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Abstract 

As the number of devices connected to the Internet of Things (IoT) increases significantly, it leads to an exponential 
growth in the number of services that need to be processed and stored in the large-scale Cloud-based service reposi-
tories. An efficient service indexing model is critical for service retrieval and management of large-scale Cloud-based 
service repositories. The multilevel index model is the state-of-art service indexing model in recent years to improve 
service discovery and combination. This paper aims to optimize the model to consider the impact of unequal appear-
ing probability of service retrieval request parameters and service input parameters on service retrieval and service 
addition operations. The least-used key selection method has been proposed to narrow the search scope of service 
retrieval and reduce its time. The experimental results show that the proposed least-used key selection method 
improves the service retrieval efficiency significantly compared with the designated key selection method in the case 
of the unequal appearing probability of parameters in service retrieval requests under three indexing models.
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Introduction
The rapid development of the Internet of Things (IoT) in 
recent years has led to the deployment and use of various 
applications of a distributed nature that generate huge 
amounts of data [1]. Cloud computing has been proposed 
to efficiently store and process large amounts of data 
and provide various services and resources according to 
user needs. Such as Amazon Web Services, Google App 
Engine and Microsoft Azure are already providing a vari-
ety of services to users with the help of cloud platforms.

With a vast number of services being hosted on 
the cloud, more and more researchers provide effec-
tive methods for service discovery and composition [2, 
3]. The inverted index [4] is the indexing model cur-
rently used for service retrieval in consistent reposito-
ries. However, the Inverted index has redundancy and 

is time-consuming which is not suitable for a large-
scale service repository. In order to address this prob-
lem Wu et  al. proposed a multilevel index model [5, 6] 
to address the above issues. The efficiency of service 
retrieval is improved by eliminating redundancy, thus 
ensuring a reduced time for service discovery and com-
position. Figure  1 shows the architecture of the multi-
level index model, the core of which is used to store the 
services, containing the input and output parameters of 
the services and four levels of indexing for redundancy 
reduction (described in Sect.  3.2). The service retrieval 
function takes a set of parameters as input and returns 
a set of services that can be invoked. The service discov-
ery and composition system can quickly retrieve ser-
vices from the service repository via the service retrieval 
API. In addition, the multilevel index model serves as an 
underlying storage structure for managing the services 
in the service repository, including the addition, deletion 
and replacement of services.
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The selection of keys is important for service indexing 
and retrieval in the multilevel index model. The origi-
nal key selection method [6], the random key selection 
method [7], the maximum key count selection method [7] 
and the minimum key count selection method [7] have 
been proposed and evaluated as methods for selecting 
the “keys” of retrieval parameters under the assumption 
of equal probability of service parameter distributions. 
However, this assumption does not reflect the real situ-
ation of service parameter distribution, as some services 
inevitably have similar input or output parameters, or 
some services are frequently invoked by users resulting 
in unequal retrieval request parameters for each service. 
Large classes of services indexed by popular “keys” could 
slow down service retrieval process.

With this in mind, this paper proposes a novel least-
used key selection method to enhance the multilevel 
index model for service retrieval and addition operations 
under the condition of unequal probabilities of service 
parameters. The main contributions of this paper are 
summarised as follows:

1.	 A least-used key selection method has been pro-
posed to improve the efficiency of service retrieval 
under the condition of unequal probabilities of ser-
vice parameters.

2.	 An enhanced multilevel index model under the 
unequal probability of service parameter distribu-
tion has been designed using the proposed least-used 
key selection method and compared with five exist-
ing key selection methods. Experimental evaluation 
demonstrates that our proposed least-used key selec-
tion method outperforms the other studied methods 
in terms of service retrieval efficiency.

The remainder of this paper is organised as follows: 
Section  2  presents a review of the recent related works 
about service discovery, composition and retrieval. 
Section  3  introduces the multilevel index model. Sec-
tion  4  presents our proposed least-used key selection 
method to improve the efficiency of service retrieval 
under challenging conditions. Section 5 presents and dis-
cusses our experimental results. Section 6 concludes the 
paper along with outlining our future research directions.

Related work
Service discovery and composition
Service discovery technologies used till date are mainly 
based on service description language [8] such as XML, 
WSMO and OWL-S [9] proposed a new semantic-aware 
web service discovery method, which was designed to 
provide relevant web services based on user queries. In 

Fig. 1  An application scenario for the service multilevel index model
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addition, Bharti and Jindal [10] proposed a new search-
based clustering strategy based on the heterogeneity 
of smart IoT devices and smart web services for service 
discovery methods in IoT environments. Although these 
methods are simple, their accuracy and recall rates are 
low, and there are still imperfections. The goal of service 
composition is to improve the reusability and utilisation 
of basic services. Yu et al. [11] proposed a new paradigm 
for automatic composition of Web services, adding key-
word queries to the traditional graph search method 
based on input–output matching. Saleem et al. [12] pro-
posed a service hierarchy model based on the aware-
ness theory, which applies machine learning algorithms 
to learn the original Web Service selection scheme, so 
as to realise Web Service composition. However, these 
methods still have some drawbacks, such as low user sat-
isfaction and high complexity. Huang et  al. [13] stated 
that the number of dynamic services in a dynamic ser-
vice network should be considered as the threshold value 
for evaluation, and further postulated to collect and map 
all the services as directed acyclic graphs and inverted 
index tables. Inverted indexing can reduce the service 
composition time, but incurs redundancy during the ser-
vice retrieval process. Therefore, the development of an 
efficient service index model should effectively solve the 
aforementioned problems, and improve the efficiency 
of service discovery and composition through effec-
tive management and by reducing the scope of service 
retrieval.

Service retrieval
The purpose of service retrieval is to find all services in 
the service repository that satisfy the user’s needs as fast 
as possible, while excluding services of little relevance 
from the returned results.

The most common service retrieval methods are clas-
sified as Concept-based retrieval; Structure-based 
retrieval; Logical, inference-based retrieval; and Name-
based retrieval, such as Sequential index [14], Tree-based 
index [15], Inverted index [4], and Hash table [16]. How-
ever, all these methods have some problems, such as 
Concept-based retrieval requires an excessive amount of 
upfront work in building the service concept ontology, 
and the accuracy of the ontology will directly affect the 
retrieval results [17]; Structure-based retrieval imposes 
an additional burden on the service provider when 
publishing the service [18]; Logical, Inference-Based 
retrieval, requires the support of a backend rule base, 
which needs to be built manually. In addition, the rea-
soning is implemented on the basis of building ontolo-
gies to achieve matching of retrieval requirements, which 
improves accuracy while also affecting retrieval efficiency 

[19, 20], and Name-based retrieval is done by searching 
for keywords. However, it suffers from high complex-
ity, low reliability and lower user satisfaction. Although 
methods such as the Tree-based index model and the 
Inverted index model can be used to narrow down the 
search space, these models come at the cost of service 
redundancy, which can increase the time for service dis-
covery and composition.

Wu et al. proposed a multilevel index model to index 
services to reduce service retrieval redundancies and 
improve retrieval performance. The “key” is an impor-
tant concept in the multilevel index model. One of the 
service input parameters is selected as the “key” for the 
service to be indexed. Wu et al. [6] proposed the origi-
nal key selection method to select a key for a newly 
added service. Wu et  al. [21] studied the effects of key 
selection methods to service retrieval. Kuang et  al. 
[7] studied the key selection method in the multilevel 
index model, and introduced three different key selec-
tion methods including the minimum key count selec-
tion method, maximum key count selection method and 
random key selection method. Experiments have indi-
cated that the random key selection method improves 
service addition operation. Gu et  al. [22] studied the 
reason for service addition improvidence using the ran-
dom key selection, and proposed a new key selection 
method, called the designated key selection method 
that can further reduce the service addition time with-
out compromising the service retrieval efficiency and 
stability. However, these key selection methods do not 
consider the services parameters distribution under 
unequal probabilities in multilevel index models, which 
contradicts with the real-world situations where some 
services have the same and lapped parameters or some 
popular services parameters invoked more frequently 
than unpopular ones.

Multilevel index models
The basic definition scenario
The following definitions related with service are defined 
by Wu et al. [5, 6].

Definition 1
A service is a composite s = {•s, s•, O}, where •s is the set 
of input parameters, and s• is the set of output param-
eters, and O is a set of service attributes, e.g., QoS.

Definition 2
A user’s request can be represented as Q = (Qp, Qr), 
where Qp and Qr represent the set of service parame-
ters provided by users and the set of service parameters 
requested by users, respectively.
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Definition 3
Service retrieval can be defined as Re (A, S) = {s|•s ⊆ A∧ 
s ∈ S}, where A is the given parameter set and S is a ser-
vice set. The service retrieval parameter is often used to 
receive a set of parameters to define the user require-
ments, which usually returns the services invoked by the 
received set of parameters.

Definition 4
Service discovery Dc (Q, L(O), S) = { s| Re (Qp, S) ∧ Qr ⊆ s• 
∧ s.O ∠ L(O)}, where L(O) is a set of constraints for any 
other attributes, S is a service set, and s.O ∠ L(O) means 
that s satisfies these constraints.

In this paper, service retrieval is defined to find services 
that can be invoked according to users’ provided param-
eter sets. Service discovery is to find services that can 
be invoked and satisfy users’ requirements according to 
their requests. As shown in Definition 4, service retrieval 
is a part of service discovery. If the time for service 

retrieval is reduced, then the time for service discovery 
will also be reduced. Service composition requires suc-
cessive service retrievals to combine different services to 
satisfy users’ requirements that any single service cannot 
meet complete the users’ requests. Therefore, efficient 
service retrieval improves the efficiency of service discov-
ery and composition.

The same three services from the service discovery and 
combination scenario in Fig.  1 are used as an example, 
namely ‘hotel booking’, ‘flight booking’ and ‘navigation’, 
all of which are indexed in the service repository. Fig-
ure  2 illustrates the redundancy in the classic inverted 
index and illustrates the importance of the key selection 
method by comparing Figs. 2, 3 and 4.

Figure  2 shows the inverted index of these three ser-
vices. Assume city and date are given for a retrieval of s1, 
then, from city, s1 is searched, and from date, s1 and s2 are 
searched. The services have been searched three times in 

Fig. 2  The inverted index of three services used in Fig. 1

Fig. 3  The key index of three services used in Fig. 1

Fig. 4  A different key index of three service used in Fig. 1, which is used to illustrate that the key selection affects retrieval efficiency
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total (s1 is searched once and s2 is searched twice) before 
s1 can be retrieved.

Figure  3 illustrates the idea of the key index. Date is 
the key of s1 and s2, and hotel address is the key of s3. For 
the same retrieval of s1, from city, no service needed to 
be searched since city is not a key, and from date, s1 and 
s2 are searched. The services have been searched twice 
in total (s1 is searched once and s2 is searched once) 
before s1 can be retrieved, which is less than that of the 
inverted index (i.e. three times). Figure 3 illustrates how 
the key reduces redundancy and further improves service 
retrieval performance.

Figure  4 shows a different key index. City, departure 
and hotel address are the keys of s1, s2 and s3, respectively. 
For the same retrieval of s1, from city, s1 is searched, and 
from date, no service needed to be searched since date 
is not a key. Hence, the targeted s1 is searched only once, 
which is less than that of the index illustrated in Fig.  3 
(twice). From the example illustrated in Figs.  3 and 4, 
it can be seen that the key selection methods can affect 
service retrieval performance. This paper focuses on the 
study of the key selection method under the condition of 
unequal service invoking frequency.

Multilevel index models
Based on the characteristics of integrity, non-redundancy 
and certainty of equivalence relations, Wu et al. [6] pro-
posed an efficient multilevel index model for service 
retrieval based on equivalence relations, which stores 
and manages large-scale service repositories. This model 
can reduce the scope of service retrieval quickly and can 
improve the efficiency of the service retrieval process, 
thus the time for service discovery and service com-
position can be reduced. The multilevel index model is 
divided into four levels, which are:

•	 The First Level Index (L1I): This is an index between a 
service s and a similar class Cs if s ∈ Cs.

•	 The Second Level Index (L2I): This is an index 
between a similar class Cs and an input-similar 
class Cis if Cs ∈ Cis.

•	 The Third Level Index (L3I): This is an index between 
an input-similar class  Cis and a key class Ck if Cis ∈ Ck.

•	 The Fourth Level Index (L4I): This is an index 
between a key class Ck and a key, key ∈  К if fk(Ck

) = key.

The relationship diagram of the entire multilevel 
index model is shown in Fig. 5. Firstly, the service set S 
is divided into many subsets, and each subset contains 
the same input and output parameters, which are called 
similar classes and denoted as Cs. Therefore, the index 

between service S and Cs is denoted as L1I, which can 
reduce the redundancy of repeated retrieval caused by 
services having the same input and output parameters. 
Secondly, the services containing the same input in the 
similar class Cs are divided into a class, called input-sim-
ilar class and denoted as Cis . The index between Cs and 
Cis  is denoted as L2I, which can reduce the redundancy 
caused by the same input parameters of services. Then, 
the services that have the same key in the input-similar 
class Cis are divided into a set, which is called key class, 
denoted as Ck, while the index between Cis and Ck is 
denoted as L3I. The unique index established between 
each Ck and key value К is denoted as L4I, which can 
improve the service retrieval efficiency by selecting a 
unique key К to retrieve the required services.

Figure  6 shows a specific multilevel index of services. 
There are five services s1-s5 in the service repository. 
Firstly, s1 and s2 compose a similar class since they have 
the same inputs and outputs. Other services compose 
different similar classes, respectively. Secondly, the first 
and the second similar class compose an input-simi-
lar class since they have the same inputs. Other similar 
classes compose different input-similar classes, respec-
tively. Finally, the second and the third input-similar 
classes compose a key class since they have the same key. 
The other input-similar class composes a key class alone.

Flexible deployment
The multilevel index model can be deployed using three 
different methods [21] including the primary index 
model (L3I-L4I), the partial index model (L2I-L4I) and 
the multilevel index model (L1I-L4I). Both the partial and 
primary index models, as shown in Figs. 7 and 8, can be 
used for different service repositories with different sizes 
and characteristics.

Different key selection methods
The following five key selection methods have been stud-
ied and evaluate our proposed key selection method 
against their efficiency in terms of service retrieval and 
addition operation.

Fig. 5  The multilevel index model (full index model) of services
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Fig. 6  An example of the multilevel index

Fig. 7  The partial index model of services

Fig. 8  The primary index model of services
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1)	 The original key selection method

The original key selection method, which makes | Ck | as 
close to 

√
|R2| as possible. Algorithm 1 presents the oper-

ation of the original key selection method.

2)	 The minimum key count selection method

The principle of the minimum key count selection 
method uses an existing key as the key of newly added 
services and maintains key classes as smaller as possible. 
If the parameters of a given service cannot be found in 
the existed key classes, then randomly select an input of 
s as its key.
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3)	 The maximum key count selection method

On the contrary to the minimum key count selection 
method, the maximum key count selection method uses 
the existing key as the key of newly added services and 
maintains the number of key classes as bigger as possible.

4)	 The random key selection method

The random key selection method randomly selects 
one of the service input parameters as the key of the ser-
vice through a random number function.
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5)	 The designated key selection method

The designated key selection method narrows down 
search space when a new service is added to the partial 
or full index, and determines a unique parameter in the 
service input parameter as the key.

A least‑used key selection method
In a real-world scenario, some services have the same 
and lapped parameters or some popular services param-
eters invoked more frequently, while others show the 
opposite trend and are rarely invocated. The key selec-
tion methods of the multilevel index model proposed 
in [6, 7, 22] do not consider the unequal distribution of 
service parameters, resulting in the test results of service 
retrieval and addition under the multilevel index model 
not conforming to the actual situation. In order to deal 
with this situation more efficiently, we propose a novel 
key selection method, called the least-used key selection 
method, which can further improve the service retrieval 
efficiency in the index model.

Before designing the key selection method, an 
enhanced multilevel index model usually corresponds to 
two situations that result in unequal service parameters. 
One is the unequal probability of parameters appear-
ing in the service retrieval request sets, and the other is 
the unequal probability of parameters appearing in the 
service inputs. Both the equal and unequal probabil-
ity of parameters in the multilevel index models do not 
affect the service retrieval efficiency [7]. This implies that 
parameter probabilities of service inputs do not impact 
the retrieval efficiency to any significant level, due to the 
existence of service input parameters in the multilevel 
index. On the contrary, service request parameters given 

by users are outside the multilevel index, thus their dis-
tribution significantly affects the retrieval performance. 
For this reason, a least-used key selection method is pro-
posed to choose appropriate keys according to appearing 
probabilities of parameters appearing in retrieval request 
sets.

The proposed least-used key selection method is based 
on the following hypothesis: If a service is frequently 
invoked, its corresponding key class should be relatively 
smaller; on the contrary, if a service is rarely invoked, its 
corresponding key class should be relatively larger.

The proposed method is first illustrated intuitively. 
According to Definition 3 discussed previously, in a 
service retrieval request Re (A, S), A is a set of requests 
submitted by the user and S represents a collection of 
services. Suppose a request set {{a, b}, {b, c}, {c, a}}, where 
the parameters a, b, and c are invocated with an even 
probability. However, in a real scenario, every parameter 
to characterise an even probability is nearly impossible. 
For example, in a request set {{a, b}, {a, c}, {a}}, a appears 
more frequently than other parameters. If a is a key, then 
more services are retrieved. The least-used key selection 
method proposed in this paper avoids the need to select 
a as a key.

Next, the method was proven to be correct. Let 
xi =|Cki |, i.e., the total number of input-similar classes 
contained in Cki ; and m =|R2 |, i.e., the total number of all 
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input-similar classes. Therefore, the following formula (1) 
can be obtained.

Let pi denote the retrieval probability for Ck, and 
y denote the total number of input-similar classes 
being retrieved. Then, the following formula (2) can be 
obtained.

(1)x1 + x2 + · · · + xn = m, (0 ≤ xi ≤ m).

(2)y = p1x1 + p2x2 + · · · + pnxn,
i
pi = 1

The optimal target is to maintain y as small as possi-
ble. According to rearrangement inequality [23] (also 
known as sequence inequality), if x1 ≥ x2 ≥ … ≥ xn and 
p1 ≤ p2 ≤ … ≤ pn, then y (called as reversed sum) is mini-
mised. Generally, every pi value is known in a real-world 
situation. Therefore, the proposed least-used key selec-
tion method finds the most appropriate key for a newly 
added service and efficiently minimizes y.

According to the above analysis, the proposed least-
used key selection algorithm is illustrated in Algorithm 6.

The a. appearing_probability denotes the probability 
of the parameter a appearing in a request set. Moreover, 
the method of distributing the parameters with unequal 
probability in the request set will be given in Algorithm 
7 below. The objectives of Algorithm 6 are to check each 
parameter of a newly added service and to determine its 
key characterising the smallest appearing probability. In 
this way, the value of y in formula 2 is minimised to its 
lowest level. Hence, as fewer input-classes as possible are 
searched during the retrieval operation.

In the same way as above, the case where the service 
input parameters are based on unequal probability dis-
tributions should also be considered. The proposed 
least-used key selection method is evaluated under the 
scenarios of unequal probabilities of parameters appear-
ing in service inputs, despite the fact that such unequal 
probabilities are not known to affect the service retrieval 
and addition efficiencies. Hence, step 3 in Algorithm 6 
is modified as follows in order to evaluate its retrieval 
efficiency under the condition of unequal probabilities 
appearing in service inputs.

If (a.appearing_ probability_in_service inputs < k.
appearing_ probability_in_service inputs).

Experimental results and analysis
Experimental environment and settings
Our simulation platform is developed in Microsoft Vis-
ual Studio using C#. Each component is built with low 
coupling capacity and can be modified and upgraded 
separately. In our experiments, the least-used key selec-
tion method and the other five key selection methods 
including the original key selection method, the random 
key selection method, the minimum key count selec-
tion method, the maximum key count selection method 
and the designated key selection method are evaluated 
respectively under the primary index model, partial index 
model and full index model with a different situation of 
services parameters distribution.

Our experimental approach includes the follow-
ing steps: firstly, design an enhanced multilevel index 
model under unequal probability that a probability den-
sity function is selected to simulate the unequal appear-
ing probabilities of parameters. Secondly, our least-used 
key selection method and the other five key selection 
methods are integrated into the primary, partial and full 
index models. Finally, the service retrieval and addition 
efficiencies of the six key selection methods are evaluated 
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in the three index models under different parameter dis-
tribution conditions.

In the first step, the Monte Carlo method [24] is incor-
porated into our test platform to generate a selected 

distributed random number as service input parameter 
or service retrieval request parameter under an unequally 
appearing probability, as shown in Algorithm 7.

Fig. 9  Retrieval time on primary index models of the six key selection methods with equal appearing probabilities of parameters

Our experiment uses the Monte Carlo method to gen-
erate random numbers as service input parameters or 
service retrieval request parameters under an unequally 
appearing probability, that is, two independent random 
variables through a suitable probability density func-
tion are used to generate random numbers that meet 
the requirements. The probability density function is as 
follows.

where, l is the slope; and q =|P|, where P is a set of all 
parameters. When f(x) is substituted into Algorithm 7, 

(3)f (x) = l(x − q)+ q, 0 ≤ x < q

minX = minY = 0, maxX = maxY = q. Different values of 
x are represented to denote different parameters. In our 
test platform, l can be set to different values for different 
unequal distributions of the service parameters. If l ≤ 0, 
then the distribution becomes even.

Experimental results analysis
It was tested in a multilevel index model with 50,000 ser-
vices and the size of all the parameter sets is set to 1000. 
Each service has 10 input and 10 output parameters. 
In addition, each retrieval request contains 32 param-
eters and each dataset contains 1000 retrieval requests. 
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In order to compare the efficiencies of the key selection 
methods, 20 artificial data sets are used to test the effi-
ciencies of the six key selection methods. Their experi-
mental results are as follows.

Figure 9 presents the retrieval time of the six key selec-
tion methods in the primary index model under an equal 
parameter appearing probability. From Fig. 9, there is no 
obvious distinctiveness about the retrieval time with ref-
erence to the six key selection methods. These results also 
verified our previous work that the key selection meth-
ods do not affect the retrieval efficiency to any noticeable 
level under equal probabilities of service invocations [7].

Unequal probabilities of parameters appearance in 
service inputs and service retrieval requests are tested 
respectively. Figure 10 presents the retrieval time of the 

six key selection methods on primary index models, 
under an unequal appearing probability of parameters 
in service inputs. Similar to Fig.  9, the average service 
retrieval time of the six key selection methods remains 
very similar, as illustrated in Fig. 10. The results verified 
our previous work [7] that the size of the key set does 
not affect the service retrieval efficiency in the multilevel 
index models.

Figure  11 illustrates the service retrieval time of the 
six key selection methods in the primary index models, 
under an unequal appearing probability of parameters 
in service retrieval requests. Service retrieval request 
parameters are generated by users outside the multilevel 
index models. Therefore, different key selection methods 
have different service retrieval efficiencies. The proposed 

Fig. 10  Retrieval time on primary index models generated using the six different key selection methods with unequal appearing probabilities of 
parameters in services inputs

Fig. 11  Retrieval time on primary index models generated using the six different key selection methods with unequal appearing probabilities of 
parameters in services retrieval requests
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least-used key selection method exhibits the best per-
formance, while the maximum and minimum key count 
selection methods cost most time due to their key selec-
tion methods do not optimize the retrieval time of the 
services.

In Figs. 12, 13 and 14, service addition efficiencies of 
different key selection methods in the primary index 
model were tested under both equal and unequal 

appearing probabilities of services parameters, respec-
tively. From these figures, the performance of the six 
key selection methods under each scenario has no obvi-
ous distinctiveness since the primary index does not 
retrieve input-similar classes for the service addition 
operation.

Since the partial index and full index models are very 
similar except the fact that the partial index model is 

Fig. 12  Addition time on primary index models generated using the six key selection methods with equal appearing probabilities of parameters

Fig. 13  Addition time on primary index models generated using the six key selection methods with unequal appearing probabilities of parameters 
of service inputs
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less time-consuming than the full index model, thus 
only the results of the full index model are exhibited. 
Retrieval and addition time with related to the six key 
selection methods in a full index model are very simi-
lar to that in a partial index model except the retrieval 
time is slightly longer. Therefore, only the experimental 
results in the full index model are shown. Figures 15, 16 
and 17 present the retrieval time of the six key selection 
methods in the full index models under both equal and 
unequal appearing probabilities of parameters appear-
ing in service inputs and retrieval requests, respectively. 

The results are similar to the ones of the six key selec-
tion methods under primary indexing, and the least-
used key selection method is still the best one that 
significantly reduces service retrieval time when the 
parameters with unequal appearing probability in the 
service retrieval requests.

In both the partial and full index models, when a new 
service is added, the original key selection method, 
maximum key count selection method, minimum key 
count selection method and the random key selection 
method, all require to retrieve a proper input-similar 

Fig. 14  Addition time on primary index models generated using the six key selection methods with unequal appearing probabilities of parameters 
in service retrieval requests

Fig. 15  Retrieval time on full index models generated using the six key selection methods with equal appearing probabilities of parameters



Page 15 of 19Gu et al. Journal of Cloud Computing           (2022) 11:30 	

class containing the same input parameters with the new 
service. However, the designated key selection method 
and the proposed least-used key selection method do 
not need such a process, therefore they both have dis-
tinctive advantages for service addition over the other 
four methods. Figures 18, 19 and 20 present the addition 
performances on full index models related to the six key 
selection methods under different parameter distribution 
conditions.

To summarise their strengths, the six methods are 
rated as ‘fair’, ‘good’ and ‘excellent’ by comparing the 
speed of service retrieval time and service addition 
time for the different key selection methods under 
different conditions. Since the results in Figs.  9, 10, 

12, 13, 14, 15 and 16 do not have obvious distinctive-
ness, their results are rated as “average”. In other test 
cases, average values of the results are used to rate 
them. The ratings for the different key selection meth-
ods in Figs. 11,  17, 18, 19 and 20 are listed in Table 1. 
In order to exclude subjective interference, a clus-
tering method is used to rate them. In recent years, 
spectral clustering has emerged as one of the most 
popular modern clustering algorithms. It is simple to 
implement, can be solved efficiently using standard 
linear algebra software, and frequently outperforms 
traditional clustering algorithms. In [25] introduced 
the family of spectral clustering algorithms, and com-
pared to the “traditional algorithms” such as k-means 

Fig. 16  Retrieval time on full index models generated using the six different key selection methods with unequal appearing probabilities of 
parameters in service inputs

Fig. 17  Retrieval time on full index models generated using the six different key selection methods with unequal appearing probabilities of 
parameters in service retrieval requests
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or single linkage, spectral clustering has many funda-
mental advantages. Spectral clustering is a family of 
methods to find K clusters using a matrix’s eigenvec-
tors. One notable advantage of spectral clustering is 
its ability to cluster “points” that are not necessarily 
vectors, and to use for this a “similarity”, which is less 
restrictive than a distance. The flexibility of spectral 

clustering is another advantage; it can find clusters 
of arbitrary shapes under realistic separations [26]. 
Since spectral clustering is highly adaptable to data 
distribution, it can cluster similar data into a similar 
space, in addition, the spectral clustering will be effec-
tive when the number of clustered categories is small. 
In this experiment, the categories are only divided into 

Fig. 18  Addition time on full index models generated using the six key selection methods with equal appearing probabilities of parameters

Fig. 19  Addition time on full index models generated using the six key selection methods with unequal appearing probabilities of parameters in 
service inputs
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Fig. 20  Addition time on full index models generated using the six key selection methods with unequal appearing probabilities of parameters in 
service retrieval requests

Table 1  Retrieval and addition performances on primary/partial/full index models generated using the six key selection methods 
under different parameter distributions

a Average means all key selection methods have similar performance

Performance on primary index model Original key Random key Minimun Key 
count

Maximum 
key count

Desig-
nated key

Least-used 
key

  Retrieval
  Equal parameter appearing probability

Averagea Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service input parameters

Average Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service retrieval 
request parameters

Good
(453.9 ms)

Good
(428.4 ms)

Fair
(742.7 ms)

Fair
(763.7 ms)

Good
(392.0 ms)

Excellent
(72.7 ms)

  Addition
  Equal parameter appearing probability

Average Average Average Average Average Average

  Addition
  Unequal appearing probability of service input parameters

Average Average Average Average Average Average

  Addition
  Unequal appearing probability of service retrieval 
request parameters

Average Average Average Average Average Average

Performance on partial/full index model Original key Random key Minimum 
Key count

Maximum 
key count

Desig-
nated key

Least-used 
key

  Retrieval
  Equal parameter appearing probability

Average Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service input parameters

Average Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service retrieval 
request parameters

Good
(485.1 ms)

Good
(533.3 ms)

Fair
(765.2 ms)

Fair
(807.7 ms)

Good
(482.9 ms)

Excellent
(84.2 ms)

  Addition
  Equal parameter appearing probability

Fair
(4696.4 ms)

Fair
(4607.9 ms)

Fair
(4698.9 ms)

Fair
(4828.9 ms)

Excellent
(1122.2 ms)

Good
(2626.9 ms)

  Addition
  Unequal appearing probability of service input parameters

Fair
(7262.5 ms)

Fair
(6264.5 ms)

Fair
(7771.1 ms)

Fair
(7694.0 ms)

Excellent
(1271.6 ms)

Good
(1606.5 ms)

  Addition
  Unequal appearing probability of service retrieval 
request parameters

Fair
(4740.5 ms)

Fair
(4887.0 ms)

Fair
(4339.6 ms)

Fair
(4652.4 ms)

Excellent
(1170.4 ms)

Good
(2567.6 ms)
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3 classes, therefore, spectral clustering was selected to 
better meet the classification requirements. The final 
rating results are shown in Table 1. Overall, the mini-
mum and maximum key count selection methods got 
the most “fair” ratings, the random and original key 
selection methods are within the moderate level, and 
the designated and least-used key selection methods 
divided all the “excellent” ratings.

In the case of the unequal probability of parameters 
appearing in service retrieval requests, the proposed 
least-used key selection method shows significant supe-
riority in reducing service retrieval time no matter in 
primary, partial or full index models, where the least-
used key selection method improves over 450% retrieval 
efficiency than the designated key selection method in 
these conditions. In contrast, the designated key selec-
tion method and the least-used key selection method 
both show significant superiority over other methods 
in adding services in all cases under the partial and full 
indexing models regardless of the service parameters dis-
tribution conditions. Compared with the least-used key 
selection method, the designated key selection method 
shows around 100% improvement in service adding effi-
ciency under partial and full index models. Therefore, the 
least-used key selection method has an obvious advan-
tage for service repositories with frequently retrieval 
requests, while the designated key selection method has 
an advantage for service repositories with frequently ser-
vice addition and deletion operations.

Conclusions and future directions
The existing key selection methods of the multilevel index 
model do not consider the effects of an unequal probabil-
ity distribution of service parameters on service retrieval 
and addition performances. This paper proposed a new 
key selection method, namely the least-used key selec-
tion method and an enhanced multilevel index model 
has been designed to deal with these situations with 
higher performance. The performance of the proposed 
least-used key selection method is evaluated against five 
key selection methods under various conditions includ-
ing equal probabilities of parameter distributions, and 
unequal probabilities of parameters distribution in ser-
vice inputs and retrieval requests on the primary index, 
partial index and full index models, respectively. The 
experimental results show that the proposed least-used 
key selection method and the designated key selection 
method are superior to other methods, and the least-used 
key selection method is the best one for service retrieval.

In our experiments, the distributions of service param-
eters are known as the least-used key method. In the 
real-world, the distributions change from time to time. In 
our further work, we will study an adaptive key selection 

method based on the current work. We plan to evaluate 
and improve the performance of the proposed least-used 
key selection method under more complex and dynamic 
conditions, while further optimizing the service addition 
time.
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