualization and service virtualiza-
tion. A fog for IoT systems is developed by a virtual fog
framework. With the help of a fog, object virtualization
addresses issues commonly existing in IoT, such as het-
erogeneity, interoperability, multi-tenancy, scalability,
counter-productivity, mobility and protocol inconsist-
ency. The proposed virtual fog allows to maximize the
utilization of hardware and improve productivity by
effectively managing and dynamically sharing the hard-
ware among TDs and applications.

For the analysis of fog performance, much research
work resort to optimization techniques. For example, in
[32], the authors aim to maximize the expected profit of
the network service provider through admitting as many
TDs as possible. They formulate a quadratic integer pro-
gramming problem for the service function chain place-
ment and obtain an exact solution when the size is small
or moderate. Furthermore, they develop a Markov based
approximation algorithm that delivers a near-optimal
solution with a bounded moderate gap without measure-
ment perturbation caused by resource demand uncer-
tainties. They finally extend the proposed approach to the
measurement perturbation case, for which the solution

Page 5 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

exhibits a near-optimal gap with a guaranteed error
bound. By contrast, a stochastic mixed-integer nonlin-
ear programming problem is formulated in [33] to jointly
optimize the task offloading decision, elastic computa-
tion resource scheduling, and radio resource allocation.
Lyapunov optimization theory is employed to decom-
pose the original problem into four subproblems which
are then solved by convex decomposition and matching
game. The authors analyze the trade-off between energy
efficiency and TR time and study the system parame-
ters that impact them. They also propose and analyze a
scheme for task offloading and resource allocation, aim-
ing at optimizing network energy efficiency. Further-
more, integer linear programming is leveraged in [34] to
produce offline an optimal solution of edge server place-
ment, serving as stage I in a two stage approach. In stage
II, an online stage, a game theory based scheme of base
station remapping is developed to deal with the mobility
of users. The authors study the both the overall TR time
of the entire system and the fairness in expected TR time
of individual base station.

Queueing theory has also been used in the characteri-
zation of TR time, as is done in the present article. In
[35], the authors proposed an offloading model based
on the amount of required work for each task which dif-
fers from one task to the other. Formulas for key per-
formance measures are derived using queueing theory,
where the TDs are described as an M/G/1 system and
the fog and cloud nodes are as an M/G/m system. The
local waiting system is modeled as an M/G/1 queue-
ing system while the waiting process at the fog node
is modeled as an M/G/m queuing system. In [36], the
model is extended with an offloading strategy based on
the processing needs and data size, taking into consid-
eration that tasks differ from each other. They present

a framework for TR time and energy consumption
evaluation. The proposed model assumes that the trans-
mission delay between the TD and the fog node is negli-
gibly small. When all VMs at the fog node are occupied,
an arriving task is sent to the remote cloud with a con-
stant transmission delay. The cloud serving process is
modeled as an M/G/∞ queuing system. A related work
using the same queueing systems is provided in [37] to
derive expressions for the TR time under the baseline
virtualization mode. In [38], fog nodes are modeled as
an open Jackson queueing network that can be utilized
to decide and measure the QoS guarantees with respect
to the TR time. The analysis is performed according to
diverse parameters, such as the task arrival rate and task
service rate. In [7], a queueing theory approach to traf-
fic offloading in heterogeneous cellular networks is pre-
sented. The authors propose offloading algorithms that
maximize the overall network throughput and energy
efficiency by taking users’ traffic load into considera-
tion when making the offloading decision. The opti-
mization problem aims to find the optimal offloading
decision and the transmit powers of each user based on
the obtained offloading decision while maintaining the
queue stability.

System model
In the present work, we model a fog system comprising
a finite number of TDs, spread randomly in a fog cell,
and has computational facilities, in the form of virtual
machines (VMs), as shown in Fig. 2. The applications in
the TD continually generate tasks that need processing.
Based on whether a task is light or heavy, based on a user
defined criterion, the task is processed either locally, at
the TD, or offloaded to the fog for remote processing.
The other system assumptions are as follows.

Fig. 2  Proposed queueing model. It comprises an M/G/1 queue at the TD and an M/G/m queue at the fog. The forwarder F offloads long tasks to
the fog for remote processing, and retains short tasks at the TD for local processing

Page 6 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

	 1.	 The fog cell has N TDs which can be either static or
mobile within the cell.

	 2.	 The fog node, serving the fog cell, has m VMs.
	 3.	 Each TD generates tasks according to a Poisson

process with rate (parameter) λ. Consequently, if
G denotes the task inter-generation time, then G is
exponentially distributed, i.e. fG(t)=λe−λt, t≥0.

	 4.	 Each task requires a certain amount of time T if
executed locally on the CPU of the TD. This time is
assessed by the application that generates the task and
is attached as a tag to the task (a meta-data field).

	 5.	 The task processing time T is a random variable
(RV) of exponential distribution with parameter μ,
i.e. fT(t)=μe−μt, t≥0.

	 6.	 Based on the value of T and a user defined thresh-
old τ, a forwarding routine (F) at the TD forwards
the task either to the local buffer, to be executed by
the TD itself, or to the remote buffer at the fog, to
be executed remotely by one of the m VMs there.
In particular, if T<τ, the task is executed locally,
and if T≥τ, it is executed remotely. In the present
work, the former is called a local task and the latter
is a remote task.

	 7.	 Via virtualization, each VM can be tailored to pro-
cess a remote task in a certain amount of time. If
this time is denoted by the RV SR, then the service
rate of the VM is 1/E[SR].

	 8.	 The local buffer size of each TD is infinite, and so is
the remote buffer size at the fog. In modern times,
memory units have become drastically inexpensive,
encouraging the installation of gigantic buffers,

which can be readily approximated as infinite with
no loss of accuracy.

	 9.	 The task size in bytes is constant for all tasks. Con-
sequently, for each task, the transmission time
from the generating TD to the fog is also constant,
and we will denote it by ξ.

	10.	 Similarly, the task response size in bytes is constant
for all tasks. Consequently, for each remote task
response the transmission time from the fog to the
TD that generated the task is also constant, and we
will denote it by ψ.

Based on the forwarding threshold τ, and referring to
Fig. 3, the fraction α of tasks that will be local is the area
under the curve fT(t)=μe−μt from t=0 to t=τ. That is,

Accordingly, α = 1− α is the fraction of tasks that
will be remote. We can also look at α as the probability
that a generated task will be local, and α = 1− α the
probability that it will be remote. Accordingly, based
on the splitting property of the Poisson process [39],
the task arrival process at the local queue is Poisson
with parameter

As the value of τ determines the amount of task off-
loading, it is a significant factor in determining the task

(1)
α =

τ

0
fT (u)du

= µ
τ

0
e−µudu

= 1− e−µτ

(2)�L = α�

Fig. 3  The offloading threshold, τ, partitions the exponential curve into two truncated exponentials. Under the curve, the shaded area represents
the fraction α of tasks that are local, while the complementary white area represents the fraction α of tasks that are remote

Page 7 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

response (TR) time. In turn, it has also a crucial impact
on the TD energy consumption of the entire system. Spe-
cifically, lowering τ decreases CPU consumption, while it
increases communications consumption, and vice versa.

Performance analysis
In this section, we will characterize the TR time at three
different levels: local task, remote task, and task in gen-
eral. Based on the assumptions in the preceding section,
for a local task, the task service time is the same as its
processing time. That is because, the task processing
time is estimated based on the CPU of the TD where the
task is generated. On the other hand, for a remote task,
the two times are different, unless the fog is running the
baseline virtualization mode with a unity speedup factor,
k=1. We note also that although the task processing time
is exponential at the time of generation, due to the for-
warding process it is no longer exponential for both local
and remote tasks. That is because the processing time
for local tasks is upper bounded by τ, which represents a
lower bound for remote tasks. Since the processing time
needed by each task determines the service time of that
task, whether locally or remotely, queueing models with
general, rather than exponential (or Markovian) service
times will be resorted to.

Local TR time
The local TR time will be the queueing time plus the
service time at the local queueing system, which per
the assumptions discussed above is an M/G/1 model
[39]. The task service time SL of this task will be exactly
its task processing time, i.e. truncated exponential with
parameter μ, upper bounded by τ. To find the distribu-
tion of SL, consider for the moment an exponentially
distributed RV A with parameter μ. The cumulative dis-
tribution of A given that A is upper bounded by some
value τ is given by

where t<τ. Since

then

 Using this result, the distribution fSL(t) of the service
time SL of a local task is given by

FA|A<τ (t) = P[A < t|A < τ]

=
P[A<t]
P[A<τ]

,

(3)P[A < t] = µ

∫ t

0

e−µxdx = 1− e−µt ,

FA|A<τ (t) =
1− e−µt

1− e−µτ
.

With this distribution at hand, we can find the expecta-
tion E[SL] of SL as

Integrating by parts, we get

In a similar manner, using integration by parts twice in
the process, we can find the second moment of SL to be

We are now in a position to find the expected TR time
E[RL] of a local task, which is the expected queueing time
E[QL] , i.e. the expected time spent at the local buffer
before going to the local CPU, plus the expected service
time E[SL] at the local CPU. That is,

Based on the assumptions outlined above, the queueing
model at the TD is an M/G/1 system, for which it can be
shown [39] that

Using (7), (2), (5), (6), and (8), we can easily find the
expected TR time of a local task to be

To validate this result, we will take its limit as τ→∞,
which makes the fog inaccessible, getting

This result is greatly reassuring, as it is the response
(sojourn) time of an M/M/1 queueing system [39]. Indeed,
without a fog all the TD generated tasks would go to the
local queue which would then have exponential inter-
arrival time (with parameter λ) and exponential service
time (with parameter μ), both being the defining character-
istics of an M/M/1 queueing system.

(4)
fSL(t) = d

dx
FA|A<τ (t)

=
µe−µt

1−e−µτ .

E[SL] =
∫ τ

0
tf SL(t)dt

=
µ

1−e−µτ

∫ τ

0
te−µtdt.

(5)E[SL] =
1− e−µτ (1+ µτ)

µ
(

1− e−µτ
) .

(6)

E
[

S2L
]

=
∫ τ

0
t2fSL(t)dt

=
µ

1−e−µτ

∫ τ

0
t2e−µtdt

=
2−

(

µ2τ 2+2µτ+2
)

e−µτ

µ2(1−e−µτ)
.

(7)E[RL] = E[QL]+ E[SL].

(8)E[QL] =
�LE

[

S2L
]

2(1− �LE[SL])
.

(9)�
[

RL

]

=
�
(

2 −
(

(1 + ��)2 + 1
)

e−��
)

2�(� − �(1 − e−�� (1 + ��)))
+

1 − e−�� (1 + ��)

�(1 − e−��)
.

(10)

lim�→∞�
[

RL

]

= lim�→∞

(

�(2−((1+��)2+1)e−��)
2�(�−�(1−e−�� (1+��)))

)

+ lim�→∞

(

1−e−�� (1+��)

�(1−e−��)

)

=
1

�−�
.

Page 8 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

The stability of the local queueing system is ensured by
keeping its arrival rate strictly less than its service rate, or
�L < 1/E[SL] , which is equivalent to the task generation
rate λ satisfying

Remote TR time
At each TD, a fraction α = e−µτ of the Poisson stream
of tasks generated is offloaded to the fog for remote
execution. Based on the splitting (thinning) property of
Poisson processes [40], a Poission stream with param-
eter α� arrives at the fog from each TD. Thus, N Pois-
son streams arrive at the fog from the N TDs of the
cell. Based on the merging (superposition) property of
Poisson processes [40], the arrival process at the remote
queue is Possion with parameter

The expected remote TR time is the sum of the expected
remote queueing time, expected remote service time, and
both the transmission time ξ of the task from the TD to
the fog, and the transmission time ψ of the task’s response
from the fog back to the TD. Let RR, QR and SR be the TR
time, task queueing time and task service time, respec-
tively, at the fog. Accordingly, the expected TR time E[RR]
is given by

Since the arrival process at the fog is Poisson, and since
the processing time is not exponential, but rather a trun-
cated exponential, then the remote queueing system at
the fog is a perfect M/G/m system [39]. To evaluate the
expected queueing time at the fog there is a very good
approximation [41]

where ̥ is given by

 with E[SR] and E
[

S2R
]

 being the first moment (expecta-
tion) and the second moment, respectively, of the remote
task service time SR. Incidentally, this approximation is so
good that it yields, if we substitute in it m=1, the exact
expression (5) of the M/G/1 system.

The stability of the remote queueing system is ensured by
making its arrival rate strictly less than its service rate, i.e.

(11)� <
µ

1− e−µτ (1+ µτ)
.

(12)�R = Nα� = N�e−µτ

(13)E[RR] = E[QR]+ E[SR]+ ξ + ψ .

(14)E[QR] ≈
�
m
R E

[

S2R
]

(E[SR])
m−1

2(m− 1)!(m− �RE[SR])
2
̥
,

̥ =

m−1
∑

i=0

(�RE[SR])
i

i!
+

(�RE[SR])
m

(m− 1)!(m− �RE[SR])
,

Next, we will consider three modes for the remote TR
time, corresponding to three virtualization modes. For
each mode, the task service time will be different due to
the change in the virtualization mode. The change will be
reflected in the two moments E[SR] and E

[

S2R
]

 needed in
Eq. (14).

Perfect virtualization (constant service time):
In the perfect virtualization mode, the fog will place for
each incoming task a VM with computational power
exactly proportional to the computational needs of the
arriving task. For example, if a task is computationally
heavy, the fog will place for it an equally computation-
ally heavy VM and if it is computationally light, the fog
will place for it an equally computationally light VM, such
that the task service time is always a constant c>0. Conse-
quently, the queueing model at the fog for this mode is of
an M/D/m system.

Let RRP , QRP and SRP be the TR time, queueing time and ser-
vice time, respectively, of remote tasks under the perfect vir-
tualization mode. Given the fact that SRP is a degenerate RV of
value c, then the queueing model at the fog for this mode is an
M/D/m system, with the first two moments of SRP being

and

Using (13), (14), (16), (17), and (12), we can find the
expected TR time in the perfect virtualization mode to be

where

Using (15), the stability condition of the remote queue-
ing system for the perfect virtualization mode is

Semiperfect virtualization (uniform service time):
The semiperfect virtualization mode is more flex-
ible than the perfect virtualization mode. Here, the

(15)�R <
m

E[SR]
.

(16)E
[

SRP
]

= c

(17)E

[

S2RP

]

= c2.

(18)

E
[

RRP

]

≈
�
m
R c

m+1

2(m− 1)!(m− �Rc)
2
̥RP

+ c + ξ + ψ ,

̥RP =

m−1
∑

i=0

(�Rc)
i

i!
+

(�Rc)
m

(m− 1)!(m− �Rc)
.

�R <
m

c
.

Page 9 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

fog cannot guarantee all arriving tasks the same ser-
vice time, as was the case in the perfect virtualization
mode. Rather, it guarantees service times that are uni-
formly distributed between pre-defined limits a and
b, with a<b. Any remote task, no matter how heavy or
how light will be served by a VM at the fog within these
two limits, with any value between the two limits being
equally likely.

Let RRS , QRS and SRS be the TR time, queueing time
and service time, respectively, of remote tasks under the
semiperfect virtualization mode. Given the fact that SRS is
uniformly distributed, SRS ∼ U [a, b] , then the queueing
model at the fog for this mode is an M/U/m system, with
the first two moments of SRS being

and

Using (13), (14), (19), (20), and (12), we can find the
expected TR time in the perfect virtualization mode to be

where

Using (15), the stability condition of the remote queue-
ing system for the semiperfect virtualization mode is

Baseline virtualization (truncated exponential service time):
Unlike the above two modes, which are novel, this
mode is the default in the literature. In this mode, the
arriving tasks are served at the fog by midentical VMs,
each having the same computational power. That is, the
computational power of a VM is the same as any other
VM in the fog, and generally is k≥1 times the computa-
tional power of a TD. In other words, the computational
power of any VM is not related to the computational
needs of the arriving task. The computational needs of
a remote task are related to the processing time of that
task, where the latter is a truncated exponential time

(19)E[SRS] =
a+ b

2
,

(20)E[S2RS] =
b2 + ab+ a2

3
.

(21)

E
[

RRS

]

≈
�
m
R

b2+ab+a2

3

(

a+b
2

)m−1

2(m− 1)!

(

m− �R
a+b
2

)2

̥RS

+
a+ b

2
+ ξ + ψ ,

̥RS =

m−1
∑

i=0

(

�R
a+b
2

)i

i!
+

(

�R
a+b
2

)m

(m− 1)!

(

m− �R
a+b
2

) .

�R <
2m

a+ b
.

with parameter μ and is lower bounded by some value
τ>0, as shown in Fig. 3.

Let RRB , QRB and SRB be the TR time, queueing time
and service time, respectively, of remote tasks under
the baseline virtualization mode. Given the fact that SRB
is generally distributed, then the queueing model at the
fog for this mode is of the M/G/m system, and the first
two moments of SRB will be obtained next.

Before computing the moments, consider for a
moment an exponential RV A with parameter μ and
lower bounded by a positive value τ. Then for t≥τ, we
have the conditional cumulative distribution

This result can be used to find the conditional
distribution

Re-scaling the distribution to account for the VM
speedup factor k, gives the distribution of the task ser-
vice time

This result can be validated by integrating from τk to
∞ to obtain 1.

Now that we have the distribution fSRB (t) at hand, the
first moment of SRB is

Using integration by parts, we get

This result is logical, since without the speedup fac-
tor the expectation of a truncated exponential would be
E[SR] = τ + 1

µ
.

In a similar manner, utilizing integration by parts
twice in the process, the second moment of SRB is

Using (13), (14), (24), (25), and (12), we can find the
expected TR time in the baseline virtualization mode to be

FA|A≥τ (t) = P[A < t|A ≥ τ]

= e−µτ−e−µt

e−µτ

(22)
fA|A≥τ (t) = d

dt
FA|A≥τ (t)

=
µe−µt

e−µτ , t ≥ τ .

(23)fSRB (t) =
kµe−kµt

e−µτ
, t ≥

τ

k
.

E
[

SRB
]

=
∫∞
τ
k

tf SRB
(t)dt

=
kµ
e−µτ

∫∞
τ
k

te−kµtdt

(24)

E
[

SRB
]

=
kµ

e−µτ

[

e−µτ

k2µ

(

τ +
1

µ

)]

=
1

k

(

τ +
1

µ

)

=
τµ+ 1

kµ

(25)

E

[

S2RB

]

=
∫∞
τ
k

t2fSR(t)dt

=
kµ
e−µτ

∫∞
τ
k

t2e−kµtdt

=
(µτ)2+2µτ+2

(kµ)2

Page 10 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

where

Using (15), the stability condition of the remote
queueing system for the baseline virtualization mode is

Overall TR time
Above we have calculated the expected TR time for both
local and remote tasks. However, since task offloading
is an internal activity, the metric that the end user cares
about is the overall TR time, which is the time between
the instant a task is generated by an application at the
TD and the instant the response of that task is received
back by the application. Indeed, the end user does not,
and should not, care much about whether the task was
executed locally or remotely. What the end user cares
about is the overall TR time defined next.

Definition 1  (Overall TR time): The overall TR time, RO,
is the amount of time between the instant a task is generated
by an application at the TD and the instant the response of
that task is received back by the application, regardless of
whether the task was served locally or remotely.

From Definition 1, it is clear that the expected overall
TR time E[RO] is the weighted sum of the expected local
and remote TR times. That is,

Using this formula and Eq. (9), we can generate three
equations for the overall TR times corresponding to the
three modes above: perfect, semiperfect and baseline
virtualization.

Perfect virtualization (constant service time):
Using (27), the expected overall TR time, E

[

ROP

]

 , for the
perfect virtualization mode is given by

where α is given by (1), E[RL] by (9), and E
[

RRP

]

 by (18).

(26)

�
[

RRB

]

≈

�m
R

(��)2+2��+2

(k�)2

(

��+1

k�

)m−1

2(m − 1)!

(

m − �R
��+1

k�

)2

ϝRB

+
�� + 1

k�
+ � + � ,

̥RB =

m−1
∑

i=0

(

�R
τµ+1
kµ

)i

i!
+

(

�R
τµ+1
kµ

)m

(m− 1)!

(

m− �R
τµ+1
kµ

) .

�R <
kmµ

τµ+ 1
.

(27)E[RO] = αE[RL]+ αE[RR],

(28)E
[

ROP

]

= αE[RL]+ αE
[

RRP

]

,

Semiperfect virtualization (uniform service time):
Using (27), the expected overall TR time, E

[

ROS

]

 , for the
semiperfect virtualization mode is given by

where α is given by (1), E[RL] by (9), and E
[

RRS

]

 by (21).

Baseline virtualization (truncated exponential service time):
Using (27), the expected overall TR time, E

[

ROB

]

 , for the
baseline virtualization mode is given by

where α is given by (1), E[RL] by (9), and E
[

RRB

]

 by (26).

Numerical results
The aim of this section is two fold. First, we will vali-
date the analytical results obtained in the preceding
section using simulation. To this end, we have devel-
oped a discrete event Monte Carlo simulation pro-
gram to compute the TR time for each of the three
virtualization modes considered. The program is writ-
ten in Python (We have made the code publicly avail-
able at https://​github.​com/​Virtu​aliza​tion-​Fog/​FogV.​
git). It was run on a PC having an Intel i7 processor @
2.4 GHz, with 16 GB of main memory. Each simula-
tion experiment comprised 4 million runs, which were
found enough to reach convergence.

The second aim of this section is to investigate the
impact of system parameters on the TR time. To this
end, numerous fog examples have been assumed. For
each example, the TR time has been calculated for dif-
ferent sets of parameters twice, once using the equations
obtained in the preceding section and once using the
simulation program. As will be seen in the figures below,
the match between the analytical results and the simula-
tion results is quite spectacular.

All the factors that impact the TR time were incorporated
in the experiments. Seven of these factors that are common
in all modes are shown in Table 2. Besides these seven fac-
tors, there are four that are mode specific: c in the perfect
mode, a and b in the semiperfect mode, and k in the base-
line mode. In all the experiments, we fixed the task trans-
mission time from a TD to the fog at ξ=20 sec, and the
response transmission time form the fog to the TD at ψ=10
sec. This means that we implicitly assume that the task size
in bytes is twice as large as the response size. Furthermore,
we fixed the expected task processing time at 909 sec, or
μ=1/909=0.0011 task/sec. Recall that the processing time
of a task is estimated at the computational power of the TD.

For each of the three considered modes, we carried out
four experiments, each designed to validate an analyti-
cal result on the one hand, and assess the impact of some

(29)E
[

ROS

]

= αE[RL]+ αE
[

RRS

]

,

(30)E
[

ROB

]

= αE[RL]+ αE
[

RRB

]

,

https://github.com/Virtualization-Fog/FogV.git
https://github.com/Virtualization-Fog/FogV.git

Page 11 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

parameter on the TR time on the other hand. For each
of these four experiments, we end up displaying three
types of curves: one for the expected local TR time, one
for the expected remote TR time, and one for the overall
TR time. Each type has two curves, one from the simula-
tion experiment and one from the corresponding analyti-
cal equation. As the Figures below illustrate, for all three
modes, the expected local TR time is substantially larger
than the expected remote TR time. This confirms the fea-
sibility of using a fog in general and the proposed virtu-
alization modes in particular. It can also be seen that in
each mode the expected overall TR time curve, which is
what the end user cares about, falls between the local and
remote curves as anticipated.

At the end of this section, we provide a Figure compar-
ing the overall TR time for all three modes. The Figure
shows vividly that proper virtualization, either perfectly
or semiperfectly, is more fruitful for TR time reduction
than using VMs each of them nineteen times faster than
a TD.

Remote TR time under perfect virtualization
The perfect virtualization mode is characterized by hav-
ing a constant service time c at the fog all remote tasks.
In this section, we use c=40 sec in all four experiments
pertaining to this mode. The analytical and simulation
results for this mode are displayed in Fig. 4. The ana-
lytical results are obtained from Eqs. (18), (9) and (28),
which provide the expected remote TR time E[RRP] ,
expected local TR time E[RL] , and expected overall TR
time E[ROP] , respectively, for the semiperfect virtualiza-
tion mode. The simulation results are obtained from run-
ning our simulator 4 million runs.

First, Fig. 4a displays the impact of the task genera-
tion rate λ on the TR time. The system parameters are
fixed at N=500 TDs, m=5 VMs, and τ=900 sec. As can
be seen in the Figure, the TR time, for all three curves,
increases almost linearly with λ until just before the
instability point at the end of the λ range. To understand
this curve behavior, recall that the TR time is made up

of three components: queueing time, service time and
round trip transmission time. For the perfect mode, the
last two components are constant. It is only the first com-
ponent that increases with λ, slightly and linearly at the
beginning then heavily and non-linearly as the queueing
system at the fog approaches its instability point (at the
end of the curve). Second, Fig. 4b displays the impact of
the task off-loading threshold τ on the expected TR time.
The system parameters are fixed at N=500 TDs, m=5
VMs, and λ=0.0001 task/sec. As can be seen in the Fig-
ure, the remote TR time is roughly a straight line. That
is because every task, regardless of its computational
needs, is completed in exactly the same time, 40 sec. On
the other hand, as τ increases, more tasks are processed
locally, resulting in a longer local TR time. It is only the
local TR time that increases with τ non-linearly, since the
service times of local tasks are exponentially distributed.
Third, Fig. 4c displays the impact of the number N of TDs
in the fog cell on the TR time. The system parameters
are fixed at τ=900 sec, m=5 VMs, and λ=0.0001 task/
sec. From this Figure we note that the local TR time does
not change over the range of N. This is intuitive because
processing in each TD is independent of other TDs in
the cell. When N is high (in our experiment, N>1500),
the remote TR time, on the other hand, increases sig-
nificantly since much traffic pours into the fog, increas-
ing the queueing time there somewhat. Finally, Fig. 4d
displays the impact of the number m of VMs in the fog
node on the expected TR time. The system parameters
are fixed at τ=900 sec, N=500 VMs, and λ=0.0001 task/
sec. This Figure has two observations. First, changing
the number m of VMs has no influence on the local TR
time E[RL] , which is intuitive. Second, the impact of m on
the remote TR time, E

[

RRP

]

 , is almost unchanged after a
small value of m, here after m=5. That is because as m
increases the queueing time in the fog decreases, at some
point becoming negligible compared to the other two
constant components of the TR time: round trip trans-
mission time and service time.

Remote TR time under semiperfect virtualization
The semiperfect virtualization mode is characterized by
having a uniformly distributed service time, with param-
eters a and b, where a<b, for all remote tasks. We fixed
a=30 sec and b=100 sec in all four experiments pertain-
ing to this mode. The analytical and simulation results for
this mode are displayed in Fig. 5. The analytical results
are obtained from Eqs. (21), (9) and (29), which provide
the expected remote TR time E[RRS] , expected local TR
time E[RL] , and expected overall TR time E[ROS] , respec-
tively, for the perfect virtualization mode. The simulation
results are obtained from running our simulator 4 million

Table 2  Main system parameters

Parameter Description

λ Task Arrival Rate

μ Task processing time

m Number of Fogs

N Number of TDs

τ Processing time threshold

ξ Transmission time from TD to fog

ψ Transmission time from fog to TD

a,b Uniform distribution parameters

Page 12 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

runs. We can notice that the behavior of the curves of this
Figure is very close to that of the curves of the preced-
ing one, Fig. 4. That is because the processing time now is
confined uniformly in the interval [30,100]. Therefore, we
will not repeat below the detailed comments given above
for the perfect mode.

Figure 5a displays the impact of the task generation
rate λ on the expected TR time. The system param-
eters for this experiment are fixed at N=500 TDs, m=5
VMs, μ=0.0011 task/sec, and τ=900 sec. Figure 5b
displays the impact of the task off-loading threshold τ
on the expected TR time. The system parameters for
this experiment are fixed at N=500 TDs, m=5 VMs,
μ=0.0011 task/sec, and λ=0.0001 task/sec. Figure 5c
displays the impact of the number N of TDs in the fog

cell on the expected TR time. The system parameters
for this experiment are fixed at τ=900 sec, m=5 VMs,
μ=0.0011 task/sec, and λ=0.0001 task/sec. Figure 5d
displays the impact of the number m of VMs in the
fog node on the expected TR time. The system param-
eters for this experiment are fixed at τ=900 sec, N=500
VMs, μ=0.0011 task/sec, and λ=0.0001 task/sec.

Remote TR time under baseline virtualization
The baseline virtualization mode is characterized by hav-
ing a truncated exponential service time for all remote
tasks, with a speedup factor k. We fixed k=19 in all four
experiments pertaining to this mode. The analytical and
simulation results for this mode are displayed in Fig. 4.
Note that the speedup factor k impacts only the remote

Fig. 4  TR time for perfect virtualization mode, where μ=0.0011 task/sec, α=0.63, c=40 sec, ξ=20 sec, and ψ=10 sec. a TR time versus the task
inter-generation λ. b TR time versus the off-loading threshold τ. c TR time versus the number of TDs N. d TR time versus the number of VMs m 

Page 13 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

TR time. As k increases, the remote TR time decreases,
and vice versa. The analytical and simulation results for
this mode are displayed in Fig. 6, where we can see that
the match between both is remarkable. The analytical
results are obtained from Eqs. (26), (9) and (30), which
provide the expected remote TR time E[RRB] , expected
local TR time E[RL] , and expected overall TR time
E[ROB] , respectively, for the baseline virtualization mode.
The simulation results are obtained from running our
simulator 4 million runs.

Figure 6a displays the impact of the task generation
rate λ on the expected TR time. The system param-
eters for this experiment are fixed at N=500 TDs, m=5
VMs, and τ=900 sec. From this Figure draw the follow-
ing two points. First, the local TR time is largely linear,
increasing with λ very slightly. This is to be expected
since the local queueing system is of the M/G/1 type.

Second, the remote TR time is almost linear at the
beginning, increasing slightly with λ till some point,
roughly λ=0.0028, where it increases dramatically. This
is also intuitive as when λ reaches that dramatic point it
produces, in light of the large number of TDs, N=500,
huge traffic into the fog, jacking up queueing time
there drastically. Figure 6b displays the impact of the
task off-loading threshold τ on the expected TR time.
The system parameters for this experiment are fixed
at N=500 TDs, m=5 VMs, and λ=0.0001 task/sec. It
is interesting to note that the higher the τ, the higher
both the local TR time and remote TR time, which
is justified as follows. First, as τ increases more tasks
with potentially long service times (potentially as long
as τ) are retained for local processing, which increases
the local TR time. Second, as τ increases it is true that
the number of tasks offloaded to the fog will be less,

Fig. 5  TR time for the semiperfect virtualization mode, where μ=0.0011 task/sec, α=0.63, a=30, b=100, ξ=20 sec. a TR time versus the task
inter-generation λ. b TR time versus the off-loading threshold τ. c TR time versus the number of TDs N. d TR time versus the number of VMs m 

Page 14 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

but their service times will be large, specifically larger
than τ. Figure 6c displays the impact of the number N
of TDs in the fog cell on the expected TR time. The
system parameters for this experiment are τ=900 sec,
m=5 VMs, and λ=0.0001 task/sec. We first note that
the local TR time is independent of N which is intuitive
since each TD operates independently of all the TDs
of the fog cell no matter what their number is. We also
note that the remote TR time exceeds the local TR time
over the range of N until some value, roughly N =130
TDs. That is because the fog receives traffic from the
N TDs, so the higher the N the higher the remote TR
time. This problem was not seen by the way in the other
two modes, which confirms their superiority over the
baseline mode. Finally, Fig. 6d displays the impact of
the number m of VMs in the fog node on the expected

TR time. The system parameters for this experiment are
fixed at τ=900 sec, N=500 VMs, and λ=0.0001 task/
sec. The Figure illustrates, like in the other two modes,
that increasing the number m of VMs after some mini-
mum, here m=4, is pointless.

Comparison of overall TR time under all three virtualization
modes
Now it is time to compare the overall TR time in all
three modes. We plot in Fig. 7 the expected overall TR
times: E[ROP] given by (28), E[ROS] given by (29) and
E[ROB] given by (30). The other parameters here have
the values: μ=0.0011 task/sec, α=0.63, k=19, ξ=20 sec,
ψ=10 sec, a=30, b=100, and c=40 sec. Plotted also are
the simulation results which match the analytical results
spectacularly.

Fig. 6  TR time for the baseline mode, where μ=0.0011 task/sec, α=0.63, k=19, ξ=20 sec, and ψ=10 sec. a TR time versus the task inter-generation
λ. b TR time versus the off-loading threshold τ. c TR time versus the number of TDs N. d Response times versus the number of VMs m 

Page 15 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

Figure 7a displays the impact of the task generation rate
λ on the expected TR time. The system parameters for
this graph are fixed at N=500 TDs, m=5 VMs, μ=0.0011
task/sec, and τ=900 sec. Figure 7b displays the impact of
the task off-loading threshold τ on the expected TR time.
The system parameters for this graph are fixed at N=500
TDs, m=5 VMs, μ=0.0011 task/sec, and λ=0.0001 task/
sec. Figure 7c displays the impact of the number N of
TDs in the fog cell on the expected TR time. The sys-
tem parameters for this graph are fixed at τ=900 sec,
m=5 VMs, μ=0.0011 task/sec, and λ=0.0001 task/sec.
Figure 7d displays the impact of the number m of VMs
in the fog node on the expected TR time. The system
parameters for this graph are fixed at τ=900 sec, N=500
VMs, μ=0.0011 task/sec, and λ=0.0001 task/sec. As all
four graphs show, using virtualization either perfectly or

semiperfectly gives rise to substantial improvement in
the overall TR time.

Conclusions
In this article we have presented a novel study to char-
acterize the TR time in a fog enabled IoT network under
three different virtualization modes, departing from pre-
vious studies, which have focused on such traditional fog
issues as scheduling, load balancing and live migration.
The main mathematical tool used in our work is queue-
ing theory, which lends itself elegantly to the task waiting
phenomenon, either locally at the TD or remotely at the
fog. Two queueing models in particular have been princi-
pally considered, the M/G/1 and M/G/m. To validate the
analytical results obtained by queueing theory, we have
developed simulation software, in the Python language,

Fig. 7  Comparison of the overall TR times for perfect, semiperfect and baseline modes, E[ROP
] represented in (28), E[ROS

] represented in (29) and
E[ROB

] represented in (30) where μ=0.0011 task/sec, α=0.63, k=19, ξ=20 sec, ψ=10 sec, a=30, b=100, and c=40 sec

Page 16 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21

applying Monte Carlo and discrete event notions. The
experimental work shows clearly that the match between
the analytical and simulation results is excellent.

The main conclusion of this study is that virtualization
can be used favorably to reduce TR time. In particular,
the perfect mode is the best in this regard. However, is
admittedly hard to implement practically. Therefore, the
semiperfect mode comes in as a viable alternative, as it
is easy to implement while it can reduce the TR time sig-
nificantly in comparison with the baseline mode.

Directions where our work can be extended in the
future include repeating the study with variable transmis-
sion times, from the TD to the fog and from the fog to
the TD, using reasonable distributions. They also include
considering mobile TDs, i.e. TDs that move across differ-
ent cells, rather than just within a single cell.

Acknowledgments
None.

Authors’ contributions
All four authors read, edited, revised and approved the final manuscript. They
also participated in the design of the framework, the running of the experi‑
mental work and the analysis of the numerical results.

Funding
Open access funding provided by The Science, Technology & Innovation
Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank
(EKB).

Availability of data and materials
We have developed a discrete event Monte Carlo simulation program to
simulate the fog environment and compute the TR time for all considered
virtualization modes. The program is written in Python and code is publicly
available at https://​github.​com/​Virtu​aliza​tion-​Fog/​FogV.​git.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 1 January 2022 Accepted: 28 June 2022

References
	1.	 Khan AUR, Othman M, Madani SA, Ullah KS (2014) A survey of mobile

cloud computing application models. IEEE Commun Surv Tutor
16(1):393–413. https://​doi.​org/​10.​1109/​SURV.​2013.​062613.​00160.

	2.	 Sanaei Z, Abolfazli S, Gani A, Buyya R (2014) Heterogeneity in mobile
cloud computing: Taxonomy and open challenges. IEEE Commun Surv
Tutor 16(1):369–392. https://​doi.​org/​10.​1109/​SURV.​2013.​050113.​00090.

	3.	 Ray B (2019) The Role of Cloud Computing and Fog Computing in IoT.
https://​www.​iotfo​rall.​com/​cloud-​fog-​compu​ting-​iot. Accessed 24 Oct 2021.

	4.	 Marinescu DC (2018) Cloud Computing - Theory and Practice, Second
Edition. Elsevier, San Francisco.

	5.	 Hanes D, Salgueiro G, Grossetete P, Barton R, Henry J (2017) IoT Funda‑
mentals: Networking Technologies, Protocols, and Use Cases for the
Internet of Things, First Edition. Cisco Press, Indianapolis.

	6.	 Tadakamalla U, Menascé Daniel A (2018) Fogqn: An analytic model for fog/
cloud computing In: 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion, UCC Companion 2018, Zurich, Swit‑
zerland, December 17-20, 2018, 307–313.. IEEE. https://​doi.​org/​10.​1109/​
UCC-​Compa​nion.​2018.​00073.

	7.	 Abdelradi YM, El-Sherif AA, Afify LH (2021) A queueing theory approach
to traffic offloading in heterogeneous cellular networks. AEU Int J Elec‑
tron Commun 139:153910. https://​doi.​org/​10.​1016/j.​aeue.​2021.​153910.

	8.	 Abdul Majeed A, Kilpatrick P, Spence ITA, Varghese B (2020) Modelling
fog offloading performance In: 4th IEEE International Conference on
Fog and Edge Computing, ICFEC 2020, Melbourne, Australia, May 11-14,
2020, 29–38.. IEEE. https://​doi.​org/​10.​1109/​ICFEC​50348.​2020.​00011.

	9.	 Rista A, Ajdari J, Zenuni X (2020) Cloud computing virtualization: A
comprehensive survey In: 43rd International Convention on Information,
Communication and Electronic Technology, MIPRO 2020, Opatija, Croatia,
September 28 - October 2, 2020, 462–472.. IEEE. https://​doi.​org/​10.​23919/​
MIPRO​48935.​2020.​92451​24.

	10.	 Chaudhari S, Mani RS, Raundale P (2016) Sdn network virtualization
survey In: 2016 International Conference on Wireless Communications,
Signal Processing and Networking (WiSPNET), 650–655. https://​doi.​org/​
10.​1109/​WiSPN​ET.​2016.​75662​13.

	11.	 Mahmud MR, Afrin M, Razzaque MA, Hassan MM, Alelaiwi A, AlRubaian
MA (2016) Maximizing quality of experience through context-aware
mobile application scheduling in cloudlet infrastructure. Softw Pract Exp
46(11):1525–1545. https://​doi.​org/​10.​1002/​spe.​2392.

	12.	 Bahl P, Han RY, Li E, Satyanarayanan M (2012) Advancing the state of mobile
cloud computing In: The Third ACM Workshop on Mobile Cloud Computing
and Services, ACM, 21–28. https://​doi.​org/​10.​1145/​23078​49.​23078​56.

	13.	 Al-Fuqaha AI, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015)
Internet of things: A survey on enabling technologies, protocols, and applica‑
tions. IEEE Commun Surv Tutorials 17(4):2347–2376. https://​doi.​org/​10.​1109/​
COMST.​2015.​24440​95.

	14.	 Usmani Z, Singh S (2016) A survey of virtual machine placement
techniques in a cloud data center. Procedia Comput Sci 78:491–498.
https://​doi.​org/​10.​1016/j.​procs.​2016.​02.​093.

	15.	 Feng D, Wu Z, Zuo D, Zhang Z (2019) Erp: An elastic resource provisioning
approach for cloud applications. PLoS ONE 14:0216067. https://​doi.​org/​
10.​1371/​journ​al.​pone.​02160​67.

	16.	 Fourati M, Marzouk S, Jmaiel M (2022) Epma: Elastic platform for
microservices-based applications: Towards optimal resource elasticity. J
Grid Comput 20. https://​doi.​org/​10.​1007/​s10723-​021-​09597-5.

	17.	 Virtual Machine Desired State Configuration. https://​flings.​vmware.​com/​
virtu​al-​machi​ne-​desir​ed-​state-​confi​gurat​ion. Accessed 22 Jul 2022.

	18.	 Nottingham C (2021) Change the size of a virtual machine. https://​docs.​
micro​soft.​com/​en-​us/​azure/​virtu​al-​machi​nes/​resize-​vm?​tabs=​portal.
Accessed 13 Mar 2022.

	19.	 Saeik F, Avgeris M, Spatharakis D, Santi N, Dechouniotis D, Violos J,
Leivadeas A, Athanasopoulos N, Mitton N, Papavassiliou S (2021) Task
offloading in edge and cloud computing: A survey on mathemati‑
cal, artificial intelligence and control theory solutions. Comput Netw
195:108177. https://​doi.​org/​10.​1016/j.​comnet.​2021.​108177.

	20.	 Ushakova M, Ushakov Y, Bolodurina I, Shukhman A, Legashev L, Parfenov
D (2021) Creation of adequate simulation models to analyze perfor‑
mance parameters of a virtual fog computing infrastructure. Procedia
Comput Sci 186:603–610. https://​doi.​org/​10.​1016/j.​procs.​2021.​04.​182.

	21.	 Wu H, Wolter K (2018) Stochastic analysis of delayed mobile offloading
in heterogeneous networks. IEEE Trans Mob Comput 17(2):461–474.
https://​doi.​org/​10.​1109/​TMC.​2017.​27110​14.

	22.	 Aljanabi S, Chalechale A (2021) Improving iot services using a hybrid fog-
cloud offloading. IEEE Access 9:13775–13788. https://​doi.​org/​10.​1109/​
ACCESS.​2021.​30524​58.

	23.	 Shahhosseini S, Anzanpour A, Azimi I, Labbaf S, Seo D, Lim S-S, Liljeberg
P, Dutt N, Rahmani AM (2021) Exploring computation offloading in iot
systems. Inf Syst:101860. https://​doi.​org/​10.​1016/j.​is.​2021.​101860.

	24.	 Jaddoa A, Sakellari G, Panaousis E, Loukas G, Sarigiannidis PG (2020)
Dynamic decision support for resource offloading in heterogeneous
internet of things environments. Simul Model Pract Theory 101:102019.
https://​doi.​org/​10.​1016/j.​simpat.​2019.​102019.

https://github.com/Virtualization-Fog/FogV.git
https://doi.org/10.1109/SURV.2013.062613.00160
https://doi.org/10.1109/SURV.2013.050113.00090
https://www.iotforall.com/cloud-fog-computing-iot
https://doi.org/10.1109/UCC-Companion.2018.00073
https://doi.org/10.1109/UCC-Companion.2018.00073
https://doi.org/10.1016/j.aeue.2021.153910
https://doi.org/10.1109/ICFEC50348.2020.00011
https://doi.org/10.23919/MIPRO48935.2020.9245124
https://doi.org/10.23919/MIPRO48935.2020.9245124
https://doi.org/10.1109/WiSPNET.2016.7566213
https://doi.org/10.1109/WiSPNET.2016.7566213
https://doi.org/10.1002/spe.2392
https://doi.org/10.1145/2307849.2307856
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1016/j.procs.2016.02.093
https://doi.org/10.1371/journal.pone.0216067
https://doi.org/10.1371/journal.pone.0216067
https://doi.org/10.1007/s10723-021-09597-5
https://flings.vmware.com/virtual-machine-desired-state-configuration
https://flings.vmware.com/virtual-machine-desired-state-configuration
https://docs.microsoft.com/en-us/azure/virtual-machines/resize-vm?tabs=portal
https://docs.microsoft.com/en-us/azure/virtual-machines/resize-vm?tabs=portal
https://doi.org/10.1016/j.comnet.2021.108177
https://doi.org/10.1016/j.procs.2021.04.182
https://doi.org/10.1109/TMC.2017.2711014
https://doi.org/10.1109/ACCESS.2021.3052458
https://doi.org/10.1109/ACCESS.2021.3052458
https://doi.org/10.1016/j.is.2021.101860
https://doi.org/10.1016/j.simpat.2019.102019

Page 17 of 17Mohamed et al. Journal of Cloud Computing (2022) 11:21 	

	25.	 Sun C, Zhou J, Liuliang J, Zhang J, Zhang X, Wang W (2018) Computation
offloading with virtual resources management in mobile edge networks
In: 87th IEEE Vehicular Technology Conference, VTC Spring 2018, Porto,
Portugal, June 3-6, 2018, 1–5.. IEEE. https://​doi.​org/​10.​1109/​VTCSp​ring.​
2018.​84176​81.

	26.	 Rekha PM, Dakshayini M (2018) Dynamic cost-load aware service broker
load balancing in virtualization environment. Procedia Comput Sci
132:744–751. https://​doi.​org/​10.​1016/j.​procs.​2018.​05.​086.

	27.	 Maiti P, Sahoo B, Turuk AK, Kumar A, Choi BJ (2021) Internet of things
applications placement to minimize latency in multi-tier fog computing
framework. ICT Express. https://​doi.​org/​10.​1016/j.​icte.​2021.​06.​004.

	28.	 Chebaane A, Spornraft S, Khelil A (2020) Container-based task off‑
loading for time-critical fog computing In: 3rd IEEE 5G World Forum,
5GWF 2020, Bangalore, India, September 10-12, 2020, 205–211.. IEEE.
https://​doi.​org/​10.​1109/​5GWF4​9715.​2020.​92214​86.

	29.	 Hwang J, Nkenyereye L, Sung N, Kim J, Song J (2021) Iot service slic‑
ing and task offloading for edge computing. IEEE Internet Things J
8(14):11526–11547. https://​doi.​org/​10.​1109/​JIOT.​2021.​30524​98.

	30.	 Hejja K, Berri S, Labiod H (2021) Network slicing with load-balancing
for task offloading in vehicular edge computing. Veh Commun:100419.
https://​doi.​org/​10.​1016/j.​vehcom.​2021.​100419.

	31.	 Li J, Jin J, Yuan D, Zhang H (2018) Virtual fog: A virtualization enabled
fog computing framework for internet of things. IEEE Internet Things J
5(1):121–131. https://​doi.​org/​10.​1109/​JIOT.​2017.​27742​86.

	32.	 Li J, Liang W, Ma Y (2021) Robust service provisioning with service func‑
tion chain requirements in mobile edge computing. IEEE Trans Netw Serv
Manag 18(2):2138–2153. https://​doi.​org/​10.​1109/​TNSM.​2021.​30626​50.

	33.	 Zhang Q, Gui L, Hou F, Chen J, Zhu S, Tian F (2020) Dynamic task offload‑
ing and resource allocation for mobile-edge computing in dense cloud
RAN. IEEE Internet Things J 7(4):3282–3299. https://​doi.​org/​10.​1109/​JIOT.​
2020.​29675​02.

	34.	 Cao K, Li L, Cui Y, Wei T, Hu S (2021) Exploring placement of heterogene‑
ous edge servers for response time minimization in mobile edge-cloud
computing. IEEE Trans Ind Inf 17(1):494–503. https://​doi.​org/​10.​1109/​TII.​
2020.​29758​97.

	35.	 Sopin ES, Daraseliya AV, Correia LM (2018) Performance analysis of the
offloading scheme in a fog computing system In: 10th International
Congress on Ultra Modern Telecommunications and Control Systems and
Workshops, ICUMT 2018, Moscow, Russia, November 5-9, 2018, 1–5.. IEEE.
https://​doi.​org/​10.​1109/​ICUMT.​2018.​86312​45.

	36.	 Sopin ES, Samouylov KE, Shorgin S (2019) The analysis of the computa‑
tion offloading scheme with two-parameter offloading criterion in
fog computing In: Internet and Distributed Computing Systems - 12th
International Conference, IDCS 2019, Naples, Italy, October 10-12, 2019,
Proceedings (Lecture Notes in Computer Science), 11–20.. Springer,
Cham. https://​doi.​org/​10.​1007/​978-3-​030-​34914-1_2.

	37.	 Ibrahim AS, Al-Mahdi H, Nassar H (2021) Characterization of task response
time in a fog-enabled iot network using queueing models with general
service times. J King Saud Univ Comput Inf Sci. https://​doi.​org/​10.​1016/j.​
jksuci.​2021.​09.​008.

	38.	 Vilaplana J, Solsona F, Teixido I, Mateo J, Abella F, Rius J (2014) A queuing
theory model for cloud computing. J Supercomput 69(1):492–507.
https://​doi.​org/​10.​1007/​s11227-​014-​1177-y.

	39.	 Bolch G, Greiner S, De Meer H, Trivedi KS (2006) Queueing Networks and
Markov Chains - Modeling and Performance Evaluation with Computer
Science Applications, Second Edition. Wiley. http://​eu.​wiley.​com/​Wiley​
CDA/​Wiley​Title/​produ​ctCd-​04715​65253.​html. Accessed 22 Jul 2022.

	40.	 Ross S (1996) Stochastic Processes, 2nd edition. Wiley, New Delhi.
	41.	 Medhi J (2003) Stochastic Models in Queueing Theory. Academic Press,

Cambridge.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1109/VTCSpring.2018.8417681
https://doi.org/10.1109/VTCSpring.2018.8417681
https://doi.org/10.1016/j.procs.2018.05.086
https://doi.org/10.1016/j.icte.2021.06.004
https://doi.org/10.1109/5GWF49715.2020.9221486
https://doi.org/10.1109/JIOT.2021.3052498
https://doi.org/10.1016/j.vehcom.2021.100419
https://doi.org/10.1109/JIOT.2017.2774286
https://doi.org/10.1109/TNSM.2021.3062650
https://doi.org/10.1109/JIOT.2020.2967502
https://doi.org/10.1109/JIOT.2020.2967502
https://doi.org/10.1109/TII.2020.2975897
https://doi.org/10.1109/TII.2020.2975897
https://doi.org/10.1109/ICUMT.2018.8631245
https://doi.org/10.1007/978-3-030-34914-1_2
https://doi.org/10.1016/j.jksuci.2021.09.008
https://doi.org/10.1016/j.jksuci.2021.09.008
https://doi.org/10.1007/s11227-014-1177-y
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471565253.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471565253.html

	Characterization of task response time in fog enabled networks using queueing theory under different virtualization modes
	Abstract
	Introduction
	Related work
	System model
	Performance analysis
	Local TR time
	Remote TR time
	Perfect virtualization (constant service time):
	Semiperfect virtualization (uniform service time):
	Baseline virtualization (truncated exponential service time):

	Overall TR time
	Perfect virtualization (constant service time):
	Semiperfect virtualization (uniform service time):
	Baseline virtualization (truncated exponential service time):

	Numerical results
	Remote TR time under perfect virtualization
	Remote TR time under semiperfect virtualization
	Remote TR time under baseline virtualization
	Comparison of overall TR time under all three virtualization modes

	Conclusions
	Acknowledgments
	References

