
Zhang et al. Journal of Cloud Computing (2022) 11:23
https://doi.org/10.1186/s13677-022-00302-9

RESEARCH

JSON‑based control model for SQL
and NoSQL data conversion in hybrid cloud
database
Lei Zhang1,2, Ke Pang3*, Jiangtao Xu4 and Bingxin Niu5 

Abstract 

A data interaction transformation model, XYJSON, that is suitable for all data using current standard SQL syntax and
JSON document data is proposed to solve the problem of increasing development workload and difficulty caused by
using different control methods for corresponding types of databases under the cloud hybrid storage. A control pro-
gram was studied to control relational and NoSQL data at the same time, by establishing a general conversion model
between relational and NoSQL data and converting standard SQL statements into JSON. The performance of XYJSON
was compared with that of the traditional mode. The results show that the performance difference between XYJSON
and the traditional mode is small. In addition, a developer survey was conducted on XYJSON for user friendliness and
compatibility. All developers rated XYJSON as excellent. The current cloud hybrid storage cannot use a unified control
model to realize data control. XYJSON breaks through this bottleneck, making it easier and more efficient to control
different types of databases under cloud hybrid storage.

Keywords:  Simultaneous control, Data conversion, Hybrid cloud database, Native JSON, NoSQL, RDBMS

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
With the rapid development of cloud computing and
big data technology, the limitations of data process-
ing brought by traditional single type database are
more prominent. Using JSON text storage in a database
requires expensive text processing each time a document
is read by a query or updated by a DML statement [1],
and NoSQL databases do not provide transaction mech-
anism functions [2]. Owing to the storing of complex
logical relations, a relational database cannot meet the
requirements of big data in application scenarios requir-
ing high-performance data throughput. Therefore, hybrid
cloud storage is being extensively used as a cutting-edge
data exchange and storage method applicable to both
relational and non-relational databases. Hybrid cloud

storage integrates NoSQL and relational data formats.
The NoSQL document storage system in such hybrid
cloud storage mechanisms manages the substantial data
exchanged and stored in JSON format [2], which aims
to achieve efficient and simple access such that they are
suitable for high-frequency access application scenarios
with a single data table store structure. By contrast, rela-
tional databases are suitable for data with highly complex
relations and compound queries based on these relations.
Thus, they are utilized in scenarios that require data
model statistics and predictions. Hybrid cloud storage
integrates the advantages of these two types of databases,
overcomes the limitations of single type database storage,
and realizes efficient access to various data types.

At the same time, in hybrid cloud storage, developers
need to use different types of control methods to con-
trol their corresponding types of databases, as shown
in Fig. 1a. Relational data needs to control data storage
through SQL control, while NoSQL data controls data
access through data control. They lack a unified control

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: xiaolei-zhl@163.com

3 School of Software and Communication, Tianjin Sino-German University
of Applied Sciences, Tianjin 300350, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00302-9&domain=pdf

Page 2 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23

method. This control method not only increases the
development workload and difficulty of developers, but
also becomes a bottleneck hindering the further develop-
ment of hybrid cloud storage mechanism.

Facing this challenge, a data interactive conver-
sion model suitable for all data using current standard
SQL syntax and JSON document data is proposed in
this study. By establishing a general conversion model
between relational and NoSQL data and converting
standard SQL statements into JSON, this study inves-
tigated the use of a program to control relational and
NoSQL data simultaneously. This new JSON model is
named XYJSON, as shown in Fig. 1b. The current cloud
hybrid storage cannot use a unified control model to real-
ize data control. XYJSON breaks through this bottleneck,
making it easier and more efficient to control different
types of databases under cloud hybrid storage.

Related work
Currently, many mainstream relational databases, such as
Oracle [3], Microsoft SQL Server [4], MySQL [5], Post-
greSQL [6], and TeraData [7], are being actively explored
to identify ways of optimizing database performance to
adapt to the big data era. Thus, attempts have been made
to integrate JSON text storage into relational databases
for compatibility with NoSQL databases, thereby achiev-
ing efficient hybrid cloud storage. Nevertheless, the char-
acteristics of relational databases themselves have led to
their inherent inability to perform JSON processing [8].
This deficiency has also made developers reluctant to

use a single relational database to simultaneously pro-
cess high-throughput data and high-complexity logical
relational data in a modern hybrid cloud storage system.
Moreover, researchers have proposed several methods of
storing JSON text in relational databases. Storing native
JSON data in commercial databases and using SQL for
extended queries were discussed [2, 9]. A JSON hybrid
query language based on SQL was proposed [10]. Two
different mapping techniques, which were used to store
JSON data in relational databases, were proposed and
compared [11]. The entity–attribute–value data model
was used to discuss the support of two open-source rela-
tional databases and two commercial relational data-
bases for JSON documents [12]. The experimental results
showed that JSON data can be used to simplify queries
and reduce their execution time.

To a certain extent, the integration of JSON text stored
in a relational database has addressed the interaction of
different types of data in hybrid cloud storage. However,
a relational database is not suitable for a JSON text stor-
age because it is primarily designed to store relational
data structures. Moreover, the compatibility of the JSON
text stored in relational databases relies on its SQL state-
ments, owing to the limitation of its structure.

Therefore, many researchers have attempted to address
the interaction between different types of data in hybrid
cloud storage from another perspective, that is, to achieve
interaction through the mutual mapping between JSON
and a relational database to realize the unified control of
a JSON text storage and a relational database.

Fig. 1  Comparison of XYJSON and traditional hybrid database control structures (a) Traditional hybrid database control structure (b) XYJSON hybrid
database control structure

Page 3 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23 	

In terms of research on mapping JSON data to rela-
tional data, a mapping algorithm from JSON to a rela-
tional database was proposed [2], and JSON data were
stored in the relational database [13–15]. JSON was
defined in a web data request and a theoretical analysis
to study the constraint method of JSON integrity was
conducted [16]. A formal JSON data model was proposed
[17], and a lightweight query language was defined. Inter-
estingly, JSON conversion in MongoDB was specified as
future work in that paper [18]. A data exchange format
among RESTFul services was proposed, which is more
inclined to store network attribute data [19].

Based on the existing mapping models between JSON
and relational data and non-relational data, the paper
combined these two mapping models and proposed a
novel JSON model named XYJSON model. Using XYJ-
SON’s control model matching, this data model achieved
unified control of different types of databases, helping fill
the gap in the application control model for hybrid cloud
databases and promoting research on unified control for
hybrid cloud databases.

XYJSON model
XYJSON is divided into two parts: XYJSON data model
and XYJson control model. As shown in Fig. 1b, the XYJ-
SON data model is compatible with relational as well as
NoSQL data and can realize data conversion according to
different database types; that is, the XYJSON data model
can be converted using relational data or NoSQL data. By
transforming the XYJSON data model into an XYJSON
control model driver, it can control the XYJSON data
model, and consequently control relational and NoSQL
databases.

XYJSON data model
In this study, a new native JSON-based data model is
defined, which can interconvert standard SQL statements
and JSON document structures. This JSON document
data is referred to as the XYJSON model. Because the
XYJSON data model was designed based on the native
JSON syntax, it can be stored in a NoSQL database that
adapts to native JSON and can be verified and parsed by
program components that parse native JSON. This design
method enhances the versatility of the XYJSON data
model.

The syntax structure of the XYJSON data model is
shown in Fig. 2. The XYJSON data model is divided into
three first-level nodes, namely commandType, com-
mandOp, and data nodes. "commandType" represents
the corresponding SQL command, including four SQL
command formats: INSERT, UPDATE, DELETE, and
QUERY. "commandOp" represents the operation object,
and the "tableName" contained within is the table name

corresponding to SQL; "colList" is the database field
name, presented in the form of a string array; "queryList"
is the query condition, presented as an array, and the
corresponding query conditions are composed of query
functions (see 2.3); and "data" is relational data, presented
in the form of an array of Key–Value pairs.

XYJson control model
The XYJSON control model is the model driver of the
XYJSON data model. The control model persistently
drives the data model into XYJSON Bean. XYJSON Bean
conforms to the JavaBean software component model
design specifications, and because the XYJSON data
model is based on native JSON syntax rules, any mapping
component between objects and JSON data can map the
XYJSON data model to XYJson Bean, that is, the XYJ-
SON control model.

The XYJson control model is shown in Fig. 3a. The
XYJson < T > class contains attributes corresponding
to the first-level nodes of the data model, namely com-
mandType, commandOp, and data. The commandType
property indicates the command type. The values are
INSERT, UPDATE, DELETE, and QUERY. The comman-
dOp is an operation type attribute with tableName, col-
List, and queryList attributes under it, which is consistent
with the meaning of the data model. The data type of the
data is the Java class corresponding to the relational data,
which exists as a T-generic class in the XYJson class. The
T-generic class can vary according to the structure of the
actual relational data. There are mainly two annotation
classes in the T-generic class, including Table and Col-
umn annotations. The Table annotation class is applied to
the class name of the T-generic class, implying that users
can provide the table name value for the value method
of this class. Conversely, the Column annotation class is

Fig. 2  XYJSON data model structure

Page 4 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23

applied to the attributes of the T-generic class, indicat-
ing that users can provide table field values for the value
method of this class. Figure 3b is an example of the XYJ-
son control model transform of IX1 in Fig. 4. The data
model inserted in IX1 is transformed into the ExamStore
Bean model. In the ExamStore Bean model, develop-
ers can use @table and @column annotations to map
table names and column names in relational databases.
The ExamStore Bean is used as the data attribute value
of XYJson < ExamStore > in the form of an array. As the
data model of IX1 only has a commandType node, only
the commandType attribute in the XYJson control model
corresponds to it, and its value is INSERT.

Using the model in Fig. 3b as an example, when devel-
opers need to insert the examStore table in the relational
database, they can convert it into the SQL statement
inserted into the examStore through XYJson < Exam-
Store > Bean and then operate the relational database, or
they can directly operate the relational database through
Bean. When they wish to operate a NoSQL database,
it may be operated directly through XYJson < Exam-
Store > Bean. Developers can control different types of
databases using XYJson < ExamStore > Bean alone and

need not focus on the characteristics or programs of each
database.

Query function node
Owing to the different characteristics and functions
of various databases and the enhancement of the user
friendliness, universality, and functionality of XYJSON,
a variety of query functions are designed in XYJSON to
realize different functions. The queryList node under
the commandOp node represents the string array of the
query function type in the XYJSON data model struc-
ture. Each query function starts with @, followed by the
function name and the required parameters of the func-
tion (Fig. 5). The parameters in the query function can be
nested into other functions, which also start with @. The
query function represents an SQL query statement after
WHERE, and it is presented by the query function in the
XYJSON model document structure.

Take QX3 in Fig. 4 as an example. QX3 uses @NOT-
NULL and @EQ functions for business control and the
@AND function for connecting query conditions. The
query function @NOTNULL indicates that when the ID
is not empty, the query condition with id = 1 will be used.

Fig. 3  XYJson control model structure and example (a) XYJson control model structure (b) Example of XYJson control model structure

Page 5 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23 	

@EQ implies that when the course Id is equal to 2, the
query condition with question Type = 1 will be used. @
AND indicates that multiple query criteria are connected
by “AND.”

Application experiment
The data conversion performances of different database
types were compared with the traditional and XYJSON
methods in a hybrid cloud database control experiment,
including relational database MySQL, relational database
standard SQL text, and NoSQL databases MongoDB and
Redis. The experiment was divided into four operations:
data INSERT, UPDATE, DELETE, and QUERY. Each
conversion operation was repeated 10 times cyclically.
The duration of each experiment was calculated from
the beginning of the second cycle to avoid the long run-
ning time caused by loading various component pack-
ages required by the program during the first cycle. The
conversion times of the remaining nine iterations were
calculated, and the average value was taken as the time
reference index. The experimental results showed that
the proposed XYJSON model can achieve unified control

operation for different types of databases, and the per-
formance difference ranged from − 14.28% to 9.31%
compared to that of the traditional method. Research
conducted among software developers also showed that
XYJSON has a high user friendliness and compatibility.
All the developers who participated in the research rated
XYJSON as “excellent.”

The experimental setup comprised a workstation with
an Intel Core i7 3.1 GHz/4 core CPU, 16 GB 2133 MHz
LPDDR3 memory, 2 TB SSD, and MacOS Big Sur Oper-
ating System. The software used were MySQL Ver 5.7.21,

Fig. 4  XYJSON model with real examples of SQL statements

Fig. 5  Query function grammar

Page 6 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23

MongoDB Ver 4.4.4, Redis Ver 6.2.0, and JDK1.8. The
cloud service hybrid storage environment was simulated
in the workstation to evaluate the application of the pro-
posed model in cloud hybrid storage. Four dockers were
adopted to start four cloud servers loaded with MySQL
database, MongoDB database, Redis database and XYJ-
SON application cloud services, respectively. Here, the
first three databases were controlled through the XYJ-
SON application server.

Insert conversion experiment
In the INSERT experiment, the sample data in the test
reached 1 million rows, with a volume of approximately
300 MB. Data conversion experiments were conducted
on a relational database SQL text and NoSQL databases
MongoDB and Redis, and compared the data conver-
sion time between the traditional data conversion
method and XYJSON in the simulated hybrid cloud
database. The objective of the experiment was to use
SQL text in a relational database. First, relational data-
bases have been developed over a long period of time,
and they include several types. The characteristics of
each relational database are quite different, but they
all follow the SQL standard; therefore, SQL standard
text was used to replace the experiment for a single
relational database. Secondly, the insertion conversion
experiment can realize the data migration of different
types of databases in the hybrid cloud database. In the
process of data migration, developers often need to

use SQL text as the basis for data migration; thus, the
experiments were based on SQL text. During the exper-
iment, the relational data were stored in a.SQL file in
the form of SQL standard text lines.

The experimental results are shown in Fig. 6. The data
format inserted into the data table is IX1. In the figure,
red indicates the time performance gap between the tra-
ditional and XYJSON models, and the digital percentage
is the excess percentage of time lost. It may be observed
that different database types perform data conversion and
insertion operations. In the mutual conversions between
SQL and MongoDB or between SQL and Redis, the con-
version performances of XYJSON are lower than the tra-
ditional methods. Its performance loss was within 7.97%
because, in the conversion process, XYJSON data model
conversion should be performed on SQL first, and then
insert operations should be performed on other types of
databases with XYJSON control models, resulting in per-
formance degradation. In the mutual conversion between
MongoDB and Redis, XYJSON achieved a slightly better
performance than traditional methods, that is, 0.28% and
0.45%, because in non-relational databases, document
data and key values have good compatibility with the
XYJSON data model, enabling them to interact directly
with native JSON. Therefore, the XYJSON data model
can be efficiently transformed with these two database
models. Meanwhile, XYJSON loads the required entity
beans into the cache pool of the class structure by the
control model when the project is started, thus reduc-
ing the performance loss. In addition, XYJSON realized

Fig. 6  Comparison results of insertion conversion experiment

Page 7 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23 	

the unified data conversion operation between different
types of databases, which reflects the compatibility of the
XYJSON model.

Experiment of updating and deleting conversions
In this group of experiments, the UPDATE and DELETE
operations of different types of databases were completed
using traditional and XYJSON methods, considering
UX1 and DX1 in Fig. 4 as examples. As shown in Fig. 7,
the experimental results were a comparison between the
time taken for the UPDATE and DELETE operations by
different database types using the traditional and XYJ-
SON methods. The experimental results showed that
in the modification operation, the neutral performance
of the XYJSON method and MongoDB in the relational
database was slightly better than that of the traditional
method by 14.28% and 7.67%, respectively. XYJSON
performs conversion operations according to different
modified fields and loads the data model into the class
structure cache pool after parsing. In the next operation,
when the model performs the same modification opera-
tion again, it does not need to be parsed again. Therefore,
the performance of XYJSON is slightly better than the
traditional methods of SQL and MongoDB. Owing to the
characteristics of the key–value database, Redis is consid-
ered unfriendly to meta-child modifications. Therefore,

the traditional and XYJSON models consumed a rela-
tively large amount of time, and the time loss of the XYJ-
SON model was 9.31% greater than that of traditional
methods. Traditional Redis implements the modifica-
tion operation by overwriting the old data with the new
data after querying the data to be modified. Based on this
process, XYJSON also needs to perform the data model
transformation of query data and new data coverage
operations; hence, its performance is lower than that of
the traditional methods. The difference in time consump-
tion between the two models in the deletion experiment
was not significant, i.e., − 5.55%–0.22%. In the experi-
ment of SQL deleting operation, the performance of
the XYJSON method is similar to that of the traditional
SQL method because the model transformation of the
SQL delete statement is relatively simple; thus, the XYJ-
SON model consumes minimal time during data model
parsing. In the experiment of MongoDB deleting opera-
tion, XYJSON converts the data model to document
data, and the performance is almost similar to that of
the traditional method.In the experiment of Redis delet-
ing operation, considering Redis is a key-value database,
XYJSON can easily implement key-value pair control
with its control model; hence, its performance is slightly
higher compared to that of the traditional method. The
experimental results showed that the XYJSON model

Fig. 7  Comparison results of update and delete conversion experiment

Page 8 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23

realized the modification and deletion of different types
of databases using one command mode, and in the rela-
tional data and MongoDB database, the modification
performance was slightly better than that of the tradi-
tional model, and the gap between other operation per-
formances was small.

Query conversion experiment
In the query operation conversion experiment, the query
time comparison of MySQL, MongoDB, and Redis
databases was realized using the traditional and XYJ-
SON methods. Consider QX1-4 in Fig. 4 as an example.
The experimental results are shown in Fig. 8. It can be
observed that there was a small difference in time con-
sumption between the two during query operations,
ranging from − 1.48% to 4.24%. In the query operation of
MySQL, whether a single table query or a query associ-
ated with multiple tables, XYJSON adds the data model
transformation based on traditional methods. The per-
formance degradation caused by the transformation is
negligible, ranging from 0.55% to 1.92%. In the query

operation of MongoDB, excluding the QX2 example,
XYJSON has a slightly higher performance than the
traditional method. Due to the document data type of
MongoDB, the data structure of MongoDB and XYJ-
SON can interact directly with the native JSON; hence,
the XYJSON data model can efficiently implement the
conversion with MongoDB data. Coupled with the class
structure cache pool method, XYJSON has a slightly
higher performance than the traditional method. The
QX2 example involves the associated query of three
tables, requiring XYJSON to perform the model trans-
formation on three tables during parsing; therefore, its
performance is lower than that of the traditional method.
In the query operation of Redis, because Redis itself has
poor support for the conditional query operation, both
the traditional Redis method and XYJSON method con-
sume more query time. XYJSON needs to parse and con-
vert date query conditions in the QX1 example; therefore,
its performance is slightly lower than that of traditional
methods. In the QX2 example, aimilar to MongoDB,
XYJSON needs to parse the query conditions of three

Fig. 8  Comparison results of query conversion experiment

Page 9 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23 	

tables and then perform data model transformation;
therefore, its performance is slightly lower than that of
the traditional method. In the QX3 example, XYJSON
parses non-null functions and equal functions to con-
trol Redis queries smartly; therefore, its performance
is slightly lower than that of traditional methods. In
the QX4 example, there are subquery statements in the
query statements. Redis adopts the traditional method of
controlling program condition filtering, while XYJSON
implements the nested operation of the query by parsing
the query function directly; therefore, the performance is
slightly higher than that of the traditional method.

Developer research experiment
For XYJSON, a developer survey questionnaire was
launched. The online questionnaires were provided
to 246 front-line developers from software companies

anonymously, as well as the XYJSON development kit in
the form of compiled components. After being explained
how to use XYJSON, the developers were asked to use
or test XYJSON model in real projects and evaluate the
model in the form of questionnaires. In the process of the
project development, developers can use XYJSON com-
ponents to control different types of databases uniformly.
Finally, 223 valid questionnaires were received.

There were 23 questions in the questionnaire, includ-
ing the developer’s work experience, the indicators con-
cerned with the development of hybrid cloud databases,
and the advantages of XYJSON, as shown in Table 1.

Q1 and Q2 are designed to investigate the length of
service of developers and their technical fields to ensure
the breadth of survey, so as to achieve the statistics of
the use experiences of XYJSON model from developers
with different length of service and different technical

Table 1  Questionnaire Details

Id Question Answer

Q1 How many years have you worked in the company? /

Q2 What type of program do you usually use? Cloud Development; Microservice Development; Single Application
Service; Android Development; IOS Development; Web program devel-
opment

Q3 What type of database do you usually use?(Multiple choice) MySQL; Oracle; Redis; MongoDB; SQL Server; SQLite; PostgreSQL; Hbase;
Others

Q4 Please fill in other types of databases /

Q5 What are the difficulties in hybrid database development?(Multiple
choice)

Complex Development;
High learning cost; Various database types; Various data types; Code
Redundancy; High maintenance cost; Others

Q6 Please fill in other difficulties /

Q7 Can XYJSON help you achieve unified control over different types of
databases?

YES; NO

Q8 Can’t help, please fill in the reason /

Q9 What databases do you use when using XYJSON? MySQL; Oracle; Redis; MongoDB; SQL Server; SQLite; PostgreSQL; Hbase;
Others

Q10 Please fill in other types of databases /

Q11 What are the advantages of XYJSON?(Single choice) Low learning cost; High stability; High performance; High compatibility;
High security; High maintainability; User friendliness; Others

Q12 Other advantages please fill in /

Q13 What are the disadvantages of XYJSON? /

Q14 Can query function of XYJSON help you realize data processing? YES; NO

Q15 Can’t help, please fill in the reason /

Q16 In the XYJSON query function, which function do you use most? QUERYSQL; AND; OR; IN; ORDER; LIKE; BETWEEN; TOP; NOTNULL; NULL;
EQ; NEQ; TODATE; JOIN; INNERJOIN; LEFTJOIN; RIGHTJOIN; FULLJOIN

Q17 Do you use XYJSON to migrate data from different types of databases? YES; NO

Q18 Which databases are used for database migration (please fill in for
those who have performed data migration)?

MySQL; Oracle; Redis; MongoDB; SQL Server; SQLite; PostgreSQL; Hbase;
Others

Q19 Please fill in other databases /

Q20 What is the approximate amount of database migration data? [100 M-500G]

Q21 What indicators do you care most about for cloud hybrid database
control (single choice)?

High performance; User friendliness; Low learning cost; High security;
High maintainability; High stability; High compatibility

Q22 What do you think of XYJSON? Excellent; Good; Average; Fair; Poor

Q23 What is your suggestion for XYJSON? /

Page 10 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23

fields in the largest range. The results show that most of
the developers participating in this survey have worked
for 4 years and most worked in the field of cloud devel-
opment and micro service development. Q3-Q6 investi-
gate what types of databases developers often use during
project development and what difficulties they encounter
in using hybrid databases. The results show that MySQL
and Oracle are mostly used in relational databases, while
MongoDB and Redis are mostly used in non-relational
databases. From Q7 to Q17, the specific user experiences
of XYJSON model as it is used are mainly investigated,
including whether XYJSON can help developers achieve
unified database operations, which databases are used
when using XYJSON model, what are the advantages and
disadvantages of xyjson, the user experiences of XYJSON
query functions, and so on. Q18-Q20 specifically inves-
tigate the user experiences of XYJSON model by devel-
opers in the process of big data migration. Q21-Q23
mainly aims at the subjective feelings and suggestions of
XYJSON model. For the usability and compatibility of

developers discussed in this survey, the statistical data of
four questions are listed in detail, as shown in Fig. 9.

According to the developer survey statistics in Fig. 9a,
developers consider four aspects to be the most difficult
in the development of a hybrid cloud database: varying
database types, varying data types, complex develop-
ment, and code redundancy. The authors attribute the
four difficulties put forward by the developers to one
issue. During the development of a hybrid database, dif-
ferent types of databases should be considered. The char-
acteristics of different databases and the inconsistency
between data field types in each database should be dis-
tinguished separately in the program.

Developers often have to write more code to con-
trol different databases, resulting in more complex and
redundant code.

As observed in Fig. 9b, MySQL, Oracle, MongoDB,
and Redis are the most commonly used databases among
developers when using XYJSON. The survey highlighted
that developers typically used more than one database,

Fig. 9  Developer survey statistics (a) Difficulties in hybrid database development (b) Database used with XYJSON (c) Advantages of XYJSON (d)
Cloud hybrid database control indicators considered by developers

Page 11 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23 	

which is consistent with the results. It shows that devel-
opers use mostly MySQL and Oracle for relational data-
bases and MongoDB and Redis for NoSQL databases.
Therefore, the databases used in the experiments are in
line with the current usage habits of developers.

After using XYJSON, developers answered the question
regarding the advantages of XYJSON, as shown in Fig. 9c.
It should be noted that out of 223 developer question-
naires, it was revealed that 98 developers used XYJSON
to migrate database data, and the amount of migrated
data were mostly between 100 MB and 500 GB. They
believed that the advantages of XYJSON were evident in
three aspects: high compatibility, user friendliness, and
high stability. XYJSON can help developers reduce the
time required for development, improve the user friend-
liness, and reduce the code redundancy and complexity
caused by controlling different types of databases. The
results shown in Fig. 9c are also consistent with the sta-
tistical results in Fig. 9d. Figure 9d presents the indica-
tors that developers care about when controlling a hybrid
cloud database, which mostly includes user friendli-
ness, high compatibility, and high stability. Surprisingly,
the performance indicators are not the most important
indicators for developers in hybrid cloud database con-
trol. Based on communications with some developers,
it was found that owing to the continuous improvement
of cloud development, cloud distribution, cloud server
hardware level, and the excellent performance of various
databases in their fields of expertise, in terms of hybrid
cloud database control, performance factors are not the
key indicators that developers pay most attention to.
On the premise of sacrificing a small amount of perfor-
mance, XYJSON has improved its high user friendliness
and compatibility, which developers think is worthwhile;
therefore, all the developers finally rated XYJSON as
“excellent.”

Conclusion
A data conversion model, named XYJSON, is proposed
to solve the problem of increasing development workload
and the difficulty of different types of control methods for
their corresponding types of databases under the cloud
hybrid storage. The model can be adapted to relational
and NoSQL data based on native JSON. It can support
the conversion between different data types in different
types of databases, and realize the persistence of appli-
cation-level objects by controlling beans through the
XYJson control model, to realize the unified control of
relational database and NoSQL database.

Taking the hybrid database controlled by traditional
and XYJSON methods as an example, it was experi-
mentally demonstrated that XYJSON slightly sacrifices

performance in exchange for improvements in compat-
ibility in four different operations. Simultaneously, the
results of the generated research report show that XYJ-
SON has the advantages of high user friendliness and
high compatibility. All the developers rated XYJSON as
“excellent.” The results showed that the establishment of a
general conversion model between relational and NoSQL
data can effectively help developers realize the data inter-
action between different types of databases.

In addition, in order to further optimize the XYJSON
model, we will also increase the function compatibility
and increase the survey data and scope according to the
suggestions of the developers, and have obtained more
objective evaluation results.

Abbreviations
SQL: Structured Query Language; JSON: JavaScript Object Notation; NoSQL:
Non-relational; DML: Data manipulation language; RESTfu: Representational
state transfer.

Acknowledgements
We thank Editage for their English language editing.

Authors’ contributions
Lei ZHANG: Conceptualization, Methodology, Software, Writing—Original
Draft; Ke PANG: Formal analysis, Investigation, Data Curation, Writing—Original
Draft; Jiangtao XU: Conceptualization, Writing—Review & Editing, Supervi-
sion; Bingxin NIU: Methodology, Visualization, Data Curation, Validation. The
author(s) read and approved the final manuscript.

Funding
This work was supported by the Tianjin Science and Technology Plan project
[grant number 20YDTPJC00890]. The funding sources had no role in the study
design; in the collection, analysis, and interpretation of data; in the writing of
the report; or in the decision to submit the article for publication.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from
the corresponding author on reasonable request.

Declarations

Competing interests
The authors have no competing interests to declare.

Author details
1 School of Microelectronics, Tianjin University, Tianjin 300072, China. 2 School
of Software and Communication, Tianjin Sino-German University of Applied
Sciences, Tianjin 300350, China. 3 School of Software and Communication,
Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China.
4 School of Microelectronics, Tianjin University, Tianjin 300072, China. 5 School
of Artificial Intelligence, Hebei University of Technology, Hebei 300401, China.

Received: 10 May 2022 Accepted: 26 July 2022

References
	1.	 Liu ZH, Hammerschmidt B, McMahon D, Chang H, Lu Y, Spiegel J, Sosa

AC, Suresh S, Arora G, Arora V (2020) Native JSON datatype support:
maturing SQL and NoSQL convergence in Oracle database. In: Pro-
ceedings of the VLDB Endowment 13(12):3059–3071. https://​doi.​org/​
10.​14778/​34154​78.​34155​34

https://doi.org/10.14778/3415478.3415534
https://doi.org/10.14778/3415478.3415534

Page 12 of 12Zhang et al. Journal of Cloud Computing (2022) 11:23

	2.	 Bahta R, Atay M (2019) Translating JSON data into relational data using
schema-oblivious approaches. In: Proceedings of the 2019 ACM South-
east Conference, New York

	3.	 Oracle JSON support. (2021). https://​docs.​oracle.​com/​en/​datab​ase/​
other-​datab​ases/​nosql-​datab​ase/​20.3/​admin/​index.​html. Accessed on
15 Apr 2021

	4.	 Microsoft SQL Server JSON support. (2021). https://​docs.​micro​soft.​
com/​en-​us/​sql/​relat​ional-​datab​ases/​json/​json-​data-​sql-​server?​view=​
sql-​server-​ver15. Accessed on 10 Jun 2021

	5.	 MySQL JSON DataType. https://​dev.​mysql.​com/​doc/​refman/​8.0/​en/​
json.​html. Accessed on 10 Apr 2021

	6.	 PostgreSQL JSON Types. (2021). https://​www.​postg​resql.​org/​docs/​13/​
datat​ype-​json.​html. Accessed on 25 May 2021

	7.	 Teradata Database JSON Data Type. (2021). https://​docs.​terad​ata.​
com/r/​C8cVE​J54PO​4~YXWXe​XGvsA/​root. Accessed on 20 May 2021

	8.	 Petković D (2017) JSON integration in relational database systems. Int J
Comput Appl 168:14–19. https://​doi.​org/​10.​5120/​ijca2​01791​4389

	9.	 Liu ZH, Hammerschmidt B, McMahon D (2014) JSON data manage-
ment: Supporting schema-less development in RDBMS. In: Proceed-
ings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data, Utah. https://​doi.​org/​10.​1145/​25885​55.​25956​28

	10.	 Chasseur C, Li Y, Patel JM (2013) Enabling JSON document stores in
relational systems, WebDB, New York. pp 1–6

	11.	 Petković D (2020) Non-native techniques for storing JSON docu-
ments into relational tables. In: Proceedings of the 22nd International
Conference on Information Integration and Web-Based Applications &
Services, New York. https://​doi.​org/​10.​1145/​34287​57.​34291​03

	12.	 Piech M, Marcjan R (2018) A new approach to storing dynamic data in
relational databases using JSON. Comput Sci. https://​doi.​org/​10.​7494/​
csci.​2018.​19.1.​2505

	13.	 json-schema.org: The home of json schema. (2021). http://​json-​
schema.​org/. Accessed on 20 May 2021

	14.	 Bray T (2014) The JavaScript Object Notation (JSON), Data Interchange
Format. p 1

	15.	 ECMA. The JSON Data Interchange Format. (2021). http://​www.​ecma-​
inter​natio​nal.​org/​publi​catio​ns/​stand​ards/​Ecma-​404.​htm. Accessed on
10 Aug 2021

	16.	 Pezoa F, Reutter JL, Suarez F, Ugarte M, Vrgoč D (2016) Foundations of
JSON schema. In: Proceedings of the 25th International Conference on
World Wide Web, Republic and Canton of Geneva, CHE. https://​doi.​org/​
10.​1145/​28724​27.​28830​29

	17.	 Bourhis P, Reutter JL, Vrgoč D, Json VD (2017) Data model and query
languages. Inf Syst 89:101478. https://​doi.​org/​10.​1145/​30347​86.​30561​
20

	18.	 MongoDB Inc, The MongoDB4.4 manual. (2021). https://​docs.​mongo​
db.​org/​manual/. Accessed on 20 May 2021

	19.	 Lanthaler M, Gütl C (2012) On using JSON-LD to create evolvable RESTful
services. In: Proceedings of the Third International Workshop on RESTful
Design, New York. https://​doi.​org/​10.​1145/​23078​19.​23078​27

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://docs.oracle.com/en/database/other-databases/nosql-database/20.3/admin/index.html
https://docs.oracle.com/en/database/other-databases/nosql-database/20.3/admin/index.html
https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/json/json-data-sql-server?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://www.postgresql.org/docs/13/datatype-json.html
https://www.postgresql.org/docs/13/datatype-json.html
https://docs.teradata.com/r/C8cVEJ54PO4~YXWXeXGvsA/root
https://docs.teradata.com/r/C8cVEJ54PO4~YXWXeXGvsA/root
https://doi.org/10.5120/ijca2017914389
https://doi.org/10.1145/2588555.2595628
https://doi.org/10.1145/3428757.3429103
https://doi.org/10.7494/csci.2018.19.1.2505
https://doi.org/10.7494/csci.2018.19.1.2505
http://json-schema.org/
http://json-schema.org/
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/3034786.3056120
https://doi.org/10.1145/3034786.3056120
https://docs.mongodb.org/manual/
https://docs.mongodb.org/manual/
https://doi.org/10.1145/2307819.2307827

	JSON-based control model for SQL and NoSQL data conversion in hybrid cloud database
	Abstract
	Introduction
	Related work

	XYJSON model
	XYJSON data model
	XYJson control model
	Query function node

	Application experiment
	Insert conversion experiment
	Experiment of updating and deleting conversions
	Query conversion experiment
	Developer research experiment

	Conclusion
	Acknowledgements
	References

