
Muniswamy and Vignesh ﻿
Journal of Cloud Computing (2022) 11:33
https://doi.org/10.1186/s13677-022-00304-7

RESEARCH

DSTS: A hybrid optimal and deep learning
for dynamic scalable task scheduling
on container cloud environment
Saravanan Muniswamy* and Radhakrishnan Vignesh 

Abstract 

Containers have grown into the most dependable and lightweight virtualization platform for delivering cloud
services, offering flexible sorting, portability, and scalability. In cloud container services, planner components play
a critical role. This enhances cloud resource workloads and diversity performance while lowering costs. We present
hybrid optimum and deep learning approach for dynamic scalable task scheduling (DSTS) in container cloud environ-
ment in this research. To expand containers virtual resources, we first offer a modified multi-swarm coyote optimiza-
tion (MMCO) method, which improves customer service level agreements. Then, to assure priority-based scheduling,
we create a modified pigeon-inspired optimization (MPIO) method for task clustering and a rapid adaptive feedback
recurrent neural network (FARNN) for pre-virtual CPU allocation. Meanwhile, the task load monitoring system is built
on a deep convolutional neural network (DCNN), which allows for dynamic priority-based scheduling. Finally, the
presentation of the planned DSTS methodology will be estimated utilizing various test vectors, and the results will be
associated to present state-of-the-art techniques.

Keywords:  Cloud container, Task scheduling, Virtual resources, Task clustering, Priority based scheduling, Load
monitoring

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Cloud computing, which provides the computer services
required for the Internet, has become one of the most
popular technologies for the economy, society, and people
in latest years [1]. Due to the recent growth in the load
of different and sophisticated clouds like the Internet of
Things (IoT) devices, machine learning programmes,
coursing A/V services, and cloud memory, mandate for
several cloud amenities has risen substantially [2]. With
the introduction of numerous virtualization technologies
like as VMware, Citrix, KVM, and Zen [3], the cloud com-
puting business has evolved fast in recent years. Despite
their widespread use, virtualization technologies have a
number of drawbacks, including high time consumption,

extended runs and shutdowns, and difficult planning and
migration procedures [4]. The hardware is virtualized in
the conventional setup, and each virtual machine running
the whole operating system supervises the computer’s
application activities [5]. The application process in the
container communicates directly with the host kernel, but
the container does not have its own kernel or hardware
virtualization. Containers are therefore far lighter than
typical virtual computers [6, 7].

Furthermore, the spread of microservices, self-driving
vehicles, and smart infrastructure is predicted to boost
cloud service growth [8]. The backbone of cloud comput-
ing is virtualization technology, which enables applica-
tions to be detached from fundamental infrastructure
by sharing resources and executing various programmes
independently [9]. Containers have grown in popularity as
a novel virtualization approach in recent years, bringing
conventional fundamental machines (VMs) to numerous

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: saravananm@presidencyuniversity.in

Department of Computer Science and Engineering, School of Engineering,
Presidency University, Bengaluru, Karnataka 560064, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00304-7&domain=pdf

Page 2 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

auspicious characteristics including united host operat-
ing systems, quicker boot times, portability, scalability, and
faster deployment [10]. Containers allow apps to store all of
their dependencies in the sandbox, allowing them to con-
struct autonomous working hours from the platform while
also increasing productivity and portability [11]. Dock-
ers, LXC, and Kubernetes are just a few of the container
technologies available. Furthermore, several cloud ser-
vice providers run containers on virtual machines (VMs)
to increase container seclusion, performance, and system
management [12, 13]. Container technology is gaining trac-
tion among developers, and it’s now being used to deploy
a wide range of microservices and applications, includ-
ing smart devices, IoT, and fog / edge computing [14]. As
a consequence, to fulfil the increased demand, numerous
cloud service suppliers have begun to provide container-
based cloud services. Google Container Engine, Amazon
Re-Container Service, and Azure Container Service are
other examples. The cloud computing paradigm is being
revolutionised by container technology [15]. Running con-
tainerized applications, in the eyes of the cloud service pro-
vider, produces a compression layer that deals with cluster
management. The primary container orchestration sites in
the base cluster for automating, measuring, and control-
ling container-based infrastructure are Docker Swarm and
Google Kubernetes [16, 17]. A container cluster’s overall
structure comprises of management nodes and task nodes.
The cluster and container node work nodes, on the other
hand, are the responsibility of the management nodes [18].
In addition, the manager keeps track of the cluster’s loca-
tion by verifying the node’s position on a regular basis. The
planning components, which are responsible for spreading
loads among cluster nodes and controlling the container
life process [19], play a precarious part in container trans-
position. Depending on the technology, container planning
may take many different shapes. As a result, the primary
goal of container planning is to get the containers started
on the ideal host and link them together [20].

Our contributions
A dynamic scalable task scheduling (DSTS) approach
is offered for cloud container environments as a way to
improve things even further. The main contributions of
our proposed DSTS approach are given as follows:

1.	 To provide a dynamic scalable task scheduling system
for container cloud environments in order to reduce
the make span while using less computing resources
and containers than current algorithms.

2.	 To offer a unique clustered priority-based task
scheduling technique that improves the scheduling
system’s flexibility to cloud environment while also
speeding convergence.

3.	 Create a task load monitoring system that allows for
dynamic scheduling depending on priority.

4.	 Using various test scenarios and metrics, assess the
performance of the suggested dynamic scalable task
scheduling.

The balance of the paper is placed as proceeds: The
second segment summarises recent work on job schedul-
ing for cloud containers. We go through the issue tech-
nique and system design in Problem methodology and
system design section. The suggested dynamic scalable
task scheduling (DSTS) model’s functioning function is
designated in Proposed methodology section. Simulation
results and analysis section deliberates the simulation
findings and comparison analyses. Finally, Conclusion
section brings the paper to a close.

Related works
Many studies for scalable task scheduling for cloud con-
tainers have been suggested in recent years all around the
globe. Table 1 summarises and tabulates the literature
with research gaps in many categories.

Zhao et al. [21] studied to improve today’s cloud services
by reviewing the workings of projects for planning next-
generation containers. In particular, this work creates and
analyzes a new model that respects both workload balance
and performance. Unlike previous studies, the model uses
statistical techniques to create confusion between load
balance and utility performance in a single optimization
problem and solve it effectively. The difficult element is that
certain sub-issues are more complicated, necessitating the
use of heuristic guidance. Liu et al. [22] suggested a multi-
objective container scheduling technique based on CPU
node consumption, memory usage across all nodes, time
to transport pictures over the network, container-node
connections, and container clustering, all of which impact
container programme performance. The author provides
the metric techniques for all the important components,
sets the relevant qualifying functions, and then combines
them in order to pick the suitable nodes for the layout of
the containers to be allotted in the planning process. Lin
et al. [23] suggested a multi-objective optimization model
for container-based micro service planning that uses an ant
colony method to tackle the issue. The method takes into
account not only the physics nodes’ use of computer and
storing possessions, but also the numeral of multi-objec-
tive requirements and the loss rate of physics nodes. These
approaches make use of prospective algorithms’ quality
assessment skills to assure the correctness of pheromone
updates and to increase the likelihood of utilising multi-
functional horistic information to choose the optimum
route. Adhikari et al. [24] suggested an energy-efficient
container-based scheduling (EECS) technique for fast

Page 3 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

inheritance of various IoT and non-IoT chores. To deter-
mine the optimum container for each work, an accelerated
particle swarm optimization (APSO) method with mini-
mum latency is applied. Another significant duty in the
cloud environment is resource planning in order to make
the greatest use of resources on cloud servers. Ranjan et al.
[25] shown how to design energy-efficient operations in
program-limited data centres using container-based virtu-
alization. Policies Containers provide users the freedom to
get vital resources that are suited to their own need.

Chen et al. [26] suggested a functional restructuring
system to control the operating sequence of each con-
tainer in order to achieve maximum performance gain, as
well as an adaptive fair-sharing system to effectively share
the container-based virtualized environment. They also

suggested a checkpoint-based system, which would be par-
ticularly useful for load balancing. Hu et al. [27] suggested
the ECSched improved container scheduler for planning
simultaneous requests over several clusters with varied
resource restrictions. Define a container planning issue as a
minimal cost flow (MCFP) problem and communicate con-
tainer needs utilizing a specialised graphical data format.
ECSched allows you to design a flow network based on a set
of needs while also allowing MCFP algorithms to plan fixed
requests live. Evaluate ECSched in a variety of test clusters
and run large-scale planning overhead simulations to see
how it performs. Experiments demonstrate that ECSched is
superior at container planning in terms of container func-
tion and resource performance, and that large clusters only
introduce minor and acceptable planning overlays.

Table 1  Summary of research gaps

Ref Proposed Methodology Parameters Future work

[21] Diego Heuristic algorithms Execution time The prototypes described were
extending to wider environment;
integrated into planned cloud
services.

[22] Multiopt Virtual machine Response time To move containers without affecting
or reducing the use of cloud services.

[23] MOO-ACA​ GA_MOCA algorithm Network transmission overhead Use scheduling methods in cloud
containers to reduce the problem of
algorithm time.

[24] EECS APSO Temperature Create a cloud environment for IoT
applications that is dynamic and
container-based, and allocate apps to
the most appropriate containers.

[25] Container-based virtualized model VM Execution time Analyze the impact of post-failure
work restructuring, interruptions due
to work proximity in multiple cloud
environments

[26] Adaptive fair-share method GPU memory allocation algorithm GPU memory utilization Improved Tensor Flow multi-con-
tainer processing allows to securely
share a GPU

[27] ECSched MCFP algorithm Fraction of containers To embrace more intricate circum-
stances, consider container depend-
encies and resource dynamics in the
scheduler.

[28] SRPSM VM Sensitivity Searching multiple containers on
same VM to perform multiple tasks
in parallel

[29] KCSS Machine learning Computing time KCSS to identify residential containers
and improve global performance.

[30] CANSS Naive Bayes Cache hit ratio Use artificial intelligence algorithms
to compute if cache localization can
be achieved

[31] State-of-the art scheduling algo-
rithm

Optimization algorithm Throughput Create a security alert table to avoid
security issues related to the use of
containers in your cloud infrastruc-
ture.

[32] Skippy scheduling container MCDM algorithm function execution time By implementing high-level opera-
tional goals, customize key planning
parameters to explore specific
aspects.

Page 4 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

For the VAS operating system, Rajasekar et al. [28] pro-
vided a planning and resource strategy. Infrastructure
(IaaS) suppliers provide computer, networking, and stor-
age services. As a result, the VAS design may effectively
plan this burden at important periods utilising a range of
features and quality of service (QoS). The method is scal-
able and dynamic, altering the load and base as needed.
KCSS is a Kubernetes Container Scheduling Strategy intro-
duced by Menouer et al. [29]. To satisfy the demands of
Maxpania and Cloud providers, KCSS intends to optimise
the scheduling of many containers that users submit to the
Internet in order to increase customer performance based
on energy usage. Due to the table’s cloud infrastructure
level and restricted perspective of user demands, single-
based planning is less efficient. KCSS is responsible for
introducing multi-criterion node selection. A cache-aware
scheduling approach based on neighbourhood search was
suggested by Li et al. [30]. Job categorization, node resource
allocation, node clustering, and cache target planning are
the four sub-issues of this paradigm. It’s separated into
three sorts, and then various resources are transferred to
the node depending on how well it performs. The work is
stored late after the nodes with comparable functions are
assembled. Ahmad et al. [31] looked at a variety of current
container planning approaches in order to continue their
study in this hot topic. The research is based on mathemati-
cal modelling, heuristics, Meta heuristics, and machine
learning, and it divides planning approaches into four
groups depend upon the algorithm of optimization used to
construct the map. Formerly, based on performance meas-
urements, examine and identify important benefits and dif-
ficulties for each class of planning approach, as well as main
hardware issues. Finally, this study discusses how successful
research might improve the future potential of innovative
container technologies. The container planning strategy
provided by Rausch et al. [32] helps to make good use of the
margin infrastructure on these sites. They’ll also illustrate
how to modify the weight of scheduling controls automati-
cally to optimise high-level performance objectives like task
execution time, connection use, and cloud performance
costs. Implement a Kubernetes container orchestration
system prototype and install bridges on the edges where it
was constructed. Utilizing hints given by the test’s frequent
loads, evaluate the system using micro-organized simula-
tions in different infrastructure situations.

Problem methodology and system design
Problem statement

•	 Learning automata are used to suggest a self-accommo-
dating duty scheduling algorithm (ADATSA) [33]. In
conjunction through the futile formal of resources and

the in succession stage of responsibilities in the present
surroundings, the algorithm efficiently leveraged the
re-enforcement educating capacity of learning mecha-
nisms and achieves an operative remuneration-fine
system for arranging activities. A charge load observing
framework for actual-time observing of the surround-
ing and planning assessment opinion, as well as the
establishment of a buffer queue for priority schedul-
ing. To compare the non-automata technology-based
algorithm PSOS, the ADATSA algorithm to learning
automata-based algorithm LAEAS, and the K8S plan-
ning engine relating resource imbalance, resource resid-
ual degree, and QoS, researchers used the Kubernetes
platform to pretend various planning circumstances.

•	 In general, cloud computing environments need
great portability, and containerisation assures sur-
roundings compatibility by en-capsulation uses col-
lected with their libraries, configuration files, and
other needs, allowing consumers [34] to quickly
migrate and set up programmes across gatherings.

•	 However, there are still certain obstacles to be solved
in this project. Furthermore, the study literature
[21–33, 35] lacks methods and models that enable
dynamic scalability, in which consumers get QoS
and good performance [36] while using the fewest
amount of cloud resources possible, particularly for
containerized services hosted on the cloud.

•	 Cloud computing services benefit from dynamic
scalability, which provides on-demand, timely, and
dynamically changeable computing resources.

•	 However, since the container cloud environment is
very changeable and unpredictable, the environment
exemplary derived as of static reward-penalty com-
ponents might not be optimum. ADATSA algorithm
does not take into account diversity of cloud resources.
Users’ demands for cloud resources are often diverse,
and operator responsibilities are typically completed
by a combination of heterogeneous cloud services.

According to above gathered research gaps it needs
proposed methodology. Hybrid optimal and deep learn-
ing is proposed for dynamic scalable task scheduling
(DSTS). The main contributions are list as follows:

•	 A modified multi-swarm coyote optimization
(MMCO) algorithm is used for scaling the contain-
ers virtual resources which enhance customer service
level agreements.

•	 A modified pigeon-inspired optimization (MPIO)
algorithm is proposed for task clustering and the
fast adaptive feedback recurrent neural network
(FARNN) is used for pre-virtual CPU allocation to
ensure priority based scheduling.

Page 5 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

•	 The task load monitoring mechanism is designed
based on deep convolutional neural network
(DCNN) which achieves dynamic scheduling based
on priority.

System design of proposed methodology
Before being deployed to the cloud, programmes must be
imaged and encased in the container cloud podium. The
purpose of charge planning is to assign container illus-
trations to the most appropriate node in order to create
the most effective utilization of accessible means. The dif-
ficulty of mapping relationships between containers and
nodes may be represented as task scheduling in container
cloud. Figure 1 depicts the system architecture of the
proposed dynamic scalable task scheduling (DSTS) para-
digm. The DSTS model includes a number of processes,
including container virtual resource scaling, task cluster-
ing, pre-virtual CPU allocation, and task load monitoring.

Proposed methodology
In this section, we describe the following process such
as containers virtual resources scaling, task clustering,
pre-virtual CPU allocation and task load monitoring
mechanism.

Container virtual resources scaling using MMCO algorithm
The goal of cloud service level agreements (SLAs) is for
service providers to have a common understanding of

priority areas, duties, warranties, and service providers.
It specifies the dimensions and duties of the parties par-
ticipating in the cloud setup, as well as the timeframe
for reporting or resolving system vulnerabilities. As
more firms depend on external suppliers for their vital
systems, programmes, and data, service level agree-
ments are becoming more important. The Cloud SLA
assures that cloud providers satisfy specific enterprise-
level criteria and provide clients a clear distribution.
If the provider fails to satisfy the requirements of the
guarantee, it may be subject to financial penalties such
as service time credit. The modified multi-swarm coy-
ote optimization (MMCO) method was used to scale
virtual resources in containers, improving customer
service level agreements. MMCO coyote population is
split into two groups Fd consists of Fq each coyote; the
number of coyotes in each pack is constant and consist-
ent across all packs in the first suggestion. As a result,
multiplying the algorithm’s total population gives algo-
rithm’s entire population Fd ∈ F∗ and Fq ∈ F∗.Further-
more, the social position of the people qth coyote from
the woods dth cram everything in ath the current time
has been specified.

where C demonstrates the number of elements that go
into making a choice, It also means that the coyote has
adapted to its environment FITd.a

q ∈ J  . Establishing the

(1)SOCd.a
q =

−→
b = (b1, b2, ..bh)

Fig. 1  Dynamic scalable task scheduling (DSTS) model

Page 6 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

social position of the people qth coyote from the woods
dth a compilation of pth the dimension is specified via a
vector.

where Uap and nap stands for, respectively, the bottom
and top limits of the range pth choice variable and jp is
a true random number created inside the range’s bounds
[0, 1] Using a probability distribution that is uniform in
nature.

To determine the fitness function of each coyote,
Fq × Fd Coyotes in the environment, depending their
socioeconomic situations

In the case of a minimization problem, the solution’s
Alpha dth crams everything in ath a split second in time

MMCO integrates all of the coyote’s information and
calculates the cultural propensity of each pack:

where ZD, the social standing of all coyotes in the region
is indicated by the letter A. dth in a hurry Ath p in the
price range at the given point in time [1, C]. At the same
time, the Alpha has an effect on coyotes (δ1) and by the
other coyotes in the pack (δ2),

The alpha δ1 Influence distinguishes a coyote from the
rest of the pack in terms of culture, Qj1, to the coyote
leader, whereas the pack’s clout δ2, shows a cultural dis-
tinction from a random coyote Qj2, to the cultural ten-
dencies of the pack. In MMCO algorithm, during the
initialization of the method, the swarm, also known as
stands, is randomly seeded to the search space.

where, as. p represents sth a hive of activity pth dimension,
Up and Xp are the bottom and top edges of the solution
space, respectively, and s, p is a range of uniformly gener-
ated random numbers [0, 1].

(2)SOC
q.a
d.p = Ua+ jp.

(

nap − Uap
)

(3)FITd.t
q = m SOCd.a

q

(4)
Alphad.A =

{

SOC\d.A
q

∣

∣

∣
argq={1,2....fd}min l

(

SOCd.A
q

)}

(5)Culd.Ap =











zd.A(FT+1)
2 .i

Fd is odd

zd.AFt
2
.i
+zd.A�

Ft
2
+1

�

.p

2 .otherwise

(6)δ1 = Alphad.A − SOCd.A
qj1

(7)δ2 = Cultd.A − SOCd.A
qj2

(8)as.p = Up + js.p ×
(

Xp − Up

)

To generate Multi swarm from this point, two different
equations may be used.

where, sindices must not be identical and α factor of scal-
ability. The equation used to update the dimension of a
swarm that will be formed for a Swarm is an important
part of the process. The working function of the pro-
cess of container virtual resources scaling is given in
Algorithm 1.

Algorithm 1  Container virtual resources scaling using MMCO algorithm

Task clustering using modified pigeon‑inspired
optimization (MPIO) algorithm
Clustering is a procedure that divides tasks into different
categories depending on increasing application demand,
such as load balancing clusters, high availability clusters,
and compute clusters. The primary emphasis of load
balancing clusters is resource use on the host system,
particularly the virtual machine. These clusters are uti-
lised to balance constant and dynamic loads, as well as
to move the application from one cloud provider to the
next. The second kind is fault-tolerant high-availability
clusters that are built for tip failure. For task cluster-
ing, we used a modified pigeon-inspired optimization
(MPIO) algorithm. The activation function ties the infor-
mation about the concealed state of prior deadlines to
the item in the current chronology, and it provides it to
the entrance gate as follows:

where ES is recall gate. Xr is input at each time step s
and TS − 1 represent the previous time step’s hidden state

(9)T = arg min
{

l
(−→
a
)}

(10)KA.p = as.p + α ×
(

Tp − ao.p
)

(11)KA.p = as.p + α ×
(

as.p − ao.p
)

(12)Hr = υ

(

XrK
H + tr−1v

H + bH

)

Page 7 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

T − 1. Ze is the input layer’s heaviness and ve is recurring
heaviness of the concealed state. The be is the bias of the
input layer. The following are the equations for the two
tasks:

The hidden levels at which the sigmoid activation func-
tion is anticipated are determined by the output gate. To
create a create output, sends to the newly changed cell level
function and multiplies as follows.

The update gateway functions similarly to a forget-
me-not and LSTM input gateway. The weight is multi-
plied by the current input, and the weight is multiplied
by the level hidden at the prior time point. Using the
sigmoid function to find the values of one from zero
and one, the contributions of the two possibilities are
merged

where WS symbolize the gate for updating, the YS at a
given time step, the input vector s while cS − 1 is the earlier
output from preceding entities. The Ks is the mass of the
input layer, and uW is the repeated mass. The bs is the bias
of the input layer. The reset gate’s output is as follows:

The reset gate is employed in the new memory phone
to accumulate the in sequence of the preceding phase.
The network will be able to choose just relevant earlier
events in chronological sequence as a result of this. The
present memory contact is as follows:

Each pigeon has a specific scenario when it comes to
the optimization challenge.

(13)ir = υ

(

XrK
i + tr−1v

i + bi

)

(14)
∼

Es = tanh
(

XrZ
e + tr−1v

e + be
)

(15)Er = Er−1
∗Hr + ir

∗
∼

Es

(16)Zr = υ

(

XrX
Z + tr−1v

Z + bZ

)

(17)tr = Zr
∗ tanh (Er)

(18)Lr = υ

(

XrX
L + dr−1v

l + bl

)

(19)sr = υ

(

XrK
s + tr−1v

S + bS

)

(20)
∼

Er = tanh (XrK + v(sr�dr−1))

(21)dr = Lr�dr−1 + (1− Lr)�υ

(

∼

Er

)

+ bd

where c is the scope of the problem to be tackled1, 2… M,
M is the pigeons’ population; each pigeon has a velocity
that is stated as follows:

First, figure out where the dust is in the search region
and how fast it is moving. Then, as the number of repeti-
tions grows, so does the difficulty, the ui can be updated
by repeating the following steps

where S is the number of current iterations. Then the
next xi is calculated as follows

Algorithm 2  Task clustering using MPIO algorithm

As a result, the iteration position Mth can be updated by

where H is the present number of the iteration H = 1,
2. …HMax, is the amount of iterations in which the

(22)Xi = [xi1, xi2, . . . xic]

(23)ui = [Ui1,Ui2, . . .Uim]

(24)
ui(r) = ui(r − 1).e−sr + Rand.(XFBest − Xi(r − 1))

(25)xi(r) = xi(r − 1)+ ui(r)

(26)Xi(r) = Xi(r − 1) + Rand.
(

XCenter (r − 1) − Xi(r − 1)
)

(27)XCenter(r) =

m
∑

i=1

Xi(r).fitness(Xi(r))

mp

m
∑

i=1

fitness
(

(Xi(r))

(28)mq(r) = ceil

(

mp(r − 1)

2

)

Page 8 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

signpost operator is active. The meaning of fitness is to
be optimized:

The pigeon’s position will be close to the center point
after each iteration which reaches the end RMax. Algo-
rithm 2 describes the operation of the task clustering pro-
cess utilising the MPIO algorithm.

Pre‑virtual CPU allocation using FARNN technique
In cloud computing, the latest virtual processor planning
techniques are essential to hide physical resources from
running programs and reduce performance during virtu-
alization. However, different QoS requirements for cloud
applications make it difficult to evaluate and predict the
behavior of virtual processors. Based on the evaluation
process, a specific planning plan regulates virtual machine
priorities when processing I/O requirements for equita-
ble distribution. Our program evaluates the CPU inten-
sity and I/O intensity of virtual machines, making them
very effective in a wide range of tasks. Here we applied fast
adaptive feedback recurrent neural network (FARNN) for
pre-virtual CPU allocation phase to ensure the priority
based scheduling.

The FARNN methodology is a set of computing tech-
niques that use model and method learning to anticipate
computer effects by simulating the human brain’s problem-
atic-answering process. The three network layers of a nor-
mal FARNN approach are the input film, hidden film, and
output film. For arrest forecast systems, the input film typi-
cally contains the current time interval’s recorded MAC
address. The following is a format for the MAC address
input vector at time T:

At the current time, the all MAC address collection
is denoted as Y(T). T stands for the overall quantity of
MAC addresses in use at any one period. The jth Mac
address detection is represented as yj respectively. The
input and network weights are used to compute the hid-
den layer neutrons.

Output film associates the results of the Hidden film
and converts them.

(29)fitness
(

Xj(r)
)

= HMax

(

Xj(r)
)

(30)fitness(Xi(r)) =
1

HMin(Xi(r))+ ε

(31)Y (T) =
{

y1, y2, , yj , . . . , yl
}

(32)h(T) = Zt
1
∗
Y (T)+ a

(33)
X(T) = f

(

Zt
2
∗
h(T)

)

= f
(

Zt
2
∗
(

Zt
1
∗
Y (T)+ a

))

The hidden layer output is denoted as h(T) and the
output layer output is referred as X(T) respectively.
From the Input to Hidden film the weight is denoted
as Zt

1 and from the Hidden film to the Output film is
stated as Zt

2 respectively. The activation function is
indicated as f(.) and the random bias is denoted as an in
the output layer. The Feature film is initially combined
amongst the Input film and the Hidden film in the rapid
adaptive to determine the transfer prospects of one
MAC address. Because the present occupancy state is
reliant on the past occupancy status, the transfer pos-
sibility and transfer possibility matrix may be utilized
to measure those type of methods. The transfer matrix
may be stated as follows, assuming that an occupant’s
location in a place is either “in” or “out.”

The transition probability matrix of one load is denoted
as tpmyK. In the transfer matrix, yj−0

K and yj−j
K indicate the

noticed probability that single inhabitant whose position
is “in” at the present period in any case be “out” and “in”
at the following period, correspondingly, at the follow-
ing period y0−0

K and y0−j
K signify the noticed possibility

that one inhabitant whose position is “out” at the present
period intermission would be “out” and “in” in the next
period intermission. The possibility might be computed
using Bayesian models and the observed conditional
probability. For example

The one MAC address occupied probability is

where M1 − 1 is the recurrence in which the possession
grade changed from “in” to “in” and M1 − 0 is the frequen-
cies in which the possession grade changed from “in” to
“out” respectively. Similarly, M0 − 0 and M0 − 1 address the
frequencies in which the possession grade changed from
“out” to “out” and from “out” to “in” individually. As the
estimated frequency changes, the preventative educa-
tion database will be automatically updated. The trans-
fer probability will be adjusted at the next estimate as
the training database is refreshed. Because each MAC
address in the load is given a probability, each MAC
address may be represented as follows:

(34)tpm

∣

∣

∣

∣

∣

yK =

[

y
j−0
K y

j−j
K

y0−0
K y

0−j
K

]

(35)
y
j−j
K = p

(

state observed = j
∣

∣state observed = j
)

(36)y
j−j
K =

∑

M1−1
∑

M1−1 +
∑

M1−0

(37)y0−0
K =

∑

M0−0
∑

M0−0 +
∑

M0−1

Page 9 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

Update the input vector in the following,

After that, the feature layer may be structured as
follows:

The length of time window is ΔT and at time T the vec-
tor of the Feature layer is f(T). Assuming the amount of
MAC reports in the time window is K, then

At regular intervals, the environment layer retains
the hidden layer feedback signal, acting as a short-term
memory to stress professional dependency. The rear
cover layer’s output may be structured as follows:

Algorithm 3  Pre-virtual CPU allocation using FARNN technique

(38)yK =

{

ymac
K , y

0−j
K , y

j−j
K

}

(39)
Y (T) =

{

ymac
1 , y

0−j
1 , y

j−j
1 , ymac

2 , y
0−j
2 , y

j−j
2 , . . . ymac

K , y
0−j
K , y

j−j
K

}

(40)
f (T) = {Y (T),Y (T − 1),Y (T − 2),Y (T −�T)}

(41)
f (T) =

{

ymac
1 , y

0−j
1 , y

j−j
1 , ymac

2 , y
0−j
2 , y

j−j
2 , . . . ymac

K , y
0−j
K , y

j−j
K

}

(42)h(T) = g
(

ω1D(T − 1)+ ω2
(

f (T)
)

)

The output of the context layer is

where h(T) is referred as the output vector of the Hid-
den layer at time interval T, and D is the output vector
of Context layer. ω1 is stated as the joining mass from the
Context layer to the Hidden layer, and ω2 is the joining
mass from the Feature layer to the Hidden layer. Α is the
self-connected comment gain factor. G (•) represents the
Hidden layer’s activation function. The mode of activa-
tion has been set to

The following is an example of a signal change from
the Hidden film to the Output film:

where is the output variable at period T, which in this
case is the expected possession. ω3 is the joining mass
from the Hidden layer to the Output layer. The following
is the cost function for updating and learning connection
weights:

c (t) is the actual occupancy output, and M is the size of
training time samples. Algorithm 3 describes the process
of pre-virtual CPU allocation.

Task load monitoring using DCNN method
There are five steps to the job load monitoring func-
tion: Data collecting and data filtering are the first two
steps in the data collection process. 3) data gather-
ing 4) examination of data 5) Issue a warning and file
a complaint. Processing time, CPU speed from CPU
probe, memory use, memory retrieval delay, power
consumption, power consumption from power analy-
sis, frequency, latency, and delay are all examples of
information or quantity that the monitoring system
should gather through various inquiries. Consider
essential features of data gathering, such as structure,
tactics, updating approaches, and kinds, to classify
it. We employ a deep convolutional neural network
(DCNN) to measure job load in this article. In DCNN,
the scroll layer contains numerous filters that corre-
spond to the intriguing local forms. The result is for-
warded to a non-linear implementation function to

(43)D(T − 1) = αD(T − 2)+ h(T − 1)

(44)g(y) =
1

1+ E−y

(45)
x(T) = ω3h(T) = ω3∗g

(

ω1D(T − 1)+ ω2f (T)

)

(46)e =

M
∑

T−1

[x(T)− c(T)]2

Page 10 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

generate a functional map. Also adjust the functional
map that was constructed to reduce the calculated
values by changing the properties. Stacking the scroll
layers at the DCNN’s front end separates the local
attributes from the source data at first, and then gradu-
ally adds volume as the next abstract layer is provided.
A well-trained layer produces a new representation of
the original form that can be classified most success-
fully. For this purpose, the spiral layer is also called the
functional sample layer. An assortment with several
fully connected layers is attached at the end of the coil
layer. For the training set samples,

Each sample has a feature vector y(j) and a label x(j)
to go with it. By introducing the loss function, we may
obtain the error. As demonstrated in following equa-
tion, the loss function has an overall error and a time
order.

Here, z represents the weight and ‘a’ denotes the bias
value respectively. Also, the size of the batch is repre-
sented as m. The hyper parameter λ error regulates and
controls error values. The dissimilarity amongst the cre-
ated assessment and the real assessment is measured in
square metres. It’s worded like this:

When calculating two gradients, the coefficient 1/2 is
a normalization group that cancels the coefficient. Fur-
ther derivatives can be simplified without causing side
effects as a result of this. Also can modify the weight
and offset to reduce losses depending on the look of the
slope.

In the neuron, the input is denoted as w; the acti-
vation function is represented as σ; the change in the
weight is referred as Δω and the variation of the offset
is stated as Δa respectively.

(47)n =

{(

y(j), x(j)
)}

, j = 1, 2, , n

(48)I(z, a) ≈
1

m

m
∑

j=1

k
(

H{z,a}

(

y(j), x(j)
))

+ �

∑

j,i

z2j,i

(49)D =
1

2M

∑

y

∥

∥x(y)− b(y)
∥

∥

2

(50)�ω =
(

b(y)− x(y)
)

σ ’(w)y

(51)�a =
(

b(y)− x(y)
)

σ ’(w)

(52)ω(m+1) = ω(m) −
η

M

∗

�ω

The learning rate is represented as η; the mth iteration
weight and offset are denoted as ω(m) and a(m) respec-
tively. The total number of loads is represented as M
respectively. In Algorithm 4, we describe the work-
ing function of the task load monitoring using DCNN
method.

Algorithm 4  Task load monitoring using DCNN method

Simulation results and analysis
In this part, we develop experimentations to test and
assess the proposed dynamic scalable task schedul-
ing (DSTS) model, and the simulation results are
associated to current state-of-the-art models includ-
ing ADATSA, LAEAS, PSOS, and the K8S planning
machine.

•	 To overcome the repeating scheduling issue, a self-
accommodating task planning algorithm (ADATSA)
is used [33]. The approach reduces the reliance of
existing vibrant planning strategies on container
cloud architecture and improves the connection
between jobs and their runtime environments.

•	 In the cloud system, the Learning automata based
energy-aware scheduling (LAEAS) algorithm [37] is
employed for real-time job planning.

•	 In a container cloud context, the performance-based
service oriented scheduling (PSOS) [38] has been
utilised to handle planning problems such as average
latency of service instances, resource consumption,
and balancing.

(53)a(m+1) = a(m) −
η

M

∗

�a

Page 11 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

•	 Unlike Borg and Omega, which were built as com-
pletely Google-internal systems, the Kubernetes
(K8S) scheduling engine [39] is open source.

Dataset description
Kubernetes (v1.16.2) was used to create an experimental
setup on 53 servers with the similar specs as the investi-
gational stage, comprising 3, 50 master and slave nodes.
Furthermore, we utilised Python 3.7 as the major program-
ming language for quality analysis implementation, with
Anaconda Navigator integration and spyder and Jupyter as
execution environments. The number of tasks in this simu-
lation has been separated into five categories: task 1, task 2,
task 3, task 4, and task 5. In job 1, we may use static sched-
uling with 128core and 64core CPU oriented resources as
master and slave, respectively. In task 2, we may use mem-
ory-oriented resources master and slave of 256GB and
128GB, respectively, to create dynamic scheduling. In task
3, we may use time-based static scheduling with 1000GB
master and slave disc oriented resources, respectively.
Task 4 allows us to configure time-based dynamic sched-
uling with bandwidth-oriented master and slave resources
of 10Gbps and 10Gbps, respectively. With the resource
non-oriented master and slave as 3 and 50, we may exam-
ine test quality in job 5. Where resource non-oriented apps
are ones in which the application’s resource needs are com-
posed and there is no partiality for resources. Table 2 sum-
marises the job partitioning and resource requirements.
We employed recurrent distributions to mimic large-scale
uses distribution due to a shortage of apps. The experiment
began with a total of 100 applications, including 20 for each
category of application. Table 3 describes the super-param-
eter settings of proposed optimization algorithm.

Performance evaluation metrics
In this section, the simulation results of proposed DSTS
classic is associated with the existing state-of-art mod-
els such as ADATSA, LAEAS, PSOS and K8S planning
engine in terms of different service quality evaluation
metrics are resource imbalance degree (DId), resource
residual degree (DRd), response time (RT) and throughput
(TH). The particulars of appropriate metrics are defined
as proceeds:

(54)DId =

N
∑

i=1

Lr(αi)

N

(55)DRd =

N
∑

i=1

Sr(βi)

N

where Lr(αi) and Sr(βi) represents node resource imbal-
ance degree (ref. eqn [18].) and node resource residual
degree (ref. eqn [19].) respectively for N number of node
resources. The response delay of web application repre-
sents as WSapp and Tend, Tstart denotes the start and end
time of the test respectively.

Comparative analysis
Result comparison of Task‑1
The influence of tasks on static scheduling performance
of our new DSTS model is compared to that of the cur-
rent ADATSA, LAEAS, PSOS, and K8S models in this
scenario. The proposed and current task scheduling
models are compared in terms of resource imbalance
degree (DId) in Fig. 2. We can see from this graph that
the DSTS model of static scheduling outperforms the
ADATSA, LAEAS, PSOS, and K8S models. The sug-
gested DSTS model has a resource imbalance degree
(DId) of 12.698%, 10.000%, 7.895%, and 6.173%, respec-
tively, lower than the current ADATSA, LAEAS, PSOS,
and K8S models. Figure 3 shows the comparative analysis

(56)RT =
1

Napp

Napp
∑

j=1

RT WSapp

(57)TH =
Nreq WSapp

Tend WSapp − Tstart WSapp

Table 2  Dataset descriptions

Tasks Scheduling Resources Node
resources

Master Slave

1 Static CPU oriented (core) 128 64

2 Dynamic Memory oriented (GB) 256 128

3 Static-time Disk oriented (GB) 1000 1000

4 Dynamic-time Bandwidth oriented (Gbps) 10 10

5 QoS evaluation Resource non-oriented 3 50

Table 3  Optimization algorithm super-parameter settings

Parameters Value

Population size 80

Crossover probability 0.8

Mutation probability 0.2

Maximum number of generation 200

Swarm size 80

Maximum number of iteration 200

Page 12 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

of resource residual degree (DRd) for the proposed and
existing task scheduling models. We can see from this
graph that the DSTS model of static scheduling outper-
forms the ADATSA, LAEAS, PSOS, and K8S models.
The resource residual degree (DRd) of proposed DSTS
model is 10.280%, 8.155%, 6.426% and 4.695% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively.

Result comparison of Task‑2
The influence of tasks on the dynamic scheduling presen-
tation of our suggested DSTS model is associated to that
of the current ADATSA, LAEAS, PSOS, and K8S models
in this scenario. Figure 4 shows the comparative analy-
sis of resource imbalance degree (DId) for the proposed
and existing task scheduling models. We can see from
this graph that the DSTS dynamic scheduling model out-
performs the ADATSA, LAEAS, PSOS, and K8S models.

The resource imbalance degree (DId) of proposed DSTS
model is 15.275%, 9.285%, 8.590% and 6.699% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively. Figure 5 shows the comparative analysis
of resource residual degree (DRd) for the proposed and
existing task scheduling models. We can see from this
graph that the DSTS model of dynamic scheduling out-
performs the ADATSA, LAEAS, PSOS, and K8S models.
The resource residual degree (DRd) of proposed DSTS
model is 11.710%, 8.555%, 6.740% and 5.462% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively.

Result comparison of Task‑3
In this scenario, the influence of tasks on our proposed
DSTS model’s time-based static scheduling performance
is compared to the current ADATSA, LAEAS, PSOS, and
K8S models. Figure 6 shows the comparative analysis of

Fig. 2  Comparative analysis of resource imbalance degree (DId) (Task-1)

Fig. 3  Comparative analysis of resource residual degree (DRd) (Task-1)

Page 13 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

resource imbalance degree (DId) with respect to time for
the proposed and existing task scheduling models. We
can see from this graph that the DSTS model of static
scheduling outperforms the ADATSA, LAEAS, PSOS,
and K8S models. The resource imbalance degree (DId) of
proposed DSTS model is 15.146%, 15.275%, 9.285% and
8.590% lower than the existing ADATSA, LAEAS, PSOS
and K8S models respectively. Figure 7 shows the com-
parative analysis of resource residual degree (DRd) with
respect to time for the proposed and existing task sched-
uling models. We can see from this graph that the DSTS
model of static scheduling outperforms the ADATSA,
LAEAS, PSOS, and K8S models in terms of performance.
The resource residual degree (DRd) of proposed DSTS
model is 6.796%, 11.710%, 8.555% and 6.740% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively.

Result comparison of Task‑4
In this scenario, the influence of tasks on our proposed
DSTS model’s time-based dynamic scheduling perfor-
mance is compared to the current ADATSA, LAEAS,
PSOS, and K8S models. Figure 8 shows the comparative
analysis of resource imbalance degree (DId) with respect
to time for the proposed and existing task scheduling
models. We can see from this graph that the DSTS model
of static scheduling outperforms the ADATSA, LAEAS,
PSOS, and K8S models. The resource imbalance degree
(DId) of proposed DSTS model is 13.763%, 15.146%,
12.878% and 11.781% lower than the existing ADATSA,
LAEAS, PSOS and K8S models respectively. Figure 9
shows the comparative analysis of resource residual
degree (DRd) with respect to time for the proposed and
existing task scheduling models. We can see from this
graph that the DSTS model of static scheduling outper-
forms the ADATSA, LAEAS, PSOS, and K8S models.

Fig. 4  Comparative analysis of resource imbalance degree (DId) (Task-2)

Fig. 5  Comparative analysis of resource residual degree (DRd) (Task-2)

Page 14 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

The resource residual degree (DRd) of proposed DSTS
model is 6.703%, 6.796%, 11.710% and 8.555% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively.

Result comparison of Task‑5
In this scenario, the effect of our proposed DSTS model’s
quality validation is compared to the current ADATSA,
LAEAS, PSOS, and K8S models. Figure 10 shows the
comparative analysis of resource imbalance degree (DId)
with respect to time for the proposed and existing task
scheduling models. We can see from this graph that
the DSTS model of static scheduling outperforms the
ADATSA, LAEAS, PSOS, and K8S models. The resource
imbalance degree (DId) of proposed DSTS model is
13.965%, 13.763%, 15.146% and 12.878% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively. Figure 11 shows the comparative analysis

of resource residual degree (DRd) with respect to time
for the proposed and existing task scheduling mod-
els. We can see from this graph that the DSTS model of
static scheduling outperforms the ADATSA, LAEAS,
PSOS, and K8S models in terms of performance. The
resource residual degree (DRd) of proposed DSTS model
is 13.445%, 6.703%, 6.796% and 11.710% lower than
the existing ADATSA, LAEAS, PSOS and K8S models
respectively.

Table 4 describes the performance comparison of pro-
posed and existing task scheduling in terms of response
time (RT) and throughput (TH) with varying simulation
time. The average response time (RT) of proposed DSTS
model is 25.448%, 32.616%, 37.814% and 40.502% higher
than the existing ADATSA, LAEAS, PSOS and K8S mod-
els respectively. Figure 12 gives the graphical representa-
tion of proposed and existing task scheduling models.
The average throughput (TH) of proposed DSTS model is

Fig. 6  Comparative analysis of resource imbalance degree (DId) with time (Task-3)

Fig. 7  Comparative analysis of resource residual degree (DRd) with time (Task-3)

Page 15 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

Fig. 8  Comparative analysis of resource imbalance degree (DId) with time (Task-4)

Fig. 9  Comparative analysis of resource residual degree (DRd) with time (Task-4)

Fig. 10  Comparative analysis of resource imbalance degree (DId) with time (Task-5)

Page 16 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

33.168%, 38.119%, 44.059% and 49.010% higher than the
existing ADATSA, LAEAS, PSOS and K8S models respec-
tively. Figure 13 gives graphical representation of proposed
and existing task scheduling models. Figure 14 denotes the
runtime overhead of the proposed and existing task sched-
uling models. The plot clearly depicts average runtime
overhead of the proposed DSTS model is 12.356%, 15.09%,
18.367% and 21.578% lower than the existing ADATSA,
LAEAS, PSOS and K8S models respectively.

Case study
In the past, Kaplan used the Amazon Elastic Com-
pute cloud to host its applications. Working engineers
were required to manually update applications, and
on average there were four dedicated Amazon EC2
hosts. Rowan Drabo, head of Kaplan cloud operations,
said the application update would take hours to take
effect. Cost analysis shows that we spend more than $
500 per month on the Amazon Elastic Compute cloud.
After switching to micro-service-based architecture
with Amazon’s flexible container service and contain-
ers, Kaplan saved significant costs. “We currently have

more than 500 containers in production,” Drabo said.
We have reduced the number of Amazon Flexible Com-
pute cloud events by 70%, resulting in 40% cost savings
per application. Using our proposed Dynamic Scalable
Task Scheduler (DSTS) for automated container deliv-
ery, Kaplan allows you to reduce deployment time,
increase the frequency of updates and improve devel-
oper satisfaction.

Conclusion
For dynamic scalable task scheduling (DSTS) in a con-
tainer cloud context, we suggested a hybrid optimum
and deep learning approach. The succeeding are the
major influences made in this paper:

1.	 A modified multi-swarm coyote optimization
(MMCO) method for scaling virtual resources
in containers to improve customer service level
agreements.

2.	 A modified pigeon-inspired optimization (MPIO)
algorithm is for task clustering and fast adaptive

Fig. 11  Comparative analysis of resource residual degree (DRd) with time (Task-5)

Table 4  Comparative analysis of quality of service metrics

Models Response time (RT) (ms) Throughput (TH)

20 40 60 80 100 20 40 60 80 100

DSTS 600 580 560 550 500 150 180 210 220 250

ADATSA 500 480 400 380 320 120 130 135 140 150

LAEAS 480 400 380 320 300 100 120 130 135 140

PSOS 450 380 320 300 285 80 100 120 130 135

K8S 430 360 310 290 270 75 90 100 120 130

Page 17 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

Fig. 12  Comparative analysis of response time (RT) (Task-5)

Fig. 13  Comparative analysis of Throughput (TH) (Task-5)

Fig. 14  Comparative analysis of runtime overhead

Page 18 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33

feedback recurrent neural network (FARNN) for
pre-virtual CPU allocation to ensure priority based
scheduling.

3.	 Task load monitoring mechanism is designed
based on deep convolutional neural network
(DCNN) which achieves dynamic scheduling
based on priority.

After the recreation outcomes, we concluded that
the simulation results of projected DSTS model is
very effective compared to the existing task schedul-
ing models in terms of excellence of service metrics
are resource imbalance degree (DId), resource residual
degree (DRd), response time (RT) and throughput (TH).
In future, we extend our DSTS model which combine
with the optimization algorithm to optimize joint prob-
lems i.e. resource allocation and task scheduling in con-
tainer cloud environment.

Authors’ contributions
Mr. Saravanan Muniswamy has made substantial contributions to design
and in drafting the manuscript. Mr. Vignesh Radhakrishnan has made HIS
contributions in acquisition of data and interpretation of data. The author(s)
read and approved the final manuscript.

Funding
The authors declare that no funds, grants, or other support were received dur-
ing the preparation of this manuscript.

Declarations

Competing interests
The authors have no relevant financial or non-financial interests to disclose.

Received: 8 March 2022 Accepted: 26 July 2022

References
	1.	 Wang B, Qi Z, Ma R, Guan H, Vasilakos AV (2015) A survey on data center

networking for cloud computing. Comput Netw 91:528–547
	2.	 González-Martínez JA, Bote-Lorenzo ML, Gómez-Sánchez E, Cano-Parra

R (2015) Cloud computing and education: a state-of-the-art survey.
Comput Educ 80:132–151

	3.	 Khan AN, Kiah MM, Khan SU, Madani SA (2013) Towards secure mobile
cloud computing: a survey. Futur Gener Comput Syst 29(5):1278–1299

	4.	 Xie XM, Zhao YX (2013) Analysis on the risk of personal cloud comput-
ing based on the cloud industry chain. J China Univ Posts Telecommun
20:105–112

	5.	 Han Y, Luo X (2013) Hierarchical scheduling mechanisms for multilingual
information resources in cloud computing. AASRI Proc 5:268–273

	6.	 Bose R, Luo XR, Liu Y (2013) The roles of security and trust: comparing
cloud computing and banking. Procedia Soc Behav Sci 73:30–34

	7.	 Elamir AM, Jailani N, Bakar MA (2013) Framework and architecture for
programming education environment as a cloud computing service.
Proc Technol 11:1299–1308

	8.	 Tsertou A, Amditis A, Latsa E, Kanellopoulos I, Kotras M (2016) Dynamic
and synchromodal container consolidation: the cloud computing ena-
bler. Transp Res Proc 14:2805–2813

	9.	 Kong W, Lei Y, Ma J (2016) Virtual machine resource scheduling
algorithm for cloud computing based on auction mechanism. Optik
127(12):5099–5104

	10.	 Moschakis IA, Karatza HD (2015) A meta-heuristic optimization approach
to the scheduling of bag-of-tasks applications on heterogeneous clouds
with multi-level arrivals and critical jobs. Simul Model Pract Theory
57:1–25

	11.	 Singh S, Chana I (2015) QRSF: QoS-aware resource scheduling framework
in cloud computing. J Supercomput 71(1):241–292

	12.	 Lin J, Zha L, Xu Z (2013) Consolidated cluster systems for data centers in
the cloud age: a survey and analysis. Front Comput Sci 7(1):1–19

	13.	 Kertész A, Dombi JD, Benyi A (2016) A pliant-based virtual machine
scheduling solution to improve the energy efficiency of iaas clouds. J
Grid Comput 14(1):41–53

	14.	 Musa IK, Walker SD, Owen AM, Harrison AP (2014) Self-service infrastruc-
ture container for data intensive application. J Cloud Comput 3(1):1–21

	15.	 Choe R, Cho H, Park T, Ryu KR (2012) Queue-based local scheduling and
global coordination for real-time operation control in a container termi-
nal. J Intell Manuf 23(6):2179–2192

	16.	 Nam H, Lee T (2013) A scheduling problem for a novel container trans-
port system: a case of mobile harbor operation schedule. Flex Serv Manuf
J 25(4):576–608

	17.	 Bian Z, Li N, Li XJ, Jin ZH (2014) Operations scheduling for rail mounted
gantry cranes in a container terminal yard. J Shanghai Jiaotong Univ Sci
19(3):337–345

	18.	 Zhang R, Yun WY, Kopfer H (2010) Heuristic-based truck scheduling for
inland container transportation. OR Spectr 32(3):787–808

	19.	 Briskorn D, Fliedner M (2012) Packing chained items in aligned bins with
applications to container transshipment and project scheduling. Mathem
Methods Oper Res 75(3):305–326

	20.	 Briskorn D, Angeloudis P (2016) Scheduling co-operating stacking cranes
with predetermined container sequences. Discret Appl Math 201:70–85

	21.	 Zhao D, Mohamed M, Ludwig H (2018) Locality-aware scheduling for
containers in cloud computing. IEEE Trans Cloud Comput 8(2):635–646

	22.	 Liu B, Li P, Lin W, Shu N, Li Y, Chang V (2018) A new container schedul-
ing algorithm based on multi-objective optimization. Soft Comput
22(23):7741–7752

	23.	 Lin M, Xi J, Bai W, Wu J (2019) Ant colony algorithm for multi-objective
optimization of container-based microservice scheduling in cloud. IEEE
Access 7:83088–83100

	24.	 Adhikari M, Srirama SN (2019) Multi-objective accelerated particle swarm
optimization with a container-based scheduling for Internet-of-Things in
cloud environment. J Netw Comput Appl 137:35–61

	25.	 Ranjan R, Thakur IS, Aujla GS, Kumar N, Zomaya AY (2020) Energy-efficient
workflow scheduling using container-based virtualization in software-
defined data centers. IEEE Trans Industr Inform 16(12):7646–7657

	26.	 Chen Q, Oh J, Kim S, Kim Y (2020) Design of an adaptive GPU shar-
ing and scheduling scheme in container-based cluster. Clust Comput
23(3):2179–2191

	27.	 Hu Y, Zhou H, de Laat C, Zhao Z (2020) Concurrent container scheduling
on heterogeneous clusters with multi-resource constraints. Futur Gener
Comput Syst 102:562–573

	28.	 Rajasekar P, Palanichamy Y (2020) Scheduling multiple scientific work-
flows using containers on IaaS cloud. 7621–7636 (2021) J Ambient Intell
Humaniz Comput 1–16

	29.	 Menouer T (2021) KCSS: Kubernetes container scheduling strategy. J
Supercomput 77(5):4267–4293

	30.	 Li C, Zhang Y, Luo Y (2021) Neighborhood search-based job scheduling
for IoT big data real-time processing in distributed edge-cloud comput-
ing environment. J Supercomput 77:1853–1878

	31.	 Ahmad I, AlFailakawi MG, AlMutawa A, Alsalman L (2021) Container
scheduling techniques: a survey and assessment. Journal of King Saud
University-Computer and Information Sciences 34(2022):3934-3947

	32.	 Rausch T, Rashed A, Dustdar S (2021) Optimized container scheduling
for data-intensive serverless edge computing. Futur Gener Comput Syst
114:259–271

	33.	 Zhu L, Huang K, Hu Y, Tai X (2021) A self-adapting task scheduling
algorithm for container cloud using learning automata. IEEE Access
9:81236–81252

	34.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I et al (2010) A view of cloud computing.
Commun ACM 53(4):50–58

	35.	 Gawali MB, Shinde SK (2018) Task scheduling and resource allocation in
cloud computing using a heuristic approach. J Cloud Comp 7:4

Page 19 of 19Muniswamy and Vignesh ﻿Journal of Cloud Computing (2022) 11:33 	

	36.	 Gawali MB, Gawali SS (2021) Optimized skill knowledge transfer model
using hybrid Chicken Swarm plus Deer Hunting Optimization for human
to robot interaction. Knowl-Based Syst 220:106945

	37.	 Sahoo S, Sahoo B, Turuk AK (2018) An energy-efficient scheduling
framework for cloud using learning automata. In: 2018 9th International
Conference on Computing, Communication and Networking Technolo-
gies (ICCCNT). IEEE, Bangalore, India. pp 1–5

	38.	 Li H, Wang X, Gao S, Tong N (2020) A service performance aware schedul-
ing approach in containerized cloud. In: 2020 IEEE 3rd International
Conference on Computer and Communication Engineering Technology
(CCET). IEEE, Beijing, China. pp 194–198

	39.	 Burns B, Grant B, Oppenheimer D, Brewer E, Wilkes J (2016) Borg, omega,
and kubernetes. Commun ACM 59(5):50–57

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	DSTS: A hybrid optimal and deep learning for dynamic scalable task scheduling on container cloud environment
	Abstract
	Introduction
	Our contributions

	Related works
	Problem methodology and system design
	Problem statement
	System design of proposed methodology

	Proposed methodology
	Container virtual resources scaling using MMCO algorithm
	Task clustering using modified pigeon-inspired optimization (MPIO) algorithm
	Pre-virtual CPU allocation using FARNN technique
	Task load monitoring using DCNN method

	Simulation results and analysis
	Dataset description
	Performance evaluation metrics
	Comparative analysis
	Result comparison of Task-1
	Result comparison of Task-2
	Result comparison of Task-3
	Result comparison of Task-4
	Result comparison of Task-5

	Case study

	Conclusion
	References

