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Abstract 

As is well known that the global optimization ability of the Fruit fly Optimization Algorithm (FOA)is weak because it is 
easy to fall into local optimum. In this paper, a Fruit Fly Optimization Algorithm based on Locality Sensitive Hashing-
aware (LSHFOA)was proposed. The locality sensitive hashing mechanism to optimize the generation mechanism for 
swarm population individuals was used, which can improve the individual diversity of the population. Meanwhile, 
when the fruit fly population falls into the local optimum, the locality sensitive hashing mechanism was adopted to 
change the population location, which is used for jumping out of local optimal limits. To verify the performance of 
LSHFOA, it was compared with FOA and its improvement algorithms CFOA, and IFFO with 8 representative bench-
mark functions. A large number of experimental results showed that LSHFOA has a faster convergence speed and 
higher precision of optimization for function optimization, especially in high-dimensional multi-peak functions. In 
addition to the theoretical evaluation, we also evaluate its performance in a real-world scenario. Generally, an edge 
computing environment, as an extension of cloud computing, can allow the users to access the network in a low-
latency manner. In this way, to capture the high-speed convergence advantage, this paper makes the first attempt to 
tackle a classic research problem in the edge computing environment, i.e., the edge server placement problem. The 
experimental results show that the new algorithm has an excellent application effect.

Keywords:  Fruit fly optimization algorithm, Locality sensitive hashing, Swarm intelligence algorithm, Global 
optimization capacity, Edge server placement problem, Edge computing
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Introduction
Edge computing [1–3], as an extension of cloud comput-
ing, has been widely-investigated to reduce the latency 
of its users [4, 5]. However, it raises lot of research prob-
lems, where edge server placement problem [6, 7] is one 
of the fundamental studies for the edge computing envi-
ronment. To achieve the low-latency goal, the swarm 
intelligent algorithms, based on its high-convergence 
speed, could be an efficient way. Recently, the fruit fly 
optimization algorithm (FOA) is an intelligent optimiza-
tion algorithm based on the foraging characteristics of 

fruit fly populations proposed by Wen chao Pan in 2012 
[8]. This algorithm has been widely used in numerous 
scientific and engineering fields with its advantages of 
fast optimizing speed, simple operation, and few param-
eters, as well as the traditional intelligent optimization 
algorithms such as PSO [9], GA [10], and ACO [11]. For 
example, the literature [12] applied the FOA algorithm to 
the field of service computing firstly, and the algorithm 
was verified through a large number of experiments 
that proved it can be used to solve the service combina-
tion optimization problem and was recognized by peers 
[13]; the literature [14] proposed a multi-scale collabora-
tive variation-based fruit fly optimization algorithm by 
improving the FOA algorithm and applied the algorithm 
to function optimization; the literature [15] introduced 
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the FOA algorithm into a neural network for parameter 
optimization and conducting a feasibility study for this 
scheme. In addition, FOA is also used in the field of edge 
computing. In [16], a cache placement algorithm with 
lower complexity is proposed by utilizing FOA.

However, the fruit fly optimization algorithm suffers 
from the tendency to fall into local optima, the inability 
to traverse the problem domain and poor stability and 
so on [12, 14]. Literature [17] proposed that the original 
fruit fly optimization algorithm cannot access the nega-
tive problem domain, i.e., the position of an individual 
fruit fly cannot reach the negative domain, and therefore, 
it cannot be applied to some problems. For example, it 
cannot optimize for functions with a negative definition 
domain. In the literature [14], it is concluded from the 
theoretical analysis that the result of FOA depended on 
the initial position of the population and the initial posi-
tion of the population is random, i.e., the stability of FOA 
was poor and the global optimization capacity was weak. 
Therefore, in order to solve these shortcomings of FOA, 
the research for the FOA algorithm is divided into two 
main aspects. On the one hand, it is necessary to reduce 
the dependence of the fruit fly optimization algorithm 
on the initial position of the population so as to improve 
the performance of this algorithm. On the other hand, 
dynamically adjusting the radius of population genera-
tion is useful to escape from the local optimum limita-
tion during the fruit fly population. Among them, the 
literature [17] proposed a linear fruit fly optimization 
algorithm LGMS-FOA by improving the FOA population 
generation method to enhance the global optimization 
capacity of FOA. However, this method generates popu-
lation individuals in an overly simple way and also suffers 
from the shortcomings such as weak global optimization 
capacity. To further remedy this drawback, a chaotic fruit 
fly optimization algorithm is proposed in literature [18]. 
The stability and optimization capacity of the algorithm 
are verified through extensive function tests based on the 
linear generation of population individuals. In addition, a 
fruit fly optimization algorithm with adaptive population 
size is proposed in [19] to solve the function optimiza-
tion problem. In summary, although the fruit fly optimi-
zation algorithm has been widely used in many aspects, 
such as communication resources allocation and sched-
uling, computation offloading and caching schemes in 
mobile edge networks, it still has non-negligible short-
comings. In order to solve these shortcomings, some 
improvement algorithms have been widely studied in 
recent years. Although these improvement algorithms 
could solve the shortcomings of FOA to a certain extent, 
each improvement algorithm led to new shortcomings 
at the same time, such as the weak generalizability due 
to more parameters. In addition, many of the improved 

algorithms tend to focus on solving a certain class of 
problems, while neglecting other aspects of performance. 
For example, traditional FOA tends to be more suit-
able for optimization problems with positive problem 
domains and extreme value points close to the origin of 
the problem [8, 9].

In order to solve the weakness of the global optimiza-
tion capacity of the fruit fly optimization algorithm from 
other aspects and to improve the solution accuracy of 
the fruit fly optimization algorithm in multi-polarity 
problems, this paper proposed a fruit fly optimization 
algorithm based on locality sensitive hashing, so that 
the algorithm can be better applied in distributed envi-
ronment such as edge computing. The algorithm further 
improved the ability of fruit fly optimization algorithm 
to traverse the problem domain by introducing a local-
ity sensitive hashing mechanism, establishing a locality 
sensitive hashing table of fruit fly population positions, 
and then using the table to reduce the candidate points 
of similar population positions. Thus, it can reduce the 
dependence of fruit fly optimization algorithm on the 
initial population positions and improve the global opti-
mization capacity of FOA. In order to verify the perfor-
mance of the algorithm in this paper, eight benchmark 
functions, covering single-dimensional and multi-dimen-
sional, single-peak and multi-peak aspects, are selected 
for detailed comparison with the classical FOA improve-
ment algorithms CFOA [18], IFFO [19].

This study detailed the implementation process of the 
traditional fruit fly optimization algorithm and the back-
ground knowledge of locality sensitive hashing, Locality 
sensitive hashing system and proposes algorithm were 
introduced and were proved through a large number of 
experiments to be efficient.

In the real-world scenario, edge computing is proposed 
to extend the cloud computing to overcome its high-
latency difficulty issue [20–22]. Unline some AI tech-
niques [3, 21, 23], to achieve the low-latency objective, 
the high-speed convergence of LSHFOA is most suitable 
for the edge computing. To evaluate its performance in 
the real-world scenario, a representative research prob-
lem in an edge computing environment has been inves-
tigated, i.e., edge server placement (ESP) problem [6, 7]. 
The edge server placement problem is a fundamental 
study for the edge computing environment. It is vital 
because without placing the edge servers properly, the 
edge computing environment will suffer from various 
kinds of challenges [24–26], such as network failures, 
huge latency, etc. Thus, in this paper, we first propose an 
improved Fruit fly optimization algorithm, namely LSH-
FOA. Then, we apply this new approach to solve the edge 
server placement (ESP) problem in the edge computing 
environment.



Page 3 of 15Cao et al. Journal of Cloud Computing           (2022) 11:34 	

The rest of this paper is organized as follows. Section 2 
provided the background information of this manu-
script. Section  3 proposed the models of LSHESP and 
LSHFOA-ESP and its pseudo-code. Section  4 described 
the experimental implementation in detail and the results 
is discussed in Section  5. Final, Section  6 concluded the 
whole manuscript and pointed out the future directions.

Related Background
The key notations used in this paper are summarized in 
Table 1.

Fruit fly optimization algorithm
FOA, as a population intelligence optimization method, 
works by describing the problem on an n-dimensional 
space as each fruit fly, and the position of the fruit fly rep-
resents a feasible solution to the problem. Furthermore, the 
current position of each fruit fly is measured by the fitness 
function, and the population position is changed by the 
individual’s fitness. Then, a new population of fruit flies is 
generated. In this way, the fruit fly population gradually 
approaches the optimal solution to the problem. The spe-
cific implementation process is shown in Fig. 1.

The detailed optimizing process is as follows: Step 1: Ini-
tial population location

Step 2: Generating individuals of the population

Step 3: Calculate the individual fitness of the population

(1)
{

xaxis = rand(LR)
yaxis = rand(LR)

(2)
{

xi = xaxis + rand(V )

yi = yaxis + rand(V )

Step 4: Preservation of optimal Drosophila individuals

Step 5: Generate new population locations

Step 6: Repeat Step 2 - Step 5 until the iteration condi-
tions or accuracy requirements are met.

Where LR is the solving range, V is the population 
range radius, Disti , Si , Fitness are the formulas for the 
fitness function, [bestSmellbestindex] = max?(Smelli) 
which presents the individual optimal fitness value and 
individual position in the current population, Smellbest is 
the global optimal fitness value, xaxis is the x coordinate 
of the fruit fly population location, yaxis is the y coordi-
nate of the fruit fly population location.

Locality sensitive hashing
Hashing is an efficient method of data retrieval, mapping 
data to a hash table through a hash function can achieve 
a shift in search time from O(n) to O(1). Among them, 
locality sensitive hashing can further map high-dimen-
sional massive data to approximate nearest neighbors 
to a locality sensitive hashing table. Then, it can quickly 
find similar data. There are basic ideas of locality sen-
sitive hashing. One is that two adjacent data in high-
dimensional data space will have a high probability to 
remain adjacent after being mapped to low-dimensional 
data space. The other is that two non-adjacent data will 
also have a high probability to be low-dimensional space. 
With this mapping, we can find the adjacent data points 
in the low-dimensional data space and avoid high-dimen-
sional data space finding, which would be time-consum-
ing. A hash mapping with such a property is said to be 
locality sensitive. Take Fig. 2 as an example, there are four 
data blocks D1, D2, D3 and D4, where D1 and D2 are 
similar or close to each other. The four data blocks can be 
mapped into a locality sensitive hashing table by locality 
sensitive hashing. The mapping usually results in D1 and 
D2 being in the same or similar region, and then the gap 
between D3 and D4 is further widened.

From Fig. 2, it can be seen that similar data are mapped 
to similar regions through locality sensitive hashing oper-
ations. Further, through the analysis of FOA, it is easy to 
know that FOA has a strong dependence on the initial 

(3)
Disti = x2i + y2i

si = 1

Disti
Smelli = Fitness(Si)

(4)
{

[bestSmellbeseIndex] = max(Smelli)
Smellbest = max(bestSmell, Smellbest)

(5)
{

xaxis = xbestIndex
yaxis = ybestIndex

Table 1  Key Notations

Notation Description

xaxis the x-coordinate of the group location

yaxis the y-coordinate of the group location

xi the x-coordinate of the ith fruit fly

yi the y-coordinate of the ith fruit fly

V the radius of the fruit fly population

Disti the Euclidean distance between ith fruit fly and the optimal 
solution

Smelli the Fitness of ith fruit fly to the optimal solution

S a set of edge servers

si edge server si , i ∈ {1, ..., n}
A accessibility matrix between edge servers and the users

ui user ui , i ∈ {1, ..., n}
U set of users

aj,i accessibility between ui and sj
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position of the population [12]. By adjusting the initial 
location of the populations, it is beneficial to enhancing 
the global optimization capacity of FOA. At the same 
time, increasing the randomness of population posi-
tions or decreasing the similarity between population 
positions, can further enhance the global optimization 

capacity of FOA. The locality sensitive hashing operation 
of a set of population positions can obtain similar popu-
lation positions quickly and effectively. Then the popula-
tion positions with larger gaps can be more conveniently 
selected to enhance the global optimization capacity of 
FOA.

Fig. 1  FOA flow chart

Fig. 2  Schematic diagram of locality sensitive hashing



Page 5 of 15Cao et al. Journal of Cloud Computing           (2022) 11:34 	

Edge Server Placement
For the ESP problem, edge servers are usually deployed on 
the base stations or access points. Therefore, in each ESP 
scenario, it usually includes n base stations B = {b1, ..., bn} , 
and m edge servers S = {s1, ..., sm} . The ESP problem aims 
to place these m edge servers on those n base stations to 
serve its most users U = {u1, ...,uc} . For each user uk ∈ U , 
it can access a set of base stations, which is denoted by ak ,i , 
where ak ,i = 1 indicates the user uk can access base station 
bi , otherwise, ak ,i = 0 . Thus, the user-base station accessi-
bilities can be modelled as a matrix A.

Then, if an edge server has been placed on the base sta-
tion bi , denoted by pi = 1 , all its users can be served, i.e., 
∀uk ∈ U , ak ,i = 1 . Thus, the objective of the ESP problem 
is to maximize the maximum number of served users,

Where 
∑

bi∈B ak ,i · pi is used to calculate the served times 
of uk by all edge servers. Then, min(

∑

bi∈B ak ,i · pi, 1) = 0 
means that uk cannot be served by any edge servers, oth-
erwise, i.e., min(

∑

bi∈B ak ,i · pi, 1) = 1 indicates that uk 
can be served.

Algorithm
Locality sensitive hashing mechanism based FOA
As seen from Section 1.2, the main idea of locality sensi-
tive hashing is that if two data blocks in a high- dimen-
sional space are close, the result of a locality sensitive 
hashing of that data block has a high probability of 
being similar. If two data blocks are farther apart, the 
hash result will have a small probability to be the same. 
Therefore, for the FOA algorithm, its core is to design the 
locality sensitive hashing function h(x).

Given an n-dimensional problem F(x1, · · · , xn) with 
problem domain x ∈ [Rmin,Rmax]n , given an existing 
solution as X ′ = (x′

1
, · · · , x′n) , and any other solution is 

X = (x1, · · · , xn) , then the problem F(x1, · · · , xn) relative 
to the solution X ′ the locality sensitive hashing function 
of is

where [value] denotes the integer part of the value, 
En denotes the solution overhead of the problem 
F(x1, · · · , xn) , and the physical meaning is the range of 
each hashtable element. In short, the larger the value, 

(6)A =







a1,1 · · · a1,n
.
.
.

. . .
.
.
.

an,1 · · · an,n







(7)O = max(
∑

uk∈U
min(

∑

bi∈B
ak ,i · pi, 1))

(8)h(X |X ′) = [

√

(x1 − x′
1
)2 + · · · + (xn − x′n)

2

En
]

the smaller the number of elements of the corresponding 
hash table. Meanwhile, the smaller the value, the more 
elements of the corresponding hash table. En is calculated 
as follows.

Where ω denotes the accuracy of the solved problem. It is 
used to control the range of each element of the hash table. 
For example, if given a two-dimensional ( n = 2 ) problem 
F(x1, x2) , its problem domain is x ∈ [0, 5]2 , xi ∈ [0, 5] , 
i = 1, 2 , then the solution range of the problem F(x1, x2) 
is (0, 0), · · · , (5, 5) , if given the parameter ω = 5 , then 
En =

√
50/5 , i.e., the range of elements in each sensitive 

hash table is [[(
√
50/5) ∗ (j − 1)], [(

√
50/5) ∗ j]] , where 

j denotes the jth elements in the sensitive hash table, 
and if given the parameter ω = 10 , then En =

√
50/10 , 

similarly, the range of elements in each sensitive hash 
table is [[(

√
50/10) ∗ j], [(

√
50/10) ∗ (j + 1)]] . Then, 

assuming that the current solution (i.e., for the popu-
lation location in the FOA) is X = (0, 0) and the tar-
get solution (i.e., the population location to be selected 
in the FOA) is X1 = (0, 1) , X2 = (1, 0) , X3 = (1, 1) , 
X4 = (0, 2) , X5 = (2, 0) , X6 = (2, 2) , then the sensitive 
hash value corresponding to the target solution(ω = 5 ) 
is h(X1|X) = [5/

√
50] = 0 , h(X2|X) = [5/

√
50] = 0 , 

h(X3|X) = [10/
√
50] = 1 , h(X4|X) = [20/

√
50] = 2 , 

h(X5|X) = [20/
√
50] = 2 , h(X6|X) = [40/

√
50] = 5 , 

Thus, the target solutions X1 and X2 are mapped into the 
first element of the locality sensitive hashing table, X3 is 
mapped into the second element of the locality sensitive 
hashing table, the target solutions X4 and X5 are mapped 
into the third element of the locality sensitive hashing 
table, and the target solution X6 is mapped into the sixth 
element of the locality sensitive hashing table. The graph-
ical representation is shown in the following figure.

From Fig.  3, the locality sensitive hashing result 
of the target solution (the population location to be 
selected in the FOA) in this example is divided into 
four sensitive hashing table elements, i.e., elements 
j ∈ J = {1, 2, 3, 6} . Then, how to migrate the FOA popu-
lation location is another key problem. In this study, the 
roulette technique for the target solution selection and 
migrates the selected target solution were used as the 
new FOA population location.

Roulette as a commonly used selection method is also 
known as the proportional selection method. The basic idea 
of Roulette is that the probability of each population loca-
tion point being selected is related to its corresponding edge 
weight value, which is performed in the following steps.

Step1: First determine the selection probability of each 
locally sensitive hash table element.

(9)En =

√

(R1
max − R1

min)
2 + · · · + (Rn

max − Rn
min)

2

ω
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Step2: Calculate the sum of the weights between all FOA 
population location points to be selected and the current 
fruit fly population location Xi :

∑

j∈J αj
Step 3: Calculate the probability of each FOA popula-

tion location point to be selected.

Step 4: Calculate the cumulative probability of each FOA 
population location point to be selected.

Step 5: Generate a random number θ with uniform distri-
bution in the interval [0, 1].

Step5: If θ ≤ p′k and p(k − 1)′ ≤ θ , then element k of 
the locality sensitive hashing table is selected, and then, 
any FOA to be selected population location Xi in element 
k is randomly selected.

At this point, the new FOA population location has 
been selected.

By means of roulette, the weight relationship between 
population location points can be mapped to the selec-
tion probability, and then random values are used for 
population location selection. This roulette selection 
method can, on the one hand, improve the selection 
probability of dominant population location points, i.e., 
satisfy the principle of optimization selection; on the 

(10)αj = ej , j ∈ J

(11)pk =
αk

∑

j∈J αj

(12)p′k =
∑k

j=1 pj
∑

j∈J αj

other hand, roulette also has a chance to select other 
slightly inferior population location points, and this 
operation helps to enhance the diversity of fruit fly popu-
lation locations and further ensures the global optimiza-
tion capacity of the fruit fly optimization algorithm.

LSHFOA
In the improved fruit fly optimization algorithm (LSH-
FOA) proposed in this paper, locality sensitive hashing 
tables are used for the selection of Drosophila popula-
tion locations, i.e., when the fruit fly optimization algo-
rithm falls into a local optimum (usually measured 
by multiple population location invariance), the rou-
lette mechanism is used for population location selec-
tion (according to locality sensitive hashing table). the 
pseudo-code representation of LSHFOA is shown in 
Algorithm 1 [9, 12, 13].

Algorithm  1 shows that the time complexity of the 
algorithm is O(m1m2) , i.e., the time consumption of the 
algorithm is related to the population size m1 and the 
number of iterations m2 . Therefore, in order to reduce 
the time-consuming of the algorithm, the population 
size in the experiments of this paper is 50 and the num-
ber of iterations is 300. In order to cover more initial 
location points, the size of the initial population location 
set V is 50, i.e., the fruit fly population location locality 
sensitive hashing table contains a total of 50 points [12, 
15]. According to the execution flow of Algorithm 1, the 
flow chart of LSHFOA is shown in Fig. 4.

Where V in Fig. 4 denotes a set of fruit fly population 
location points, i.e., each vertex in the locality sensitive 
hashing table of fruit fly population location, Xi denotes 
any point of population location points in V, Pop denotes 
the set of population individuals generated according to 
the population location Xi with a scale of 50, and Fitness 
denotes the fitness value of each fruit fly individual on 
the benchmark function, i.e., the Step6- Step7 denotes 
the new population location selection scheme, i.e., the 
locality sensitive hashing table model with roulette wheel 
selection method [10].

LSHFOA‑ESP
In order to solve the ESP problem [6, 7] by LSHFOA, we 
employ a new perspective to model the ESP problem.

Fig. 3  Locality sensitive hashing table
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Definition 1  Coding of Fruit Flies: Given a set of base 
stations B with a set of users and a set of edge server S, 
the coding scheme of each individual fruit fly dl is a tuple 
with m elements, denoted as dl = [d1l , · · · , d

m
l ] , where 

dml ∈ 0
⋃

i|bi ∈ B , i.e., djl is sj ’s placement decision with a 
value in 0

⋃

i|bi ∈ B.

Figure 5 provides an example of such a coding scheme 
for a fruit fly dl.

As shown in Fig.  5, each fruit fly is coded by m ele-
ments, which indicate m edge servers. And, the value of 
each element varies among the base stations, i.e., 1, · · · , n . 
In this way, each fruit fly represents one feasible solution 

Fig. 4  LSHFOA flow chart
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to the edge server placement problem. Then, each fruit 
fly changes based on the schemes of LSHFOA. In terms 
of the fitness function of the ESP problem, it can be mod-
elled as below to pursue the objective of the ESP prob-
lem, as shown in Eq. (13).

Experimental analysis
In order to verify the performance of the proposed algo-
rithm in this paper for optimization, this section con-
ducts a comprehensive comparison with the improved 
algorithms of FOA, CFOA and IFFO, in eight commonly 
used benchmark functions. Firstly, this section lists the 
experimental environment and parameter settings of 
this paper; secondly, the eight benchmark functions are 
analyzed and demonstrated in detail; finally, a graphical 
presentation and detailed analysis are made based on the 
experimental results [12, 14].

Experimental environment and parameter settings
The experiments in this paper are based on Windows 10, 
64-bit operating system, 16G memory, 2.4GHZ desktop 

(13)
Fit(dl) =

∑

uk∈U
min(

∑

d
j
l∈dl

a
k ,d

j
l

, 1)

computer, the experimental programming language is 
C#, the compiler is Visual Studio 2010. where the popu-
lation size is 50, the number of iterations iter is 300, the 
initialized population location points are 50, each experi-
ment is repeated 50 times, and the mean value is taken 
as the experimental result and plotted as the experimen-
tal performance graph. The other parameters set in the 
experiment are shown in Table 2.

Benchmark functions
In order to analyze the performance of the algorithm 
more comprehensively, the eight benchmark functions 
are divided into the following categories: single-dimen-
sional single-peak function (F1), single-dimensional 
multi-peak function (F2, F3), multi-dimensional sin-
gle-peak function (F4, F5), multi-dimensional multi-
peak function (F6, F7) and two-dimensional combined 

Fig. 5  Example of the coding of individual fruit fly

Table 2  Parameter Settings

Algorithm Parameters Numerical values Meaning

IFFO V 1 population radius

CFOA cos i cos xi
−1 Chebyshev Chaotic map function

LSHFOA ω 10 Question accuracy
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function (F8). At the same time, the selected bench-
mark functions have both 0 (F1, F4, F5, F6, F7, F8) and 
non-0 (F2, F3, F8) extreme points in order to verify the 
global optimization capability of the algorithm in a more 
comprehensive way. The detailed benchmark functions 
are shown in Fig.  6. The dimension n indicates that the 
benchmark function has n variables, and is denoted as 
x1, · · · , xn , and the definition domain [−10, 10]n indicate 
that each dimension in the benchmark function takes 
values in the range [-10,10], and the minimum value indi-
cates the minimum value of the function in the current 
definition domain.

Result and Discussion
LSHFOA
In order to comprehensively analyze the experimental 
performance of the algorithm LSHFOA in this paper, 
comparison tests with IFFO and CFOA on the basis of 
Fig.  6 are performed, and the experimental results are 
shown in the following figures.

Figure 7 represents the experimental results of the sin-
gle-dimensional single-peak function F1. Since the sin-
gle-dimensional single-peak function is relatively simple, 
a set of classical functions was used randomly to test the 
performance of the algorithm. As can be seen from the 
figure, the algorithm in this paper is significantly better 
than IFFO in both the optimization accuracy and optimi-
zation efficiency. Compared to CFOA, the optimization 
efficiency is slightly lower while the final experimen-
tal results are similar. The experimental results of this 
group show that the algorithm of this paper also has good 
experimental results under the one-dimensional single-
peak function test.

Figures  8 and 9 represent benchmark functions F2 
and F3, i.e., single-dimensional multi-peak function 

tests. The experimental accuracy and efficiency of 
LSHFOA are much better than CFOA and slightly bet-
ter than IFFO. While the experimental accuracy and 
efficiency of this algorithm are significantly better 
than CFOA and IFFO. Meanwhile, it can be seen from 
the changing trend of each algorithm in Figs.  7 and 8 
that the fruit fly optimization algorithm has a strong 
dependence on the initial position of the population, 
i.e., after the initial position is determined, the algo-
rithm’s optimization results are limited. However, it can 
be slightly seen from Fig.  9 that the algorithm in this 
paper can reduce the influence of the initial position 
on the FOA optimization results, i.e., the optimization 
results will fluctuate slightly which will suitable to find 
better results. Such fluctuations are more obvious in 
Figs. 11 and 12, and the impact of such fluctuations on 
the experimental accuracy is similar.

Fig. 6  Benchmark functions

Fig. 7  Performance of the algorithm under F1 function
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Figures  10 and 11 represent the multidimensional 
multi-peak test functions (F4 and F5). from Fig.  10, 
it can be seen that with the increase of iterations, the 
algorithm in this paper can rapidly reduce the experi-
mental search accuracy. The benchmark function 
value rapidly decreases and the results are signifi-
cantly smaller than CFOA and IFFO. Therefore, for the 
benchmark function F4, the algorithm in this paper has 
better experimental results with convergence speed. 
From Fig.  10, it can be seen that in the multi-dimen-
sional multi-peak test function, although the initial 
Fitness value is larger than LSHFOA, the algorithm in 
this paper can quickly approach the optimal solution 
through the local sensitive hashing mechanism, so as 
to achieve similar optimization-seeking accuracy and 

Fig. 8  Performance of the algorithm under F2 function

Fig. 9  Performance of the algorithm under F3 function

Fig. 10  Performance of the algorithm under F4 function

Fig. 11  Performance of the algorithm under F5 function

Fig. 12  Performance of the algorithm under F6 function
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optimization-seeking efficiency comparing to algo-
rithms IFFO and CFOA. In summary, it can be seen 
from Figs. 10 and 11 that with the increase of iterations, 
the algorithm in this paper has excellent optimization-
seeking accuracy and convergence speed in the multidi-
mensional single-peak function test.

Figures  12 and 13 represent the multi-dimensional 
multi-peak test functions (test functions F6 and F7). 
Overall, it can be seen from the experimental results in 
Figs. 12 and 13 that the proposed algorithm in this paper 
can achieve significant advantages in the multi-dimen-
sional multi-peak situation compared with the CFOA 
and IFFO. For example, as can be seen from Fig. 11, even 
though the initial population position LSHFOA is slightly 
worse than that of CFOA and IFFO, with the increase in 
the number of iterations, the optimization accuracy of 
this algorithm is gradually improved. After 50 iterations, 
the experimental results of this algorithm significantly 
outperform the comparative algorithms CFOA and IFFO. 
Therefore, for the benchmark function F5, the accuracy 
and efficiency of the experimental results are significantly 
better than the classical algorithms CFOA and IFFO, 
although the initial position of the algorithm is slightly 
worse. As can be seen from Fig. 13, for benchmark func-
tion F7, the algorithm in this paper outperforms CFOA 
and IFFO in terms of optimization results close to 0 (the 
most value of the function in the domain). In terms of the 
optimization efficiency, the accuracy of the feasible solu-
tion of this paper is higher than that of the comparison 
algorithm in about 20 iterations, which indicates that 
LSHFOA can achieve excellent optimization results and 
efficiency in high-dimensional multi-peak functions. In 
summary, for the multi-dimensional multi-peak prob-
lem, the algorithm in this paper can get better results. It 

can be seen that LSHFOA is more suitable for solving the 
high-dimensional multi-peak optimization problem.

Figure 13 represents the combination function of two- 
dimensional variables, and it can be seen from the figure 
that although the algorithm in this paper has a slightly 
worse optimization accuracy than IFFO, it significantly 
outperforms CFOA, that is LSHFOA can be applied in 
such problems. Combining the above several test func-
tions, it can be seen that the algorithm in this paper can 
achieve significantly better experimental results than 
CFOA and IFFO in multi-peak situations, especially in 
high-dimensional multi-peak situations.

LSHFOA‑ESP
To extensively evaluate LSHFOA-ESP’s performance, we 
simulate a set of ESP scenarios in the experiments. We 
employ a Windows machine equipped with an Intel Core 
i7-7500 processor, and 16G RAM to perform the experi-
ments. At the same time, a real-world dataset is applied 
to conduct the experiments. It has been widely used in 
edge computing environments [2, 6, 22, 26, 27]. Overall, 
this dataset includes a large number of real-world users 
and base stations in Melbourne Metropolis, Australia, 
including the geographical information of users and base 
stations, and the coverage of base stations.

Performance Metrics. Two metrics are employed to 
measure the effectiveness and efficiency of LSHFOA-ESP, 
including 1) the number of served users, and 2) the time 
consumption.

Comparison Approaches. In this paper, to evaluate 
the performance comprehensively, two state-of-the-art 
approaches and one baseline approach are employed as 
comparison approaches in this paper.

RESP [6]: This is a representative approach proposed 
very recently. It makes the first attempt to solve the 
robustness-oriented edge server placement problem, 
with the aim to maximize the overall robustness.

CRESP [7]: This approach is an extension of, which 
focuses on the tradeoff between robustness and coverage. 
This is because maximizing the overall robustness only 
usually leads to a decrease in user coverage.

FOA-ESP: This is a baseline approach that tries to solve 
the edge server placement problem by using the classical 
FOA only [12, 14].

Parameter Settings. Similar to many studies in edge 
computing environment [2, 6, 7, 22, 26–29], in each 
experiment, n base stations are randomly selected from 
the dataset and c users are selected from the data set [2, 
22, 27] randomly as well, where base stations include the 
geographical locations and the coverage radiuses, users 
include the geographical locations. Then, based on those 
geographical locations of base stations and users and the Fig. 13  Performance of the algorithm under F7 function
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radiuses of base stations, the user-base station accessi-
bilities matrix can be built. Next, to test the performance 
of LSHFOA-ESP comprehensively, three parameters 
are varied, including 1) number of base stations (n); 2) 
number of edge servers (m) and 3) number of users (c). 
Accordingly, the experimental settings of those param-
eters are summarized in Table  3. LSHFOA-ESP iterates 
300 times before giving out the solution. The number of 
fruit flies in each iteration is 50. Each time we vary one 
parameter and repeat the experiment 100 times, then the 
results are averaged.

Effectiveness Generally, Figs.  15, 16 and 17 show the 
effectiveness, measured by the number of served users, of 
all the approaches in Set 1, Set 2 and Set 3, respectively. 
From those figures, it is easy to see that the proposed 
approach, LSHFOA-ESP can serve the most users com-
pared to other approaches. First, LSHFOA-ESP can find 
a solution to cover the most users, which is significantly 
greater than the classic FOA and its application to the 
ESP problem. This is because, as stated above, LSHFOA, 
as an extension of FOA, is designed to overcome the dif-
ficulties of FOA and aims to find the optimal solution. 
Thus, LSHFOA-ESP’s performance is better than FOA-
ESP’s, by 15.32%. Second, RESP serves the least number 
of users. The background reason is straightforward. That 
is, RESP is designed to maximize the overall robustness 
of edge servers, i.e., maximizing the overall served times 
of users instead of serving more users. Thus, edge servers 
are usually driven to be placed on a small group of base 
stations that have covered the greatest number of users. 
In this way, the overall robustness will be maximized. 
Obviously, LSHFOA-ESP outperforms RESP signifi-
cantly, by 25.48%. Lastly, as an extension of RESP, CRESP 
is designed to balance the overall robustness and the 
number of served users. As a result, its number of served 
users achieves the second-highest performance. But it is 
still lower than LSHFOA-ESP by 8.32%.

Specifically, Fig.  15 shows that when the number of 
base stations increases in Set 1, the number of served 
users achieved by all the four approaches decreases. 
The background reason is analyzed as follows. As 
shown in Table  3, when the number of base stations 
varies, the number of edge servers and the num-
ber of users are fixed. In this case, a larger number of 
base stations will lead to a decrease in the number of 
users covered by each base station on averagely. As a 
consequence, selecting the same number of base sta-
tions, i.e., placing a fixed number of edge servers, usu-
ally results in a lower number of served users. But the 
results, as shown in Fig.  14, are gradually stabilized. 
This is because, the locations of base stations and users 
come from a real-world, and they are fixed. In this case, 
when nearly all the base stations have been selected, 

the geographical distributions of users are unchanged. 
Thus, the number of served users decreases first and 
then becomes stabilized. Figure  16 demonstrates that 
LSHFOA-ESP is capable of serving the most edge users 
when the number of edge servers varies. Compared 
to FOA-ESP, RESP and CRESP, LSHFOA-ESP outper-
forms them with significant advantages. Especially, 
when more and more edge servers are placed in a spe-
cific edge computing environment, the performance 
gaps between LSHFOA-ESP and FOA-ESP, RESP and 
CRESP increase gradually. This is because, given a fixed 

Fig. 14  Performance of the algorithm under F8 function

Table 3  Experimental Settings

n m c

Set 1 100, 200, ..., 800 40 4000

Set 2 400 10, 20, ..., 80 4000

Set 3 400 40 1000, 2000, 
...,8000

Fig. 15  Number of Served Users (Set 1)
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number of base stations, placing more edge servers will 
cover more base stations to serve more users. When 
the number of users increases in Set 3, the number of 
served users increases in all approaches, as shown in 
Fig. 17 The underlay reason is similar to that in Set 2. 
That is, more users are extracted from the real-world 
data, and each base station will cover more users in 
general. Thus, placing a fixed number of edge servers 
usually leads to an increase in the overall number of 
served users, as shown in Fig. 16. As shown in Fig. 16, 
our approach, LSHFOA-ESP can still find a solution 
to serve the maximum number of users. Therefore, 
as demonstrated in Figs.  15, 16 and 17, the proposed 
approach, LSHFOA-ESP can be used to solve the edge 
server placement effectively.

Efficiency Figures 18, 19 and 20 demonstrate the time 
consumption of all approaches in Set 1, Set 2 and Set 3. 
In general, we can find that LSHFOA-ESP takes much 

less time than RESP and CRESP to find the solutions, 
and is slightly higher than FOA-ESP. Those phenomena 
are acceptable. First, as an improved FOA approach, 
LSHFOA-ESP takes a slightly higher time to find a solu-
tion. It is straightforward. But as shown in Figs. 15, 16 
and 17, LSHFOA-ESP can serve much more users than 
FOA-ESP. Second, LSHFOA-ESP takes a smaller time to 
find a better solution than RESP and CRESP, as shown 
in Figs.  15, 16 and 17 and Figs.  18, 19 and 20. This 
shows that LSHFOA-ESP can be used to solve the edge 
server placement problem efficiently. Last, in terms of 
the time consumption of RESP and CRESP, CRESP is an 
extension of RESP by considering more metrics, such as 
robustness and user coverage. Thus, CRESP takes more 
time than RESP, obviously, and achieves a better result 
than RESP, as well, as shown in Figs. 15, 16 and 17.

Fig. 16  Number of Served Users (Set 2)

Fig. 17  Number of Served Users (Set 3)

Fig. 18  Overall Time Consumption (Set 1)

Fig. 19  Overall Time Consumption (Set 2)
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Specifically, as shown in Figs.  18, 19 and 20, we can 
find that LSHFOA-ESP’s time consumption increases 
as long as the number of edge servers or the number 
of users increases. The reason is straightforward - a 
larger number of edge servers means a longer coding 
of each fruit fly, as shown in Fig. 5, and a larger num-
ber of users means the more complicated fitness func-
tion calculations of each fruit fly. However, in Set 1, the 
increase in the number of base stations does not sig-
nificantly affect LSHFOA-ESP’s time consumption, as 
shown in Fig. 18. This is because, for the coding of each 
fruit fly, i.e., Fig.  5, each code element will select one 
of the base stations only without traversing the entire 
base stations. Thus, the time consumption of Set 1 fluc-
tuate as the number of base stations varies. As shown 
in Figs. 18, 19 and 20, the increase in time consumption 
usually follows a linear trend when the number of edge 
servers and the number of users increase. This indicates 
the LSHFOA-ESP can handle the large-scale ESP prob-
lem efficiently, i.e., LSHFOA-ESP can converge quickly 
in large-scale ESP scenarios.

Conclusion
In this paper, through the study of the fruit fly optimi-
zation algorithm (FOA), the optimization results of the 
FOA depend on the initial position highly, which leads 
to the reduction of the global optimization capacity of 
the fruit fly optimization algorithm. To further opti-
mize the algorithm, this paper introduces a locality 
sensitive hashing mechanism to get rid of the influence 
of the initial position of the fruit fly population on the 
optimization result by constructing a locality sensitive 
hashing table and making the selection of the fruit fly 
population position when the FOA falls into a local 
optimum according to the roulette approach. To verify 

the performance of the algorithm LSHFOA proposed in 
this paper, a comparative study is performed with eight 
classical benchmark functions (covering single-dimen-
sional and multi-dimensional, single-peak and multi-
peak characteristics) and the improved algorithms 
CFOA, IFFO, and MSFOA of FOA. The experimental 
results show that the algorithm in this paper has better 
convergence speed and better optimization accuracy in 
the multi-dimensional multi-peak case compared with 
the comparison algorithm.

Although the algorithm in this paper can obtain high 
experimental results in multi-polar situations, there are 
some problems that can be further optimized. For exam-
ple, when falling into local optimum the process of meas-
urement of the FOA, the judgement of the position of 
the fruit fly population proposed in this study remains 
unchanged many times. The judgement tends to improve 
the accuracy and efficiency of the fruit fly optimization 
algorithm in finding the best result. Therefore, in the 
future study, it is necessary to improve the judgement for 
the problem of falling into local optimum, so as to further 
improve the performance of this algorithm, and apply 
this algorithm to the edge computing environment.

Acknowledgements
 The authors are grateful to the Faculty of Innovation Engineering at Macau 
University of Science and Technology, and the School of Artificial Intelligence 
and Big Data at Hefei University.

Authors’ contributions
All authors take part in the discussion of the work described in this paper. 
Qian Cao designed all the experiments, Qian Cao and Bo Liu wrote the 
main manuscript text, and Ying Jin prepared all the figures and tables. All 
authors reviewed the manuscript. The author(s) read and approved the final 
manuscript.

Funding
This work is supported by the Key Project of Nature Science Research for 
Universities of Anhui Province of China (No. KJ2020A0657), 2020 Quality 
Improvement Project of Chaohu University on Discipline Construction (No. 
kj20xqyx03) and The Provincial Natural Science Research Program of Higher 
Education Institutions of Anhui province (No. KJ2021A1030).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 College of Information Engineering, Chaohu University, Hefei, China. 2 Faculty 
of Innovation Engineering, Macau University of Science and Technology, 
Macao, China. 3 School of Artifical Intelligence and Big Data, Hefei University, 
Hefei, China. 

Received: 11 June 2022   Accepted: 17 August 2022

Fig. 20  Overall Time Consumption (Set 3)



Page 15 of 15Cao et al. Journal of Cloud Computing           (2022) 11:34 	

References
	1.	 Chen Y, Gu W, Li K Dynamic task offloading for Internet of Things in 

mobile edge computing via deep reinforcement learning. Int J Commun 
Syst. https://​doi.​org/​10.​1002/​dac.​5154

	2.	 Cui G, He Q, Xia X, Chen F, Gu T, Jin H et al (2021) Demand response in 
NOMA-based mobile edge computing: a two-phase game-theoretical 
approach. IEEE Trans Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2021.​
31085​81

	3.	 Chen Y, Zhao F, Lu Y, Chen X Dynamic task offloading for mobile edge 
computing with hybrid energy supply. Tsinghua Sci Technol. https://​doi.​
org/​10.​26599/​TST.​2021.​90100​50

	4.	 Chen Y, Liu Z, Zhang Y et al (2021) Deep reinforcement learning-based 
dynamic resource management for mobile edge computing in industrial 
internet of things. IEEE Trans Ind Inform 17(7):4925–4934

	5.	 Huang J, Lv B, Wu Y et al (2022) Dynamic Admission Control and Resource 
Allocation for Mobile Edge Computing Enabled Small Cell Network. IEEE 
Trans Veh Technol 71(2):1964–1973

	6.	 Cui G, He Q, Xia X, Chen F, Jin H, Yang Y (2020) Robustness-oriented k 
edge server placement. In: 2020 20th IEEE/ACM International Symposium 
on Cluster, Cloud and Internet Computing (CCGRID). IEEE, Melbourne, 
VIC, Australia, May 11, pp 81–90

	7.	 Cui G, He Q, Chen F, Jin H, Yang Y (2020) Trading off between user cover-
age and network robustness for edge server placement. IEEE Trans Cloud 
Comput. https://​doi.​org/​10.​1109/​TCC.​2020.​30084​40

	8.	 Pan WT (2012) A new Fruit Fly Optimization Algorithm: Taking the finan-
cial distress model as an example. Knowl Based Syst 26:69–74

	9.	 Zhou J, Yang J, Lin L, Zhu Z, Ji Z (2018) Local Best Particle Swarm Optimi-
zation Using Crown Jewel Defense Strategy. Critical developments and 
applications of swarm intelligence. IGI Global, 27-52

	10.	 wei Gong D, Sun J, Miao Z (2018) A Set-Based Genetic Algorithm for 
Interval Many-Objective Optimization Problems. IEEE Trans Evol Comput 
22:47–60

	11.	 Dorigo M, Stützle T (2019) Ant Colony Optimization: Overview and 
Recent Advances. Handb Metaheuristics. Springer, 311-351

	12.	 Zhang Y, Cui G, Wang Y, Guo X, Zhao S (2015) An optimization algorithm 
for service composition based on an improved FOA. Tsinghua Sci Technol 
20:90–99

	13.	 Jatoth C, Gangadharan GR, Buyya R (2017) Computational Intelligence 
Based QoS-Aware Web Service Composition: A Systematic Literature 
Review. IEEE Trans Serv Comput 10:475–492

	14.	 Zhang Y, Cui G, Wu J, Pan WT, He Q (2016) A novel multi-scale cooperative 
mutation Fruit Fly Optimization Algorithm. Knowl Based Syst 114:24–35

	15.	 Zhang Q, Li C, Yin C, Zhang H, Su F (2022) A Hybrid Framework Model 
Based on Wavelet Neural Network with Improved Fruit Fly Optimization 
Algorithm for Traffic Flow Prediction. Symmetry 14(7):1333

	16.	 Timo DH, Andy DP, Jarmo T, Stamatis V (2005) Embedded Computer 
Systems: Architectures, Modeling, and Simulation 5th International 
Workshop, SAMOS 2005, Samos, Greece, July 18-20, 2005, proceedings. 
In: SAMOS. Springer Science \& Business Media

	17.	 Shan D, Cao G, Dong H (2013) LGMS-FOA: An Improved Fruit Fly Opti-
mization Algorithm for Solving Optimization Problems. Math Probl Eng 
2013:1–9

	18.	 Mitic M, Vukovic N, Petrovic M, Miljković Z (2015) Chaotic fruit fly optimi-
zation algorithm. Knowl Based Syst 89:446–458

	19.	 ke Pan Q, Sang H, Duan JH, Gao L (2014) An improved fruit fly optimiza-
tion algorithm for continuous function optimization problems. Knowl 
Based Syst 62:69–83

	20.	 Xu J, Li D, Gu W, Chen Y (2022) UAV-assisted task offloading for IoT in 
smart buildings and environment via deep reinforcement learning. Build 
Environ. Elsevier, 109218

	21.	 Huang J, Tong Z, Feng Z (2022) Geographical POI recommendation for 
Internet of Things: A federated learning approach using matrix factoriza-
tion. Int J Commun Syst. https://​doi.​org/​10.​1002/​dac.​5161

	22.	 Cui G, He Q, Chen F, Zhang Y, Jin H, Yang Y (2021) Interference-aware 
game-theoretic device allocation for mobile edge computing. IEEE Trans 
Mob Comput. https://​doi.​org/​10.​1109/​TMC.​2021.​30640​63

	23.	 Chen Y, Liu Z, Zhang Y, Wu Y, Chen X, Zhao L (2021) Deep Reinforce-
ment Learning-Based Dynamic Resource Management for Mobile 
Edge Computing in Industrial Internet of Things. IEEE Trans Ind Inform 
17:4925–4934

	24.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient Multi-Vehicle Task Offload-
ing for Mobile Edge Computing in 6G Networks. IEEE Trans Veh Technol 
71(5):4584–4595

	25.	 Ying C, Hua X, Zhuo M, et al (2022) Cost-Efficient Edge Caching for 
NOMA-enabled IoT Services. China Commun

	26.	 Zhang Y, Pan J, Qi L, He Q (2021) Privacy-preserving quality prediction for 
edge-based IoT services. Future Gener Comput Syst 114:336–348

	27.	 Cui G, He Q, Xia X, Chen F, Dong F, Jin H et al (2021) Ol-eua: Online user 
allocation for noma-based mobile edge computing. IEEE Trans Mob 
Comput. https://​doi.​org/​10.​1109/​TMC.​2021.​31129​41

	28.	 Chen Y, Zhao F, Chen X, Wu Y (2022) Efficient Multi-Vehicle Task Offload-
ing for Mobile Edge Computing in 6G Networks. IEEE Trans Veh Technol 
71:4584–4595

	29.	 Huang J, Lv B, Wu Y, Chen Y, Shen XS (2022) Dynamic Admission Control 
and Resource Allocation for Mobile Edge Computing Enabled Small Cell 
Network. IEEE Trans Veh Technol 71:1964–1973

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/dac.5154
https://doi.org/10.1109/TMC.2021.3108581
https://doi.org/10.1109/TMC.2021.3108581
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.26599/TST.2021.9010050
https://doi.org/10.1109/TCC.2020.3008440
https://doi.org/10.1002/dac.5161
https://doi.org/10.1109/TMC.2021.3064063
https://doi.org/10.1109/TMC.2021.3112941

	Locality sensitive hashing-aware fruit fly optimization algorithm and its application in edge server placement
	Abstract 
	Introduction
	Related Background
	Fruit fly optimization algorithm
	Locality sensitive hashing
	Edge Server Placement

	Algorithm
	Locality sensitive hashing mechanism based FOA
	LSHFOA
	LSHFOA-ESP

	Experimental analysis
	Experimental environment and parameter settings
	Benchmark functions

	Result and Discussion
	LSHFOA
	LSHFOA-ESP

	Conclusion
	Acknowledgements
	References


