
Gu et al. Journal of Cloud Computing (2022) 11:30
https://doi.org/10.1186/s13677-022-00297-3

RESEARCH

The least‑used key selection method
for information retrieval in large‑scale
Cloud‑based service repositories
Jiayan Gu1   , Ashiq Anjum1*, Yan Wu2*, Lu Liu1, John Panneerselvam1, Yao Lu1 and Bo Yuan1 

Abstract 

As the number of devices connected to the Internet of Things (IoT) increases significantly, it leads to an exponential
growth in the number of services that need to be processed and stored in the large-scale Cloud-based service reposi-
tories. An efficient service indexing model is critical for service retrieval and management of large-scale Cloud-based
service repositories. The multilevel index model is the state-of-art service indexing model in recent years to improve
service discovery and combination. This paper aims to optimize the model to consider the impact of unequal appear-
ing probability of service retrieval request parameters and service input parameters on service retrieval and service
addition operations. The least-used key selection method has been proposed to narrow the search scope of service
retrieval and reduce its time. The experimental results show that the proposed least-used key selection method
improves the service retrieval efficiency significantly compared with the designated key selection method in the case
of the unequal appearing probability of parameters in service retrieval requests under three indexing models.

Keywords:  Cloud computing, Service computing, Service retrieval, Service addition, Multilevel index model

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
The rapid development of the Internet of Things (IoT) in
recent years has led to the deployment and use of various
applications of a distributed nature that generate huge
amounts of data [1]. Cloud computing has been proposed
to efficiently store and process large amounts of data
and provide various services and resources according to
user needs. Such as Amazon Web Services, Google App
Engine and Microsoft Azure are already providing a vari-
ety of services to users with the help of cloud platforms.

With a vast number of services being hosted on
the cloud, more and more researchers provide effec-
tive methods for service discovery and composition [2,
3]. The inverted index [4] is the indexing model cur-
rently used for service retrieval in consistent reposito-
ries. However, the Inverted index has redundancy and

is time-consuming which is not suitable for a large-
scale service repository. In order to address this prob-
lem Wu et al. proposed a multilevel index model [5, 6]
to address the above issues. The efficiency of service
retrieval is improved by eliminating redundancy, thus
ensuring a reduced time for service discovery and com-
position. Figure 1 shows the architecture of the multi-
level index model, the core of which is used to store the
services, containing the input and output parameters of
the services and four levels of indexing for redundancy
reduction (described in Sect. 3.2). The service retrieval
function takes a set of parameters as input and returns
a set of services that can be invoked. The service discov-
ery and composition system can quickly retrieve ser-
vices from the service repository via the service retrieval
API. In addition, the multilevel index model serves as an
underlying storage structure for managing the services
in the service repository, including the addition, deletion
and replacement of services.

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: aa1180@leicester.ac.uk; wuyan04418@ujs.edu.cn

1 University of Leicester, Leicester, UK
2 Jiangsu University, Jiangsu, China

http://orcid.org/0000-0001-9355-5395
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00297-3&domain=pdf

Page 2 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

The selection of keys is important for service indexing
and retrieval in the multilevel index model. The origi-
nal key selection method [6], the random key selection
method [7], the maximum key count selection method [7]
and the minimum key count selection method [7] have
been proposed and evaluated as methods for selecting
the “keys” of retrieval parameters under the assumption
of equal probability of service parameter distributions.
However, this assumption does not reflect the real situ-
ation of service parameter distribution, as some services
inevitably have similar input or output parameters, or
some services are frequently invoked by users resulting
in unequal retrieval request parameters for each service.
Large classes of services indexed by popular “keys” could
slow down service retrieval process.

With this in mind, this paper proposes a novel least-
used key selection method to enhance the multilevel
index model for service retrieval and addition operations
under the condition of unequal probabilities of service
parameters. The main contributions of this paper are
summarised as follows:

1.	 A least-used key selection method has been pro-
posed to improve the efficiency of service retrieval
under the condition of unequal probabilities of ser-
vice parameters.

2.	 An enhanced multilevel index model under the
unequal probability of service parameter distribu-
tion has been designed using the proposed least-used
key selection method and compared with five exist-
ing key selection methods. Experimental evaluation
demonstrates that our proposed least-used key selec-
tion method outperforms the other studied methods
in terms of service retrieval efficiency.

The remainder of this paper is organised as follows:
Section 2 presents a review of the recent related works
about service discovery, composition and retrieval.
Section 3 introduces the multilevel index model. Sec-
tion 4 presents our proposed least-used key selection
method to improve the efficiency of service retrieval
under challenging conditions. Section 5 presents and dis-
cusses our experimental results. Section 6 concludes the
paper along with outlining our future research directions.

Related work
Service discovery and composition
Service discovery technologies used till date are mainly
based on service description language [8] such as XML,
WSMO and OWL-S [9] proposed a new semantic-aware
web service discovery method, which was designed to
provide relevant web services based on user queries. In

Fig. 1  An application scenario for the service multilevel index model

Page 3 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

addition, Bharti and Jindal [10] proposed a new search-
based clustering strategy based on the heterogeneity
of smart IoT devices and smart web services for service
discovery methods in IoT environments. Although these
methods are simple, their accuracy and recall rates are
low, and there are still imperfections. The goal of service
composition is to improve the reusability and utilisation
of basic services. Yu et al. [11] proposed a new paradigm
for automatic composition of Web services, adding key-
word queries to the traditional graph search method
based on input–output matching. Saleem et al. [12] pro-
posed a service hierarchy model based on the aware-
ness theory, which applies machine learning algorithms
to learn the original Web Service selection scheme, so
as to realise Web Service composition. However, these
methods still have some drawbacks, such as low user sat-
isfaction and high complexity. Huang et al. [13] stated
that the number of dynamic services in a dynamic ser-
vice network should be considered as the threshold value
for evaluation, and further postulated to collect and map
all the services as directed acyclic graphs and inverted
index tables. Inverted indexing can reduce the service
composition time, but incurs redundancy during the ser-
vice retrieval process. Therefore, the development of an
efficient service index model should effectively solve the
aforementioned problems, and improve the efficiency
of service discovery and composition through effec-
tive management and by reducing the scope of service
retrieval.

Service retrieval
The purpose of service retrieval is to find all services in
the service repository that satisfy the user’s needs as fast
as possible, while excluding services of little relevance
from the returned results.

The most common service retrieval methods are clas-
sified as Concept-based retrieval; Structure-based
retrieval; Logical, inference-based retrieval; and Name-
based retrieval, such as Sequential index [14], Tree-based
index [15], Inverted index [4], and Hash table [16]. How-
ever, all these methods have some problems, such as
Concept-based retrieval requires an excessive amount of
upfront work in building the service concept ontology,
and the accuracy of the ontology will directly affect the
retrieval results [17]; Structure-based retrieval imposes
an additional burden on the service provider when
publishing the service [18]; Logical, Inference-Based
retrieval, requires the support of a backend rule base,
which needs to be built manually. In addition, the rea-
soning is implemented on the basis of building ontolo-
gies to achieve matching of retrieval requirements, which
improves accuracy while also affecting retrieval efficiency

[19, 20], and Name-based retrieval is done by searching
for keywords. However, it suffers from high complex-
ity, low reliability and lower user satisfaction. Although
methods such as the Tree-based index model and the
Inverted index model can be used to narrow down the
search space, these models come at the cost of service
redundancy, which can increase the time for service dis-
covery and composition.

Wu et al. proposed a multilevel index model to index
services to reduce service retrieval redundancies and
improve retrieval performance. The “key” is an impor-
tant concept in the multilevel index model. One of the
service input parameters is selected as the “key” for the
service to be indexed. Wu et al. [6] proposed the origi-
nal key selection method to select a key for a newly
added service. Wu et al. [21] studied the effects of key
selection methods to service retrieval. Kuang et al.
[7] studied the key selection method in the multilevel
index model, and introduced three different key selec-
tion methods including the minimum key count selec-
tion method, maximum key count selection method and
random key selection method. Experiments have indi-
cated that the random key selection method improves
service addition operation. Gu et al. [22] studied the
reason for service addition improvidence using the ran-
dom key selection, and proposed a new key selection
method, called the designated key selection method
that can further reduce the service addition time with-
out compromising the service retrieval efficiency and
stability. However, these key selection methods do not
consider the services parameters distribution under
unequal probabilities in multilevel index models, which
contradicts with the real-world situations where some
services have the same and lapped parameters or some
popular services parameters invoked more frequently
than unpopular ones.

Multilevel index models
The basic definition scenario
The following definitions related with service are defined
by Wu et al. [5, 6].

Definition 1
A service is a composite s = {•s, s•, O}, where •s is the set
of input parameters, and s• is the set of output param-
eters, and O is a set of service attributes, e.g., QoS.

Definition 2
A user’s request can be represented as Q = (Qp, Qr),
where Qp and Qr represent the set of service parame-
ters provided by users and the set of service parameters
requested by users, respectively.

Page 4 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

Definition 3
Service retrieval can be defined as Re (A, S) = {s|•s ⊆ A∧
s ∈ S}, where A is the given parameter set and S is a ser-
vice set. The service retrieval parameter is often used to
receive a set of parameters to define the user require-
ments, which usually returns the services invoked by the
received set of parameters.

Definition 4
Service discovery Dc (Q, L(O), S) = { s| Re (Qp, S) ∧ Qr ⊆ s•
∧ s.O ∠ L(O)}, where L(O) is a set of constraints for any
other attributes, S is a service set, and s.O ∠ L(O) means
that s satisfies these constraints.

In this paper, service retrieval is defined to find services
that can be invoked according to users’ provided param-
eter sets. Service discovery is to find services that can
be invoked and satisfy users’ requirements according to
their requests. As shown in Definition 4, service retrieval
is a part of service discovery. If the time for service

retrieval is reduced, then the time for service discovery
will also be reduced. Service composition requires suc-
cessive service retrievals to combine different services to
satisfy users’ requirements that any single service cannot
meet complete the users’ requests. Therefore, efficient
service retrieval improves the efficiency of service discov-
ery and composition.

The same three services from the service discovery and
combination scenario in Fig. 1 are used as an example,
namely ‘hotel booking’, ‘flight booking’ and ‘navigation’,
all of which are indexed in the service repository. Fig-
ure 2 illustrates the redundancy in the classic inverted
index and illustrates the importance of the key selection
method by comparing Figs. 2, 3 and 4.

Figure 2 shows the inverted index of these three ser-
vices. Assume city and date are given for a retrieval of s1,
then, from city, s1 is searched, and from date, s1 and s2 are
searched. The services have been searched three times in

Fig. 2  The inverted index of three services used in Fig. 1

Fig. 3  The key index of three services used in Fig. 1

Fig. 4  A different key index of three service used in Fig. 1, which is used to illustrate that the key selection affects retrieval efficiency

Page 5 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

total (s1 is searched once and s2 is searched twice) before
s1 can be retrieved.

Figure 3 illustrates the idea of the key index. Date is
the key of s1 and s2, and hotel address is the key of s3. For
the same retrieval of s1, from city, no service needed to
be searched since city is not a key, and from date, s1 and
s2 are searched. The services have been searched twice
in total (s1 is searched once and s2 is searched once)
before s1 can be retrieved, which is less than that of the
inverted index (i.e. three times). Figure 3 illustrates how
the key reduces redundancy and further improves service
retrieval performance.

Figure 4 shows a different key index. City, departure
and hotel address are the keys of s1, s2 and s3, respectively.
For the same retrieval of s1, from city, s1 is searched, and
from date, no service needed to be searched since date
is not a key. Hence, the targeted s1 is searched only once,
which is less than that of the index illustrated in Fig. 3
(twice). From the example illustrated in Figs. 3 and 4,
it can be seen that the key selection methods can affect
service retrieval performance. This paper focuses on the
study of the key selection method under the condition of
unequal service invoking frequency.

Multilevel index models
Based on the characteristics of integrity, non-redundancy
and certainty of equivalence relations, Wu et al. [6] pro-
posed an efficient multilevel index model for service
retrieval based on equivalence relations, which stores
and manages large-scale service repositories. This model
can reduce the scope of service retrieval quickly and can
improve the efficiency of the service retrieval process,
thus the time for service discovery and service com-
position can be reduced. The multilevel index model is
divided into four levels, which are:

•	 The First Level Index (L1I): This is an index between a
service s and a similar class Cs if s ∈ Cs.

•	 The Second Level Index (L2I): This is an index
between a similar class Cs and an input-similar
class Cis if Cs ∈ Cis.

•	 The Third Level Index (L3I): This is an index between
an input-similar class Cis and a key class Ck if Cis ∈ Ck.

•	 The Fourth Level Index (L4I): This is an index
between a key class Ck and a key, key ∈ К if fk(Ck

) = key.

The relationship diagram of the entire multilevel
index model is shown in Fig. 5. Firstly, the service set S
is divided into many subsets, and each subset contains
the same input and output parameters, which are called
similar classes and denoted as Cs. Therefore, the index

between service S and Cs is denoted as L1I, which can
reduce the redundancy of repeated retrieval caused by
services having the same input and output parameters.
Secondly, the services containing the same input in the
similar class Cs are divided into a class, called input-sim-
ilar class and denoted as Cis . The index between Cs and
Cis is denoted as L2I, which can reduce the redundancy
caused by the same input parameters of services. Then,
the services that have the same key in the input-similar
class Cis are divided into a set, which is called key class,
denoted as Ck, while the index between Cis and Ck is
denoted as L3I. The unique index established between
each Ck and key value К is denoted as L4I, which can
improve the service retrieval efficiency by selecting a
unique key К to retrieve the required services.

Figure 6 shows a specific multilevel index of services.
There are five services s1-s5 in the service repository.
Firstly, s1 and s2 compose a similar class since they have
the same inputs and outputs. Other services compose
different similar classes, respectively. Secondly, the first
and the second similar class compose an input-simi-
lar class since they have the same inputs. Other similar
classes compose different input-similar classes, respec-
tively. Finally, the second and the third input-similar
classes compose a key class since they have the same key.
The other input-similar class composes a key class alone.

Flexible deployment
The multilevel index model can be deployed using three
different methods [21] including the primary index
model (L3I-L4I), the partial index model (L2I-L4I) and
the multilevel index model (L1I-L4I). Both the partial and
primary index models, as shown in Figs. 7 and 8, can be
used for different service repositories with different sizes
and characteristics.

Different key selection methods
The following five key selection methods have been stud-
ied and evaluate our proposed key selection method
against their efficiency in terms of service retrieval and
addition operation.

Fig. 5  The multilevel index model (full index model) of services

Page 6 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

Fig. 6  An example of the multilevel index

Fig. 7  The partial index model of services

Fig. 8  The primary index model of services

Page 7 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

1)	 The original key selection method

The original key selection method, which makes | Ck | as
close to

√
|R2| as possible. Algorithm 1 presents the oper-

ation of the original key selection method.

2)	 The minimum key count selection method

The principle of the minimum key count selection
method uses an existing key as the key of newly added
services and maintains key classes as smaller as possible.
If the parameters of a given service cannot be found in
the existed key classes, then randomly select an input of
s as its key.

Page 8 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

3)	 The maximum key count selection method

On the contrary to the minimum key count selection
method, the maximum key count selection method uses
the existing key as the key of newly added services and
maintains the number of key classes as bigger as possible.

4)	 The random key selection method

The random key selection method randomly selects
one of the service input parameters as the key of the ser-
vice through a random number function.

Page 9 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

5)	 The designated key selection method

The designated key selection method narrows down
search space when a new service is added to the partial
or full index, and determines a unique parameter in the
service input parameter as the key.

A least‑used key selection method
In a real-world scenario, some services have the same
and lapped parameters or some popular services param-
eters invoked more frequently, while others show the
opposite trend and are rarely invocated. The key selec-
tion methods of the multilevel index model proposed
in [6, 7, 22] do not consider the unequal distribution of
service parameters, resulting in the test results of service
retrieval and addition under the multilevel index model
not conforming to the actual situation. In order to deal
with this situation more efficiently, we propose a novel
key selection method, called the least-used key selection
method, which can further improve the service retrieval
efficiency in the index model.

Before designing the key selection method, an
enhanced multilevel index model usually corresponds to
two situations that result in unequal service parameters.
One is the unequal probability of parameters appear-
ing in the service retrieval request sets, and the other is
the unequal probability of parameters appearing in the
service inputs. Both the equal and unequal probabil-
ity of parameters in the multilevel index models do not
affect the service retrieval efficiency [7]. This implies that
parameter probabilities of service inputs do not impact
the retrieval efficiency to any significant level, due to the
existence of service input parameters in the multilevel
index. On the contrary, service request parameters given

by users are outside the multilevel index, thus their dis-
tribution significantly affects the retrieval performance.
For this reason, a least-used key selection method is pro-
posed to choose appropriate keys according to appearing
probabilities of parameters appearing in retrieval request
sets.

The proposed least-used key selection method is based
on the following hypothesis: If a service is frequently
invoked, its corresponding key class should be relatively
smaller; on the contrary, if a service is rarely invoked, its
corresponding key class should be relatively larger.

The proposed method is first illustrated intuitively.
According to Definition 3 discussed previously, in a
service retrieval request Re (A, S), A is a set of requests
submitted by the user and S represents a collection of
services. Suppose a request set {{a, b}, {b, c}, {c, a}}, where
the parameters a, b, and c are invocated with an even
probability. However, in a real scenario, every parameter
to characterise an even probability is nearly impossible.
For example, in a request set {{a, b}, {a, c}, {a}}, a appears
more frequently than other parameters. If a is a key, then
more services are retrieved. The least-used key selection
method proposed in this paper avoids the need to select
a as a key.

Next, the method was proven to be correct. Let
xi =|Cki |, i.e., the total number of input-similar classes
contained in Cki ; and m =|R2 |, i.e., the total number of all

Page 10 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

input-similar classes. Therefore, the following formula (1)
can be obtained.

Let pi denote the retrieval probability for Ck, and
y denote the total number of input-similar classes
being retrieved. Then, the following formula (2) can be
obtained.

(1)x1 + x2 + · · · + xn = m, (0 ≤ xi ≤ m).

(2)y = p1x1 + p2x2 + · · · + pnxn,
i
pi = 1

The optimal target is to maintain y as small as possi-
ble. According to rearrangement inequality [23] (also
known as sequence inequality), if x1 ≥ x2 ≥ … ≥ xn and
p1 ≤ p2 ≤ … ≤ pn, then y (called as reversed sum) is mini-
mised. Generally, every pi value is known in a real-world
situation. Therefore, the proposed least-used key selec-
tion method finds the most appropriate key for a newly
added service and efficiently minimizes y.

According to the above analysis, the proposed least-
used key selection algorithm is illustrated in Algorithm 6.

The a. appearing_probability denotes the probability
of the parameter a appearing in a request set. Moreover,
the method of distributing the parameters with unequal
probability in the request set will be given in Algorithm
7 below. The objectives of Algorithm 6 are to check each
parameter of a newly added service and to determine its
key characterising the smallest appearing probability. In
this way, the value of y in formula 2 is minimised to its
lowest level. Hence, as fewer input-classes as possible are
searched during the retrieval operation.

In the same way as above, the case where the service
input parameters are based on unequal probability dis-
tributions should also be considered. The proposed
least-used key selection method is evaluated under the
scenarios of unequal probabilities of parameters appear-
ing in service inputs, despite the fact that such unequal
probabilities are not known to affect the service retrieval
and addition efficiencies. Hence, step 3 in Algorithm 6
is modified as follows in order to evaluate its retrieval
efficiency under the condition of unequal probabilities
appearing in service inputs.

If (a.appearing_ probability_in_service inputs < k.
appearing_ probability_in_service inputs).

Experimental results and analysis
Experimental environment and settings
Our simulation platform is developed in Microsoft Vis-
ual Studio using C#. Each component is built with low
coupling capacity and can be modified and upgraded
separately. In our experiments, the least-used key selec-
tion method and the other five key selection methods
including the original key selection method, the random
key selection method, the minimum key count selec-
tion method, the maximum key count selection method
and the designated key selection method are evaluated
respectively under the primary index model, partial index
model and full index model with a different situation of
services parameters distribution.

Our experimental approach includes the follow-
ing steps: firstly, design an enhanced multilevel index
model under unequal probability that a probability den-
sity function is selected to simulate the unequal appear-
ing probabilities of parameters. Secondly, our least-used
key selection method and the other five key selection
methods are integrated into the primary, partial and full
index models. Finally, the service retrieval and addition
efficiencies of the six key selection methods are evaluated

Page 11 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

in the three index models under different parameter dis-
tribution conditions.

In the first step, the Monte Carlo method [24] is incor-
porated into our test platform to generate a selected

distributed random number as service input parameter
or service retrieval request parameter under an unequally
appearing probability, as shown in Algorithm 7.

Fig. 9  Retrieval time on primary index models of the six key selection methods with equal appearing probabilities of parameters

Our experiment uses the Monte Carlo method to gen-
erate random numbers as service input parameters or
service retrieval request parameters under an unequally
appearing probability, that is, two independent random
variables through a suitable probability density func-
tion are used to generate random numbers that meet
the requirements. The probability density function is as
follows.

where, l is the slope; and q =|P|, where P is a set of all
parameters. When f(x) is substituted into Algorithm 7,

(3)f (x) = l(x − q)+ q, 0 ≤ x < q

minX = minY = 0, maxX = maxY = q. Different values of
x are represented to denote different parameters. In our
test platform, l can be set to different values for different
unequal distributions of the service parameters. If l ≤ 0,
then the distribution becomes even.

Experimental results analysis
It was tested in a multilevel index model with 50,000 ser-
vices and the size of all the parameter sets is set to 1000.
Each service has 10 input and 10 output parameters.
In addition, each retrieval request contains 32 param-
eters and each dataset contains 1000 retrieval requests.

Page 12 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

In order to compare the efficiencies of the key selection
methods, 20 artificial data sets are used to test the effi-
ciencies of the six key selection methods. Their experi-
mental results are as follows.

Figure 9 presents the retrieval time of the six key selec-
tion methods in the primary index model under an equal
parameter appearing probability. From Fig. 9, there is no
obvious distinctiveness about the retrieval time with ref-
erence to the six key selection methods. These results also
verified our previous work that the key selection meth-
ods do not affect the retrieval efficiency to any noticeable
level under equal probabilities of service invocations [7].

Unequal probabilities of parameters appearance in
service inputs and service retrieval requests are tested
respectively. Figure 10 presents the retrieval time of the

six key selection methods on primary index models,
under an unequal appearing probability of parameters
in service inputs. Similar to Fig. 9, the average service
retrieval time of the six key selection methods remains
very similar, as illustrated in Fig. 10. The results verified
our previous work [7] that the size of the key set does
not affect the service retrieval efficiency in the multilevel
index models.

Figure 11 illustrates the service retrieval time of the
six key selection methods in the primary index models,
under an unequal appearing probability of parameters
in service retrieval requests. Service retrieval request
parameters are generated by users outside the multilevel
index models. Therefore, different key selection methods
have different service retrieval efficiencies. The proposed

Fig. 10  Retrieval time on primary index models generated using the six different key selection methods with unequal appearing probabilities of
parameters in services inputs

Fig. 11  Retrieval time on primary index models generated using the six different key selection methods with unequal appearing probabilities of
parameters in services retrieval requests

Page 13 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

least-used key selection method exhibits the best per-
formance, while the maximum and minimum key count
selection methods cost most time due to their key selec-
tion methods do not optimize the retrieval time of the
services.

In Figs. 12, 13 and 14, service addition efficiencies of
different key selection methods in the primary index
model were tested under both equal and unequal

appearing probabilities of services parameters, respec-
tively. From these figures, the performance of the six
key selection methods under each scenario has no obvi-
ous distinctiveness since the primary index does not
retrieve input-similar classes for the service addition
operation.

Since the partial index and full index models are very
similar except the fact that the partial index model is

Fig. 12  Addition time on primary index models generated using the six key selection methods with equal appearing probabilities of parameters

Fig. 13  Addition time on primary index models generated using the six key selection methods with unequal appearing probabilities of parameters
of service inputs

Page 14 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

less time-consuming than the full index model, thus
only the results of the full index model are exhibited.
Retrieval and addition time with related to the six key
selection methods in a full index model are very simi-
lar to that in a partial index model except the retrieval
time is slightly longer. Therefore, only the experimental
results in the full index model are shown. Figures 15, 16
and 17 present the retrieval time of the six key selection
methods in the full index models under both equal and
unequal appearing probabilities of parameters appear-
ing in service inputs and retrieval requests, respectively.

The results are similar to the ones of the six key selec-
tion methods under primary indexing, and the least-
used key selection method is still the best one that
significantly reduces service retrieval time when the
parameters with unequal appearing probability in the
service retrieval requests.

In both the partial and full index models, when a new
service is added, the original key selection method,
maximum key count selection method, minimum key
count selection method and the random key selection
method, all require to retrieve a proper input-similar

Fig. 14  Addition time on primary index models generated using the six key selection methods with unequal appearing probabilities of parameters
in service retrieval requests

Fig. 15  Retrieval time on full index models generated using the six key selection methods with equal appearing probabilities of parameters

Page 15 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

class containing the same input parameters with the new
service. However, the designated key selection method
and the proposed least-used key selection method do
not need such a process, therefore they both have dis-
tinctive advantages for service addition over the other
four methods. Figures 18, 19 and 20 present the addition
performances on full index models related to the six key
selection methods under different parameter distribution
conditions.

To summarise their strengths, the six methods are
rated as ‘fair’, ‘good’ and ‘excellent’ by comparing the
speed of service retrieval time and service addition
time for the different key selection methods under
different conditions. Since the results in Figs. 9, 10,

12, 13, 14, 15 and 16 do not have obvious distinctive-
ness, their results are rated as “average”. In other test
cases, average values of the results are used to rate
them. The ratings for the different key selection meth-
ods in Figs. 11, 17, 18, 19 and 20 are listed in Table 1.
In order to exclude subjective interference, a clus-
tering method is used to rate them. In recent years,
spectral clustering has emerged as one of the most
popular modern clustering algorithms. It is simple to
implement, can be solved efficiently using standard
linear algebra software, and frequently outperforms
traditional clustering algorithms. In [25] introduced
the family of spectral clustering algorithms, and com-
pared to the “traditional algorithms” such as k-means

Fig. 16  Retrieval time on full index models generated using the six different key selection methods with unequal appearing probabilities of
parameters in service inputs

Fig. 17  Retrieval time on full index models generated using the six different key selection methods with unequal appearing probabilities of
parameters in service retrieval requests

Page 16 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

or single linkage, spectral clustering has many funda-
mental advantages. Spectral clustering is a family of
methods to find K clusters using a matrix’s eigenvec-
tors. One notable advantage of spectral clustering is
its ability to cluster “points” that are not necessarily
vectors, and to use for this a “similarity”, which is less
restrictive than a distance. The flexibility of spectral

clustering is another advantage; it can find clusters
of arbitrary shapes under realistic separations [26].
Since spectral clustering is highly adaptable to data
distribution, it can cluster similar data into a similar
space, in addition, the spectral clustering will be effec-
tive when the number of clustered categories is small.
In this experiment, the categories are only divided into

Fig. 18  Addition time on full index models generated using the six key selection methods with equal appearing probabilities of parameters

Fig. 19  Addition time on full index models generated using the six key selection methods with unequal appearing probabilities of parameters in
service inputs

Page 17 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

Fig. 20  Addition time on full index models generated using the six key selection methods with unequal appearing probabilities of parameters in
service retrieval requests

Table 1  Retrieval and addition performances on primary/partial/full index models generated using the six key selection methods
under different parameter distributions

a Average means all key selection methods have similar performance

Performance on primary index model Original key Random key Minimun Key
count

Maximum
key count

Desig-
nated key

Least-used
key

  Retrieval
  Equal parameter appearing probability

Averagea Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service input parameters

Average Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service retrieval
request parameters

Good
(453.9 ms)

Good
(428.4 ms)

Fair
(742.7 ms)

Fair
(763.7 ms)

Good
(392.0 ms)

Excellent
(72.7 ms)

  Addition
  Equal parameter appearing probability

Average Average Average Average Average Average

  Addition
  Unequal appearing probability of service input parameters

Average Average Average Average Average Average

  Addition
  Unequal appearing probability of service retrieval
request parameters

Average Average Average Average Average Average

Performance on partial/full index model Original key Random key Minimum
Key count

Maximum
key count

Desig-
nated key

Least-used
key

  Retrieval
  Equal parameter appearing probability

Average Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service input parameters

Average Average Average Average Average Average

  Retrieval
  Unequal appearing probability of service retrieval
request parameters

Good
(485.1 ms)

Good
(533.3 ms)

Fair
(765.2 ms)

Fair
(807.7 ms)

Good
(482.9 ms)

Excellent
(84.2 ms)

  Addition
  Equal parameter appearing probability

Fair
(4696.4 ms)

Fair
(4607.9 ms)

Fair
(4698.9 ms)

Fair
(4828.9 ms)

Excellent
(1122.2 ms)

Good
(2626.9 ms)

  Addition
  Unequal appearing probability of service input parameters

Fair
(7262.5 ms)

Fair
(6264.5 ms)

Fair
(7771.1 ms)

Fair
(7694.0 ms)

Excellent
(1271.6 ms)

Good
(1606.5 ms)

  Addition
  Unequal appearing probability of service retrieval
request parameters

Fair
(4740.5 ms)

Fair
(4887.0 ms)

Fair
(4339.6 ms)

Fair
(4652.4 ms)

Excellent
(1170.4 ms)

Good
(2567.6 ms)

Page 18 of 19Gu et al. Journal of Cloud Computing (2022) 11:30

3 classes, therefore, spectral clustering was selected to
better meet the classification requirements. The final
rating results are shown in Table 1. Overall, the mini-
mum and maximum key count selection methods got
the most “fair” ratings, the random and original key
selection methods are within the moderate level, and
the designated and least-used key selection methods
divided all the “excellent” ratings.

In the case of the unequal probability of parameters
appearing in service retrieval requests, the proposed
least-used key selection method shows significant supe-
riority in reducing service retrieval time no matter in
primary, partial or full index models, where the least-
used key selection method improves over 450% retrieval
efficiency than the designated key selection method in
these conditions. In contrast, the designated key selec-
tion method and the least-used key selection method
both show significant superiority over other methods
in adding services in all cases under the partial and full
indexing models regardless of the service parameters dis-
tribution conditions. Compared with the least-used key
selection method, the designated key selection method
shows around 100% improvement in service adding effi-
ciency under partial and full index models. Therefore, the
least-used key selection method has an obvious advan-
tage for service repositories with frequently retrieval
requests, while the designated key selection method has
an advantage for service repositories with frequently ser-
vice addition and deletion operations.

Conclusions and future directions
The existing key selection methods of the multilevel index
model do not consider the effects of an unequal probabil-
ity distribution of service parameters on service retrieval
and addition performances. This paper proposed a new
key selection method, namely the least-used key selec-
tion method and an enhanced multilevel index model
has been designed to deal with these situations with
higher performance. The performance of the proposed
least-used key selection method is evaluated against five
key selection methods under various conditions includ-
ing equal probabilities of parameter distributions, and
unequal probabilities of parameters distribution in ser-
vice inputs and retrieval requests on the primary index,
partial index and full index models, respectively. The
experimental results show that the proposed least-used
key selection method and the designated key selection
method are superior to other methods, and the least-used
key selection method is the best one for service retrieval.

In our experiments, the distributions of service param-
eters are known as the least-used key method. In the
real-world, the distributions change from time to time. In
our further work, we will study an adaptive key selection

method based on the current work. We plan to evaluate
and improve the performance of the proposed least-used
key selection method under more complex and dynamic
conditions, while further optimizing the service addition
time.

Acknowledgements
Not applicable.

Authors’ contributions
This research paper was co-authored by seven authors. Therefore, any author
was involved in each part of the paper. However, the basic role of each author
is summarized as follows: J.G. was the designer of the proposed model and
methods and was responsible for the experiments of the proposed method
with the support of A.A. and Y.W., L.L. assisted J.G. with the model design. J.P.,
B.Y. and Y.L. were the main reviewers of the paper, giving effective suggestions
for improvement. All authors have read and agreed to the published version
of the manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 23 February 2022 Accepted: 11 July 2022

References
	1.	 Rajendran V, Ramasamy RK, Mohd-Isa W-N (2022) Improved eagle

strategy algorithm for dynamic web service composition in the IoT: a
conceptual approach. Future Internet 14(2):56

	2.	 Heidari A, Navimipour NJ (2021) Service discovery mechanisms in cloud
computing: a comprehensive and systematic literature review. Kyber-
netes 51(3):952-981

	3.	 Asghari P, Rahmani AM, Javadi HHS (2018) Service composition
approaches in IoT: a systematic review. J Netw Comput Appl 120:61–77

	4.	 Arab A, Abrishami S (2017) MDMP: a new algorithm to create inverted
index files in BigData, using MapReduce. In: 2017 7th International
Conference on Computer and Knowledge Engineering (ICCKE). IEEE,
Mashhad, Israel, pp 372-378

	5.	 Wu Y, Yan C, Liu L, Ding Z, Jiang C (2015) An adaptive multilevel
indexing method for disaster service discovery. IEEE Trans Comput
64(9):2447–2459

	6.	 Wu Y, Yan C, Ding Z, Liu G, Wang P, Jiang C, Zhou M (2016) A multilevel
index model to expedite web service discovery and composition in
large-scale service repositories. IEEE Trans Serv Comput 9(3):330–342

	7.	 Kuang W, Wu Y, Liu L (2017) Key Selection for Multilevel Indices of
Large-scale Service Repositories. In: Companion Proceedings of the10th
International Conference on Utility and Cloud Computing. New York,
United State, pp 139-144

	8.	 Pawar S, Chiplunkar NN (2018) Survey on discovery of web services.
Indian J Sci Technol 11:1–10

	9.	 Pushpa C, Deepak G, Kumar A, Thriveni J, Venugopal K (2020) OntoDisco:
improving web service discovery by hybridization of ontology focused
concept clustering and interface semantics. In: 2020 IEEE international
conference on electronics, computing and communication technologies
(CONECCT). IEEE, Bangalore, India, pp 1-5

	10.	 Bharti M, Jindal H (2021) Optimized clustering-based discovery frame-
work on internet of things. J Supercomput 77(2):1739–1778

Page 19 of 19Gu et al. Journal of Cloud Computing (2022) 11:30 	

	11.	 Yu D, Zhang L, Liu C, Zhou R, Xu D (2020) Automatic Web service compo-
sition driven by keyword query. World Wide Web 23(3):1665–1692

	12.	 Saleem MS, Ding C, Liu X, Chi C-H (2014) Personalized decision-strategy
based web service selection using a learning-to-rank algorithm. IEEE
Trans Serv Comput 8(5):727–739

	13.	 Huang Y, Lin W, Huang P, Lin P, Huang J, Peng Y, Chen J, Li K (2016)
Threshold based query strategies for QoS-aware service composition in
dynamic service networks. In: 2016 13th International Conference on Ser-
vice Systems and Service Management (ICSSSM). IEEE, Kunming, China,
pp 1-6

	14.	 Zakrzewicz M (2001) Sequential index structure for content-based
retrieval. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, Hong Kong, China, pp 306–311

	15.	 Zhu H, Chang D, Xu Z, Zhang P, Li X, He J, Li H, Xu J, Gai K (2019) Joint
optimization of tree-based index and deep model for recommender
systems. Adv Neural Inf Process Syst 32:1-10

	16.	 Shen Y-b, Gadekallu TR (2022) Resource Search Method of Mobile
Intelligent Education System Based on Distributed Hash Table. Mobile
Networks and Applications. pp 1–10

	17.	 Mehala N, Bhatia D (2020) A Concept-Based Approach for Generating
Better Topics for Web Search Results. SN Computer Science 1(5):1–14

	18.	 Klein M, Bernstein A (2004) Toward high-precision service retrieval. IEEE
Internet Comput 8(1):30–36

	19.	 Xu R, Zhang N, Lin P, Wang Z (2008) Logic Inference-Based Semantic Web
Service for KB Retrieval. In: 2008 International Conference on Internet
Computing in Science and Engineering. IEEE, Harbin, China, pp 537–540

	20.	 Narock T, Yoon V, March S (2014) A provenance-based approach to
semantic web service description and discovery. Decis Support Syst
64:90–99

	21.	 Wu Y, Xu W, Liu L, Miao D (2019) Performance formula-based optimal
deployments of multilevel indices for service retrieval. Concurr Comput
31(3):e4265

	22.	 Gu J, Wu Y, Anjum A, Panneerselvam J, Lu Y, Yuan B (2021) Optimization of
service addition in multilevel index model for edge computing. Concurr
Comput e6626. doi:https://​doi.​org/​10.​1002/​cpe.​6626

	23.	 Holstermann J (2017) A Generalization of the rearrangement inequality.
Mathematical Reflections 5 (4)

	24.	 Taimre T, Kroese DP, Botev ZI (2019) Monte Carlo methods. Wiley StatsRef:
Statistics Reference Online 10:1-17

	25.	 Tremblay N, Loukas A (2020) Approximating spectral clustering via
sampling: a review. Sampling Techniques for Supervised or Unsupervised
Tasks. pp 129–183

	26.	 Meila M (2016) Spectral Clustering: a Tutorial for the 2010’s Handbook of
cluster analysis. pp 1–23

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/cpe.6626

	The least-used key selection method for information retrieval in large-scale Cloud-based service repositories
	Abstract
	Introduction
	Related work
	Service discovery and composition
	Service retrieval

	Multilevel index models
	The basic definition scenario
	Definition 1
	Definition 2
	Definition 3
	Definition 4

	Multilevel index models
	Flexible deployment
	Different key selection methods

	A least-used key selection method
	Experimental results and analysis
	Experimental environment and settings
	Experimental results analysis

	Conclusions and future directions
	Acknowledgements
	References

