
Kohyarnejadfard et al. 
Journal of Cloud Computing           (2022) 11:25  
https://doi.org/10.1186/s13677-022-00296-4

RESEARCH

Anomaly detection in microservice 
environments using distributed tracing data 
analysis and NLP
Iman Kohyarnejadfard1*, Daniel Aloise1*, Seyed Vahid Azhari1,2 and Michel R. Dagenais1 

Abstract 

In recent years DevOps and agile approaches like microservice architectures and Continuous Integration have 
become extremely popular given the increasing need for flexible and scalable solutions. However, several factors 
such as their distribution in the network, the use of different technologies, their short life, etc. make microservices 
prone to the occurrence of anomalous system behaviours. In addition, due to the high degree of complexity of small 
services, it is difficult to adequately monitor the security and behavior of microservice environments. In this work, we 
propose an NLP (natural language processing) based approach to detect performance anomalies in spans during a 
given trace, besides locating release-over-release regressions. Notably, the whole system needs no prior knowledge, 
which facilitates the collection of training data. Our proposed approach benefits from distributed tracing data to 
collect sequences of events that happened during spans. Extensive experiments on real datasets demonstrate that 
the proposed method achieved an F_score of 0.9759. The results also reveal that in addition to the ability to detect 
anomalies and release-over-release regressions, our proposed approach speeds up root cause analysis by means of 
implemented visualization tools in Trace Compass.

Keywords:  Performance monitoring, Anomaly detection, Tracing, Microservices, Machine learning, NLP, LSTM

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Nowadays, computing infrastructures have evolved sig-
nificantly using complex systems that facilitate many 
complicated and large-scale tasks in distributed and 
cloud environments. The microservice architecture has 
emerged as a result of this development. Microservices 
are small interconnected services that present a com-
plex service, such as a web application [1]. They provide 
greater scalability, making possible the distribution of an 
application over multiple physical or virtual systems. In 
addition, the microservice architecture improves produc-
tivity by decomposing applications into smaller services 
that are easier to manage and faster to develop. Unlike 

the monolithic architecture, if one microservice fails the 
others continue to work.

These improvements have increased user expecta-
tions in a way that any performance anomaly may lead 
to user dissatisfaction and loss of revenue. Even when 
several services are brought down for maintenance, the 
users usually do not notice it. Although significant efforts 
have been made to ensure the quality of microservices, 
the complexity and large scale of these systems make 
them fragile and prone to performance anomalies and 
failures [2]. Further, performance monitoring and trac-
ing of microservices become even more challenging as 
the degree of automation and distribution is increased. 
For example, each service can be developed using its own 
language or technology while still communicating with 
other services.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence:  iman.kohyarnejadfard@polymtl.ca; daniel.aloise@polymtl.ca

1 Department of Computer and Software Engineering, Polytechnique 
Montreal, Montreal, Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00296-4&domain=pdf


Page 2 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

Unlike monolithic applications in which dedicated 
teams work on discrete functions such as UI or database, 
microservices employ cross-functional teams to handle 
an application’s entire life cycle using a continuous deliv-
ery model [1, 3]. Nonetheless, dynamic services make 
monitoring more difficult. Even if a tracer can record all 
the execution details, it is still hard to detect the source of 
the problem inside the trace files.

Different reasons may cause performance anomalies in 
microservice environments [4]. Any problem in a service, 
such as a network disconnection or hard disk failure, 
may cause the microservice system to crash. Miscon-
figurations or extreme load by a service can also affect 
the whole system. Changes in one service may influence 
other dependent services workload, and may result in 
response time degradation. Moreover, the agile nature 
of microservice environments yields multiple service 
updates per day, and several versions of the application 
may be deployed in a short amount of time. As such, sev-
eral methods may change in a new update, then affect-
ing the response time behavior of services and leading to 
many false alarms from monitoring tools [4, 5].

The way we trace such environments and collect data is 
of particular importance. A microservice-based applica-
tion consists of tens, hundreds, or thousands of services 
running across many hosts. Consequently, it is not possi-
ble to rely on an individual trace. In this case, distributed 
tracing is required, thus providing a view of a request’s 
life as it travels across multiple nodes and services com-
municating over various protocols [6]. It also enables to 
follow the spans and events that occur in different nodes. 
A span is the primary building block in distributed trac-
ing and represents an individual unit of work done in a 
distributed system. Besides, many sub-spans may be gen-
erated during the spans lifetime, in which tens of user-
space and kernel events occur in a particular order. The 
proposed diagnostic approach proposed here works by 
collecting sequences of events during spans using the 
Linux Trace Toolkit Next Generation (LTTng) [7], send-
ing them to the detection module, and eventually analyz-
ing the outputs of the model in Trace Compass. LTTng 
provides a system software package for correlated tracing 
of the Linux kernel, applications, and libraries [7].

In this paper, we propose a general framework to find 
anomalies as well as release-over-release regressions in 
microservice environments by taking advantage of NLP 
and open-source tools (i.e., LTTng and Trace Compass). 
In general, anomaly detection and localization is the pro-
cess of finding patterns in data that deviate from normal 
behavior [8], which is different from noise detection and 
noise elimination that refer to unwanted noise in the data. 
Anomalies in data may happen in various forms, such 
as point and collective anomalies. Methods that work 

based on detecting point anomalies and also metric-
based algorithms cannot always identify the root cause 
of anomalies. A single data point (event or metric) does 
not include enough information to determine whether an 
anomaly actually happened in complex systems such as 
microservices. Usually, an anomaly is declared when the 
execution of the program has not been normal during a 
time interval that includes many events. In real applica-
tions, only a limited number of events can be the result 
of an action. Therefore, just a few of the possible events 
can appear as the next events for a sequence of observed 
events [9]. In other words, similar to words in natural 
language processing, events as elements of a sequence 
follow specific patterns and grammar rules. We used this 
idea in our anomaly detection framework and applied a 
general NLP-based strategy to distinguish normal and 
abnormal patterns in a sequence of events. In addition to 
locating anomalies, our proposed framework also allows 
analysts to zoom in the detected anomalous parts of the 
trace to discover the root cause of the problems.

The main contributions of our work can be summa-
rized as follows:

•	 Unlike many other methods that use OpenTracing, 
our anomaly detection framework employs LTTng 
to perform distributed tracing. OpenTracing is a 
vendor-agnostic API to help developers easily instru-
ment tracing into their code [10]. A trace in Open-
Tracing is a directed acyclic graph of spans, and it 
provides only relationships across microservices. 
In contrast, LTTng provides details of the programs 
execution with higher resolution by presenting ker-
nel and userspace events.

•	 We developed a handcrafted data extraction module 
in Trace Compass to construct the spans using the 
request/response events tag. Moreover, the hierar-
chical structure of these tags helps us to extract sub-
spans. This module is also responsible for converting 
each span into a sequence of events.

•	 Our LSTM-based model, designed for post-analysis 
of traces, learns the normal patterns of events along 
with their arguments (e.g., event type, tag, and pro-
cess name). Further, this model is trained to predict 
the next event’s arguments in addition to the event’s 
name. Learning and predicting at this granularity 
sets our model apart from the others found in the 
literature.

•	 Our framework makes it possible to examine the 
system behavior from both the system and ser-
vice perspectives, which gives the troubleshooter a 
deep understanding of what happened at the time 
of an anomaly. The provided visualizations consid-
erably reduce troubleshooting time by highlighting 



Page 3 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

the anomalous parts of the trace and directing the 
debugger to the most relevant problem sites of inter-
est. Without such visualizations, manually tracking 
the performance of systems within low-level tracing 
data, possibly including thousands of events from dif-
ferent spans, is indeed a very exhausting task.

•	 In addition to anomaly detection, our framework can 
be applied to identify release-over-release regres-
sions. Finding potential regressions from one release 
to another is extremely valuable, and conventional 
performance tests cannot reveal sufficient regres-
sions. Many subtle changes in spans or sequence of 
events signify a regression that can be captured using 
our framework.

The rest of the paper is organized as follows. In Sec-
tion  Previous work, related studies are presented. In 
“Anomaly detection framework” section, we introduce 
our automatic integrated anomaly detection framework 
for microservice environments. “Evaluation” section pro-
vides the experimental results followed by the conclu-
sions in “Conclusion” section.

Previous work
In traditional approaches, application performance man-
agement (APM) tools that support various measures are 
utilized to perform resource behavior analysis on micros-
ervices [11]. Tracing is another robust and efficient 
approach for reverse engineering and debugging of com-
plex systems [12]. Many tracers across all software stack 
layers, and even at the hardware level, have emerged in 
the last years. Distributed tracing, unlike the most tradi-
tional methods that only monitor individual components 
of the architecture, is applied to complex distributed sys-
tems at the workflow level [13]. Tools like OpenCensus 
and OpenTracing [10] help to record the execution path 
of each microservice request. Jaeger [14], a popular tool 
that supports OpenTracing and developed by Uber, has 
been widely used to automatically collect and store the 
service call data [15, 16]. Its counterpart Zipkin [17] aids 
in gathering timing data needed to troubleshoot latency 
problems in microservice architectures [18, 19]. How-
ever, the high-level information that these tools provide 
is not always sufficient to characterize the execution sta-
tus of the system since they do not offer kernel events. 
Thus, tracing with LTTng is a fundamental part of our 
anomaly detection framework. This open-source tool is 
implemented for achieving high throughput and includes 
multiple modules for Linux kernel and userspace tracing, 
thereby imposing low overhead to the operating system. 
Besides, this tool can work with a variety of environ-
ments, such as monolithic applications, microservices, 
and IoT devices [20].

The earliest efforts for anomaly detection had used 
statistical methods [21] where an anomaly score was 
calculated using a function of abnormality to show the 
behavior of the application. In [22], CPU performance 
and network performance metrics in master-slave and 
nested-container models are compared to provide a 
benchmark analysis guidance for system designers. How-
ever, a live threshold is required given the system’s cur-
rent state to determine whether the program behavior is 
normal or abnormal, which is practically impossible to 
set in real-time. Furthermore, these tools do not provide 
any details about the application’s execution flow. Several 
machine learning-based schemes have also been applied 
to detect anomalies in microservice systems in addition 
to statistical and metric-based methods. Hierarchical 
Hidden Markov Models (HHMM) are adopted in [23] 
to learn a model based on different monitored metrics 
such as CPU, Memory, and Network to locate anoma-
lous behaviors. Besides, many clustering algorithms, 
such as k-means, k-medoids, EM clustering, and outlier 
detection algorithms, have been employed for anomaly 
detection in microservice environments [24–26]. The 
main issue with such methods is that they are usually 
difficult to interpret. Supervised methods such as SVM, 
Fuzzy Logic, and Neural Networks, which use labeled 
data, were proposed in [27–29]. In [28], the authors used 
a SVM to detect DoS attacks in virtualized clouds under 
a changing environment. In [30], a fuzzy technique was 
proposed to extract abnormal patterns based on various 
statistical metrics in which fuzzy logic rules are applied 
to classify data. However, in practice, the labeling process 
is highly complicated, or even impossible. Recently, deep 
learning techniques which do not need labeled data have 
yielded promising results. The works of [31, 32] propose 
anomaly detection methods for large cloud infrastruc-
tures using long short-term memory (LSTM) neural 
networks [33] with data from distributed tracing technol-
ogies. In that work, a stacked LSTM network model was 
presented for anomaly detection in time series where the 
network was trained on non-anomalous data. The draw-
back of these methods is that many details, including 
events arguments such as event type, tag, process name, 
and return value are ignored.

Furthermore, researchers have made much effort to 
improve anomaly detection by using different data rep-
resentations and information resources. Tracing data and 
log, as the most popular information resources, can be 
represented in the form of an enumerated collection of 
events sorted by their timestamps [34]. Different works 
make different uses of this structure. In DeepLog [35], 
a deep neural network model is proposed to model an 
unstructured system log as a natural language sequence. 
In [36], by performing time-series-based forecasting, 



Page 4 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

anomalies on cyclic resource usage patterns are detected. 
In the sequel, graph representations of the events are 
obtained from this data and employed to detect critical 
nodes and design anti-patterns proactively. The authors 
of [37] designed and developed a simplified MSA applica-
tion and applied different graph algorithms, then assess-
ing their benefits in MSA analysis. In another article, 
Tao Wang et  al. [38] organized the trace information 
collected by the OpenTracing tool to characterize pro-
cessing requests workflow across multiple microservice 
instances as a calling tree. The proposed approach con-
verts the given trace into the spans and detects perfor-
mance anomalies using the model of normal key patterns.

Some points distinguish our work from previous related 
literature. Fistly, unlike traditional approaches, that use 
application performance management tools that support 
various metrics (e.g., CPU and memory utilization) to 
perform resource behavior analysis on microservices, our 
work’s main source of information is tracing data. Com-
pared to these approaches, our proposed framework is 
not dependent on the existence of any threshold. Moreo-
ver, the metrics used by these approaches do not help to 
find the cause of the anomaly after detecting it. Tracing 
provides considerable details about the application’s exe-
cution flow and about what exactly happened at the time 
an anomaly occurred. Secondly, most previous works 
that make use of tracing data employ OpenTracing-based 
tools such as Jaeger or Zipkin to perform distributed 
tracing. Nonetheless, the high-level information that 
these tools provide about microservices interaction is not 
always sufficient to characterize the execution status of 
the system. Our proposed framework employs the LTTng 
open-source tool, which imposes low overhead on the 
operating system and presents low-level kernel and user-
space tracing. Thirdly, the main drawback of supervised 
methods is that they require labeled data. The process 
of labeling data points in terms of performance status is 
highly complicated and sometimes even impossible. In 

addition, to collect labeled data related to an application, 
a very specialized professional is needed. Conversely, 
clustering approaches are difficult to interpret. We pro-
pose in this work an unsupervised method to learn nor-
mal execution patterns, since collecting normal data is 
straightforward and can be done automatically without 
any supervision. Fourthly, other deep learning-based 
and NLP-based approaches ignore events arguments in 
their modeling. Event arguments such as process name, 
message, and event type contain beneficial details that 
increase detection quality [39]. We use these arguments 
to train our model. Then, in the prediction phase, our 
model predicts the name of the next event as well as its 
arguments. Finally, previous works from the literature, 
such as DeepLog, have not presented any solution to 
analyze the model’s output. However, the use of Trace 
Compass in our approach enables us to develop analysis 
scripts and even use many preexisting scripts and visuali-
zations to examine the model’s output more deeply.

Anomaly detection framework
In this section, we introduce an NLP-based anomaly 
detection framework for post-analysis of LTTng traces. 
It is designed to help developers to efficiently find the 
root causes of abnormal behaviors in microservice 
environments. We aim to provide a general framework 
applicable to microservice-based applications with dif-
ferent settings.

Figure  1 presents the architecture of our approach 
along with its three main modules, i.e., the tracing mod-
ule, the data extraction module, and the analysis module. 
We discuss this architecture in detail in the following 
subsections.

Tracing module
Tracing is an efficient way of gaining information from 
a system for further analysis and debugging, thus mini-
mizing the monitoring influence. Distributed tracing 

Fig. 1  The architecture of our proposed anomaly detection method for microservice environments



Page 5 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

is derived from traditional tracing so as to be employed 
within distributed systems. Distributed tracing technolo-
gies provide a view of the communication among micros-
ervices [6]. Microservices mostly use Representational 
State Transfer (REST) as a usual way to communicate 
with other microservices.

We aim to provide a general anomaly detection frame-
work that can be easily applicable for any microservice-
based application in practice and subsequently lead to 
the discovery of the cause of the identified anomalies. We 
have described how to analyze an application and pre-
pare its associated dataset, instead of using pre-existing 
available datasets which do not inherently contain infor-
mation needed to extract spans and their associated 
sequence of events.

As our case study, we created our dataset by tracing 
a distributed software available in Ciena Corporation. 
Many new releases of this software are provided by the 
developers of this company every day. Thus, we collected 
traces from different releases to compose the dataset. 
We denote the set of all traces collected from different 
releases as Γ={T1,T2,...,Tn}, where n indicates the number 
of collected traces.

Figure  2 illustrates the structure of our tracing mod-
ule that make use of the LTTng open-source tool. As 
presented in this figure, LTTng is deployed on each 
node to send the tracing data to the manager. The run-
ning LTTng-relayd daemon on the manager collects 
the tracing data received from the nodes. Later, Trace 
Compass integrates the traces obtained from different 
nodes to form a Trace Ti = {e1, e2, ..., eg(Ti)} , where g(Ti) 
is the number of events associated to Ti. Actually, Ti is 

represented as an enumerated collection of events sorted 
by their timestamps.

During the execution of a microservice application, 
many tasks or spans, such as opening a web page, are per-
formed. In fact, a trace can be divided into a set of spans, 
where each span consists of a sequence of events that are 
invoked in a specific order to perform the desired task. It 
should be noted that spans can not be directly retrieved 
using LTTng. In the sequel, we will discuss in detail how 
to extract spans from tracing data.

Data extraction module
We implemented the data extraction module within the 
Trace Compass open-source tool, which offers scripting 
capability [40] and visualization mechanisms to pro-
mote our analysis. LTTng generates a CTF (Common 
Trace Format) file for every node in the microservice 
environment. The CTF format is a file format optimized 
for the production and analyses of big tracing data [7]. 
After generating the CTF files, Trace Compass is used 
to read these files and integrates them into trace Ti, 
where i indicates the index of this trace in Γ. The result 
of this process is an enumerated collection of events 
sorted by their timestamps.

An event is composed of well-defined fields that are 
common to all events, such as name, timestamp, and 
process ID. However, the delivered sequence of time-
ordered events does not provide the spans that reflect 
separate tasks. In order to extract spans and their sub-
spans, Γ is scanned with respect to the tag of request/
response events. Other events are then processed, so as 
that each event is assigned to the span it belongs. In our 

Fig. 2  The overview of our distributed tracing module



Page 6 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

framework, events are stored by means of their asso-
ciated keys composed by the name of the event and its 
arguments.

In order to train a model which is able to detect per-
formance anomalies as well as release-over-release deg-
radations, a massive training dataset is required to cover 
as many normal patterns of keys as possible. Actually, the 
training data Γ correspond to entries of traces obtained 
from the execution of previous stable releases of an appli-
cation. Figure 3 summarizes how to create such a dataset. 
After collecting n different traces, each of them is pro-
cessed, so as that all the spans associated with each trace 
are individually extracted from Γ. Next, for each span, its 
sequence of events is collected and stored in Si, for i=1,…
,m. In our framework, each sequence Si is represented by 
its corresponding keys κ1i , . . . , κ

h(Si)
i  , where κki  represents 

the k-th key in the sequence Si, and h(Si) indicates the 
length of sequence Si.

Extracting spans
In the following, we describe how spans are extracted 
from an LTTng trace. LTTng uses tracepoints designed 
to hook mechanisms that can be activated at runtime 
to record information about a program execution. Tra-
cepoints are placed inside the code by developers or 
debuggers to extract useful information without the 
need of knowing the code in-depth. Hence, one can 
expect to encounter different event types in trace data, 

indicating the beginning or the end of a span, or any 
other operation.

Requests and responses are the two types of events we 
consider for extracting spans. Each span starts with a 
request and ends with a response. In addition, the request 
and response associated with a span possess the same 
tag. For example, a request with tag 00 indicates the start 
of a span, whereas a response with the same tag marks 
its end. Moreover, many sub-spans may be generated 
during a span’s lifetime since a service may communicate 
with other services to answer a demand. Similar to spans, 
sub-spans are created with a request and a response 
that share the same tag. Besides, the parent’s tag of each 
sub-span is embedded into the children’s tag. For exam-
ple, 00/01 indicates a sub-span whose parent is repre-
sented by the 00 tag. As shown in Fig. 4, each span and 
its sub-spans form a tree. Yet, each span can be displayed 
as a sequence of requests and responses sorted by their 
timestamp. In the example of Fig. 4, this sequence would 
be S={Req,Req,Resp,Req,Resp,Resp}.

Construction of sequences of keys
In addition to requests and responses, many other 
userspace and kernel events happen during each span. 
After collecting all spans, all events in Γ are processed, 
and assigned to the span to which they belong. The 
appropriate span for each event is found by compar-
ing the event’s arguments (e.g., TID and PID) with the 
arguments of the events that have been assigned to the 

Fig. 3  Illustration of the process for creating the training dataset from multiple traces



Page 7 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

spans. Once the appropriated span is identified, the 
event is placed in the sequence according to its times-
tamp. In the example of Fig.  4, if an event happens 
right after the first request, the resulting sequence 
becomes S={Req,Event,Req,Resp,Req,Resp,Resp}. This 
process is repeated for all events so that a set contain-
ing all sequences is obtained, where each sequence 
refers to a span.

The previous paragraph explained how sequences are 
extracted from a trace. Now, we explain how the argu-
ments of events are used. Whenever a specific trace-
point is encountered at runtime, an event is produced 
with its arguments such as a name, timestamp, and 
possibly many others. Event arguments such as process 

name, message, and event type contain important 
information to increase detection quality.

The scope of this work is limited to the arguments that 
are common to all events. In our experimental traces, 
event name, process name (Procname), Thread ID (TID), 
Process ID (PID), timestamp, message, and event type 
are present in most of the events. We divided the events 
into two categories: 1) requests/responses, and 2) other 
events. Table 1 lists the arguments we selected for each 
category of events. The key for requests and responses is 
created using the name, type, tag, and procname argu-
ments. Event type specifies whether the event is a request 
or a response, and tag specifies the span or sub-span to 
which the event belongs. The second category of general 

Fig. 4  The structure of a span and its sub-spans in a distributed trace



Page 8 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

events uses the event name, procname, and message 
arguments to compose the keys. Thus, the resulting keys 
are all textual strings, and V={v1,v2,...,vd} denotes the set 
of all possible unique keys.

Although simple, extending our framework to a new 
argument may require a much larger dataset depend-
ing on the number of values that argument may have. 
To illustrate, let us suppose we use only one argument to 
create keys, and that this argument has β1 different val-
ues. In this case, only β1 unique keys are created (d=β1). 
If another argument with β2 different values is then used, 
β1×β2 unique keys are obtained (d=β1×β2). Thus, each 
time a new argument with βi different values is consid-
ered, the number of unique keys increases βi times.

Analysis module
In microservice environments such as our experimental 
application, events are expected to occur in a particular 
order. Actually, the keys in the sequences obtained by 
the data extraction module must follow specific patterns 
and grammar rules similar to the ones found in natural 
languages. Hence, only a few possible keys can appear as 
the next key in a sequence following a specific set of keys. 
The training dataset in our experiments includes normal 
sequences of keys obtained from previous stable releases 
of the application. In this section, we review the machine 
learning model we have proposed to distinguish normal 
patterns from abnormal ones. We adopted an LSTM net-
work to model this sequence to word problem given its 
success for modeling text prediction and other similar 
natural language processing tasks. This model learns the 

probable keys at the moment t according to the previ-
ously observed sequences of keys. Later in the detection 
phase, the model determines which events in a sequence 
do not conform to normal patterns.

We modeled the anomaly detection problem on our 
sequences of keys as a multi-class classification problem for 
which the input length α is fixed. Remark that the sequences 
obtained by the data extraction module are of different 
lengths. Multiple sub-sequences of fixed size are hence 
obtained by considering a window of size α over the larger 
sequences. It should be noted that sequences smaller than α 
are very rare in our dataset. These small sequences are 
related to light operations that are often not prone to perfor-
mance anomalies. Consequently, they are simply ignored by 
the analysis module. Let V={v1,v2,...,vd} be the set of all possi-
ble unique keys, where each key vi defines a class. From a 
sequence of size h(Si), h(Si)−α subsequences are analyzed. 
Thus, for each sequence Si, the input of the model is denoted 
by Xj

i = κ
j
i , κ

(j+1)

i , ..., κ
(j+α−1)

i  and the output is expressed 
by Y j

i = κ
(j+α)

i  , where j∈1,...,h(Si)−α. Sequences represent a 
part of a task’s execution path in which keys happen in a par-
ticular order. Hence, for each Xj

i , Y
j
i  can only take a few of the 

d possible keys from V and is dependent on the sequence Xj
i 

that appeared before Y j
i  . In other words, the input of the 

model is a sequence of α recent keys, and the output is a 
probability distribution over the d keys from V, expressing 
the probability that the following key in the sequence is vr∈V. 
Eventually, a model of the conditional probability distribu-
tion Prob(κ

j+α

i = vr | κ
j
i , κ

(j+1)

i , ..., κ
(j+α−1)

i ), vr ∈ V  is 
made after the training. Figure 5 shows an overview of the 
described anomaly detection model.

An LSTM network is employed to learn the probabil-
ity distribution Prob(κ j+α

i = vr |
{

κ
j
i , κ

(j+1)

i , ..., κ
(j+α−1)

i

}

) 
that maximizes the probability of the training 
sequences. The architecture of this LSTM network is 
shown in Fig.  6. Each layer contains α LSTM blocks, 
where each block processes a key of the input sequence. 
LSTM blocks have a cell state vector C and a hidden 
vector H. Both values are moved to the next block to 
initialize its state. The values of input κqi  and Hq−1

i  , for 
q∈{j,j+1,...,j+α−1}, determine how the current input 
and the previous output affect that state. They indicate 
how much of Cq−1

i  (the previous cell state) holds in the 
state Cq

i  . They also influence the construction of the 

Table 1  The categories of events and the arguments used by 
our framework

Event category Argument Type

Request/Response Event name string

Event type string

Tag string

Procname string

Others Event name string

Procname string

Message string

Fig. 5  The overview of our anomaly detection model



Page 9 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

output Hq
i  . Our deep LSTM neural network architec-

ture includes two hidden layers in which the hidden 
state of the previous layer is used as the input of each 
corresponding LSTM block in the next layer.

During training, appropriate weights are assigned to input 
so that the final output of the LSTM provides the desired key. 
The categorical cross-entropy loss function [41] is used as the 
loss function for the designed multi-classification task. Then, 
a standard multinomial logistic function is applied to trans-
late the last hidden state into the probability distribution 
Prob(κ

j+α

i = vr |
{

κ
j
i , κ

(j+1)

i , ..., κ
(j+α−1)

i

}

, vr ∈ V ).
In the detection phase, the trained model is used to ana-

lyze unseen tracing data. This trace can be obtained from 
an old or a new release of the software. Like what was done 
to collect the training data, spans are extracted and then 
converted into sequences of different lengths. Therefore, 
from a sequence of size h(Si), h(Si)−α subsequences are 
obtained, and h(Si)−α probability distributions are pre-
dicted. The model predicts the probablity distribution 
Prob(�

j+�

i
|
{
�
j

i
, �

(j+1)

i
, ..., �

(j+�−1)

i

}
) =

{
v1 ∶ p1, v2 ∶ p2, ..., vd ∶ pd

}   , 
where pj describes the probability of vj to appear as the 
next key value. Then, κ j+α

i  is marked as an unexpected key 
if the probability of the real seen value of κ j+α

i  is less than 
the confidence threshold of 0.5.

Evaluation
In the following, we evaluate the proposed technique by 
analyzing a microservice-based application. First, the 
experimental setup and dataset generation are explained 
in “Experimental setup and dataset generation” sub-
section. Then, in “Evaluation of the anomaly detection 
framework” subsection, we evaluate the performance of 
our model. “Analysis of practical use-cases” subsection 

analyzes some practical use-cases and examines the 
success of our framework in locating the anomalies we 
injected into the system through various simulated sce-
narios. Finally, in “Root cause analysis” subsection, we 
explain how the scripting feature of Trace Compass as 
well as different views can assist experts to find the root 
cause of anomalies.

Experimental setup and dataset generation
We deployed the target microservice environment 
(developed by Ciena Co.) on a virtualized platform 
with two nodes, each equipped with two cores Intel 
Core Processor (Broadwell, IBRS), and 4 Gb of RAM. 
An Oracle Linux server was installed on both nodes. 
Moreover, LTTng was employed on each of them to 
send the tracing data to the manager. The manager 
VM benefits from the LTTng-relayd daemon, which 
is responsible for receiving trace data from remote 
LTTng daemons.

In order to create the training data, 12 traces with dura-
tion of 5 to 10 minutes were obtained from the previous 
stable releases of the studied software. After removing 
incomplete spans, a total of 61709 spans were extracted. 
The dictionary of unique keys collected from the training 
data contains 4028 unique keys.

Our data collection module has been implemented 
using python and the Trace Compass Scripting feature 
[40]. Furthermore, we employed PyTorch to implement 
the LSTM network1. Finally, the model was trained on a 
server with two Intel(R) Xeon(R) Bronze 3104 1.70GHz 
CPUs and NVIDIA TITAN V graphic cards.

Fig. 6  The architecture of the LSTM network we used in our anomaly detection framework

1  The implementations of the data collection module and the detection mod-
ule are available in https://​github.​com/​kohyar/​LTTng_​LSTM_​Anoma​ly_​Detec​
tion.

https://github.com/kohyar/LTTng_LSTM_Anomaly_Detection
https://github.com/kohyar/LTTng_LSTM_Anomaly_Detection


Page 10 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

Evaluation of the anomaly detection framework
As mentioned earlier, the analysis module models the 
anomaly detection problem on the sequences of keys as 
a multi-class classification problem. Our training dataset 
is composed of the sequences obtained from 12 previous 
stable releases of the studied software. A total of 61709 
spans were extracted from these 12 traces and approxi-
mately 5 million training sequences were obtained from 
the spans. In addition, the dictionary of unique keys col-
lected from the training sequences contains 4028 unique 
keys. Thus, there exist 4028 different classes in the train-
ing dataset, each one associated to a key.

We employed multi-class evaluation metrics to evalu-
ate the quality of our model. Accuracy is usually the first 
option to evaluate multi-class classification models on 
a biased dataset. However, the dataset obtained in this 
work is not balanced. Hence, we used precision, recall, 
and F_score instead, which are better suited for unbal-
anced datasets. Precision quantifies the number of posi-
tive class predictions that actually belong to the positive 
class. Recall measures the number of positive class pre-
dictions that have been made out of all positive examples 
in the dataset. Finally, the F_score can be interpreted as a 
harmonic mean of the precision and recall metrics. How-
ever, the computation of these metrics for a multi-class 
problem is different from a binary one. In multi-class 
classification, these metrics are obtained for each class 
separately. The overall precision, recall and F_score for all 
classes are then computed by averaging precisioni, recalli, 
and F_scorei for the set of classes Ci, where i=1,…,4028. 
For an individual class Ci, the values of precisioni, recalli, 
and F_scorei are computed as follows [21]:

In order to create the final model, the hyperparameters 
must be tuned. As previously explained, the sequences 
obtained from the spans have different lengths, but the 
input length of the model is fixed as α. Therefore h(Si)−α 
sub-sequences can be obtained by taking a window of size 
α over a sequence of size h(Si). The value of this hyper-
parameter affects both the training time and the perfor-
mance of the model. So, we tried to choose a value for α 
that would lead to a highly effective model in a reasonable 
training time. For this purpose, we measured the f_score 
and training time of the obtained models by selecting 

(1)precisioni =
TPi

TPi+FPi

(2)recalli =
TPi

TPi+FNi

(3)F_scorei =
2×precisioni×recalli
precisioni+recalli

α∈{8,9,..,30}. The smallest possible α value is 8 since that 
corresponds to the minimum sequence length in the 
training data. Figure 7(A) shows that for α values greater 
than 19, the F_score of the model begins to decrease. 
We omitted the results for 23≤α≤30 to make the figure 
clearer. Figure 7(B) presents the F_score/training time for 
the best found α values. According to the results, α=17 
achieves the best classification results in terms of training 
time and F_score. This value is therefore selected for the 
remaining of our experiments.

After selecting the hyperparameter α, we evaluated the 
quality of our model through 10-fold cross-validation. 
In 10-fold cross-validation, the dataset is divided into 
ten subsets of approximately equal size. One of the sub-
sets is reserved for testing, while the remaining subsets 
are used for training. This process is repeated 10 times, 
and the results are averaged over each one of 10 differ-
ent tested subsets. Results of evaluating our model with 
10-fold cross-validation are listed in Table  2. Our pro-
posed method demonstrates excellent performance with 
a F_score of 0.9759. It should be noted that our dataset 
contains approximately 5 million sequences and 4 thou-
sand unique keys.

Analysis of practical use‑cases
In this subsection, a newer release of the application was 
investigated to evaluate the model on detecting possible 
performance degradations and anomalies. For this pur-
pose, we examined three different scenarios. In the first 
scenario, the regular execution of the application, i.e., 
without any anomaly injection, was analyzed to deter-
mine where and why the new release did not follow the 
normal patterns learned by the model. In the other two 
scenarios, we investigated the performance vulnerability 
of the new release when an external factor disrupts fair 
access to system resources. To simulate such attacks, a 
significant CPU load on the multi-core nodes was gener-
ated as the second scenario by continuously compressing 
and decompressing a stream of random data (zip bombs). 
Finally, in the third scenario, disk stress was injected into 
the nodes by creating a file and then using a loop to copy 
it repeatedly.

After collecting the tracing data for each of the men-
tioned scenarios, the data collection module extracted the 
spans from these tracing files and created the sequences 
of keys. For all input subsequences, the model determines 
whether the key that appeared in the sequence right after 
the input subsequence is probable to happen or not. The 
model marks that key as an unexpected key if it predicts 
that the probability of that key in the sequence is lower 
than the confidence threshold of 0.5.

Table  3 reports the number of detected unexpected 
keys along with the total number of predictions made by 



Page 11 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

our model for three scenarios. As expected, the number 
of detected unexpected keys in the first scenario is less 
than in the other two other scenarios, where CPU and 
disk stress were injected into the system. The injected 
load in the second and third scenarios has made the 
application behave much differently. The first scenario 
reveals how the changes applied to the application by 
developers in a newer release may affect the execution’s 
path of the application.

Our proposed framework, however, does not sig-
nal keys as anomalous as soon as an unexpected key is 
detected. It also takes into consideration the frequency 
of unexpected keys over the monitored period of time. 
Once a high frequency of unexpected keys is identi-
fied, that sequence of keys is highlighted for further 

Fig. 7  A F_score of the model by varying α. The dotted line indicates that the F_score of the model for α values between 11 and 19 is greater than 
0.97. B F_score/Training time for different values of α. Only the values for which the F_score is greater than 0.97 are shown in this figure

Table 2  Results of evaluating our model with 10-fold cross- 
validation

Precision 0.9774

Recall 0.9760

F_score 0.9759

Table 3  The number of detected unexpected keys along with 
the total number of predictions made by our model for the three 
scenarios

Number of detected 
unexpected keys

Number of 
predictions

Test data (Scenario 1) 32043 518503

Test data (Scenario 2) 65507 489593

Test data (Scenario 3) 66978 453781



Page 12 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

Fig. 8  This Figure depicts the Likelihood of detecting unexpected keys over the traces obtained from the three mentioned scenarios. A In this 
scenario, CPU-related anomalies were injected into the system. B In this scenario, disk-related anomalies were injected into the system. C In this 
scenario, a new release of the application without injecting anomaly was investigated



Page 13 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

investigation by developers or system experts. This is 
intended to reduce troubleshooting time, as the develop-
ers can examine few specific intervals instead of looking 
at large amounts of tracing data, which might include 
thousands of system events. As we show next, the out-
put of the model can be examined from two different 
perspectives.

System‑based anomaly detection
In system-based anomaly detection, the entire execution 
is examined regardless of the span to which each unex-
pected key belongs. To illustrate, let us consider traces of 
5 minutes divided into small time intervals of 1 second. 
The chart displayed in Fig. 8 shows the rate of detecting 
unexpected keys, i.e., number of detected unexpected 
keys divided by the total amount of predictions, com-
puted in each of the monitored intervals for the three 
tested scenarios. They reveal the intervals in which more 
unexpected keys have detected, and are hence, more 
likely to represent anomalies. This view helps develop-
ers to focus only on the areas prone to anomalies. The 
peaks in Figs.  8(a) and 8(b) correspond exactly to the 
moments the anomalies were injected into the system, 

being correctly discovered by our framework. Figure 8(c) 
includes a smaller number of peaks with lower heights. 
The observed peaks indicate the moments in which the 
new release did not follow the normal behavior of the 
previous ones.

Service‑based anomaly detection
In service-based anomaly detection, we detect anoma-
lous spans. Unlike system-based anomaly detection, in 
which we examine the entire execution, service-based 
anomaly detection identifies spans with a high rate of 
unexpected keys. The rate of unexpected keys for each 
span correspond to the rate of unexpected keys in the 
sequence associated with that span.

A span for which the rate of unexpected keys is 
greater than 0.5 is marked as an anomalous span. The 
chart of Fig.  9 depicts the anomalous spans detected 
by our framework during the test trace obtained from 
the second scenario. Spans are numbered according to 
their start time and are shown with a red bar. In Fig. 9, 
the x-axis shows the spans index and the y-axis indi-
cates the rate of unexpected keys. From this figure, we 
observe that many anomalous spans have been detected 

Fig. 9  The anomalous spans that appeared during the trace of the second scenario where each span has been drawn with a bar



Page 14 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

when anomalies were injected in the system. This view 
enables developers to filter a trace based on the anoma-
lous spans tag, that merits further investigation.

Root cause analysis
Using Trace Compass in our framework provides the 
developers an in-depth perception of what happens 
during a trace, especially in the presence of anomalies. 
Trace Compass is already used by many companies in 
the field of performance analysis. We have converted 
the output of our anomaly detection model to Goog-
le’s Trace Event format to be able to investigate the 
root causes of the identified anomalies. Our output 
in this format contains a set of events, each of which 
equivalent to an event in the original trace. However, 
three new fields have been added to each event. Field 
category determines whether the event is identified as 
unexpected. In addition, each event keeps the tag of 
the span in which it is located, and finally, another field 
shows if the related span is abnormal or not.

To understand the cause of the anomalies in the intro-
duced test traces, we provided a script that separates 
all the processes in the trace thereby displaying them 
with different colors in a time chart like illustrated in 
Fig.  10. This time chart can be zoomed in and out in 

particular areas. Furthermore, the time axis in this time 
chart is aligned with other views and tables that sup-
port automatic time axis alignment, such as the editor 
view that presents the events in a tabular format, or the 
statistics view that displays the various event counters. 
More detailed data can be computed from the trace as 
the user zooms in the time chart or filters events in the 
editor table.

Figure 10(a) shows the structure of a sample normal 
span. In Fig. 10(b), the trace was filtered based on the 
tag of one of the anomalous spans. Interestingly, the 
provided Trace Compass script could successfully find 
the cause of a latency issue in the target application that 
has been detected by our anomaly detection model, 
then pointing out to the process that caused this prob-
lem. This process was present in many other abnormal 
spans as well. These results demonstrate the effective-
ness of our proposed framework in locating anomalies 
and finding their root causes.

Conclusion
In recent years, advances in technology and comput-
ing power have led to the emergence of complex and 
large-scale software architectures like microservices and 
IoT devices that speed up different tasks. Despite all the 
advantages of these systems, several factors, such as their 

Fig. 10  This figure presents the time chart generated by our script in Trace Compass, which helped to find the cause of anomalies in our test traces 
(due to Ciena’s security rules, we have changed the original names of the processes in these screenshots). A A sample of a normal span. B A sample 
of an anomalous span where the PROC-X is the caused of the problem



Page 15 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 	

distribution in the network, the use of different technolo-
gies, their short life, software bugs, hardware failures, 
and resource contentions, make them prone to the rise 
of anomalous system behaviors. Besides, available per-
formance monitoring and analysis tools have many short-
comings. In this research, a general-purpose NLP-based 
anomaly detection framework was presented for detect-
ing abnormal behaviors and release-over-release regres-
sions in microservice environments.

The proposed framework is based on recording 
streams of events in the tracing module, sending them 
to the data extraction module so as to create sequences 
of keys, which are finally analysed using a deep LSTM 
model. This framework is general enough to work with 
any application since it benefits from an all-purpose 
open-source distributed tracing tool to collect event 
sequences. Notably, our framework learns a represen-
tation of the event names along with other arguments 
to remedy the limitations of other methods. In addi-
tion, the whole system needs no prior knowledge which 
facilitates the collection of training data.

Extensive experiments on real datasets confirm the 
effectiveness of our framework in detecting abnormal 
behaviours in microservice environments. Our frame-
work is also projected to help in the root cause analy-
sis of system issues, which can be performed through 
various plots and scripts that we have provided in 
Trace Compass. In addition, the proposed framework 
is easy to deploy and use in practice since no particu-
lar assumptions and settings are considered in the data 
collection. Taken together, these findings suggest that 
our framework is an effective tool to reduce trouble-
shooting time by directing the developer to the most 
relevant problem sites of interest.

In the future, we will examine the impact of employ-
ing kernel tracing on the proposed approach. We will 
also extend this work to use other events arguments. 
Finally, it would be interesting to investigate other NLP 
techniques to improve detection performance.

Acknowledgements
We would like to gratefully acknowledge the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), Ciena, Ericsson, and EffciOS for 
funding this project.

Authors’ contributions
Iman Kohyarnejadfard put forward the main ideas and drafted the manuscript. 
Daniel Aloise guided the research and reviewed and edited the manuscript. 
Other authors participated in the discussion and provided suggestions for the 
article. The authors read and approved the final manuscript.

Funding
This work is funded by Natural Sciences and Engineering Research Council of 
Canada (NSERC), Ciena, Ericsson, and EfficiOS.

Availability of data and materials
The data and materials are available from the corresponding author on 
reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer and Software Engineering, Polytechnique Mon-
treal, Montreal, Canada. 2 Ciena Inc., Ottawa, Canada. 

Received: 17 March 2022   Accepted: 13 July 2022

References
	1	 Thönes J (2015) Microservices. IEEE Softw 32(1):116–116.
	2	 Gan Y, Zhang Y, Hu K, Cheng D, He Y, Pancholi M, Delimitrou C (2019) Seer: 

Leveraging big data to navigate the complexity of performance debug-
ging in cloud microservices. In: Proceedings of the Twenty-fourth Interna-
tional Conference on Architectural Support for Programming Languages 
and Operating Systems. Association for Computing Machinery, New York, 
pp 19–33. https://​doi.​org/​10.​1145/​32978​58.​33040​04

	3	 Jamshidi P, Pahl C, Mendonça NC, Lewis J, Tilkov S (2018) Microservices: 
The journey so far and challenges ahead. IEEE Softw 35(3):24–35.

	4	 Wu L, Tordsson J, Elmroth E, Kao O (2020) Microrca: Root cause localiza-
tion of performance issues in microservices. In: NOMS 2020-2020 IEEE/
IFIP Network Operations and Management Symposium. IEEE, pp 1–9. 
https://​doi.​org/​10.​1109/​NOMS4​7738.​2020.​91103​53

	5	 Solé M, Muntés-Mulero V, Rana AI, Estrada G (2017) Survey on models 
and techniques for root-cause analysis. arXiv preprint arXiv:1701.08546.

	6	 Erlingsson Ú., Peinado M, Peter S, Budiu M, Mainar-Ruiz G (2012) Fay: 
Extensible distributed tracing from kernels to clusters. ACM Trans Comput 
Syst (TOCS) 30(4):1–35.

	7	 Desnoyers M, Dagenais MR (2006) The lttng tracer: A low impact 
performance and behavior monitor for gnu/linux. OLS (Ottawa Linux 
Symposium), vol 2006. Linux Symposium, Citeseer, pp 209–224

	8	 Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: A survey. 
ACM Comput Surv (CSUR) 41(3):1–58.

	9	 Ohlsson J (2018) Anomaly detection in microservice infrastructures.
	10	 OpenTracingVendor-neutral APIs and instrumentation for distributed 

tracing. https://​opent​racing.​io/. Accessed 09 Apr 2021.
	11	 Ravichandiran R, Bannazadeh H, Leon-Garcia A (2018) Anomaly detection 

using resource behaviour analysis for autoscaling systems. In: 2018 4th 
IEEE Conference on Network Softwarization and Workshops (NetSoft). 
IEEE, pp 192–196. https://​doi.​org/​10.​1109/​NETSO​FT.​2018.​84600​25

	12	 Ibidunmoye O, Hernández-Rodriguez F, Elmroth E (2015) Performance anomaly 
detection and bottleneck identification. ACM Comput Surv (CSUR) 48(1):1–35.

	13	 Shkuro Y (2019) Mastering Distributed Tracing: Analyzing Performance in 
Microservices and Complex Systems. Packt Publishing Ltd.

	14	 JaegerOpen source, end-to-end distributed tracing. Uber Technologies. 
https://​www.​jaege​rtrac​ing.​io/. Accessed 10 Apr 2021.

	15	 Meng L, Ji F, Sun Y, Wang T (2021) Detecting anomalies in microservices 
with execution trace comparison. Futur Gener Comput Syst 116:291–301.

	16	 Gan Y, Liang M, Dev S, Lo D, Delimitrou C (2021) Sage: Using unsuper-
vised learning for scalable performance debugging in microservices. 
arXiv preprint arXiv:2101.00267.

	17	 ZipkinA distributed tracing system. https://​zipkin.​io/. Accessed 10 Apr 2021.
	18	 Nedelkoski S, Cardoso J, Kao O (2019) Anomaly detection from system 

tracing data using multimodal deep learning. 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD). IEEE., pp 179–186. 
https://​doi.​org/​10.​1109/​CLOUD.​2019.​00038

	19	 Wang T, Zhang W, Xu J, Gu Z (2020) Workflow-aware automatic fault 
diagnosis for microservice-based applications with statistics. IEEE Trans 
Netw Serv Manag 17(4):2350–2363.

https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1109/NOMS47738.2020.9110353
https://opentracing.io/
https://doi.org/10.1109/NETSOFT.2018.8460025
https://www.jaegertracing.io/
https://zipkin.io/
https://doi.org/10.1109/CLOUD.2019.00038


Page 16 of 16Kohyarnejadfard et al. Journal of Cloud Computing           (2022) 11:25 

	20	 Gassais R, Ezzati-Jivan N, Fernandez JM, Aloise D, Dagenais MR (2020) 
Multi-level host-based intrusion detection system for internet of things. J 
Cloud Comput 9(1):1–16.

	21	 Patcha A, Park J-M (2007) An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends. Comput Netw 
51(12):3448–3470.

	22	 Amaral M, Polo J, Carrera D, Mohomed I, Unuvar M, Steinder M (2015) 
Performance evaluation of microservices architectures using containers 
In: 2015 IEEE 14th International Symposium on Network Computing and 
Applications, 27–34. IEEE.

	23	 Samir A, Pahl C (2019) Dla: Detecting and localizing anomalies in 
containerized microservice architectures using markov models In: 2019 
7th International Conference on Future Internet of Things and Cloud 
(FiCloud), 205–213. IEEE. https://​doi.​org/​10.​1109/​FiClo​ud.​2019.​00036

	24	 Syarif I, Prugel-Bennett A, Wills G (2012) Data mining approaches for 
network intrusion detection: from dimensionality reduction to misuse 
and anomaly detection. J Inf Technol Rev 3(2):70–83.

	25	 Ranjan R, Sahoo G (2014) A new clustering approach for anomaly intru-
sion detection. arXiv preprint arXiv:1404.2772.

	26	 Animesh P, Jung M (2007) Network anomaly detection with incomplete 
audit data. Computer Networks 51(13):3935–55.

	27	 Kaur N, et al (2013) Survey paper on data mining techniques of intrusion 
detection. Int J Sci Eng Technol Res 2(4):799–804.

	28	 Abusitta A, Bellaiche M, Dagenais M (2018) An svm-based framework for 
detecting dos attacks in virtualized clouds under changing environment. 
J Cloud Comput 7(1):1–18.

	29	 Elrawy MF, Awad AI, Hamed HF (2018) Intrusion detection systems for 
iot-based smart environments: a survey. J Cloud Comput 7(1):1–20.

	30	 Agrawal S, Agrawal J (2015) Survey on anomaly detection using data 
mining techniques. Procedia Comput Sci 60:708–713.

	31	 Nedelkoski S, Cardoso J, Kao O (2019) Anomaly detection from system 
tracing data using multimodal deep learning In: 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD), 179–186. IEEE. https://​
doi.​org/​10.​1109/​CLOUD.​2019.​00038

	32	 Ji S, Wu W, Pu Y (2020) Multi-indicators prediction in microservice using 
granger causality test and attention lstm In: 2020 IEEE World Congress on 
Services (SERVICES), 77–82. IEEE. https://​doi.​org/​10.​1109/​SERVI​CES48​979.​
2020.​00030

	33	 Malhotra P, Vig L, Shroff G, Agarwal P (2015) Long short term memory 
networks for anomaly detection in time series In: Proceedings, vol. 89, 
89–94. Presses universitaires de Louvain.

	34	 Laptev N, Amizadeh S, Flint I (2015) Generic and scalable framework 
for automated time-series anomaly detection. In: Proceedings of the 
21th ACM SIGKDD International Conference on Knowledge Discovery 
and Data Mining. Association for Computing Machinery, New York, pp 
1939–1947. https://​doi.​org/​10.​1145/​27832​58.​27886​11

	35	 Du M, Li F, Zheng G, Srikumar V (2017) Deeplog: Anomaly detection and 
diagnosis from system logs through deep learning. In: Proceedings of 
the 2017 ACM SIGSAC Conference on Computer and Communications 
Security. Association for Computing Machinery, New York, pp 1285–1298. 
https://​doi.​org/​10.​1145/​31339​56.​31340​15

	36	 Ravichandiran R, Bannazadeh H, Leon-Garcia A (2018) Anomaly detection 
using resource behaviour analysis for autoscaling systems In: 2018 4th 
IEEE Conference on Network Softwarization and Workshops (NetSoft), 
192–196. IEEE. https://​doi.​org/​10.​1109/​NETSO​FT.​2018.​84600​25

	37	 Gaidels E, Kirikova M (2020) Service dependency graph analysis in micros-
ervice architecture In: International Conference on Business Informatics 
Research, 128–139. Springer.

	38	 Wang T, Zhang W, Xu J, Gu Z (2020) Workflow-aware automatic fault 
diagnosis for microservice-based applications with statistics. IEEE Trans 
Netw Serv Manag 17(4):2350–2363.

	39	 Fournier Q, Aloise D, Azhari SV, Tetreault F (2021) On improving deep 
learning trace analysis with system call arguments In: 2021 IEEE/ACM 
18th International Conference on Mining Software Repositories (MSR), 
120–130. https://​doi.​org/​10.​1109/​MSR52​588.​2021.​00025.

	40	 tracecompass-ease-scripting. https://​archi​ve.​eclip​se.​org/​trace​compa​ss.​
incub​ator/​doc/. Accessed 10 May 2021.

	41	 Zhang Z, Sabuncu MR (2018) Generalized cross entropy loss for training 
deep neural networks with noisy labels. In: Bengio S, Wallach H, Laro-
chelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) 32nd Conference on 
Neural Information Processing Systems (NeurIPS). Curran Associates, Inc. 
https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​file/​f2925​f97bc​13ad2​852a7​
a5518​02fee​a0-​Paper.​pdf

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/FiCloud.2019.00036
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/CLOUD.2019.00038
https://doi.org/10.1109/SERVICES48979.2020.00030
https://doi.org/10.1109/SERVICES48979.2020.00030
https://doi.org/10.1145/2783258.2788611
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1109/NETSOFT.2018.8460025
https://doi.org/10.1109/MSR52588.2021.00025
https://archive.eclipse.org/tracecompass.incubator/doc/
https://archive.eclipse.org/tracecompass.incubator/doc/
https://proceedings.neurips.cc/paper/2018/file/f2925f97bc13ad2852a7a551802feea0-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f2925f97bc13ad2852a7a551802feea0-Paper.pdf

	Anomaly detection in microservice environments using distributed tracing data analysis and NLP
	Abstract 
	Introduction
	Previous work
	Anomaly detection framework
	Tracing module
	Data extraction module
	Extracting spans
	Construction of sequences of keys

	Analysis module

	Evaluation
	Experimental setup and dataset generation
	Evaluation of the anomaly detection framework
	Analysis of practical use-cases
	System-based anomaly detection
	Service-based anomaly detection

	Root cause analysis

	Conclusion
	Acknowledgements
	References


