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Abstract 

Containers have grown into the most dependable and lightweight virtualization platform for delivering cloud 
services, offering flexible sorting, portability, and scalability. In cloud container services, planner components play 
a critical role. This enhances cloud resource workloads and diversity performance while lowering costs. We present 
hybrid optimum and deep learning approach for dynamic scalable task scheduling (DSTS) in container cloud environ-
ment in this research. To expand containers virtual resources, we first offer a modified multi-swarm coyote optimiza-
tion (MMCO) method, which improves customer service level agreements. Then, to assure priority-based scheduling, 
we create a modified pigeon-inspired optimization (MPIO) method for task clustering and a rapid adaptive feedback 
recurrent neural network (FARNN) for pre-virtual CPU allocation. Meanwhile, the task load monitoring system is built 
on a deep convolutional neural network (DCNN), which allows for dynamic priority-based scheduling. Finally, the 
presentation of the planned DSTS methodology will be estimated utilizing various test vectors, and the results will be 
associated to present state-of-the-art techniques.
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Introduction
Cloud computing, which provides the computer services 
required for the Internet, has become one of the most 
popular technologies for the economy, society, and people 
in latest years [1]. Due to the recent growth in the load 
of different and sophisticated clouds like the Internet of 
Things (IoT) devices, machine learning programmes, 
coursing A/V services, and cloud memory, mandate for 
several cloud amenities has risen substantially [2]. With 
the introduction of numerous virtualization technologies 
like as VMware, Citrix, KVM, and Zen [3], the cloud com-
puting business has evolved fast in recent years. Despite 
their widespread use, virtualization technologies have a 
number of drawbacks, including high time consumption, 

extended runs and shutdowns, and difficult planning and 
migration procedures [4]. The hardware is virtualized in 
the conventional setup, and each virtual machine running 
the whole operating system supervises the computer’s 
application activities [5]. The application process in the 
container communicates directly with the host kernel, but 
the container does not have its own kernel or hardware 
virtualization. Containers are therefore far lighter than 
typical virtual computers [6, 7].

Furthermore, the spread of microservices, self-driving 
vehicles, and smart infrastructure is predicted to boost 
cloud service growth [8]. The backbone of cloud comput-
ing is virtualization technology, which enables applica-
tions to be detached from fundamental infrastructure 
by sharing resources and executing various programmes 
independently [9]. Containers have grown in popularity as 
a novel virtualization approach in recent years, bringing 
conventional fundamental machines (VMs) to numerous 
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auspicious characteristics including united host operat-
ing systems, quicker boot times, portability, scalability, and 
faster deployment [10]. Containers allow apps to store all of 
their dependencies in the sandbox, allowing them to con-
struct autonomous working hours from the platform while 
also increasing productivity and portability [11]. Dock-
ers, LXC, and Kubernetes are just a few of the container 
technologies available. Furthermore, several cloud ser-
vice providers run containers on virtual machines (VMs) 
to increase container seclusion, performance, and system 
management [12, 13]. Container technology is gaining trac-
tion among developers, and it’s now being used to deploy 
a wide range of microservices and applications, includ-
ing smart devices, IoT, and fog / edge computing [14]. As 
a consequence, to fulfil the increased demand, numerous 
cloud service suppliers have begun to provide container-
based cloud services. Google Container Engine, Amazon 
Re-Container Service, and Azure Container Service are 
other examples. The cloud computing paradigm is being 
revolutionised by container technology [15]. Running con-
tainerized applications, in the eyes of the cloud service pro-
vider, produces a compression layer that deals with cluster 
management. The primary container orchestration sites in 
the base cluster for automating, measuring, and control-
ling container-based infrastructure are Docker Swarm and 
Google Kubernetes [16, 17]. A container cluster’s overall 
structure comprises of management nodes and task nodes. 
The cluster and container node work nodes, on the other 
hand, are the responsibility of the management nodes [18]. 
In addition, the manager keeps track of the cluster’s loca-
tion by verifying the node’s position on a regular basis. The 
planning components, which are responsible for spreading 
loads among cluster nodes and controlling the container 
life process [19], play a precarious part in container trans-
position. Depending on the technology, container planning 
may take many different shapes. As a result, the primary 
goal of container planning is to get the containers started 
on the ideal host and link them together [20].

Our contributions
A dynamic scalable task scheduling (DSTS) approach 
is offered for cloud container environments as a way to 
improve things even further. The main contributions of 
our proposed DSTS approach are given as follows:

1.	 To provide a dynamic scalable task scheduling system 
for container cloud environments in order to reduce 
the make span while using less computing resources 
and containers than current algorithms.

2.	 To offer a unique clustered priority-based task 
scheduling technique that improves the scheduling 
system’s flexibility to cloud environment while also 
speeding convergence.

3.	 Create a task load monitoring system that allows for 
dynamic scheduling depending on priority.

4.	 Using various test scenarios and metrics, assess the 
performance of the suggested dynamic scalable task 
scheduling.

The balance of the paper is placed as proceeds: The 
second segment summarises recent work on job schedul-
ing for cloud containers. We go through the issue tech-
nique and system design in Problem methodology and 
system design section. The suggested dynamic scalable 
task scheduling (DSTS) model’s functioning function is 
designated in Proposed methodology section. Simulation 
results and analysis section deliberates the simulation 
findings and comparison analyses. Finally, Conclusion 
section brings the paper to a close.

Related works
Many studies for scalable task scheduling for cloud con-
tainers have been suggested in recent years all around the 
globe. Table  1 summarises and tabulates the literature 
with research gaps in many categories.

Zhao et al. [21] studied to improve today’s cloud services 
by reviewing the workings of projects for planning next-
generation containers. In particular, this work creates and 
analyzes a new model that respects both workload balance 
and performance. Unlike previous studies, the model uses 
statistical techniques to create confusion between load 
balance and utility performance in a single optimization 
problem and solve it effectively. The difficult element is that 
certain sub-issues are more complicated, necessitating the 
use of heuristic guidance. Liu et al. [22] suggested a multi-
objective container scheduling technique based on CPU 
node consumption, memory usage across all nodes, time 
to transport pictures over the network, container-node 
connections, and container clustering, all of which impact 
container programme performance. The author provides 
the metric techniques for all the important components, 
sets the relevant qualifying functions, and then combines 
them in order to pick the suitable nodes for the layout of 
the containers to be allotted in the planning process. Lin 
et al. [23] suggested a multi-objective optimization model 
for container-based micro service planning that uses an ant 
colony method to tackle the issue. The method takes into 
account not only the physics nodes’ use of computer and 
storing possessions, but also the numeral of multi-objec-
tive requirements and the loss rate of physics nodes. These 
approaches make use of prospective algorithms’ quality 
assessment skills to assure the correctness of pheromone 
updates and to increase the likelihood of utilising multi-
functional horistic information to choose the optimum 
route. Adhikari et  al. [24] suggested an energy-efficient 
container-based scheduling (EECS) technique for fast 
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inheritance of various IoT and non-IoT chores. To deter-
mine the optimum container for each work, an accelerated 
particle swarm optimization (APSO) method with mini-
mum latency is applied. Another significant duty in the 
cloud environment is resource planning in order to make 
the greatest use of resources on cloud servers. Ranjan et al. 
[25] shown how to design energy-efficient operations in 
program-limited data centres using container-based virtu-
alization. Policies Containers provide users the freedom to 
get vital resources that are suited to their own need.

Chen et  al. [26] suggested a functional restructuring 
system to control the operating sequence of each con-
tainer in order to achieve maximum performance gain, as 
well as an adaptive fair-sharing system to effectively share 
the container-based virtualized environment. They also 

suggested a checkpoint-based system, which would be par-
ticularly useful for load balancing. Hu et al. [27] suggested 
the ECSched improved container scheduler for planning 
simultaneous requests over several clusters with varied 
resource restrictions. Define a container planning issue as a 
minimal cost flow (MCFP) problem and communicate con-
tainer needs utilizing a specialised graphical data format. 
ECSched allows you to design a flow network based on a set 
of needs while also allowing MCFP algorithms to plan fixed 
requests live. Evaluate ECSched in a variety of test clusters 
and run large-scale planning overhead simulations to see 
how it performs. Experiments demonstrate that ECSched is 
superior at container planning in terms of container func-
tion and resource performance, and that large clusters only 
introduce minor and acceptable planning overlays.

Table 1  Summary of research gaps

Ref Proposed Methodology Parameters Future work

[21] Diego Heuristic algorithms Execution time The prototypes described were 
extending to wider environment; 
integrated into planned cloud 
services.

[22] Multiopt Virtual machine Response time To move containers without affecting 
or reducing the use of cloud services.

[23] MOO-ACA​ GA_MOCA algorithm Network transmission overhead Use scheduling methods in cloud 
containers to reduce the problem of 
algorithm time.

[24] EECS APSO Temperature Create a cloud environment for IoT 
applications that is dynamic and 
container-based, and allocate apps to 
the most appropriate containers.

[25] Container-based virtualized model VM Execution time Analyze the impact of post-failure 
work restructuring, interruptions due 
to work proximity in multiple cloud 
environments

[26] Adaptive fair-share method GPU memory allocation algorithm GPU memory utilization Improved Tensor Flow multi-con-
tainer processing allows to securely 
share a GPU

[27] ECSched MCFP algorithm Fraction of containers To embrace more intricate circum-
stances, consider container depend-
encies and resource dynamics in the 
scheduler.

[28] SRPSM VM Sensitivity Searching multiple containers on 
same VM to perform multiple tasks 
in parallel

[29] KCSS Machine learning Computing time KCSS to identify residential containers 
and improve global performance.

[30] CANSS Naive Bayes Cache hit ratio Use artificial intelligence algorithms 
to compute if cache localization can 
be achieved

[31] State-of-the art scheduling algo-
rithm

Optimization algorithm Throughput Create a security alert table to avoid 
security issues related to the use of 
containers in your cloud infrastruc-
ture.

[32] Skippy scheduling container MCDM algorithm function execution time By implementing high-level opera-
tional goals, customize key planning 
parameters to explore specific 
aspects.
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For the VAS operating system, Rajasekar et al. [28] pro-
vided a planning and resource strategy. Infrastructure 
(IaaS) suppliers provide computer, networking, and stor-
age services. As a result, the VAS design may effectively 
plan this burden at important periods utilising a range of 
features and quality of service (QoS). The method is scal-
able and dynamic, altering the load and base as needed. 
KCSS is a Kubernetes Container Scheduling Strategy intro-
duced by Menouer et  al. [29]. To satisfy the demands of 
Maxpania and Cloud providers, KCSS intends to optimise 
the scheduling of many containers that users submit to the 
Internet in order to increase customer performance based 
on energy usage. Due to the table’s cloud infrastructure 
level and restricted perspective of user demands, single-
based planning is less efficient. KCSS is responsible for 
introducing multi-criterion node selection. A cache-aware 
scheduling approach based on neighbourhood search was 
suggested by Li et al. [30]. Job categorization, node resource 
allocation, node clustering, and cache target planning are 
the four sub-issues of this paradigm. It’s separated into 
three sorts, and then various resources are transferred to 
the node depending on how well it performs. The work is 
stored late after the nodes with comparable functions are 
assembled. Ahmad et al. [31] looked at a variety of current 
container planning approaches in order to continue their 
study in this hot topic. The research is based on mathemati-
cal modelling, heuristics, Meta heuristics, and machine 
learning, and it divides planning approaches into four 
groups depend upon the algorithm of optimization used to 
construct the map. Formerly, based on performance meas-
urements, examine and identify important benefits and dif-
ficulties for each class of planning approach, as well as main 
hardware issues. Finally, this study discusses how successful 
research might improve the future potential of innovative 
container technologies. The container planning strategy 
provided by Rausch et al. [32] helps to make good use of the 
margin infrastructure on these sites. They’ll also illustrate 
how to modify the weight of scheduling controls automati-
cally to optimise high-level performance objectives like task 
execution time, connection use, and cloud performance 
costs. Implement a Kubernetes container orchestration 
system prototype and install bridges on the edges where it 
was constructed. Utilizing hints given by the test’s frequent 
loads, evaluate the system using micro-organized simula-
tions in different infrastructure situations.

Problem methodology and system design
Problem statement

•	 Learning automata are used to suggest a self-accommo-
dating duty scheduling algorithm (ADATSA) [33]. In 
conjunction through the futile formal of resources and 

the in succession stage of responsibilities in the present 
surroundings, the algorithm efficiently leveraged the 
re-enforcement educating capacity of learning mecha-
nisms and achieves an operative remuneration-fine 
system for arranging activities. A charge load observing 
framework for actual-time observing of the surround-
ing and planning assessment opinion, as well as the 
establishment of a buffer queue for priority schedul-
ing. To compare the non-automata technology-based 
algorithm PSOS, the ADATSA algorithm to learning 
automata-based algorithm LAEAS, and the K8S plan-
ning engine relating resource imbalance, resource resid-
ual degree, and QoS, researchers used the Kubernetes 
platform to pretend various planning circumstances.

•	 In general, cloud computing environments need 
great portability, and containerisation assures sur-
roundings compatibility by en-capsulation uses col-
lected with their libraries, configuration files, and 
other needs, allowing consumers [34] to quickly 
migrate and set up programmes across gatherings.

•	 However, there are still certain obstacles to be solved 
in this project. Furthermore, the study literature 
[21–33, 35] lacks methods and models that enable 
dynamic scalability, in which consumers get QoS 
and good performance [36] while using the fewest 
amount of cloud resources possible, particularly for 
containerized services hosted on the cloud.

•	 Cloud computing services benefit from dynamic 
scalability, which provides on-demand, timely, and 
dynamically changeable computing resources.

•	 However, since the container cloud environment is 
very changeable and unpredictable, the environment 
exemplary derived as of static reward-penalty com-
ponents might not be optimum. ADATSA algorithm 
does not take into account diversity of cloud resources. 
Users’ demands for cloud resources are often diverse, 
and operator responsibilities are typically completed 
by a combination of heterogeneous cloud services.

According to above gathered research gaps it needs 
proposed methodology. Hybrid optimal and deep learn-
ing is proposed for dynamic scalable task scheduling 
(DSTS). The main contributions are list as follows:

•	 A modified multi-swarm coyote optimization 
(MMCO) algorithm is used for scaling the contain-
ers virtual resources which enhance customer service 
level agreements.

•	 A modified pigeon-inspired optimization (MPIO) 
algorithm is proposed for task clustering and the 
fast adaptive feedback recurrent neural network 
(FARNN) is used for pre-virtual CPU allocation to 
ensure priority based scheduling.
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•	 The task load monitoring mechanism is designed 
based on deep convolutional neural network 
(DCNN) which achieves dynamic scheduling based 
on priority.

System design of proposed methodology
Before being deployed to the cloud, programmes must be 
imaged and encased in the container cloud podium. The 
purpose of charge planning is to assign container illus-
trations to the most appropriate node in order to create 
the most effective utilization of accessible means. The dif-
ficulty of mapping relationships between containers and 
nodes may be represented as task scheduling in container 
cloud. Figure  1 depicts the system architecture of the 
proposed dynamic scalable task scheduling (DSTS) para-
digm. The DSTS model includes a number of processes, 
including container virtual resource scaling, task cluster-
ing, pre-virtual CPU allocation, and task load monitoring.

Proposed methodology
In this section, we describe the following process such 
as containers virtual resources scaling, task clustering, 
pre-virtual CPU allocation and task load monitoring 
mechanism.

Container virtual resources scaling using MMCO algorithm
The goal of cloud service level agreements (SLAs) is for 
service providers to have a common understanding of 

priority areas, duties, warranties, and service providers. 
It specifies the dimensions and duties of the parties par-
ticipating in the cloud setup, as well as the timeframe 
for reporting or resolving system vulnerabilities. As 
more firms depend on external suppliers for their vital 
systems, programmes, and data, service level agree-
ments are becoming more important. The Cloud SLA 
assures that cloud providers satisfy specific enterprise-
level criteria and provide clients a clear distribution. 
If the provider fails to satisfy the requirements of the 
guarantee, it may be subject to financial penalties such 
as service time credit. The modified multi-swarm coy-
ote optimization (MMCO) method was used to scale 
virtual resources in containers, improving customer 
service level agreements. MMCO coyote population is 
split into two groups Fd consists of Fq each coyote; the 
number of coyotes in each pack is constant and consist-
ent across all packs in the first suggestion. As a result, 
multiplying the algorithm’s total population gives algo-
rithm’s entire population Fd ∈ F∗ and Fq ∈ F∗.Further-
more, the social position of the people qth coyote from 
the woods dth cram everything in ath the current time 
has been specified.

where C demonstrates the number of elements that go 
into making a choice, It also means that the coyote has 
adapted to its environment FITd.a

q ∈ J  . Establishing the 

(1)SOCd.a
q =

−→
b = (b1, b2, ..bh)

Fig. 1  Dynamic scalable task scheduling (DSTS) model
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social position of the people qth coyote from the woods 
dth a compilation of pth the dimension is specified via a 
vector.

where Uap and nap stands for, respectively, the bottom 
and top limits of the range pth choice variable and jp is 
a true random number created inside the range’s bounds 
[0, 1] Using a probability distribution that is uniform in 
nature.

To determine the fitness function of each coyote, 
Fq × Fd Coyotes in the environment, depending their 
socioeconomic situations

In the case of a minimization problem, the solution’s 
Alpha dth crams everything in ath a split second in time

MMCO integrates all of the coyote’s information and 
calculates the cultural propensity of each pack:

where ZD, the social standing of all coyotes in the region 
is indicated by the letter A. dth in a hurry Ath p in the 
price range at the given point in time [1, C]. At the same 
time, the Alpha has an effect on coyotes (δ1) and by the 
other coyotes in the pack (δ2),

The alpha δ1 Influence distinguishes a coyote from the 
rest of the pack in terms of culture, Qj1, to the coyote 
leader, whereas the pack’s clout δ2, shows a cultural dis-
tinction from a random coyote Qj2, to the cultural ten-
dencies of the pack. In MMCO algorithm, during the 
initialization of the method, the swarm, also known as 
stands, is randomly seeded to the search space.

where, as. p represents sth a hive of activity pth dimension, 
Up and Xp are the bottom and top edges of the solution 
space, respectively, and s, p is a range of uniformly gener-
ated random numbers [0, 1].

(2)SOC
q.a
d.p = Ua+ jp.

(

nap − Uap
)

(3)FITd.t
q = m SOCd.a

q

(4)
Alphad.A =

{

SOC\d.A
q

∣

∣

∣
argq={1,2....fd}min l

(

SOCd.A
q

)}

(5)Culd.Ap =











zd.A(FT+1)
2 .i

Fd is odd

zd.AFt
2
.i
+zd.A�

Ft
2
+1

�

.p

2 .otherwise

(6)δ1 = Alphad.A − SOCd.A
qj1

(7)δ2 = Cultd.A − SOCd.A
qj2

(8)as.p = Up + js.p ×
(

Xp − Up

)

To generate Multi swarm from this point, two different 
equations may be used.

where, sindices must not be identical and α factor of scal-
ability. The equation used to update the dimension of a 
swarm that will be formed for a Swarm is an important 
part of the process. The working function of the pro-
cess of container virtual resources scaling is given in 
Algorithm 1.

Algorithm 1  Container virtual resources scaling using MMCO algorithm

Task clustering using modified pigeon‑inspired 
optimization (MPIO) algorithm
Clustering is a procedure that divides tasks into different 
categories depending on increasing application demand, 
such as load balancing clusters, high availability clusters, 
and compute clusters. The primary emphasis of load 
balancing clusters is resource use on the host system, 
particularly the virtual machine. These clusters are uti-
lised to balance constant and dynamic loads, as well as 
to move the application from one cloud provider to the 
next. The second kind is fault-tolerant high-availability 
clusters that are built for tip failure. For task cluster-
ing, we used a modified pigeon-inspired optimization 
(MPIO) algorithm. The activation function ties the infor-
mation about the concealed state of prior deadlines to 
the item in the current chronology, and it provides it to 
the entrance gate as follows:

where ES is recall gate. Xr is input at each time step s 
and TS − 1 represent the previous time step’s hidden state 

(9)T = arg min
{

l
(−→
a
)}

(10)KA.p = as.p + α ×
(

Tp − ao.p
)

(11)KA.p = as.p + α ×
(

as.p − ao.p
)

(12)Hr = υ

(

XrK
H + tr−1v

H + bH

)
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T − 1. Ze is the input layer’s heaviness and ve is recurring 
heaviness of the concealed state. The be is the bias of the 
input layer. The following are the equations for the two 
tasks:

The hidden levels at which the sigmoid activation func-
tion is anticipated are determined by the output gate. To 
create a create output, sends to the newly changed cell level 
function and multiplies as follows.

The update gateway functions similarly to a forget-
me-not and LSTM input gateway. The weight is multi-
plied by the current input, and the weight is multiplied 
by the level hidden at the prior time point. Using the 
sigmoid function to find the values of one from zero 
and one, the contributions of the two possibilities are 
merged

where WS symbolize the gate for updating, the YS at a 
given time step, the input vector s while cS − 1 is the earlier 
output from preceding entities. The Ks is the mass of the 
input layer, and uW is the repeated mass. The bs is the bias 
of the input layer. The reset gate’s output is as follows:

The reset gate is employed in the new memory phone 
to accumulate the in sequence of the preceding phase. 
The network will be able to choose just relevant earlier 
events in chronological sequence as a result of this. The 
present memory contact is as follows:

Each pigeon has a specific scenario when it comes to 
the optimization challenge.

(13)ir = υ

(

XrK
i + tr−1v

i + bi

)

(14)
∼

Es = tanh
(

XrZ
e + tr−1v

e + be
)

(15)Er = Er−1
∗Hr + ir

∗
∼

Es

(16)Zr = υ

(

XrX
Z + tr−1v

Z + bZ

)

(17)tr = Zr
∗ tanh (Er)

(18)Lr = υ

(

XrX
L + dr−1v

l + bl

)

(19)sr = υ

(

XrK
s + tr−1v

S + bS

)

(20)
∼

Er = tanh (XrK + v(sr�dr−1))

(21)dr = Lr�dr−1 + (1− Lr)�υ

(

∼

Er

)

+ bd

where c is the scope of the problem to be tackled1, 2… M, 
M is the pigeons’ population; each pigeon has a velocity 
that is stated as follows:

First, figure out where the dust is in the search region 
and how fast it is moving. Then, as the number of repeti-
tions grows, so does the difficulty, the ui can be updated 
by repeating the following steps

where S is the number of current iterations. Then the 
next xi is calculated as follows

Algorithm 2  Task clustering using MPIO algorithm

As a result, the iteration position Mth can be updated by

where H is the present number of the iteration H = 1, 
2. …HMax, is the amount of iterations in which the 

(22)Xi = [xi1, xi2, . . . xic]

(23)ui = [Ui1,Ui2, . . .Uim]

(24)
ui(r) = ui(r − 1).e−sr + Rand.(XFBest − Xi(r − 1))

(25)xi(r) = xi(r − 1)+ ui(r)

(26)Xi(r) = Xi(r − 1) + Rand.
(

XCenter (r − 1) − Xi(r − 1)
)

(27)XCenter(r) =

m
∑

i=1

Xi(r).fitness(Xi(r))

mp

m
∑

i=1

fitness
(

(Xi(r))

(28)mq(r) = ceil

(

mp(r − 1)

2

)
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signpost operator is active. The meaning of fitness is to 
be optimized:

The pigeon’s position will be close to the center point 
after each iteration which reaches the end RMax. Algo-
rithm 2 describes the operation of the task clustering pro-
cess utilising the MPIO algorithm.

Pre‑virtual CPU allocation using FARNN technique
In cloud computing, the latest virtual processor planning 
techniques are essential to hide physical resources from 
running programs and reduce performance during virtu-
alization. However, different QoS requirements for cloud 
applications make it difficult to evaluate and predict the 
behavior of virtual processors. Based on the evaluation 
process, a specific planning plan regulates virtual machine 
priorities when processing I/O requirements for equita-
ble distribution. Our program evaluates the CPU inten-
sity and I/O intensity of virtual machines, making them 
very effective in a wide range of tasks. Here we applied fast 
adaptive feedback recurrent neural network (FARNN) for 
pre-virtual CPU allocation phase to ensure the priority 
based scheduling.

The FARNN methodology is a set of computing tech-
niques that use model and method learning to anticipate 
computer effects by simulating the human brain’s problem-
atic-answering process. The three network layers of a nor-
mal FARNN approach are the input film, hidden film, and 
output film. For arrest forecast systems, the input film typi-
cally contains the current time interval’s recorded MAC 
address. The following is a format for the MAC address 
input vector at time T:

At the current time, the all MAC address collection 
is denoted as Y(T). T stands for the overall quantity of 
MAC addresses in use at any one period. The jth Mac 
address detection is represented as yj respectively. The 
input and network weights are used to compute the hid-
den layer neutrons.

Output film associates the results of the Hidden film 
and converts them.

(29)fitness
(

Xj(r)
)

= HMax

(

Xj(r)
)

(30)fitness(Xi(r)) =
1

HMin(Xi(r))+ ε

(31)Y (T ) =
{

y1, y2, . . . . , yj , . . . , yl
}

(32)h(T ) = Zt
1
∗
Y (T )+ a

(33)
X(T ) = f

(

Zt
2
∗
h(T )

)

= f
(

Zt
2
∗
(

Zt
1
∗
Y (T )+ a

))

The hidden layer output is denoted as h(T) and the 
output layer output is referred as X(T) respectively. 
From the Input to Hidden film the weight is denoted 
as Zt

1 and from the Hidden film to the Output film is 
stated as Zt

2 respectively. The activation function is 
indicated as f(.) and the random bias is denoted as an in 
the output layer. The Feature film is initially combined 
amongst the Input film and the Hidden film in the rapid 
adaptive to determine the transfer prospects of one 
MAC address. Because the present occupancy state is 
reliant on the past occupancy status, the transfer pos-
sibility and transfer possibility matrix may be utilized 
to measure those type of methods. The transfer matrix 
may be stated as follows, assuming that an occupant’s 
location in a place is either “in” or “out.”

The transition probability matrix of one load is denoted 
as tpmyK. In the transfer matrix, yj−0

K  and yj−j
K  indicate the 

noticed probability that single inhabitant whose position 
is “in” at the present period in any case be “out” and “in” 
at the following period, correspondingly, at the follow-
ing period y0−0

K  and y0−j
K  signify the noticed possibility 

that one inhabitant whose position is “out” at the present 
period intermission would be “out” and “in” in the next 
period intermission. The possibility might be computed 
using Bayesian models and the observed conditional 
probability. For example

The one MAC address occupied probability is

where M1 − 1 is the recurrence in which the possession 
grade changed from “in” to “in” and M1 − 0 is the frequen-
cies in which the possession grade changed from “in” to 
“out” respectively. Similarly, M0 − 0 and M0 − 1 address the 
frequencies in which the possession grade changed from 
“out” to “out” and from “out” to “in” individually. As the 
estimated frequency changes, the preventative educa-
tion database will be automatically updated. The trans-
fer probability will be adjusted at the next estimate as 
the training database is refreshed. Because each MAC 
address in the load is given a probability, each MAC 
address may be represented as follows:

(34)tpm

∣

∣

∣

∣

∣

yK =

[

y
j−0
K y

j−j
K

y0−0
K y

0−j
K

]

(35)
y
j−j
K = p

(

state observed = j
∣

∣state observed = j
)

(36)y
j−j
K =

∑

M1−1
∑

M1−1 +
∑

M1−0

(37)y0−0
K =

∑

M0−0
∑

M0−0 +
∑

M0−1
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Update the input vector in the following,

After that, the feature layer may be structured as 
follows:

The length of time window is ΔT and at time T the vec-
tor of the Feature layer is f(T). Assuming the amount of 
MAC reports in the time window is K, then

At regular intervals, the environment layer retains 
the hidden layer feedback signal, acting as a short-term 
memory to stress professional dependency. The rear 
cover layer’s output may be structured as follows:

Algorithm 3  Pre-virtual CPU allocation using FARNN technique

(38)yK =

{

ymac
K , y

0−j
K , y

j−j
K

}

(39)
Y (T ) =

{

ymac
1 , y

0−j
1 , y

j−j
1 , ymac

2 , y
0−j
2 , y

j−j
2 , . . . ymac

K , y
0−j
K , y

j−j
K

}

(40)
f (T ) = {Y (T ),Y (T − 1),Y (T − 2), . . . .Y (T −�T )}

(41)
f (T ) =

{

ymac
1 , y

0−j
1 , y

j−j
1 , ymac

2 , y
0−j
2 , y

j−j
2 , . . . ymac

K , y
0−j
K , y

j−j
K

}

(42)h(T ) = g
(

ω1D(T − 1)+ ω2
(

f (T )
)

)

The output of the context layer is

where h(T) is referred as the output vector of the Hid-
den layer at time interval T, and D is the output vector 
of Context layer. ω1 is stated as the joining mass from the 
Context layer to the Hidden layer, and ω2 is the joining 
mass from the Feature layer to the Hidden layer. Α is the 
self-connected comment gain factor. G (•) represents the 
Hidden layer’s activation function. The mode of activa-
tion has been set to

The following is an example of a signal change from 
the Hidden film to the Output film:

where is the output variable at period T, which in this 
case is the expected possession. ω3 is the joining mass 
from the Hidden layer to the Output layer. The following 
is the cost function for updating and learning connection 
weights:

c (t) is the actual occupancy output, and M is the size of 
training time samples. Algorithm 3 describes the process 
of pre-virtual CPU allocation.

Task load monitoring using DCNN method
There are five steps to the job load monitoring func-
tion: Data collecting and data filtering are the first two 
steps in the data collection process. 3) data gather-
ing 4) examination of data  5) Issue a warning and file 
a complaint. Processing time, CPU speed from CPU 
probe, memory use, memory retrieval delay, power 
consumption, power consumption from power analy-
sis, frequency, latency, and delay are all examples of 
information or quantity that the monitoring system 
should gather through various inquiries. Consider 
essential features of data gathering, such as structure, 
tactics, updating approaches, and kinds, to classify 
it. We employ a deep convolutional neural network 
(DCNN) to measure job load in this article. In DCNN, 
the scroll layer contains numerous filters that corre-
spond to the intriguing local forms. The result is for-
warded to a non-linear implementation function to 

(43)D(T − 1) = αD(T − 2)+ h(T − 1)

(44)g(y) =
1

1+ E−y

(45)
x(T ) = ω3h(T ) = ω3∗g

(

ω1D(T − 1)+ ω2f (T )

)

(46)e =

M
∑

T−1

[x(T )− c(T )]2
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generate a functional map. Also adjust the functional 
map that was constructed to reduce the calculated 
values by changing the properties. Stacking the scroll 
layers at the DCNN’s front end separates the local 
attributes from the source data at first, and then gradu-
ally adds volume as the next abstract layer is provided. 
A well-trained layer produces a new representation of 
the original form that can be classified most success-
fully. For this purpose, the spiral layer is also called the 
functional sample layer. An assortment with several 
fully connected layers is attached at the end of the coil 
layer. For the training set samples,

Each sample has a feature vector y(j) and a label x(j) 
to go with it. By introducing the loss function, we may 
obtain the error. As demonstrated in following equa-
tion, the loss function has an overall error and a time 
order.

Here, z represents the weight and ‘a’ denotes the bias 
value respectively. Also, the size of the batch is repre-
sented as m. The hyper parameter λ error regulates and 
controls error values. The dissimilarity amongst the cre-
ated assessment and the real assessment is measured in 
square metres. It’s worded like this:

When calculating two gradients, the coefficient 1/2 is 
a normalization group that cancels the coefficient. Fur-
ther derivatives can be simplified without causing side 
effects as a result of this. Also can modify the weight 
and offset to reduce losses depending on the look of the 
slope.

In the neuron, the input is denoted as w; the acti-
vation function is represented as σ; the change in the 
weight is referred as Δω and the variation of the offset 
is stated as Δa respectively.

(47)n =

{(

y(j), x(j)
)}

, j = 1, 2, . . . . , n

(48)I(z, a) ≈
1

m

m
∑

j=1

k
(

H{z,a}

(

y(j), x(j)
))

+ �

∑

j,i

z2j,i

(49)D =
1

2M

∑

y

∥

∥x(y)− b(y)
∥

∥

2

(50)�ω =
(

b(y)− x(y)
)

σ ’(w)y

(51)�a =
(

b(y)− x(y)
)

σ ’(w)

(52)ω(m+1) = ω(m) −
η

M

∗

�ω

The learning rate is represented as η; the mth iteration 
weight and offset are denoted as ω(m) and a(m) respec-
tively. The total number of loads is represented as M 
respectively. In Algorithm  4, we describe the work-
ing function of the task load monitoring using DCNN 
method.

Algorithm 4  Task load monitoring using DCNN method

Simulation results and analysis
In this part, we develop experimentations to test and 
assess the proposed dynamic scalable task schedul-
ing (DSTS) model, and the simulation results are 
associated to current state-of-the-art models includ-
ing ADATSA, LAEAS, PSOS, and the K8S planning 
machine.

•	 To overcome the repeating scheduling issue, a self-
accommodating task planning algorithm (ADATSA) 
is used [33]. The approach reduces the reliance of 
existing vibrant planning strategies on container 
cloud architecture and improves the connection 
between jobs and their runtime environments.

•	 In the cloud system, the Learning automata based 
energy-aware scheduling (LAEAS) algorithm [37] is 
employed for real-time job planning.

•	 In a container cloud context, the performance-based 
service oriented scheduling (PSOS) [38] has been 
utilised to handle planning problems such as average 
latency of service instances, resource consumption, 
and balancing.

(53)a(m+1) = a(m) −
η

M

∗

�a
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•	 Unlike Borg and Omega, which were built as com-
pletely Google-internal systems, the Kubernetes 
(K8S) scheduling engine [39] is open source.

Dataset description
Kubernetes (v1.16.2) was used to create an experimental 
setup on 53 servers with the similar specs as the investi-
gational stage, comprising 3, 50 master and slave nodes. 
Furthermore, we utilised Python 3.7 as the major program-
ming language for quality analysis implementation, with 
Anaconda Navigator integration and spyder and Jupyter as 
execution environments. The number of tasks in this simu-
lation has been separated into five categories: task 1, task 2, 
task 3, task 4, and task 5. In job 1, we may use static sched-
uling with 128core and 64core CPU oriented resources as 
master and slave, respectively. In task 2, we may use mem-
ory-oriented resources master and slave of 256GB and 
128GB, respectively, to create dynamic scheduling. In task 
3, we may use time-based static scheduling with 1000GB 
master and slave disc oriented resources, respectively. 
Task 4 allows us to configure time-based dynamic sched-
uling with bandwidth-oriented master and slave resources 
of 10Gbps and 10Gbps, respectively. With the resource 
non-oriented master and slave as 3 and 50, we may exam-
ine test quality in job 5. Where resource non-oriented apps 
are ones in which the application’s resource needs are com-
posed and there is no partiality for resources. Table 2 sum-
marises the job partitioning and resource requirements. 
We employed recurrent distributions to mimic large-scale 
uses distribution due to a shortage of apps. The experiment 
began with a total of 100 applications, including 20 for each 
category of application. Table 3 describes the super-param-
eter settings of proposed optimization algorithm.

Performance evaluation metrics
In this section, the simulation results of proposed DSTS 
classic is associated with the existing state-of-art mod-
els such as ADATSA, LAEAS, PSOS and K8S planning 
engine in terms of different service quality evaluation 
metrics are resource imbalance degree (DId), resource 
residual degree (DRd), response time (RT) and throughput 
(TH). The particulars of appropriate metrics are defined 
as proceeds:

(54)DId =

N
∑

i=1

Lr(αi)

N

(55)DRd =

N
∑

i=1

Sr(βi)

N

where Lr(αi) and Sr(βi) represents node resource imbal-
ance degree (ref. eqn [18].) and node resource residual 
degree (ref. eqn [19].) respectively for N number of node 
resources. The response delay of web application repre-
sents as WSapp and Tend, Tstart denotes the start and end 
time of the test respectively.

Comparative analysis
Result comparison of Task‑1
The influence of tasks on static scheduling performance 
of our new DSTS model is compared to that of the cur-
rent ADATSA, LAEAS, PSOS, and K8S models in this 
scenario. The proposed and current task scheduling 
models are compared in terms of resource imbalance 
degree (DId) in Fig.  2. We can see from this graph that 
the DSTS model of static scheduling outperforms the 
ADATSA, LAEAS, PSOS, and K8S models. The sug-
gested DSTS model has a resource imbalance degree 
(DId) of 12.698%, 10.000%, 7.895%, and 6.173%, respec-
tively, lower than the current ADATSA, LAEAS, PSOS, 
and K8S models. Figure 3 shows the comparative analysis 

(56)RT =
1

Napp

Napp
∑

j=1

RT WSapp

(57)TH =
Nreq WSapp

Tend WSapp − Tstart WSapp

Table 2  Dataset descriptions

Tasks Scheduling Resources Node 
resources

Master Slave

1 Static CPU oriented (core) 128 64

2 Dynamic Memory oriented (GB) 256 128

3 Static-time Disk oriented (GB) 1000 1000

4 Dynamic-time Bandwidth oriented (Gbps) 10 10

5 QoS evaluation Resource non-oriented 3 50

Table 3  Optimization algorithm super-parameter settings

Parameters Value

Population size 80

Crossover probability 0.8

Mutation probability 0.2

Maximum number of generation 200

Swarm size 80

Maximum number of iteration 200
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of resource residual degree (DRd) for the proposed and 
existing task scheduling models. We can see from this 
graph that the DSTS model of static scheduling outper-
forms the ADATSA, LAEAS, PSOS, and K8S models. 
The resource residual degree (DRd) of proposed DSTS 
model is 10.280%, 8.155%, 6.426% and 4.695% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively.

Result comparison of Task‑2
The influence of tasks on the dynamic scheduling presen-
tation of our suggested DSTS model is associated to that 
of the current ADATSA, LAEAS, PSOS, and K8S models 
in this scenario. Figure  4 shows the comparative analy-
sis of resource imbalance degree (DId) for the proposed 
and existing task scheduling models. We can see from 
this graph that the DSTS dynamic scheduling model out-
performs the ADATSA, LAEAS, PSOS, and K8S models. 

The resource imbalance degree (DId) of proposed DSTS 
model is 15.275%, 9.285%, 8.590% and 6.699% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively. Figure  5 shows the comparative analysis 
of resource residual degree (DRd) for the proposed and 
existing task scheduling models. We can see from this 
graph that the DSTS model of dynamic scheduling out-
performs the ADATSA, LAEAS, PSOS, and K8S models. 
The resource residual degree (DRd) of proposed DSTS 
model is 11.710%, 8.555%, 6.740% and 5.462% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively.

Result comparison of Task‑3
In this scenario, the influence of tasks on our proposed 
DSTS model’s time-based static scheduling performance 
is compared to the current ADATSA, LAEAS, PSOS, and 
K8S models. Figure 6 shows the comparative analysis of 

Fig. 2  Comparative analysis of resource imbalance degree (DId) (Task-1)

Fig. 3  Comparative analysis of resource residual degree (DRd) (Task-1)
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resource imbalance degree (DId) with respect to time for 
the proposed and existing task scheduling models. We 
can see from this graph that the DSTS model of static 
scheduling outperforms the ADATSA, LAEAS, PSOS, 
and K8S models. The resource imbalance degree (DId) of 
proposed DSTS model is 15.146%, 15.275%, 9.285% and 
8.590% lower than the existing ADATSA, LAEAS, PSOS 
and K8S models respectively. Figure  7 shows the com-
parative analysis of resource residual degree (DRd) with 
respect to time for the proposed and existing task sched-
uling models. We can see from this graph that the DSTS 
model of static scheduling outperforms the ADATSA, 
LAEAS, PSOS, and K8S models in terms of performance. 
The resource residual degree (DRd) of proposed DSTS 
model is 6.796%, 11.710%, 8.555% and 6.740% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively.

Result comparison of Task‑4
In this scenario, the influence of tasks on our proposed 
DSTS model’s time-based dynamic scheduling perfor-
mance is compared to the current ADATSA, LAEAS, 
PSOS, and K8S models. Figure 8 shows the comparative 
analysis of resource imbalance degree (DId) with respect 
to time for the proposed and existing task scheduling 
models. We can see from this graph that the DSTS model 
of static scheduling outperforms the ADATSA, LAEAS, 
PSOS, and K8S models. The resource imbalance degree 
(DId) of proposed DSTS model is 13.763%, 15.146%, 
12.878% and 11.781% lower than the existing ADATSA, 
LAEAS, PSOS and K8S models respectively. Figure  9 
shows the comparative analysis of resource residual 
degree (DRd) with respect to time for the proposed and 
existing task scheduling models. We can see from this 
graph that the DSTS model of static scheduling outper-
forms the ADATSA, LAEAS, PSOS, and K8S models. 

Fig. 4  Comparative analysis of resource imbalance degree (DId) (Task-2)

Fig. 5  Comparative analysis of resource residual degree (DRd) (Task-2)
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The resource residual degree (DRd) of proposed DSTS 
model is 6.703%, 6.796%, 11.710% and 8.555% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively.

Result comparison of Task‑5
In this scenario, the effect of our proposed DSTS model’s 
quality validation is compared to the current ADATSA, 
LAEAS, PSOS, and K8S models. Figure  10 shows the 
comparative analysis of resource imbalance degree (DId) 
with respect to time for the proposed and existing task 
scheduling models. We can see from this graph that 
the DSTS model of static scheduling outperforms the 
ADATSA, LAEAS, PSOS, and K8S models. The resource 
imbalance degree (DId) of proposed DSTS model is 
13.965%, 13.763%, 15.146% and 12.878% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively. Figure  11 shows the comparative analysis 

of resource residual degree (DRd) with respect to time 
for the proposed and existing task scheduling mod-
els. We can see from this graph that the DSTS model of 
static scheduling outperforms the ADATSA, LAEAS, 
PSOS, and K8S models in terms of performance. The 
resource residual degree (DRd) of proposed DSTS model 
is 13.445%, 6.703%, 6.796% and 11.710% lower than 
the existing ADATSA, LAEAS, PSOS and K8S models 
respectively.

Table  4 describes the performance comparison of pro-
posed and existing task scheduling in terms of response 
time (RT) and throughput (TH) with varying simulation 
time. The average response time (RT) of proposed DSTS 
model is 25.448%, 32.616%, 37.814% and 40.502% higher 
than the existing ADATSA, LAEAS, PSOS and K8S mod-
els respectively. Figure  12 gives the graphical representa-
tion of proposed and existing task scheduling models. 
The average throughput (TH) of proposed DSTS model is 

Fig. 6  Comparative analysis of resource imbalance degree (DId) with time (Task-3)

Fig. 7  Comparative analysis of resource residual degree (DRd) with time (Task-3)
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Fig. 8  Comparative analysis of resource imbalance degree (DId) with time (Task-4)

Fig. 9  Comparative analysis of resource residual degree (DRd) with time (Task-4)

Fig. 10  Comparative analysis of resource imbalance degree (DId) with time (Task-5)
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33.168%, 38.119%, 44.059% and 49.010% higher than the 
existing ADATSA, LAEAS, PSOS and K8S models respec-
tively. Figure 13 gives graphical representation of proposed 
and existing task scheduling models. Figure 14 denotes the 
runtime overhead of the proposed and existing task sched-
uling models. The plot clearly depicts average runtime 
overhead of the proposed DSTS model is 12.356%, 15.09%, 
18.367% and 21.578% lower than the existing ADATSA, 
LAEAS, PSOS and K8S models respectively.

Case study
In the past, Kaplan used the Amazon Elastic Com-
pute cloud to host its applications. Working engineers 
were required to manually update applications, and 
on average there were four dedicated Amazon EC2 
hosts. Rowan Drabo, head of Kaplan cloud operations, 
said the application update would take hours to take 
effect. Cost analysis shows that we spend more than $ 
500 per month on the Amazon Elastic Compute cloud. 
After switching to micro-service-based architecture 
with Amazon’s flexible container service and contain-
ers, Kaplan saved significant costs. “We currently have 

more than 500 containers in production,” Drabo said. 
We have reduced the number of Amazon Flexible Com-
pute cloud events by 70%, resulting in 40% cost savings 
per application. Using our proposed Dynamic Scalable 
Task Scheduler (DSTS) for automated container deliv-
ery, Kaplan allows you to reduce deployment time, 
increase the frequency of updates and improve devel-
oper satisfaction.

Conclusion
For dynamic scalable task scheduling (DSTS) in a con-
tainer cloud context, we suggested a hybrid optimum 
and deep learning approach. The succeeding are the 
major influences made in this paper:

1.	 A modified multi-swarm coyote optimization 
(MMCO) method for scaling virtual resources 
in containers to improve customer service level 
agreements.

2.	 A modified pigeon-inspired optimization (MPIO) 
algorithm is for task clustering and fast adaptive 

Fig. 11  Comparative analysis of resource residual degree (DRd) with time (Task-5)

Table 4  Comparative analysis of quality of service metrics

Models Response time (RT) (ms) Throughput (TH)

20 40 60 80 100 20 40 60 80 100

DSTS 600 580 560 550 500 150 180 210 220 250

ADATSA 500 480 400 380 320 120 130 135 140 150

LAEAS 480 400 380 320 300 100 120 130 135 140

PSOS 450 380 320 300 285 80 100 120 130 135

K8S 430 360 310 290 270 75 90 100 120 130
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Fig. 12  Comparative analysis of response time (RT) (Task-5)

Fig. 13  Comparative analysis of Throughput (TH) (Task-5)

Fig. 14  Comparative analysis of runtime overhead
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feedback recurrent neural network (FARNN) for 
pre-virtual CPU allocation to ensure priority based 
scheduling.

3.	 Task load monitoring mechanism is designed 
based on deep convolutional neural network 
(DCNN) which achieves dynamic scheduling 
based on priority.

After the recreation outcomes, we concluded that 
the simulation results of projected DSTS model is 
very effective compared to the existing task schedul-
ing models in terms of excellence of service metrics 
are resource imbalance degree (DId), resource residual 
degree (DRd), response time (RT) and throughput (TH). 
In future, we extend our DSTS model which combine 
with the optimization algorithm to optimize joint prob-
lems i.e. resource allocation and task scheduling in con-
tainer cloud environment.
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