
Journal of Cloud Computing:
Advances, Systems and Applications

Mishra et al. Journal of Cloud Computing: Advances, Systems
and Applications (2022) 11:28
https://doi.org/10.1186/s13677-022-00303-8

RESEARCH Open Access

CONTAIN4n6: a systematic evaluation of
container artifacts
Anand K. Mishra, Emmanuel S. Pilli* and Mahesh C. Govil

Abstract

A container provides an environment where applications are packaged and run with the supporting libraries and
dependencies. Due to scalability and efficient software deployment, the popularity of container technology has
increased and its services are also available on cloud platforms. The container environment is prone to a variety of
threats and vulnerabilities that lead to security breaches and attacks. Investigation is required to analyze the attack
and the digital forensics processes have also been implemented in the container environment. In this paper, we
present a systematic evaluation of container artifacts. An interface named CONTAIN4n6 is developed to collect data
from container environment that extracts the data using introspection libraries, container file systems, and is also
capable to trace the system call of running container. The functionality of system calls traces is implemented in an
open source containerization software, i.e, Moby project. Container’s artifacts are associated with environmental
information, log files, directories, link files, repositories, etc. Data collected from multiple sources are stored in a
database and created a hash values to maintain the integrity of collected data. A case study of privilege escalation
attacks has been demonstrated which is used to validate the data collection tool, called, CONTAIN4n6. Research
challenges associated with security and forensic investigations on containerized applications are also presented.

Keywords: Container, Security, Investigation, Logging, Forensics

Introduction
Containerization creates an abstraction layer over the
operating system. In contrast, server virtualization cre-
ates an abstraction layer over computer hardware, where
multiple virtual machines can run as a simulation of a
physical computing machine. A container is a standard-
ized unit of software that packages up code and all its
dependencies, so the application runs quickly and reli-
ably from one computing environment to another [1]. In
server virtualization, the virtual hardware resources of a
Virtual Machine (VM) such as processor and memory are
managed by a software called the Hypervisor. Similarly,
the OS kernel sharing in a containerized environment is
operated by container management software. Also, large
scale deployment of containers requires a class of soft-
ware called container orchestration software. Examples of

*Correspondence: espilli.cse@mnit.ac.in
Department of Computer Science and Engineering, Malaviya National Institute
of Technology, Jaipur, India

orchestration software include Kubernetes Engine [2] and
cloud-based platforms such as Amazon Elastic Container
Service (Amazon ECS) [3].
NIST (2016) [4] defines application container as “a con-

struct designed to package and execute an application or
its components running on a shared Operating System”.
Files, environment variables, and libraries are the main
components of containers. Application containerization
gains efficiency for memory, CPU, storage, and portability,
but a potential drawback is the lack of isolation from the
core OS. Since application containers are not abstracted
from the host OS, security threats have easier access to
the entire system. Thus, it requires monitoring the system
with proper tamper-proof logging of the events and close
inspection of the host and the application containers.

Motivation and contribution
Security practitioners and researchers are working to
secure the container environment from attacks that
launch malicious process and finally result into service

© The Author(s). 2022Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00303-8&domain=pdf
http://orcid.org/0000-0002-6056-1147
mailto: espilli.cse@mnit.ac.in
http://creativecommons.org/licenses/by/4.0/

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 2 of 14

unavailability. There is a need not only to protect the
container environment but there is also a need to inves-
tigate the attacks. Container forensics is an approach
that attempts to investigate and analyze container secu-
rity threats. It will ensure that attackers will be more
cautious to avoid prosecution for their illegal actions.
It acts as a deterrent, reducing network crime rate and
improving security. Besides protecting the container envi-
ronment, we need to focus on this issue. Unfortunately,
there has been little research on a framework for digi-
tal forensics container environments. We are addressing
this problem, which will help to collect the evidence
from container environment, analyzing them, and finally
performing attribution of attack.
Several incidents of container security breaches have

been reported in many container application scenarios.
These events arise for many reasons, such as exploita-
tion of access control, vulnerabilities of container images,
privilege escalation, etc. A systematic evaluation of con-
tainer’s artifacts is required to identify such events. Data
collection in a container environment is challenging due
to containers’ volatile nature and distribution of contain-
ers at multiple hosts. The objective of this paper is to
describe a methodology for the container’s data collection
and to find evidentiary values. The salient features of this
methodology are:

1 Container’s environmental information is collected
using introspection to find correlation of attack data.

2 Data collection of various objects (container, images,
storage driver, etc.) of containerization platform to
examine the evidentiary values.

3 A system call trace functionality is enabled in an
open source project of Docker, called, Moby project.
The sequence of system calls is analyzed to detect
malicious processes.

4 A data collection interface was implemented on a
container-based platform. It demonstrates the
detailed information collected from docker
introspection, container’s files and folders, and
system calls.

Docker environment
For a systematic approach to extract the data from a con-
tainer environment, we have used Docker [5]. Docker is
a client-server application where the server is known as
Docker daemon, and the client-side is Docker CLI. Docker
CLI interacts with Docker Daemon using REST API as
shown in Fig. 1. Docker is written in GO programming
language [6]. Linux kernel features have been used in
Docker Engine to provide container services as follows:
‘namespaces’ for isolated workspace, ‘control groups’ for
a specific set of resources, ‘union file systems’ for layer-
ing the Docker images, and ‘libcontainer’ for container
formatting. Docker images contain all necessary data and
info needed to create a group of processes with defined
properties. Containers are created from Docker images
and run the actual application. The Docker CLI’s request
to Docker Daemon to run an image and Docker Hub is a
repository of Docker images.
The rest of this paper is structured as follows: “Secu-

rityand vulnerability issues in container” section discusses
the security and vulnerability issues in container system.
“State of the art” section discusses the related work of
container forensics. “CONTAIN4n6: architecture for con-
tainer forensics” section presents CONTAIN4n6 and its
components. “Introspection of docker objects - image and
container” section demonstrates the data collection pro-
cess using introspection methods. “Directories and files”
section explain the artifacts from the directories and files
of container. “System calls traces” section extract the sys-
tem call traces of container. “Research challenges” section
discusses the research challenges associated with security
and forensics of container environment. Finally, “Conclu-
sion and future work” section presents the conclusions
and future work.

Security and vulnerability issues in container
The National Institute of Standards and Technology
(NIST) [7] has provided a catalog of two hundred twenty
four security and privacy controls for federal informa-
tion systems and organizations and a process for select-
ing controls to protect organizational operations. These

Fig. 1 An overview of Docker Engine

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 3 of 14

controls are access controls, audit and accountability,
security assessment and authorization, identification and
authentication, incident response, personnel security, risk
assessment, system and communications protection, and
system and information integrity, etc. Open Security Con-
trols Assessment Language (OSCAL) [8] is attempting to
address several challenges around security controls and
security control assessment developed by NIST.
NIST [9] has published a guidance on application con-

tainer security outlining the challenges and recommenda-
tions for addressing these challenges. Container technol-
ogy risk is described at five major levels which are image
risk, registry risk, orchestrator risk, container risk, and
host OS risk. Recommendations to counter the attacks
due to exploitation of these risks are: (a) using container-
specific host OS to avoid large attack surfaces, (b) using
separate hosts for different groups of containers, (d)
adoption of container-specific vulnerability management
tools, (e) the use of hardware-based countermeasures,
and (f) the use of container-aware runtime defense tools.
Five phases have been discussed for the security of con-
tainer technology- initiation phase, planning and design
phase, implementation phase, operations, and mainte-
nance phase, and disposition phase.
Containers share the same host kernel, which can be the

single point of failure for system breakout. Mouat [10] has
suggested some mechanism to secure containerized envi-
ronment such as running containers in virtual machine
(VM), using minimum resources (process not running
in container as a root, enabling file-system as read only
etc.), using separate Docker host in multi-tenancy envi-
ronment, image labeling, avoiding unsupported drivers,
image provenance (cryptographic signing), reproducible
and Trustworthy Dockerfiles, running regular auditing,
incident response (Ex. Docker diff, logs, commit). Mouat
has discussed the following challenges to Docker security
such as kernel exploits, denial of service attacks, container
breakouts (privilege escalation attacks), poisoned images
(host and data are at risk), and compromising secrets. A
list of security mechanism for containerized environment
is also suggested such as running containers in a virtual
machine (VM), using minimum resources, using sepa-
rate Docker host in a multi-tenancy environment, image
labeling, and image provenance (cryptographic signing),
reproducible and Trustworthy Dockerfiles, and running
regular auditing, and incident response.
Reshetova et al. [11] have discussed the security issues

and solutions of OS-level virtualization. An attack model
is discussed in a containerized environment that results in
unauthorized data access, control flow error, denial of ser-
vices, and privilege escalation. Feature of container-based
OS (FreeBSD, Linux-VServer, OpenVZ, etc.) is described
along with its container management capabilities. Secu-
rity requirements of container technology are discussed in

detail, including isolation of process, file system, network,
and devices. This study highlights the critical challenges of
the container ecosystem from a security perspective that
need a solution.
Bui [12] has presented a study on Docker internal secu-

rity and its Linux based security features. Denial of service
and privilege escalation attacks are discussed and their
countermeasures such as isolation of process, filesystem,
and device, limiting inter-process communication and
network access, and finally specifying limits on the usage
of resources are described. As Docker is based on the
Linux system, Bui’s study also includes Linux features.
Features of Linux security products such as SELinux and
AppArmor are also discussed as these features are built
into the Linux.
Combe et al. [13] have presented an overview of Docker,

its functionality, and security challenges. The authors
explained the base of Docker security as isolation of pro-
cesses, kernel security modules, and network security.
Challenges of Docker containers discussed include inse-
cure local configuration, malicious images, and weak local
access control.

Vulnerability issues
A detail of container vulnerabilities can be found in the
National Vulnerability Database (NVD) [14] that can be
categorized on the basis of various severity level using
the Common Vulnerability Scoring System (CVSS). These
vulnerabilities can be further categorized in various types
such as: Path traversal, Code injection, Unauthorized
modification, Bypassing user authentication, Improper
input validation, Deserialization of untrusted Data, Data
processing error, etc. Below, the study on the container
vulnerability are discussed:
Gummaraju et al. [15] have studied the Docker Hub

images and found security vulnerabilities. Official images
are analyzed to examine the severity level found in
Debian packages, OpenSSL, Ubuntu repositories, etc.
Non-official Docker Hub images are also analyzed and
seen a higher number of vulnerable images. The authors
have discussed the vulnerabilities that result in significant
security threats such as privilege escalation and container
breakout. Solutions are suggested to scan the images,
run them into a virtual machine, and rebuild the image
from scratch. Official images need to be updated regu-
larly to remove redundant layers to enhance the Docker
ecosystem’s security mechanism.
Mostajeran et al. [16] have proposed a vulnerabil-

ity analysis and risk assessment model to increase the
security strength in container based cloud environment.
Authors have focused on the container’s image vulnerabil-
ity analysis to assess the risk factor involved in the con-
tainer ecosystem. Docker images such as NGINX, tomcat,
and linux packages are analyzed to find the type of attack

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 4 of 14

and its base score. Based on these scores, risk factor is cal-
culated on the scale of 0 to 10. Vulnerable images should
be assessed before its download on host system so that
containers could be run in safe mode and avoid attacks
such as privilege escalation.
Martin et al. [17] have presented a detailed study on

the Docker ecosystem’s vulnerability. Authors have dis-
cussed the various aspects of container environment such
as a comparative study with virtualization technology,
unikernel runtimemodels, supported libraries, Linux con-
tainers, dependencies. The strength and weaknesses of
Docker containers are also discussed against possible
attacks. The usability of Docker Swarm is also presented
along with Amazon ECS and Kubernetes orchestration.
Vulnerability analysis is studied at various Docker ecosys-
tem components such as insecure system configurations,
vulnerable Docker image distribution, Linux kernel vul-
nerability, and maliciousness of Dockerfiles. The concept
of Container-as-a-Service is also discussed in the cloud
computing environment with its dependency on virtual
machines and automation functionality. Security issues
and the forensic aspect of the Docker ecosystem need to
be identified and discussed in detail.
Zerouali et al. [18] have presented the study of a security

vulnerability in Docker containers. The proposed model
is used to analyze only Debian packages of Docker Hub
images. Based on the vulnerability database’s historical
details andDebian Security Bug Tracker [19], vulnerability
analysis is performed. Information such as version name
and number, distribution type (testing, stable, old stable),
and release date are extracted to compare the attributes
available in the database. A bug report is also gener-
ated using the Ultimate Debian Database, which is being
checked based on the version specification. The proposed
study can be extended to other package distributions of
Docker images.
Wenhao et al. [20] have discussed the architecture of

Docker container and vulnerability issue in it. Docker
vulnerabilities are studied in four categories: file sys-
tem isolation, process and communication, device and
host resources, and network and image transmission. The
authors have presented Docker and kernel security fea-
tures, including the network framework, integrity protec-
tion, access control, security enhancement mechanism,
etc.

State of the art
In this section, we are presenting the summary of related
work associated with container forensics.
Abed et al. [21] have presented a model to detect mali-

cious behavior in the Docker ecosystem. An SQL injection
attack has been launched to collect the system call for
examination. Docker introspection method and strace

tool are used to manage the running container’s environ-
mental information and system call. True positive and
false positive rates are calculated for the malicious detec-
tion technique. The proposed study can be applied to
an intrusion detection system with additional functionali-
ties such as monitoring and alert generation for malicious
container process.
SANS ISC InfoSec [22] has explained to capture the pro-

cess ID of a running the Docker system on an Ubuntu
virtual machine. Each running container is a process that
is assigned a process ID and that can be captured in RAM.
After taking a snapshot of memory, it is analysed using
Volatility Foundation Framework 2.4 [23]. The author has
explained the process of PID extraction of Docker from
*.vmem image of a virtual machine. Linux mount files and
layered filesystem are investigated during this process and
the recommendation is to run the system as a privileged
user. Dirty “Copy on Write” and vDSO exploitation are
described as the reason for Docker escape.
Winkel [24] has presented a framework for the foren-

sic investigation of a Docker container escape attack.
There are three modules in the proposed ELK framework-
Elastic search for document extraction from the store,
logstash as a log routing and management engine, and a
web-based visualization tool “kibana.” Container escape
can be effective if the kernel is vulnerable or due to erro-
neous file configuration. Primary solutions for container
escape have been suggested, such as image layer segre-
gation and continuous system monitoring. Docker escape
is implemented in the Linux kernel that results in the
Dirty Copy onWrite method. The NGINX instance is cre-
ated to generate logs captured using the Kibana interface.
DMLA architecture is presented that describes the mon-
itoring, logging, and alerting function for Docker Host
and containers. A vulnerable image (vDSO- responsible
for container escape) is executed in the Docker environ-
ment as a case study examined using DMLA architecture
to extract the log files system call traces. Docker intro-
spection methods and the Host OS file system also pro-
vide evidentiary values that could be used in a proposed
architecture.
Jian et al. [25] have presented a method to defend

against Docker escape attack, which inspects namespace
and detects malicious activities. Escape attack is explained
by switching namespaces and modifying shared memo-
ries, which exploit virtual dynamic shared objects (vDSO).
Docker introspection methods such as acquiring meta-
data of Docker containers and namespace tags are used
to detect malicious activity. Meta-data acquisition, sta-
tus inspection, and response measures are used to inspect
Docker container objects. Analysis of Docker objects
(images, storage, etc.) is also required to understand the
attack pattern and security solutions.

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 5 of 14

Stelly et al. [26] have developed a scalable real-time
forensic framework named SCARF for forensic analysis.
Container-based systems are used for data-parallel exe-
cution and low-cost extensibility of modules. Forensic
tools such as ExifTool, OpenNSFW, Bulk Extractor, and
Tika are tested in the container environment for metadata
parsing, file streaming, text, and feature extraction. Tools
are containerized using Dockerfile to automate the data
operation process. This research shows that ExifTool’s
scalability, and Bulk Extractor, has better performance in
the proposed architecture. A real-time investigation of
the container-specific attack is required to examine the
proposed model strength.
Dewald et al. [27] have presented a study to acquire data

from Docker containers for forensics purposes using tra-
ditional approaches such as file recovering, file carving,
and file system analysis. Docker commands are used for
image and container introspection to extract environmen-
tal information. The authors have focused on recovering
files of the Docker image layer, either deleted or cor-
rupted. Host OS is examined to get the Docker related
information such as directories and configuration files
of image layers. Docker’s file system (AUFS, overlay2) is
reviewed to get the information of deleted image layers.
This research attempts to acquire evidence from Docker
host for forensic purposes.
Xiang et al. [28] have proposed forensics solutions for

the Docker platform using Docker APIs. A discussion over
Docker container forensics challenges has been provided-
evidence volatility, evidence integrity, cross-platform, and
cross host container forensics. Docker file system can be
found at Host OS that provides Docker object (container,
network, storage, images) details such as read/write layers,
routing table, network address, etc. Docker APIs provide
container and image information such as log files, host-
name, and configuration files. Docker forensics architec-
ture is proposed in which forensic agent modules receive
and store the data to be examined by the investigator.
“docker-py” library is implemented for evidence extrac-
tion. Investigation of an attack using the proposed model
could be provided as a case study.
Lin et al. [29] have analyzed the attack parameters in a

container environment and proposed a defensive mecha-
nism against privilege escalation attack. An attack dataset
is created that considers the information escape, and DoS
attacks, etc. Attack has been launched on the vulnerable
kernel and Docker engine using an exploited program that
runs into the container. Authors have discussed container,
kernel, and CPU’s security and protection mechanism for
privilege escalation attacks. A defense mechanism is pro-
vided to manage the ROOT privilege security measures
of the container system. Further, the merits and demer-
its of the proposed model are discussed as model work

for ROOT access exploitation but need to improve against
kernel-level exploitation.
Williams et al. [30] have discussed the Docker

ecosystem’s logging and alerting metrics. Authors have
addressed the concept of microservices, containers, appli-
cations, and cluster nodes that is the basic unit of con-
tainerization. These units are monitored to debug oper-
ational issues. A requirement of an authentication server
is mentioned in the route of microservices that is backed
up with database server and HTTP routing. Alerting and
visualization tools are mentioned in a container ecosys-
tem that provides that also store and analyze the log files.
Sysdig [31] tool is also discussed to analyze application
container’s metadata at the orchestration layer. Data intro-
spection methods and log collection tools are discussed to
capture the container data.
Lu et al. [32] have presented a model to detect tem-

porary files in Docker images to avoid file redundancy.
Build process (FROM, COPY, RUN) of Dockerfiles and
image layers are analyzed to find the pattern of tempo-
rary files (TF). Static analysis such as state-dependence file
matching, syntax determination, and verification method
is applied to detect TF in Dockerfiles. Authors have also
suggested eliminating the temporary files using the direct
copy method, instruction merge, and external storage
methods. This model has used manual checking method
to examine the TF in Dockerfiles, that should be auto-
mated as Docker Hub has more than thousand image
repository.
Awuson et al. [33] have proposed a trust model using

Blockchain technology in a cloud computing environ-
ment. Hyperledger fabric Blockchain is used along with
Docker engine that interacts with audit logger and mem-
bership managers. These modules manage the transaction
logs and chaincode logs with Docker Host and communi-
cate with cloud service providers (CSP), forensic investi-
gators, and cloud customers. The authors also discussed
concepts such as differences between container and vir-
tual machine environments, cloud ecosystem, and digital
forensics. A practical implementation is required as a
proof of concept of the proposed model to be analyzed in
real case studies.
Table 1 presents the comparison of existing solutions to

our approach to evaluate container’s artifacts systemati-
cally.

CONTAIN4n6: architecture for container forensics
In this section, we describe a systematic evaluation of
container artifacts that is collected using introspection
method, from directories, and system call trace. Collec-
tion of container artifacts are integrated in a monitoring
tool called CONTAIN4n6 (Container Forensics). A graph-
ical user interface (GUI) of this tool is implemented using

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 6 of 14

Table 1 Comparison of related work with this work

Reference Platform Attack Launched Introspection File System System Call Interface

Abed et al. [21] Docker SQL injection Yes No Yes No

SANS InfoSec [22] Docker Container escape attack Only Process ID No No No

Winkel [24] Docker Container escape attack Only log file No Yes ELK model

Jian et al. [25] Docker Container escape attack Yes No No No

Dewald et al. [27] Docker No Yes Partially No No

Xiang et al. [28] Docker APIs No Yes Yes No No

Lin et al. [29] Docker Privilege escalation attack No Partially No No

Williams et al. [30] Docker No Yes (Sysdig tool) Yes No No

Lu et al. [32] Docker File redundancy Yes No No No

Awuson et al. [33] Docker Trust based issue Yes No No No

CONTAIN4n6 Docker Privilege escalation attack Yes Yes Yes Yes

python libraries for the Docker Engine API which man-
ages Docker objects such as image, containers, volumes,
etc.
Figure 2 provides an overview of the functional compo-

nents and data flows of CONTAIN4n6. We have focused
on three areas from where container related data can
be collected for forensic purpose - (i) system calls of a
running container (ii) environmental information of con-
tainer system from Docker daemon (iii) dynamic data
libraries and files from host OS. These data are stored
in a database, and a hash value is also created for this
database to maintain its integrity. These components of
the CONTAIN4n6 architecture is described below:

1 Environmental Information using Container
Introspection- A container-based system provides
logs, and environmental information using
introspection commands in Docker daemon. There
are approximately fifteen management commands in
the Docker engine to manage Docker objects. Some
of these commands help to extract logs, contents
from container’s filesystem and low-level
information to support the introspection of Docker
objects. This information is further processed by an
analysis engine to generate logs and reports.

2 Dynamic Data Libraries and Files- Information on
Docker objects such as container, image, network,

Fig. 2 Architecture of CONTAIN4n6

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 7 of 14

and storage driver can be extracted from the host
operating system. Container forensics requires data
from host OS which is generally stored as a file
system, network packets, and memory dumps, etc.

3 Tracing System Call of a Container Process- A
sequence of system calls can be analyzed to classify
between malicious and non-malicious process. In an
investigation of vulnerabilities, a knowledge base of
attack can be collected from Common Vulnerabilities
and Exposures (CVE), Remote Procedure Call (RPC),
and signature of the attack. Along with the
knowledge base, the effect of attack should also be
known to understand the attacker’s behavior.

Attack environment
A malicious Docker image (chrisfosterelli/rootplease) has
been executed that can perform “privilege escalation” in
Docker daemon. Containers can access the root shell on
the host OS [34]. When the instance of Docker image
is initiated, it loads a chroot into that volume. This
instance’s volume gets the access of root filesystem of the
host machine. The Dockerfile of this image contains the
command ["/bin/bash", "exploit.sh"]. This
exploit.sh file calls the chroot() operation, that changes
the root directory of the calling process to the specified
path. The containers of chrisfosterelli/rootplease image
have root access, that can perform malicious activities
such as creating new files and directories, editing data and
deleting the files and directories.
In next three sections, we are examining the col-

lected data and correlating it with the evidentiary values
and focusing to provide a systematic evaluation of con-
tainer artifacts. Through some concrete questions which
might occur during an investigation, we are attempting to
answer them using extracted artifacts.

Introspection of docker objects - image and
container
Docker commands are helpful to extract its object (image
and container) data. This section is providing the answer
of forensic related question that can be asked during
investigation.
Question 1- What is the environmental information of

Docker?
Docker info provides system-wide information that

includes more than forty-five items of information of
the Docker daemon, Docker objects, Host OS informa-
tion, registries, Docker directory, containerd version, runc
version, init version, and product license, etc. Details of
Docker objects such as containers, images, plugins, vol-
umes, etc. are provided in numbers with its status (run-
ning, paused, and stopped). The information of Docker
host is extracted using docker info command shown
in Table 2.

Table 2 docker info output

Host OS Docker host

Kernel Version: 5.3.0-46-generic Containers: 62; Images: 48

OS: Ubuntu 18.04.4 LTS Logging Driver: json-file

OSType: linux Cgroup Driver: cgroupfs ;

Architecture: x86_64 init version: fec3683

CPUs: 8 containerd version: 7ad184331fa3e5

Total Memory: 3.731GiB runc version: dc9208a3303fee

Name: anand-XXXX-5040 Docker Root Dir: /var/lib/docker

Question 2- What is the name of the image repository
and its ID? When was it created? What was the command
used to run the script?
Docker images provides the list of images that are

pulled from the Docker hub or any image at the local-
host. It has five attributes which are repository name,
the tag of image, image ID, creation time, and size of
the image. A repository of image is found using docker
image ls that are pulled from docker hub to gain
root access shown in Table 3. Docker history com-
mand shows an output of Docker image history. It has five
attributes including image ID, creation time, created by
commands used, size of the image, and comment if any.
Table 4 provides the history of command.
Question 3-What is the statistics of resources used by the

container object?
Docker stats command provides the information

statistics of container resource usage. It has eight
attributes which are container ID, container name, host
CPU in percentage used by the container, memory in per-
centage used by the container, total memory used and
allowed limit of total memory use, data sent and received
over network interface by container, read and write data
on block devices, and processes created by the container.
Docker top command is useful to extract information on
the running processes of a container. docker stats
extracts the statistics of resources used by container
shown in Table 5.
Question 4- Can you find the object type and its current

status?
Docker events command provides the real events (or

activity performed) from the Docker daemon (or server).
There are multiple options available to receive output
from server such as output filtering, output formatting,
and a specific timestamp for output. This command
keeps monitoring the events of Docker objects and pro-
vides a detailed output which includes attributes such as

Table 3 Command: docker image ls

Repository Tag Image ID Size

chrisfosterelli/rootplease latest 0db941813769 188MB

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 8 of 14

Table 4 Command: docker history IMAGE_ID

Image ID Created Created by

0db941813769 3 months /bin/sh CMD [/bin/bash exploit.sh]

timestamp, object type, the action performed, container
ID, execution ID, image name, and container name, etc.
docker events command does not require any con-
tainer ID, but data can be captured in specific format, for
example *.json format as shown in Table 6.
Question 5- What is the environmental information of

image and container objects? What is the location of its
directory?
Docker inspect command provides low-level infor-

mation of Docker objects (images, containers, volumes,
network, node, plugin). By default, it presents the output
in JSON array format. There are multiple options avail-
able such as specific format and extracting specific values,
container size, and specific return type. This command
provides some useful information that can be used for fur-
ther analysis of Docker objects. For a container object, the
inspect command provides more than one hundred fifty
information including container basic details, its process
ID assigned byHost OS, image name and ID, related direc-
tories, host configuration details, drivers, and detail of
network settings. Result of inspection of the Docker image
and container is shown in Tables 7, and 8 respectively.
Other than above commands, there are more command

which can provide valuable information such as docker
diff command monitors the container’s filesystem, and
docker export can export the container’s filesystem.
Just like the docker export command, Docker save com-
mand is used to save the tar file of Docker images. This
tar file is saved at home directory. Docker logs com-
mand shows the standard output of a container. Docker
ps command shows the list of running containers. With
an additional argument ‘-a’, this command shows the
list of all containers. There are multiple filtering options
available to list in a specific format.

Directories and files
An analysis of Docker object such as i.e., container,
image, and overlay2 storage driver has been performed.
chrisfosterelli/rootplease directories and files
have been accessed to analyse the data. Directory of
Docker file systems can be found at /var/lib/docker
location in the Ubuntu system by default.We found twelve
folders with two hundred three items. These folders are

Table 5 Command: docker stats CONTAINER_ID

Container ID Mem. NET I/O Block I/O PID

2f0a35717b86 0.04% 4.75kB 3.41 MB 2

Table 6 Command: docker events –format ‘{{json .}}’

Status, Action, Object, Scope pause, pause, container, local

ID and Image 2f0a35717b8604, chrisfosterelli/rootplease

Time 2020-04-22T20:13:14.476933724+05:30

builder, buildkit, containers, image, network, overlay2,
plugins, runtimes, swarm, tmp, trust, and volumes.
Question 6- What information is stored in the container

object directory? Can it provide log files and configuration
settings?
Directory of container object is available at

/var/lib/docker/containers/ - container’s log
file (*.log), configuration file (*.json), host configura-
tion file (*.file), hostname, hosts, resolved configuration
file (*.conf), and hash of resolved configuration file
(*.conf.hash). Docker container object shows two fold-
ers, and seven files shown in Table 9. Information of
config.v2.json file and hostconfig.json file are
similar to Docker inspect command.
Question 7- What information is stored in the image

object directory?What storage driver has been used to store
the image information?
“image” folder contains an image database, layer

database, and list of repositories in JSON format. Another
directory named distribution contains two subfolders
which include digest code and metadata. Docker images
may have multiple layers and layers of one image can be
used in another Docker image. Details of image files can
be found at: /var/lib/docker/image/overlay2/.
Docker image object shows multiple files and folders
which consist of valuable information such as a list of
image repositories, environmental information, and vari-
ous layers of Docker image shown in Table 10. “imagedb”
directory holds the hash value of the Docker image.
This file holds valuable information such as image layers.
docker inspect IMAGE_ID also shows image layers
of Docker image
Question 8- What information can be extracted from

stoarge driver? Can you find the underlying layers of

Table 7 Command: docker inspect IMAGE_ID

Image ID 0db94181376938

Time Creation time- 2020-01-22T23:46:17.826922425Z

Host, OS-Archi 3f37dbc61890, linux-amd64

Command /bin/sh CMD [/bin/bash exploit.sh]

Storage Driver overlay2 [/var/lib/docker/overlay2]

Lower directories;
UpperDir MergeDir

0fc35e49c37e6d, 824a07f975d78e
1a0e693bdf8c92, 280c54be553be9
bf74be84df0510; 4a8f1e135fb92

RootFS : Layers 8ceab61e5aa8fe, 2b01876942154c
739d48883bb86d, 5f70bf18a08600
db674e90f639c9, 5f70bf18a08600

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 9 of 14

Table 8 Command: docker inspect CONTAINER_ID

ID, State, PID 2f0a35717b8604, running, 31773

Image ID 0db94181376938 (chrisfosterelli/rootplease)

Log 2f0a35717b86.json.log

N/k, Endpoint e7ea9a20c60f2c, 9a7ebee5fba14a

Gateway and IP 172.17.0.1 and 172.17.0.2

Sandbox Key /var/run/docker/netns/76c394fbb415

Lower Directory-
/var/lib/docker/overlay2/

1222bd69f09956, 4a8f1e135fb924,
0fc35e49c37e6d, 824a07f975d78e,
1a0e693bdf8c92, 280c54be553be9,
bf74be84df0510

MergedDir, UpperDir,
WorkDir

/var/lib/docker/overlay2
5703fac0a10a6b

Env PATH=/usr/local/sbin: /usr/local/bin

Cmd “/bin/bash”, “exploit.sh”

Mac Address 02:42:ac:XX:XX:XX

images? Are these information matching with introspec-
tion of Docker images? “overlay2” driver is a storage
driver used by Docker daemon which is supported on
kernel version 4.0 or newer. Directory is available at
/var/lib/docker/overlay2. cache-id of layered
folder hold the hash value, and this value is found
in /var/lib/docker/overlay2 directory as a sub-
folder which consist detail information of Docker image.
Docker overlay2 object contains the details of the image
layer shown in Table 11. These directories (D1, D2, D3,
D4, D5, DCI1, DC1, DC1-init, DC2, DC2-init) are also
mentioned in container, and image inspect. Image lay-
ers of Docker image also mention the name of these
directories in cache-id. Table 12 shows the output of

Table 9 var/lib/docker/containers/CONTAINER_ID

Container
files and
folders

Information

*-json.log “log”:“You should now have a root shell on the
host OS”,
“stream”:“stdout”,
“time”:“2020-04-27T12:34:13.510502855Z”

config.v2.json “State”:“Running”, “Paused”:false,
“Restarting”:false, “OOMKilled”:false,
“RemovalInProgress”:false, “Dead”:false,
“Pid”:31773, “ExitCode”:255, “Error”:“”,
“StartedAt”:“2020-04-27T12:34:13.201814101Z”,
“FinishedAt”:“2020-04-29T08:32:39.99711289+05:30”,

hostconfig.json “Binds”:[“/:/hostOS”], “ContainerIDFile”:“”,
“LogConfig”:{“Type”:“json-file”, “Config”:},
“NetworkMode”:“default”, “PortBindings”:,
“RestartPolicy”:“Name”:“no”, “MaximumRetryCount”:0

hostname 2f0a35717b86

hosts [127.XX.XX.XX : localhost],
[172.XX.XX.XX : 2f0a35717b86]

resolv.conf nameserver 172.XX.XX.XX

resolv.conf.hash sha256: e942cd686d2a2d

Table 10 var/lib/docker/image/

var/lib/docker/image/overlay2/imagedb/content/sha256
Image ID: 0db941813769 (plain text document)
various layers of image: diff_ids : sha256
Layer1: 8ceab61e5aa8fe Layer2: 2b01876942154c
Layer3: 739d48883bb86d Layer4: 5f70bf18a08600
Layer5: db674e90f639c9

var/lib/docker/image/overlay2/distribution/v2metadata-by-diffid/sha256
(plain text document)
Layer1: 8ceab61e5aa8fe Digest:sha256: 2de59b831a235
Source Repository: docker.io/chrisfosterelli/rootplease
Layer4: 5f70bf18a08600 Digest:sha256: a3ed95caeb02ff
Source Repository: docker.io/chrisfosterelli/rootplease
and docker.io/library/nginx

var/lib/docker/image/overlay2/distribution/diffid-by-digest/sha256 (plain
text document)
2de59b831a2357 sha256: 8ceab61e5aa8fe

var/lib/docker/image/overlay2/layerdb/mounts
Container ID of image 0db941813769: (directory)
2f0a35717b8604 init-id: 5703fac0a10a6b
mount-id: 5703fac0a10a6b parent: sha256:537702ca7185c0

var/lib/docker/image/overlay2/layerdb/sha256 (directory)
Layer1: 8ceab61e5aa8fe cache-id: bf74be84df0510
diff: 8ceab61e5aa8fe size: 188104128 tar-split.json: payload
NOTE: Layer2, Layer3, Layer4, and Layer5 are missing.

repositories.json chrisfosterelli/rootplease:latest:
sha256:0db94181376938

link file (L1, L2, L3,..., L10) and diff directories. link
file contains the name of the shortened identifier, whereas
diff directory contains data of the layer. Table 13 shows
the output of lower file which contains the information
of link files of the second-lowest layer, and higher layer.
Other than above directories, network and

volumes directories also provide valuable informa-
tion such as: “network” directory is available at
/var/lib/docker/network/files location. File
name is “local-kv.db” also known as local key-value
database which store metadata like network used, IP
addresses, endpoint connections etc. “volumes” object
is used to persist data in Docker. This object is used
to store the container’s data either locally or on a
remote host. By default volume is mounted in directory
/var/lib/docker/volume/volume_name.

Table 11 Lower directories of image and container(s):
var/lib/docker/overlay2/

image: chrisfosterelli/rootplease
container1:2f0a35717b86 and container2:bf79bc63a259

Comman directories of image and container(s)
D1: 0fc35e49c37e6d3 D2:824a07f975d78e
D3: 1a0e693bdf8c92 D4: 280c54be553be9
D5: bf74be84df0510

Comman directories of container(s) of same image
DCI1: 4a8f1e135fb924

Additional directory of container1:2f0a35717b86
DC1: 5703fac0a10a6b DC1-init: 5703fac0a10a6b-init

Additional directory of container2:bf79bc63a259
DC2: 1222bd69f09956 DC2-init: 1222bd69f09956-init

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 10 of 14

Table 12 var/lib/docker/containers/CONTAINER_ID/ diff and link

Dir. Values in link file diff directory

D1 L1: 5BNGLR76Q4IXP7 exploit.sh file

D2 L2: Z254T2TS7NAQ6F empty

D3 L3: QNLTGGU53BMUWC sources.list

D4 L4: 4LMHQA3NYLZMHN etc, sbin, usr, var

D5 L5: Z53TJ66XAVA6AW Linux file systems

DCI1 L6: 7Z325R5PU5HQYX empty

DC1 L7: KF4DWGXQ2SO7CF linux FS, exploit.sh

DC1-I L8: 7HQNC3JN26V2G3 dev; etc

DC2 L9: XZLXDRLDNN2VU2 hostOS

DC2-I L10: ZNSDYPNYTDPGH3 dev; etc

System calls traces
The potential use of this implementation is : (i) to establish
a correlation between program calls and associated sys-
tem calls, (ii) monitoring system call sequences, and (iii)
match attack signatures to system call sequences in the
log. In the future, we would like to create tamper-proof
storage of all logs and traces and analyzes the combination
of program trace and system call for evidence of attacks.
The extraction of system call functionality is not avail-

able in Docker daemon. We have implemented this
functionality using “strace” utility in the development
environment of Docker Moby project. It is “a collabo-
rative project for the container ecosystem to assemble
container-based systems.” A detailed description of Moby
project development can be found at [35].
We have added the system call trace functionality to the

Moby project by the following steps:

1 We obtained the process ID (PID) of the running
container

2 We provided this PID to system call trace utility
3 It records the system call used by a running container
4 These records are maintained in a database which

are then hashed
5 We analyze the data to extract useful information

With the capture of system calls, our subsequent steps in
the development of a forensic analysis framework are as

Table 13 var/lib/docker/containers/CONTAINER_ID/ lower file

Directories Values in “lower” file

D1, D2, D3, D4 L2:L3:L4:L5, L3:L4:L5, L4:L5, L5

D5, DCI1 null, L1:L2:L3:L4:L5

DC1 L8:L6:L1:L2:L3:L4:L5

DC1-init L6:L1:L2:L3:L4:L5

DC2 L10:L6:L1:L2:L3:L4:L5

DC2-init L6:L1:L2:L3:L4:L5

follows: To determine what data is required to match the
signature and what is the footprint? What was the effect
of the attack and whether we have enough data to detect
that attack? What new fields and records are needed to
detect the attacks?What other attacks/ variations can also
be detected leveraging the additional data?
The system call of the running container’s process

is captured. The output of introspection and dynamic lib-
raries show that containers of chrisfosterelli/
rootplease image have root access, which means this
container can perform malicious activities such as creat-
ing new files and directories, editing data and deleting the
files and directories. There are various types of system
calls such as process control, file management, and device
management etc. Various operations on linux files such as
ls, mkdir, rmdir, touch are performed.
List 1 shows the trace of system call for command

cd, and mkdir. The chdir(), read(), and write()
calls indicate that the attacker changed the direc-
tory, and created a directory TESTabc. For chdir(),
return value is zero, which means operation is success-
ful. Return value of read() and write() calls are
greater than one which means system call were exe-
cuted successfully. Success of these system calls exe-
cution demonstrate that legitimate linux commands
were executed from a container to host system. This
complete process displays the privilege escalation via
Docker.
In a Linux based system, a group is a collection of

users, which provides a set of permission like read, write,
or execute operations. In our implementation, we have
added docker in group, which means docker has per-
manent, non-password-protected root access, and like-
wise docker containers. Though Docker has pro-
vided the guidelines to prevent privilege-escalation attack,
it is still a manual process, and also a security issue [36].

Listing 1 Traces of system call- container’s process
read (0 , ‘ ‘ cd anand \n " , 8192)= 9
chd i r (‘ ‘ / home/ anand ")= 0
wa i t4 (−1 , 0 x7 f f f 5 a f 8b98 c , WNOHANG|WSTOPPED, NULL)= −1
ECHILD (No ch i l d p ro c e s s e s)
w r i t e (2 , ‘ ‘ # " , 2) = 2
∗∗
read (0 , ‘ ‘ mkdir TESTabc \ n " , 8192)= 14
s t a t (‘ ‘ / b in / mkdir " , { st_mode=S_IFREG |0755 ,
s t _ s i z e =80056})= 0

c lone (c h i l d _ s t a c k =NULL,
f l a g s =CLONE_CHILD_CLEARTID|CLONE_CHILD_SETTID|SIGCHLD ,
c h i l d _ t i d p t r =0 x7 f7 f32e9d810) = 21

s e t p g i d (21 , 21) = 0

wa i t4 (−1 , [{WIFEXITED(s) && WEXITSTATUS(s) == 0 }] ,
WSTOPPED, NULL) = 21
−−− SIGCHLD { s i _ s i g n o =SIGCHLD , s i _ code=CLD_EXITED ,
s i _ p i d =21 , s i _ u i d =0 , s i _ s t a t u s =0 , s i _u t ime =0 ,
s i _ s t ime=0}−−−
. . .
w r i t e (2 , ‘ ‘ # " , 2) = 2

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 11 of 14

Information obtained from collected data
After data collection, examiners analyze the data to under-
stand the attack scenario and connect the events. Exam-
iners attempt to find valid reasons of questions like
who, what, when, where, and how. Significance of col-
lected log files and metadata has to be understood on
a case basis. In this attack scenario of privilege esca-
lation attack, each relevant data has to be explained
the malicious events when it was created, accessed,
modified, received, sent, viewed, deleted, and launched.
Information obtained from Tables 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12 and 13 can be useful in following case
scenario:

• Information obtained from Tables 3, 4, 5 and 6 using
introspection method such as Image ID, Size of
Image file, Creator, Container Statistics, Status and
Action will help the examiners to identify the
malicious image.

• Information obtained from Table 7 using
introspection method such as Creation Timestamp,
Location of Storage Driver, Root File System Layers
will help to examiners to understand the lower layers
of Docker image, its entry time to system, and
location of its storage driver i.e. Overlay2 to get other
details of its containers.

• Tables 8-9 help examiners to understand all of the
containers created using malicious image. If these
containers are in running state, a process ID is
generated that can be used for further action either to
remove the process or to analyze its system calls.
Other information such as host name, container’s log
files, and environment path support the investigation
process.

• From Docker image directory shown in Table 10,
root file system layers is found that can be
cross-examined with the information obtained from
introspection method shown in Table 7. These image
layers can be examined separately as it stores the
changes compared to the image it’s based on.

• From Docker storage directory shown in Table 11, all
the container ID can be found that is created using
malicious image along with common directories of
image and its containers, and additional directories.
These containers can be cross-examined with list of
containers obtained from Docker introspection.

• From link files, lower files and diff directories,
examiners can analyze working behavior of an image.
For example, source list, exploit.sh files, Linux file
systems etc.

• From system call analysis, examiners get the name of
system call, arguments, return value etc. A sequence
of system call is further analyzed to differentiate
between normal and malicious process.

CONTAIN4n6 dashboard for container’s artifacts
Additionally, a snapshot of the dashboard is shown in
Fig. 3. Docker daemon provides a logging facility for con-
tainers and images, but these log files are not persistent.
To enable persistent logging, we keep back up of log files
in a log server so that the investigator can analyze these log
files at any instantaneous time. With the dashboard which
we have implemented for data acquisition from Docker
Engine, we can observe the log files and we can check
random errors, and the investigator can configure unde-
sirable and abnormal activities. As Docker, objects log files
are stored in the database as a backup file, so these data
can be available for independent examination, statements,
records, and analysis which is the part of auditing. An
administrator can check the performance of the Docker
Engine based on available data. At any instantaneous time,
if the administrator or investigator is getting undesirable
log entry, it can be taken as a quick defense mechanism to
stop the Docker services and the system can be protected.
Administrators can decide to defend the whole system by
looking into available logs and stored files.

Comparing CONTAIN4n6 with other container forensic
tools
At present CONTAIN4n6 is focusing on the collection
of container’s artifacts and maintain its integrity in the
database. Evidentiary values can be extracted using
container introspection method, and also from the con-
tainer’s directories. Additionally, tracing the system call of
container process is also enabled in open source project of
Docker, called, Moby Project. CONTAIN4n6 strengthen
the Docker users to collect artifacts of containers outside
of the Docker engine environment. Docker users do not
need to install any Docker’s image repository fromDocker
Hub. Most of the tools are implemented in such a way that
it need to be downloaded from Docker Hub and to install
within the Docker engine as another container. One of
the example is Sysdig [31] tool - Sysdig Inspect con-
tainer (https://github.com/draios/sysdig-inspect), that is
required to install as a Docker container image. Though
Sysdig Inspect container is open source and provide the envi-
ronmental information and system call, there are issues such
as - Inspect container itself may be compromised and
deleted from the Docker environment. StackRox (https://
www.redhat.com/en/technologies/cloud-computing/open
shift/advanced-cluster-security-kubernetes) also provide
container security and forensic functionality but it is not open-
source. Docker Explorer (https://github.com/google/docker-
explorer) focus only on Docker filesystems.

Research challenges
During our research, we identified a set of challenges
associated with security and forensics of container envi-
ronment. These challenges are described below:

https://github.com/draios/sysdig-inspect
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://www.redhat.com/en/technologies/cloud-computing/openshift/advanced-cluster-security-kubernetes
https://github.com/google/docker-explorer
https://github.com/google/docker-explorer

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 12 of 14

Fig. 3 CONTAIN4n6 Dashboard

• Data deletion in the application containers raises
several challenges for users, security experts, and
forensic investigators. As users are modifying their
data pertaining to a containerized application, data at
rest needs to be modified or deleted. If data at rest is
deleted by marking the sectors storing it as available
in the volume’s map, then sectors will maintain
information until overwritten. Even when
overwritten, older information is still partially
recoverable. This issue is challenging for users,
particularly in multi-tenant environments since they
would like the data to be completely shredded or
zeroized. When data is deleted by marking the
sectors storing it as being available in the volume’s
map but without proper zeroization or shredding of
the data is difficult since it gets overwritten often by
other user(s) in a multi-tenant environment and
correctly identifying data provenance. In general,
building the chain of custody is very difficult and
often impossible from forensic point of view.

• Timestamp synchronization and event correlation:
Synchronizing timestamps for log data collected from
different containers operating on different hosts
located in multiple geographical regions is
challenging and constitutes a barrier to corelating
forensic evidence. The challenge can be addressed by
using a centralized time-server to create normalized
timestamps for aggregated log data obtained from

multiple containers. Creating a consistent semantics
through a common log format is necessary to
facilitate event correlation. Centralizing the collection
and aggregation of log data from multiple sources
leveraging normalized timestamps and common log
format establishes a framework for integrated event
correlation that also implements tamper-proof
mechanism for all relevant forensic artifacts.

• Live Forensics and detection of the malicious act:
Live Forensics involves collection and analysis of data
in volatile memory when a malicious act was detected
and is investigated. When conducting live data
forensics, the processes used in data acquisition will
result in changes to the system. To collect volatile
evidence, the suspect computer must remain on, and
the suspect operating system must be used to access
the needed data. Implementing an outside triggering
mechanism for application container forensic
framework in order to generate volatile memory
snapshots that are stored in the centralized secure
location supports proactive approach to live forensics.

• Faulty configuration may circumvent container
isolation: Faulty configuration of orchestration
software may result in breaking the desired isolation
among containerized applications in some hosts
within a cluster. Faulty configuration also results in
breaking the desired vertical isolation among
containerized applications. Collecting and securely

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 13 of 14

storing snapshots of configuration data and
performing analysis of the deviations from the
desired secure configuration parameters may resolve
the issue.

• Logging capability for orchestration layer: The
orchestration layer creates key events such as
assignment of application containers to various
hosts/ platforms and migration application
containers between these environments. Logging
such events leveraging normalized timestamps and a
common format is necessary. Forensic frameworks
extension to support collection of event logs from
orchestration layer that provide tamper-proof
mechanisms for storing logs with normalized
timestamps and a common format.

Conclusion and future work
With the widespread deployment of container based sys-
tems for microservices, it is important to develop and
deploy architecture for container forensics to identify
and prevent attacks. This paper explored the security
and vulnerability issues of container-based environment
and discussed the container forensics models. It also has
presented the CONTAIN4n6 interface for a systematic
evaluation of container’s artifacts. Data is extracted from
container environment using the Docker introspection
feature, acquires data from host operating system and sys-
tem call traces. CONTAIN4n6 dashboard integrates the
containers’ data extraction feature from multiple sources.
As a future work. the capability of this dashboard will be
extended with the aim of adding an analysis engine. As
Moby project is open source, it provides opportunity to
add forensics features such as response time for montior-
ing and reporting, and to make it a compact forensicated
version of Moby. We also see a need for a comprehensive
method which would cover all phases of digital forensics
to be applied in container environment.

Acknowledgements
We sincerely thank the reviewers and the Editor for their valuable suggestions.

Authors’ contributions
Anand Kumar Mishra, Emmanuel S Pilli and Mahesh C Govil designed the
study. Anand Kumar Mishra performed simulation and write the paper. All
authors reviewed and edited the manuscript. All authors read and approved
the final manuscript.

Funding
No funds have been received from any agency for this research.

Availability of data andmaterials
The data used to support the finding of this study are available from the
corresponding author upon request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 29 July 2021 Accepted: 27 July 2022

References
1. Docker (2019) What is a Container? https://www.docker.com/resources/

what-container. Accessed 20 Apr 2022
2. Google Cloud (2020) Google Kubernetes Engine. https://cloud.google.

com/kubernetes-engine
3. AWS (2019) Amazon Elastic Container Service. https://aws.amazon.com/

ecs/. Accessed 11 May 2022
4. Karmel A, Chandramouli R, Iorga M (2016) NIST definition of

microservices, application containers and system virtual machines. No.
NIST Special Publication (SP) 800-180 (Draft). National Institute of
Standards and Technology. https://csrc.nist.gov/publications/detail/sp/
800-180/draft. Accessed 10 Mar 2022

5. Docker (2019) Docker Platform. https://www.docker.com/. Accessed 20
Mar 2022

6. GO Programming (2019) GO Programming Language. https://golang.org.
Accessed 17 Feb 2022

7. Ross RS (2013) Security and privacy controls for federal information
systems and organizations. Technical report, National Institute of
Standards and Technology

8. The National Institute of Standards and Technology (2020) Open Security
Controls Assessment Language (OSCAL). https://pages.nist.gov/OSCAL/.
Accessed 24 July 2022

9. Souppaya M, Morello J, Scarfone K (2017) Application container security
guide. NIST Spec Publ 800-190:1–56

10. Mouat A (2015) Docker Security: Using Containers Safely in Production.
O’Reilly Media, Sebastopol

11. Reshetova E, Karhunen J, Nyman T, Asokan N (2014) Security of os-level
virtualization technologies. In: Nordic Conference on Secure IT Systems.
Springer, Tromsø. pp 77–93

12. Bui T (2015) Analysis of docker security. arXiv preprint arXiv:1501.02967.
http://arxiv.org/abs/1501.02967. Accessed 4 Jan 2022

13. Combe T, Martin A, Di Pietro R (2016) To docker or not to docker: A
security perspective. IEEE Cloud Comput 3(5):54–62

14. NIST (2018) NATIONAL VULNERABILITY DATABASE. https://nvd.nist.gov/.
Accessed 5 Mar 2022

15. Gummaraju J, Desikan T, Turner Y (2015) Over 30% of official images in
docker hub contain high priority security vulnerabilities. Technical Report,
Banyan Ops

16. Mostajeran E, Mydin MNM, Khalid MF, Ismail BI, Kandan R, Hoe OH (2017)
Quantitative risk assessment of container based cloud platform. In: IEEE
Conference on Application, Information and Network Security. IEEE,
Sarawak. pp 19–24

17. Martin A, Raponi S, Combe T, Di Pietro R (2018) Docker
ecosystem–vulnerability analysis. Comput Commun 122:30–43

18. Zerouali A, Mens T, Robles G, Gonzalez-Barahona JM (2019) On the
relation between outdated docker containers, severity vulnerabilities, and
bugs. In: IEEE 26th Int. Conf. on Software Analysis, Evolution &
Reengineering. IEEE, Hangzhou. pp 491–501

19. Debian’s security team (2020) Security Bug Tracker. https://security-
tracker.debian.org/tracker/. Accessed 23 June 2022

20. Wenhao J, Zheng L (2020) Vulnerability analysis and security research of
docker container. In: IEEE 3rd International Conference on Information
Systems and Computer Aided Education. IEEE, Dalian. pp 354–357

21. Abed AS, Clancy TC, Levy DS (2015) Applying bag of system calls for
anomalous behavior detection of applications in linux containers. In: IEEE
GlobecomWorkshops. IEEE, San Diego. pp 1–5

22. Clausing J (2016) SANS ISC InfoSec Forums: Forensicating Docker. https://
isc.sans.edu/forums/diary/Forensicating+Docker+Part+1/20835/.
Accessed 8 Jan 2022

23. (2019) The Volatility Foundation. https://www.volatilityfoundation.org/.
Accessed 19 Feb 2022

24. Winkel S (2017) Forensicating docker with elk. The SANS Institute. https://
sansorg.egnyte.com/dl/J3Zw8Npj4F. Accessed 18 Apr 2022

25. Jian Z, Chen L (2017) A defense method against docker escape attack. In:
International Conference on Cryptography, Security and Privacy. ACM,
Wuhan. pp 142–146

26. Stelly C, Roussev V (2017) Scarf: A container-based approach to
cloud-scale digital forensic processing. Digit Investig 22:39–47

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://csrc.nist.gov/publications/detail/sp/800-180/draft
https://csrc.nist.gov/publications/detail/sp/800-180/draft
https://www.docker.com/
https://golang.org
https://pages.nist.gov/OSCAL/
http://arxiv.org/abs/1501.02967
https://nvd.nist.gov/
https://security-tracker.debian.org/tracker/
https://security-tracker.debian.org/tracker/
https://isc.sans.edu/forums/diary/Forensicating+Docker+Part+1/20835/
https://isc.sans.edu/forums/diary/Forensicating+Docker+Part+1/20835/
https://www.volatilityfoundation.org/
https://sansorg.egnyte.com/dl/J3Zw8Npj4F
https://sansorg.egnyte.com/dl/J3Zw8Npj4F

Mishra et al. Journal of Cloud Computing (2022) 11:28 Page 14 of 14

27. Dewald A, Luft M, Suleder J (2018) Incident Analysis and Forensics in
Docker Environments. ERNWWHITE PAPER. https://static.ernw.de/
whitepaper/ERNW_Whitepaper64_IncidentForensicDocker_signed.pdf.
Accessed 12 Apr 2022

28. Xiang J, Chen L (2018) A method of docker container forensics based on
api. In: 2nd Int. Conf. on Cryptography, Security and Privacy. ACM, New
York. pp 159–164

29. Lin X, Lei L, Wang Y, Jing J, Sun K, Zhou Q (2018) A measurement study on
linux container security: Attacks and countermeasures. In: Proc. 34th
Annual Computer Security Applications Conference. Association for
Computing Machinery, San Juan. pp 418–429

30. Williams A, Ball B, Hoang Dinh G, Hecht L (2019) Monitoring and
Management with Docker and Containers. https://thenewstack.io/
ebooks/docker-and-containers/monitoring-management-docker-
containers/. Accessed 29 Apr 2022

31. Sysdig (2020) Run Confidently with Secure Devops - Security for
containers, Kubernetes, and cloud services. https://sysdig.com/. Accessed
18 Mar 2022

32. Lu Z, Xu J, Wu Y, Wang T, Huang T (2019) An empirical case study on the
temporary file smell in dockerfiles. IEEE Access 7:63650–63659

33. Awuson-David K, Al-Hadhrami T, Funminiyi O, Lotfi A (2019) Using
hyperledger fabric blockchain to maintain the integrity of digital
evidence in a containerised cloud ecosystem. In: International
Conference of Reliable Information and Communication Technology.
Springer, Johor. pp 839–848

34. Chris Foster (2019) Root Please. https://hub.docker.com/r/chrisfosterelli/
rootplease/. Accessed 16 Jan 2022

35. Docker-CE (2019) Fork and clone the Moby code. https://github.com/
docker/docker-ce/blob/master/components/engine/docs/contributing/
set-up-git.md. Accessed 28 Apr 2022

36. Docker (2019) Isolate containers with a user namespace. https://docs.
docker.com/engine/security/userns-remap/. Accessed 14 May 2022

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://static.ernw.de/whitepaper/ERNW_Whitepaper64_IncidentForensicDocker_signed.pdf
https://static.ernw.de/whitepaper/ERNW_Whitepaper64_IncidentForensicDocker_signed.pdf
https://thenewstack.io/ebooks/docker-and-containers/monitoring-management-docker-containers/
https://thenewstack.io/ebooks/docker-and-containers/monitoring-management-docker-containers/
https://thenewstack.io/ebooks/docker-and-containers/monitoring-management-docker-containers/
https://sysdig.com/
https://hub.docker.com/r/chrisfosterelli/rootplease/
https://hub.docker.com/r/chrisfosterelli/rootplease/
https://github.com/docker/docker-ce/blob/master/components/engine/docs/contributing/set-up-git.md
https://github.com/docker/docker-ce/blob/master/components/engine/docs/contributing/set-up-git.md
https://github.com/docker/docker-ce/blob/master/components/engine/docs/contributing/set-up-git.md
https://docs.docker.com/engine/security/userns-remap/
https://docs.docker.com/engine/security/userns-remap/

	Abstract
	Keywords

	Introduction
	Motivation and contribution
	Docker environment

	Security and vulnerability issues in container
	Vulnerability issues

	State of the art
	CONTAIN4n6: architecture for container forensics
	Attack environment

	Introspection of docker objects - image and container
	Directories and files
	System calls traces
	Information obtained from collected data
	CONTAIN4n6 dashboard for container's artifacts
	Comparing CONTAIN4n6 with other container forensic tools

	Research challenges
	Conclusion and future work
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

