
Cao et al. Journal of Cloud Computing (2022) 11:34
https://doi.org/10.1186/s13677-022-00313-6

RESEARCH

Locality sensitive hashing‑aware fruit fly
optimization algorithm and its application
in edge server placement
Qian Cao1, Bo Liu1,2 and Ying Jin3* 

Abstract 

As is well known that the global optimization ability of the Fruit fly Optimization Algorithm (FOA)is weak because it is
easy to fall into local optimum. In this paper, a Fruit Fly Optimization Algorithm based on Locality Sensitive Hashing-
aware (LSHFOA)was proposed. The locality sensitive hashing mechanism to optimize the generation mechanism for
swarm population individuals was used, which can improve the individual diversity of the population. Meanwhile,
when the fruit fly population falls into the local optimum, the locality sensitive hashing mechanism was adopted to
change the population location, which is used for jumping out of local optimal limits. To verify the performance of
LSHFOA, it was compared with FOA and its improvement algorithms CFOA, and IFFO with 8 representative bench-
mark functions. A large number of experimental results showed that LSHFOA has a faster convergence speed and
higher precision of optimization for function optimization, especially in high-dimensional multi-peak functions. In
addition to the theoretical evaluation, we also evaluate its performance in a real-world scenario. Generally, an edge
computing environment, as an extension of cloud computing, can allow the users to access the network in a low-
latency manner. In this way, to capture the high-speed convergence advantage, this paper makes the first attempt to
tackle a classic research problem in the edge computing environment, i.e., the edge server placement problem. The
experimental results show that the new algorithm has an excellent application effect.

Keywords:  Fruit fly optimization algorithm, Locality sensitive hashing, Swarm intelligence algorithm, Global
optimization capacity, Edge server placement problem, Edge computing

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Edge computing [1–3], as an extension of cloud comput-
ing, has been widely-investigated to reduce the latency
of its users [4, 5]. However, it raises lot of research prob-
lems, where edge server placement problem [6, 7] is one
of the fundamental studies for the edge computing envi-
ronment. To achieve the low-latency goal, the swarm
intelligent algorithms, based on its high-convergence
speed, could be an efficient way. Recently, the fruit fly
optimization algorithm (FOA) is an intelligent optimiza-
tion algorithm based on the foraging characteristics of

fruit fly populations proposed by Wen chao Pan in 2012
[8]. This algorithm has been widely used in numerous
scientific and engineering fields with its advantages of
fast optimizing speed, simple operation, and few param-
eters, as well as the traditional intelligent optimization
algorithms such as PSO [9], GA [10], and ACO [11]. For
example, the literature [12] applied the FOA algorithm to
the field of service computing firstly, and the algorithm
was verified through a large number of experiments
that proved it can be used to solve the service combina-
tion optimization problem and was recognized by peers
[13]; the literature [14] proposed a multi-scale collabora-
tive variation-based fruit fly optimization algorithm by
improving the FOA algorithm and applied the algorithm
to function optimization; the literature [15] introduced

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: jiny@hfuu.edu.cn

3 School of Artifical Intelligence and Big Data, Hefei University, Hefei, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00313-6&domain=pdf

Page 2 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

the FOA algorithm into a neural network for parameter
optimization and conducting a feasibility study for this
scheme. In addition, FOA is also used in the field of edge
computing. In [16], a cache placement algorithm with
lower complexity is proposed by utilizing FOA.

However, the fruit fly optimization algorithm suffers
from the tendency to fall into local optima, the inability
to traverse the problem domain and poor stability and
so on [12, 14]. Literature [17] proposed that the original
fruit fly optimization algorithm cannot access the nega-
tive problem domain, i.e., the position of an individual
fruit fly cannot reach the negative domain, and therefore,
it cannot be applied to some problems. For example, it
cannot optimize for functions with a negative definition
domain. In the literature [14], it is concluded from the
theoretical analysis that the result of FOA depended on
the initial position of the population and the initial posi-
tion of the population is random, i.e., the stability of FOA
was poor and the global optimization capacity was weak.
Therefore, in order to solve these shortcomings of FOA,
the research for the FOA algorithm is divided into two
main aspects. On the one hand, it is necessary to reduce
the dependence of the fruit fly optimization algorithm
on the initial position of the population so as to improve
the performance of this algorithm. On the other hand,
dynamically adjusting the radius of population genera-
tion is useful to escape from the local optimum limita-
tion during the fruit fly population. Among them, the
literature [17] proposed a linear fruit fly optimization
algorithm LGMS-FOA by improving the FOA population
generation method to enhance the global optimization
capacity of FOA. However, this method generates popu-
lation individuals in an overly simple way and also suffers
from the shortcomings such as weak global optimization
capacity. To further remedy this drawback, a chaotic fruit
fly optimization algorithm is proposed in literature [18].
The stability and optimization capacity of the algorithm
are verified through extensive function tests based on the
linear generation of population individuals. In addition, a
fruit fly optimization algorithm with adaptive population
size is proposed in [19] to solve the function optimiza-
tion problem. In summary, although the fruit fly optimi-
zation algorithm has been widely used in many aspects,
such as communication resources allocation and sched-
uling, computation offloading and caching schemes in
mobile edge networks, it still has non-negligible short-
comings. In order to solve these shortcomings, some
improvement algorithms have been widely studied in
recent years. Although these improvement algorithms
could solve the shortcomings of FOA to a certain extent,
each improvement algorithm led to new shortcomings
at the same time, such as the weak generalizability due
to more parameters. In addition, many of the improved

algorithms tend to focus on solving a certain class of
problems, while neglecting other aspects of performance.
For example, traditional FOA tends to be more suit-
able for optimization problems with positive problem
domains and extreme value points close to the origin of
the problem [8, 9].

In order to solve the weakness of the global optimiza-
tion capacity of the fruit fly optimization algorithm from
other aspects and to improve the solution accuracy of
the fruit fly optimization algorithm in multi-polarity
problems, this paper proposed a fruit fly optimization
algorithm based on locality sensitive hashing, so that
the algorithm can be better applied in distributed envi-
ronment such as edge computing. The algorithm further
improved the ability of fruit fly optimization algorithm
to traverse the problem domain by introducing a local-
ity sensitive hashing mechanism, establishing a locality
sensitive hashing table of fruit fly population positions,
and then using the table to reduce the candidate points
of similar population positions. Thus, it can reduce the
dependence of fruit fly optimization algorithm on the
initial population positions and improve the global opti-
mization capacity of FOA. In order to verify the perfor-
mance of the algorithm in this paper, eight benchmark
functions, covering single-dimensional and multi-dimen-
sional, single-peak and multi-peak aspects, are selected
for detailed comparison with the classical FOA improve-
ment algorithms CFOA [18], IFFO [19].

This study detailed the implementation process of the
traditional fruit fly optimization algorithm and the back-
ground knowledge of locality sensitive hashing, Locality
sensitive hashing system and proposes algorithm were
introduced and were proved through a large number of
experiments to be efficient.

In the real-world scenario, edge computing is proposed
to extend the cloud computing to overcome its high-
latency difficulty issue [20–22]. Unline some AI tech-
niques [3, 21, 23], to achieve the low-latency objective,
the high-speed convergence of LSHFOA is most suitable
for the edge computing. To evaluate its performance in
the real-world scenario, a representative research prob-
lem in an edge computing environment has been inves-
tigated, i.e., edge server placement (ESP) problem [6, 7].
The edge server placement problem is a fundamental
study for the edge computing environment. It is vital
because without placing the edge servers properly, the
edge computing environment will suffer from various
kinds of challenges [24–26], such as network failures,
huge latency, etc. Thus, in this paper, we first propose an
improved Fruit fly optimization algorithm, namely LSH-
FOA. Then, we apply this new approach to solve the edge
server placement (ESP) problem in the edge computing
environment.

Page 3 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

The rest of this paper is organized as follows. Section 2
provided the background information of this manu-
script. Section 3 proposed the models of LSHESP and
LSHFOA-ESP and its pseudo-code. Section 4 described
the experimental implementation in detail and the results
is discussed in Section 5. Final, Section 6 concluded the
whole manuscript and pointed out the future directions.

Related Background
The key notations used in this paper are summarized in
Table 1.

Fruit fly optimization algorithm
FOA, as a population intelligence optimization method,
works by describing the problem on an n-dimensional
space as each fruit fly, and the position of the fruit fly rep-
resents a feasible solution to the problem. Furthermore, the
current position of each fruit fly is measured by the fitness
function, and the population position is changed by the
individual’s fitness. Then, a new population of fruit flies is
generated. In this way, the fruit fly population gradually
approaches the optimal solution to the problem. The spe-
cific implementation process is shown in Fig. 1.

The detailed optimizing process is as follows: Step 1: Ini-
tial population location

Step 2: Generating individuals of the population

Step 3: Calculate the individual fitness of the population

(1)
{

xaxis = rand(LR)
yaxis = rand(LR)

(2)
{

xi = xaxis + rand(V)

yi = yaxis + rand(V)

Step 4: Preservation of optimal Drosophila individuals

Step 5: Generate new population locations

Step 6: Repeat Step 2 - Step 5 until the iteration condi-
tions or accuracy requirements are met.

Where LR is the solving range, V is the population
range radius, Disti , Si , Fitness are the formulas for the
fitness function, [bestSmellbestindex] = max?(Smelli)
which presents the individual optimal fitness value and
individual position in the current population, Smellbest is
the global optimal fitness value, xaxis is the x coordinate
of the fruit fly population location, yaxis is the y coordi-
nate of the fruit fly population location.

Locality sensitive hashing
Hashing is an efficient method of data retrieval, mapping
data to a hash table through a hash function can achieve
a shift in search time from O(n) to O(1). Among them,
locality sensitive hashing can further map high-dimen-
sional massive data to approximate nearest neighbors
to a locality sensitive hashing table. Then, it can quickly
find similar data. There are basic ideas of locality sen-
sitive hashing. One is that two adjacent data in high-
dimensional data space will have a high probability to
remain adjacent after being mapped to low-dimensional
data space. The other is that two non-adjacent data will
also have a high probability to be low-dimensional space.
With this mapping, we can find the adjacent data points
in the low-dimensional data space and avoid high-dimen-
sional data space finding, which would be time-consum-
ing. A hash mapping with such a property is said to be
locality sensitive. Take Fig. 2 as an example, there are four
data blocks D1, D2, D3 and D4, where D1 and D2 are
similar or close to each other. The four data blocks can be
mapped into a locality sensitive hashing table by locality
sensitive hashing. The mapping usually results in D1 and
D2 being in the same or similar region, and then the gap
between D3 and D4 is further widened.

From Fig. 2, it can be seen that similar data are mapped
to similar regions through locality sensitive hashing oper-
ations. Further, through the analysis of FOA, it is easy to
know that FOA has a strong dependence on the initial

(3)
Disti = x2i + y2i

si = 1

Disti
Smelli = Fitness(Si)

(4)
{

[bestSmellbeseIndex] = max(Smelli)
Smellbest = max(bestSmell, Smellbest)

(5)
{

xaxis = xbestIndex
yaxis = ybestIndex

Table 1  Key Notations

Notation Description

xaxis the x-coordinate of the group location

yaxis the y-coordinate of the group location

xi the x-coordinate of the ith fruit fly

yi the y-coordinate of the ith fruit fly

V the radius of the fruit fly population

Disti the Euclidean distance between ith fruit fly and the optimal
solution

Smelli the Fitness of ith fruit fly to the optimal solution

S a set of edge servers

si edge server si , i ∈ {1, ..., n}
A accessibility matrix between edge servers and the users

ui user ui , i ∈ {1, ..., n}
U set of users

aj,i accessibility between ui and sj

Page 4 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

position of the population [12]. By adjusting the initial
location of the populations, it is beneficial to enhancing
the global optimization capacity of FOA. At the same
time, increasing the randomness of population posi-
tions or decreasing the similarity between population
positions, can further enhance the global optimization

capacity of FOA. The locality sensitive hashing operation
of a set of population positions can obtain similar popu-
lation positions quickly and effectively. Then the popula-
tion positions with larger gaps can be more conveniently
selected to enhance the global optimization capacity of
FOA.

Fig. 1  FOA flow chart

Fig. 2  Schematic diagram of locality sensitive hashing

Page 5 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

Edge Server Placement
For the ESP problem, edge servers are usually deployed on
the base stations or access points. Therefore, in each ESP
scenario, it usually includes n base stations B = {b1, ..., bn} ,
and m edge servers S = {s1, ..., sm} . The ESP problem aims
to place these m edge servers on those n base stations to
serve its most users U = {u1, ...,uc} . For each user uk ∈ U ,
it can access a set of base stations, which is denoted by ak ,i ,
where ak ,i = 1 indicates the user uk can access base station
bi , otherwise, ak ,i = 0 . Thus, the user-base station accessi-
bilities can be modelled as a matrix A.

Then, if an edge server has been placed on the base sta-
tion bi , denoted by pi = 1 , all its users can be served, i.e.,
∀uk ∈ U , ak ,i = 1 . Thus, the objective of the ESP problem
is to maximize the maximum number of served users,

Where
∑

bi∈B ak ,i · pi is used to calculate the served times
of uk by all edge servers. Then, min(

∑

bi∈B ak ,i · pi, 1) = 0
means that uk cannot be served by any edge servers, oth-
erwise, i.e., min(

∑

bi∈B ak ,i · pi, 1) = 1 indicates that uk
can be served.

Algorithm
Locality sensitive hashing mechanism based FOA
As seen from Section 1.2, the main idea of locality sensi-
tive hashing is that if two data blocks in a high- dimen-
sional space are close, the result of a locality sensitive
hashing of that data block has a high probability of
being similar. If two data blocks are farther apart, the
hash result will have a small probability to be the same.
Therefore, for the FOA algorithm, its core is to design the
locality sensitive hashing function h(x).

Given an n-dimensional problem F(x1, · · · , xn) with
problem domain x ∈ [Rmin,Rmax]n , given an existing
solution as X ′ = (x′

1
, · · · , x′n) , and any other solution is

X = (x1, · · · , xn) , then the problem F(x1, · · · , xn) relative
to the solution X ′ the locality sensitive hashing function
of is

where [value] denotes the integer part of the value,
En denotes the solution overhead of the problem
F(x1, · · · , xn) , and the physical meaning is the range of
each hashtable element. In short, the larger the value,

(6)A =







a1,1 · · · a1,n
.
.
.

. . .
.
.
.

an,1 · · · an,n







(7)O = max(
∑

uk∈U
min(

∑

bi∈B
ak ,i · pi, 1))

(8)h(X |X ′) = [

√

(x1 − x′
1
)2 + · · · + (xn − x′n)

2

En
]

the smaller the number of elements of the corresponding
hash table. Meanwhile, the smaller the value, the more
elements of the corresponding hash table. En is calculated
as follows.

Where ω denotes the accuracy of the solved problem. It is
used to control the range of each element of the hash table.
For example, if given a two-dimensional ( n = 2 ) problem
F(x1, x2) , its problem domain is x ∈ [0, 5]2 , xi ∈ [0, 5] ,
i = 1, 2 , then the solution range of the problem F(x1, x2)
is (0, 0), · · · , (5, 5) , if given the parameter ω = 5 , then
En =

√
50/5 , i.e., the range of elements in each sensitive

hash table is [[(
√
50/5) ∗ (j − 1)], [(

√
50/5) ∗ j]] , where

j denotes the jth elements in the sensitive hash table,
and if given the parameter ω = 10 , then En =

√
50/10 ,

similarly, the range of elements in each sensitive hash
table is [[(

√
50/10) ∗ j], [(

√
50/10) ∗ (j + 1)]] . Then,

assuming that the current solution (i.e., for the popu-
lation location in the FOA) is X = (0, 0) and the tar-
get solution (i.e., the population location to be selected
in the FOA) is X1 = (0, 1) , X2 = (1, 0) , X3 = (1, 1) ,
X4 = (0, 2) , X5 = (2, 0) , X6 = (2, 2) , then the sensitive
hash value corresponding to the target solution(ω = 5 )
is h(X1|X) = [5/

√
50] = 0 , h(X2|X) = [5/

√
50] = 0 ,

h(X3|X) = [10/
√
50] = 1 , h(X4|X) = [20/

√
50] = 2 ,

h(X5|X) = [20/
√
50] = 2 , h(X6|X) = [40/

√
50] = 5 ,

Thus, the target solutions X1 and X2 are mapped into the
first element of the locality sensitive hashing table, X3 is
mapped into the second element of the locality sensitive
hashing table, the target solutions X4 and X5 are mapped
into the third element of the locality sensitive hashing
table, and the target solution X6 is mapped into the sixth
element of the locality sensitive hashing table. The graph-
ical representation is shown in the following figure.

From Fig. 3, the locality sensitive hashing result
of the target solution (the population location to be
selected in the FOA) in this example is divided into
four sensitive hashing table elements, i.e., elements
j ∈ J = {1, 2, 3, 6} . Then, how to migrate the FOA popu-
lation location is another key problem. In this study, the
roulette technique for the target solution selection and
migrates the selected target solution were used as the
new FOA population location.

Roulette as a commonly used selection method is also
known as the proportional selection method. The basic idea
of Roulette is that the probability of each population loca-
tion point being selected is related to its corresponding edge
weight value, which is performed in the following steps.

Step1: First determine the selection probability of each
locally sensitive hash table element.

(9)En =

√

(R1
max − R1

min)
2 + · · · + (Rn

max − Rn
min)

2

ω

Page 6 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

Step2: Calculate the sum of the weights between all FOA
population location points to be selected and the current
fruit fly population location Xi :

∑

j∈J αj
Step 3: Calculate the probability of each FOA popula-

tion location point to be selected.

Step 4: Calculate the cumulative probability of each FOA
population location point to be selected.

Step 5: Generate a random number θ with uniform distri-
bution in the interval [0, 1].

Step5: If θ ≤ p′k and p(k − 1)′ ≤ θ , then element k of
the locality sensitive hashing table is selected, and then,
any FOA to be selected population location Xi in element
k is randomly selected.

At this point, the new FOA population location has
been selected.

By means of roulette, the weight relationship between
population location points can be mapped to the selec-
tion probability, and then random values are used for
population location selection. This roulette selection
method can, on the one hand, improve the selection
probability of dominant population location points, i.e.,
satisfy the principle of optimization selection; on the

(10)αj = ej , j ∈ J

(11)pk =
αk

∑

j∈J αj

(12)p′k =
∑k

j=1 pj
∑

j∈J αj

other hand, roulette also has a chance to select other
slightly inferior population location points, and this
operation helps to enhance the diversity of fruit fly popu-
lation locations and further ensures the global optimiza-
tion capacity of the fruit fly optimization algorithm.

LSHFOA
In the improved fruit fly optimization algorithm (LSH-
FOA) proposed in this paper, locality sensitive hashing
tables are used for the selection of Drosophila popula-
tion locations, i.e., when the fruit fly optimization algo-
rithm falls into a local optimum (usually measured
by multiple population location invariance), the rou-
lette mechanism is used for population location selec-
tion (according to locality sensitive hashing table). the
pseudo-code representation of LSHFOA is shown in
Algorithm 1 [9, 12, 13].

Algorithm 1 shows that the time complexity of the
algorithm is O(m1m2) , i.e., the time consumption of the
algorithm is related to the population size m1 and the
number of iterations m2 . Therefore, in order to reduce
the time-consuming of the algorithm, the population
size in the experiments of this paper is 50 and the num-
ber of iterations is 300. In order to cover more initial
location points, the size of the initial population location
set V is 50, i.e., the fruit fly population location locality
sensitive hashing table contains a total of 50 points [12,
15]. According to the execution flow of Algorithm 1, the
flow chart of LSHFOA is shown in Fig. 4.

Where V in Fig. 4 denotes a set of fruit fly population
location points, i.e., each vertex in the locality sensitive
hashing table of fruit fly population location, Xi denotes
any point of population location points in V, Pop denotes
the set of population individuals generated according to
the population location Xi with a scale of 50, and Fitness
denotes the fitness value of each fruit fly individual on
the benchmark function, i.e., the Step6- Step7 denotes
the new population location selection scheme, i.e., the
locality sensitive hashing table model with roulette wheel
selection method [10].

LSHFOA‑ESP
In order to solve the ESP problem [6, 7] by LSHFOA, we
employ a new perspective to model the ESP problem.

Fig. 3  Locality sensitive hashing table

Page 7 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

Definition 1  Coding of Fruit Flies: Given a set of base
stations B with a set of users and a set of edge server S,
the coding scheme of each individual fruit fly dl is a tuple
with m elements, denoted as dl = [d1l , · · · , d

m
l] , where

dml ∈ 0
⋃

i|bi ∈ B , i.e., djl is sj ’s placement decision with a
value in 0

⋃

i|bi ∈ B.

Figure 5 provides an example of such a coding scheme
for a fruit fly dl.

As shown in Fig. 5, each fruit fly is coded by m ele-
ments, which indicate m edge servers. And, the value of
each element varies among the base stations, i.e., 1, · · · , n .
In this way, each fruit fly represents one feasible solution

Fig. 4  LSHFOA flow chart

Page 8 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

to the edge server placement problem. Then, each fruit
fly changes based on the schemes of LSHFOA. In terms
of the fitness function of the ESP problem, it can be mod-
elled as below to pursue the objective of the ESP prob-
lem, as shown in Eq. (13).

Experimental analysis
In order to verify the performance of the proposed algo-
rithm in this paper for optimization, this section con-
ducts a comprehensive comparison with the improved
algorithms of FOA, CFOA and IFFO, in eight commonly
used benchmark functions. Firstly, this section lists the
experimental environment and parameter settings of
this paper; secondly, the eight benchmark functions are
analyzed and demonstrated in detail; finally, a graphical
presentation and detailed analysis are made based on the
experimental results [12, 14].

Experimental environment and parameter settings
The experiments in this paper are based on Windows 10,
64-bit operating system, 16G memory, 2.4GHZ desktop

(13)
Fit(dl) =

∑

uk∈U
min(

∑

d
j
l∈dl

a
k ,d

j
l

, 1)

computer, the experimental programming language is
C#, the compiler is Visual Studio 2010. where the popu-
lation size is 50, the number of iterations iter is 300, the
initialized population location points are 50, each experi-
ment is repeated 50 times, and the mean value is taken
as the experimental result and plotted as the experimen-
tal performance graph. The other parameters set in the
experiment are shown in Table 2.

Benchmark functions
In order to analyze the performance of the algorithm
more comprehensively, the eight benchmark functions
are divided into the following categories: single-dimen-
sional single-peak function (F1), single-dimensional
multi-peak function (F2, F3), multi-dimensional sin-
gle-peak function (F4, F5), multi-dimensional multi-
peak function (F6, F7) and two-dimensional combined

Fig. 5  Example of the coding of individual fruit fly

Table 2  Parameter Settings

Algorithm Parameters Numerical values Meaning

IFFO V 1 population radius

CFOA cos i cos xi
−1 Chebyshev Chaotic map function

LSHFOA ω 10 Question accuracy

Page 9 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

function (F8). At the same time, the selected bench-
mark functions have both 0 (F1, F4, F5, F6, F7, F8) and
non-0 (F2, F3, F8) extreme points in order to verify the
global optimization capability of the algorithm in a more
comprehensive way. The detailed benchmark functions
are shown in Fig. 6. The dimension n indicates that the
benchmark function has n variables, and is denoted as
x1, · · · , xn , and the definition domain [−10, 10]n indicate
that each dimension in the benchmark function takes
values in the range [-10,10], and the minimum value indi-
cates the minimum value of the function in the current
definition domain.

Result and Discussion
LSHFOA
In order to comprehensively analyze the experimental
performance of the algorithm LSHFOA in this paper,
comparison tests with IFFO and CFOA on the basis of
Fig. 6 are performed, and the experimental results are
shown in the following figures.

Figure 7 represents the experimental results of the sin-
gle-dimensional single-peak function F1. Since the sin-
gle-dimensional single-peak function is relatively simple,
a set of classical functions was used randomly to test the
performance of the algorithm. As can be seen from the
figure, the algorithm in this paper is significantly better
than IFFO in both the optimization accuracy and optimi-
zation efficiency. Compared to CFOA, the optimization
efficiency is slightly lower while the final experimen-
tal results are similar. The experimental results of this
group show that the algorithm of this paper also has good
experimental results under the one-dimensional single-
peak function test.

Figures 8 and 9 represent benchmark functions F2
and F3, i.e., single-dimensional multi-peak function

tests. The experimental accuracy and efficiency of
LSHFOA are much better than CFOA and slightly bet-
ter than IFFO. While the experimental accuracy and
efficiency of this algorithm are significantly better
than CFOA and IFFO. Meanwhile, it can be seen from
the changing trend of each algorithm in Figs. 7 and 8
that the fruit fly optimization algorithm has a strong
dependence on the initial position of the population,
i.e., after the initial position is determined, the algo-
rithm’s optimization results are limited. However, it can
be slightly seen from Fig. 9 that the algorithm in this
paper can reduce the influence of the initial position
on the FOA optimization results, i.e., the optimization
results will fluctuate slightly which will suitable to find
better results. Such fluctuations are more obvious in
Figs. 11 and 12, and the impact of such fluctuations on
the experimental accuracy is similar.

Fig. 6  Benchmark functions

Fig. 7  Performance of the algorithm under F1 function

Page 10 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

Figures 10 and 11 represent the multidimensional
multi-peak test functions (F4 and F5). from Fig. 10,
it can be seen that with the increase of iterations, the
algorithm in this paper can rapidly reduce the experi-
mental search accuracy. The benchmark function
value rapidly decreases and the results are signifi-
cantly smaller than CFOA and IFFO. Therefore, for the
benchmark function F4, the algorithm in this paper has
better experimental results with convergence speed.
From Fig. 10, it can be seen that in the multi-dimen-
sional multi-peak test function, although the initial
Fitness value is larger than LSHFOA, the algorithm in
this paper can quickly approach the optimal solution
through the local sensitive hashing mechanism, so as
to achieve similar optimization-seeking accuracy and

Fig. 8  Performance of the algorithm under F2 function

Fig. 9  Performance of the algorithm under F3 function

Fig. 10  Performance of the algorithm under F4 function

Fig. 11  Performance of the algorithm under F5 function

Fig. 12  Performance of the algorithm under F6 function

Page 11 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

optimization-seeking efficiency comparing to algo-
rithms IFFO and CFOA. In summary, it can be seen
from Figs. 10 and 11 that with the increase of iterations,
the algorithm in this paper has excellent optimization-
seeking accuracy and convergence speed in the multidi-
mensional single-peak function test.

Figures 12 and 13 represent the multi-dimensional
multi-peak test functions (test functions F6 and F7).
Overall, it can be seen from the experimental results in
Figs. 12 and 13 that the proposed algorithm in this paper
can achieve significant advantages in the multi-dimen-
sional multi-peak situation compared with the CFOA
and IFFO. For example, as can be seen from Fig. 11, even
though the initial population position LSHFOA is slightly
worse than that of CFOA and IFFO, with the increase in
the number of iterations, the optimization accuracy of
this algorithm is gradually improved. After 50 iterations,
the experimental results of this algorithm significantly
outperform the comparative algorithms CFOA and IFFO.
Therefore, for the benchmark function F5, the accuracy
and efficiency of the experimental results are significantly
better than the classical algorithms CFOA and IFFO,
although the initial position of the algorithm is slightly
worse. As can be seen from Fig. 13, for benchmark func-
tion F7, the algorithm in this paper outperforms CFOA
and IFFO in terms of optimization results close to 0 (the
most value of the function in the domain). In terms of the
optimization efficiency, the accuracy of the feasible solu-
tion of this paper is higher than that of the comparison
algorithm in about 20 iterations, which indicates that
LSHFOA can achieve excellent optimization results and
efficiency in high-dimensional multi-peak functions. In
summary, for the multi-dimensional multi-peak prob-
lem, the algorithm in this paper can get better results. It

can be seen that LSHFOA is more suitable for solving the
high-dimensional multi-peak optimization problem.

Figure 13 represents the combination function of two-
dimensional variables, and it can be seen from the figure
that although the algorithm in this paper has a slightly
worse optimization accuracy than IFFO, it significantly
outperforms CFOA, that is LSHFOA can be applied in
such problems. Combining the above several test func-
tions, it can be seen that the algorithm in this paper can
achieve significantly better experimental results than
CFOA and IFFO in multi-peak situations, especially in
high-dimensional multi-peak situations.

LSHFOA‑ESP
To extensively evaluate LSHFOA-ESP’s performance, we
simulate a set of ESP scenarios in the experiments. We
employ a Windows machine equipped with an Intel Core
i7-7500 processor, and 16G RAM to perform the experi-
ments. At the same time, a real-world dataset is applied
to conduct the experiments. It has been widely used in
edge computing environments [2, 6, 22, 26, 27]. Overall,
this dataset includes a large number of real-world users
and base stations in Melbourne Metropolis, Australia,
including the geographical information of users and base
stations, and the coverage of base stations.

Performance Metrics. Two metrics are employed to
measure the effectiveness and efficiency of LSHFOA-ESP,
including 1) the number of served users, and 2) the time
consumption.

Comparison Approaches. In this paper, to evaluate
the performance comprehensively, two state-of-the-art
approaches and one baseline approach are employed as
comparison approaches in this paper.

RESP [6]: This is a representative approach proposed
very recently. It makes the first attempt to solve the
robustness-oriented edge server placement problem,
with the aim to maximize the overall robustness.

CRESP [7]: This approach is an extension of, which
focuses on the tradeoff between robustness and coverage.
This is because maximizing the overall robustness only
usually leads to a decrease in user coverage.

FOA-ESP: This is a baseline approach that tries to solve
the edge server placement problem by using the classical
FOA only [12, 14].

Parameter Settings. Similar to many studies in edge
computing environment [2, 6, 7, 22, 26–29], in each
experiment, n base stations are randomly selected from
the dataset and c users are selected from the data set [2,
22, 27] randomly as well, where base stations include the
geographical locations and the coverage radiuses, users
include the geographical locations. Then, based on those
geographical locations of base stations and users and the Fig. 13  Performance of the algorithm under F7 function

Page 12 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

radiuses of base stations, the user-base station accessi-
bilities matrix can be built. Next, to test the performance
of LSHFOA-ESP comprehensively, three parameters
are varied, including 1) number of base stations (n); 2)
number of edge servers (m) and 3) number of users (c).
Accordingly, the experimental settings of those param-
eters are summarized in Table 3. LSHFOA-ESP iterates
300 times before giving out the solution. The number of
fruit flies in each iteration is 50. Each time we vary one
parameter and repeat the experiment 100 times, then the
results are averaged.

Effectiveness Generally, Figs. 15, 16 and 17 show the
effectiveness, measured by the number of served users, of
all the approaches in Set 1, Set 2 and Set 3, respectively.
From those figures, it is easy to see that the proposed
approach, LSHFOA-ESP can serve the most users com-
pared to other approaches. First, LSHFOA-ESP can find
a solution to cover the most users, which is significantly
greater than the classic FOA and its application to the
ESP problem. This is because, as stated above, LSHFOA,
as an extension of FOA, is designed to overcome the dif-
ficulties of FOA and aims to find the optimal solution.
Thus, LSHFOA-ESP’s performance is better than FOA-
ESP’s, by 15.32%. Second, RESP serves the least number
of users. The background reason is straightforward. That
is, RESP is designed to maximize the overall robustness
of edge servers, i.e., maximizing the overall served times
of users instead of serving more users. Thus, edge servers
are usually driven to be placed on a small group of base
stations that have covered the greatest number of users.
In this way, the overall robustness will be maximized.
Obviously, LSHFOA-ESP outperforms RESP signifi-
cantly, by 25.48%. Lastly, as an extension of RESP, CRESP
is designed to balance the overall robustness and the
number of served users. As a result, its number of served
users achieves the second-highest performance. But it is
still lower than LSHFOA-ESP by 8.32%.

Specifically, Fig. 15 shows that when the number of
base stations increases in Set 1, the number of served
users achieved by all the four approaches decreases.
The background reason is analyzed as follows. As
shown in Table 3, when the number of base stations
varies, the number of edge servers and the num-
ber of users are fixed. In this case, a larger number of
base stations will lead to a decrease in the number of
users covered by each base station on averagely. As a
consequence, selecting the same number of base sta-
tions, i.e., placing a fixed number of edge servers, usu-
ally results in a lower number of served users. But the
results, as shown in Fig. 14, are gradually stabilized.
This is because, the locations of base stations and users
come from a real-world, and they are fixed. In this case,
when nearly all the base stations have been selected,

the geographical distributions of users are unchanged.
Thus, the number of served users decreases first and
then becomes stabilized. Figure 16 demonstrates that
LSHFOA-ESP is capable of serving the most edge users
when the number of edge servers varies. Compared
to FOA-ESP, RESP and CRESP, LSHFOA-ESP outper-
forms them with significant advantages. Especially,
when more and more edge servers are placed in a spe-
cific edge computing environment, the performance
gaps between LSHFOA-ESP and FOA-ESP, RESP and
CRESP increase gradually. This is because, given a fixed

Fig. 14  Performance of the algorithm under F8 function

Table 3  Experimental Settings

n m c

Set 1 100, 200, ..., 800 40 4000

Set 2 400 10, 20, ..., 80 4000

Set 3 400 40 1000, 2000,
...,8000

Fig. 15  Number of Served Users (Set 1)

Page 13 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

number of base stations, placing more edge servers will
cover more base stations to serve more users. When
the number of users increases in Set 3, the number of
served users increases in all approaches, as shown in
Fig. 17 The underlay reason is similar to that in Set 2.
That is, more users are extracted from the real-world
data, and each base station will cover more users in
general. Thus, placing a fixed number of edge servers
usually leads to an increase in the overall number of
served users, as shown in Fig. 16. As shown in Fig. 16,
our approach, LSHFOA-ESP can still find a solution
to serve the maximum number of users. Therefore,
as demonstrated in Figs. 15, 16 and 17, the proposed
approach, LSHFOA-ESP can be used to solve the edge
server placement effectively.

Efficiency Figures 18, 19 and 20 demonstrate the time
consumption of all approaches in Set 1, Set 2 and Set 3.
In general, we can find that LSHFOA-ESP takes much

less time than RESP and CRESP to find the solutions,
and is slightly higher than FOA-ESP. Those phenomena
are acceptable. First, as an improved FOA approach,
LSHFOA-ESP takes a slightly higher time to find a solu-
tion. It is straightforward. But as shown in Figs. 15, 16
and 17, LSHFOA-ESP can serve much more users than
FOA-ESP. Second, LSHFOA-ESP takes a smaller time to
find a better solution than RESP and CRESP, as shown
in Figs. 15, 16 and 17 and Figs. 18, 19 and 20. This
shows that LSHFOA-ESP can be used to solve the edge
server placement problem efficiently. Last, in terms of
the time consumption of RESP and CRESP, CRESP is an
extension of RESP by considering more metrics, such as
robustness and user coverage. Thus, CRESP takes more
time than RESP, obviously, and achieves a better result
than RESP, as well, as shown in Figs. 15, 16 and 17.

Fig. 16  Number of Served Users (Set 2)

Fig. 17  Number of Served Users (Set 3)

Fig. 18  Overall Time Consumption (Set 1)

Fig. 19  Overall Time Consumption (Set 2)

Page 14 of 15Cao et al. Journal of Cloud Computing (2022) 11:34

Specifically, as shown in Figs. 18, 19 and 20, we can
find that LSHFOA-ESP’s time consumption increases
as long as the number of edge servers or the number
of users increases. The reason is straightforward - a
larger number of edge servers means a longer coding
of each fruit fly, as shown in Fig. 5, and a larger num-
ber of users means the more complicated fitness func-
tion calculations of each fruit fly. However, in Set 1, the
increase in the number of base stations does not sig-
nificantly affect LSHFOA-ESP’s time consumption, as
shown in Fig. 18. This is because, for the coding of each
fruit fly, i.e., Fig. 5, each code element will select one
of the base stations only without traversing the entire
base stations. Thus, the time consumption of Set 1 fluc-
tuate as the number of base stations varies. As shown
in Figs. 18, 19 and 20, the increase in time consumption
usually follows a linear trend when the number of edge
servers and the number of users increase. This indicates
the LSHFOA-ESP can handle the large-scale ESP prob-
lem efficiently, i.e., LSHFOA-ESP can converge quickly
in large-scale ESP scenarios.

Conclusion
In this paper, through the study of the fruit fly optimi-
zation algorithm (FOA), the optimization results of the
FOA depend on the initial position highly, which leads
to the reduction of the global optimization capacity of
the fruit fly optimization algorithm. To further opti-
mize the algorithm, this paper introduces a locality
sensitive hashing mechanism to get rid of the influence
of the initial position of the fruit fly population on the
optimization result by constructing a locality sensitive
hashing table and making the selection of the fruit fly
population position when the FOA falls into a local
optimum according to the roulette approach. To verify

the performance of the algorithm LSHFOA proposed in
this paper, a comparative study is performed with eight
classical benchmark functions (covering single-dimen-
sional and multi-dimensional, single-peak and multi-
peak characteristics) and the improved algorithms
CFOA, IFFO, and MSFOA of FOA. The experimental
results show that the algorithm in this paper has better
convergence speed and better optimization accuracy in
the multi-dimensional multi-peak case compared with
the comparison algorithm.

Although the algorithm in this paper can obtain high
experimental results in multi-polar situations, there are
some problems that can be further optimized. For exam-
ple, when falling into local optimum the process of meas-
urement of the FOA, the judgement of the position of
the fruit fly population proposed in this study remains
unchanged many times. The judgement tends to improve
the accuracy and efficiency of the fruit fly optimization
algorithm in finding the best result. Therefore, in the
future study, it is necessary to improve the judgement for
the problem of falling into local optimum, so as to further
improve the performance of this algorithm, and apply
this algorithm to the edge computing environment.

Acknowledgements
 The authors are grateful to the Faculty of Innovation Engineering at Macau
University of Science and Technology, and the School of Artificial Intelligence
and Big Data at Hefei University.

Authors’ contributions
All authors take part in the discussion of the work described in this paper.
Qian Cao designed all the experiments, Qian Cao and Bo Liu wrote the
main manuscript text, and Ying Jin prepared all the figures and tables. All
authors reviewed the manuscript. The author(s) read and approved the final
manuscript.

Funding
This work is supported by the Key Project of Nature Science Research for
Universities of Anhui Province of China (No. KJ2020A0657), 2020 Quality
Improvement Project of Chaohu University on Discipline Construction (No.
kj20xqyx03) and The Provincial Natural Science Research Program of Higher
Education Institutions of Anhui province (No. KJ2021A1030).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Information Engineering, Chaohu University, Hefei, China. 2 Faculty
of Innovation Engineering, Macau University of Science and Technology,
Macao, China. 3 School of Artifical Intelligence and Big Data, Hefei University,
Hefei, China.

Received: 11 June 2022 Accepted: 17 August 2022

Fig. 20  Overall Time Consumption (Set 3)

Page 15 of 15Cao et al. Journal of Cloud Computing (2022) 11:34 	

References
	1.	 Chen Y, Gu W, Li K Dynamic task offloading for Internet of Things in

mobile edge computing via deep reinforcement learning. Int J Commun
Syst. https://​doi.​org/​10.​1002/​dac.​5154

	2.	 Cui G, He Q, Xia X, Chen F, Gu T, Jin H et al (2021) Demand response in
NOMA-based mobile edge computing: a two-phase game-theoretical
approach. IEEE Trans Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2021.​
31085​81

	3.	 Chen Y, Zhao F, Lu Y, Chen X Dynamic task offloading for mobile edge
computing with hybrid energy supply. Tsinghua Sci Technol. https://​doi.​
org/​10.​26599/​TST.​2021.​90100​50

	4.	 Chen Y, Liu Z, Zhang Y et al (2021) Deep reinforcement learning-based
dynamic resource management for mobile edge computing in industrial
internet of things. IEEE Trans Ind Inform 17(7):4925–4934

	5.	 Huang J, Lv B, Wu Y et al (2022) Dynamic Admission Control and Resource
Allocation for Mobile Edge Computing Enabled Small Cell Network. IEEE
Trans Veh Technol 71(2):1964–1973

	6.	 Cui G, He Q, Xia X, Chen F, Jin H, Yang Y (2020) Robustness-oriented k
edge server placement. In: 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). IEEE, Melbourne,
VIC, Australia, May 11, pp 81–90

	7.	 Cui G, He Q, Chen F, Jin H, Yang Y (2020) Trading off between user cover-
age and network robustness for edge server placement. IEEE Trans Cloud
Comput. https://​doi.​org/​10.​1109/​TCC.​2020.​30084​40

	8.	 Pan WT (2012) A new Fruit Fly Optimization Algorithm: Taking the finan-
cial distress model as an example. Knowl Based Syst 26:69–74

	9.	 Zhou J, Yang J, Lin L, Zhu Z, Ji Z (2018) Local Best Particle Swarm Optimi-
zation Using Crown Jewel Defense Strategy. Critical developments and
applications of swarm intelligence. IGI Global, 27-52

	10.	 wei Gong D, Sun J, Miao Z (2018) A Set-Based Genetic Algorithm for
Interval Many-Objective Optimization Problems. IEEE Trans Evol Comput
22:47–60

	11.	 Dorigo M, Stützle T (2019) Ant Colony Optimization: Overview and
Recent Advances. Handb Metaheuristics. Springer, 311-351

	12.	 Zhang Y, Cui G, Wang Y, Guo X, Zhao S (2015) An optimization algorithm
for service composition based on an improved FOA. Tsinghua Sci Technol
20:90–99

	13.	 Jatoth C, Gangadharan GR, Buyya R (2017) Computational Intelligence
Based QoS-Aware Web Service Composition: A Systematic Literature
Review. IEEE Trans Serv Comput 10:475–492

	14.	 Zhang Y, Cui G, Wu J, Pan WT, He Q (2016) A novel multi-scale cooperative
mutation Fruit Fly Optimization Algorithm. Knowl Based Syst 114:24–35

	15.	 Zhang Q, Li C, Yin C, Zhang H, Su F (2022) A Hybrid Framework Model
Based on Wavelet Neural Network with Improved Fruit Fly Optimization
Algorithm for Traffic Flow Prediction. Symmetry 14(7):1333

	16.	 Timo DH, Andy DP, Jarmo T, Stamatis V (2005) Embedded Computer
Systems: Architectures, Modeling, and Simulation 5th International
Workshop, SAMOS 2005, Samos, Greece, July 18-20, 2005, proceedings.
In: SAMOS. Springer Science \& Business Media

	17.	 Shan D, Cao G, Dong H (2013) LGMS-FOA: An Improved Fruit Fly Opti-
mization Algorithm for Solving Optimization Problems. Math Probl Eng
2013:1–9

	18.	 Mitic M, Vukovic N, Petrovic M, Miljković Z (2015) Chaotic fruit fly optimi-
zation algorithm. Knowl Based Syst 89:446–458

	19.	 ke Pan Q, Sang H, Duan JH, Gao L (2014) An improved fruit fly optimiza-
tion algorithm for continuous function optimization problems. Knowl
Based Syst 62:69–83

	20.	 Xu J, Li D, Gu W, Chen Y (2022) UAV-assisted task offloading for IoT in
smart buildings and environment via deep reinforcement learning. Build
Environ. Elsevier, 109218

	21.	 Huang J, Tong Z, Feng Z (2022) Geographical POI recommendation for
Internet of Things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​5161

	22.	 Cui G, He Q, Chen F, Zhang Y, Jin H, Yang Y (2021) Interference-aware
game-theoretic device allocation for mobile edge computing. IEEE Trans
Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2021.​30640​63

	23.	 Chen Y, Liu Z, Zhang Y, Wu Y, Chen X, Zhao L (2021) Deep Reinforce-
ment Learning-Based Dynamic Resource Management for Mobile
Edge Computing in Industrial Internet of Things. IEEE Trans Ind Inform
17:4925–4934

	24.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient Multi-Vehicle Task Offload-
ing for Mobile Edge Computing in 6G Networks. IEEE Trans Veh Technol
71(5):4584–4595

	25.	 Ying C, Hua X, Zhuo M, et al (2022) Cost-Efficient Edge Caching for
NOMA-enabled IoT Services. China Commun

	26.	 Zhang Y, Pan J, Qi L, He Q (2021) Privacy-preserving quality prediction for
edge-based IoT services. Future Gener Comput Syst 114:336–348

	27.	 Cui G, He Q, Xia X, Chen F, Dong F, Jin H et al (2021) Ol-eua: Online user
allocation for noma-based mobile edge computing. IEEE Trans Mob
Comput. https://​doi.​org/​10.​1109/​TMC.​2021.​31129​41

	28.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient Multi-Vehicle Task Offload-
ing for Mobile Edge Computing in 6G Networks. IEEE Trans Veh Technol
71:4584–4595

	29.	 Huang J, Lv B, Wu Y, Chen Y, Shen XS (2022) Dynamic Admission Control
and Resource Allocation for Mobile Edge Computing Enabled Small Cell
Network. IEEE Trans Veh Technol 71:1964–1973

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/TMC.2021.3108581
https://doi.org/10.1109/TMC.2021.3108581
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1109/TCC.2020.3008440
https://doi.org/10.1002/dac.5161
https://doi.org/10.1109/TMC.2021.3064063
https://doi.org/10.1109/TMC.2021.3112941

	Locality sensitive hashing-aware fruit fly optimization algorithm and its application in edge server placement
	Abstract
	Introduction
	Related Background
	Fruit fly optimization algorithm
	Locality sensitive hashing
	Edge Server Placement

	Algorithm
	Locality sensitive hashing mechanism based FOA
	LSHFOA
	LSHFOA-ESP

	Experimental analysis
	Experimental environment and parameter settings
	Benchmark functions

	Result and Discussion
	LSHFOA
	LSHFOA-ESP

	Conclusion
	Acknowledgements
	References

