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Abstract 

Cloud failure is one of the critical issues since it can cost millions of dollars to cloud service providers, in addition to 
the loss of productivity suffered by industrial users. Fault tolerance management is the key approach to address this 
issue, and failure prediction is one of the techniques to prevent the occurrence of a failure. One of the main chal‑
lenges in performing failure prediction is to produce a highly accurate predictive model. Although some work on 
failure prediction models has been proposed, there is still a lack of a comprehensive evaluation of models based on 
different types of machine learning algorithms. Therefore, in this paper, we propose a comprehensive comparison 
and model evaluation for predictive models for job and task failure. These models are built and trained using five 
traditional machine learning algorithms and three variants of deep learning algorithms. We use a benchmark data‑
set, called Google Cloud Traces, for training and testing the models. We evaluated the performance of models using 
multiple metrics and determined their important features, as well as measured their scalability. Our analysis resulted in 
the following findings. Firstly, in the case of job failure prediction, we found that Extreme Gradient Boosting produces 
the best model where the disk space request and CPU request are the most important features that influence the pre‑
diction. Second, for task failure prediction, we found that Decision Tree and Random Forest produce the best models 
where the priority of the task is the most important feature for both models. Our scalability analysis has determined 
that the Logistic Regression model is the most scalable as compared to others.
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Introduction
Cloud computing is at the forefront of a global digi-
tal transformation  [1]. It allows a business to provide 
an extra layer of security in terms of information secu-
rity and allows them to raise the level of efficiency of 
operation to a new level. According to Business Fortune 
Insight, the North American market has spent approxi-
mately 78.28 billion dollars on cloud services. The cloud 
computing market is expected to continue to expand 
from $219B in 2020 to $791.48B in 2028 [2].

The implementation and deployment of the cloud sys-
tem opens up to deal with different types of cloud fail-
ure  [3]. Failing to handle these failures will result in 
degradation of quality of service (QoS), availability, and 
reliability. It will ultimately lead to an economic loss for 
both cloud consumers and providers [4]. This challenge is 
commonly addressed with fault tolerance management, 
which offers the ability to detect, identify, and handle 
faults without damaging the final result of cloud com-
puting [5]. There are several categories of fault tolerance 
techniques that include redundancy techniques, fault-
aware policies (i.e., reactive and proactive policies), and 
load balance [5]. In this paper, we focus on proactive poli-
cies that can be implemented with a failure prediction 
technique trained using machine learning algorithms. 
Failure prediction is significant in preventing the occur-
rence of failure and in minimizing the maintenance costs 
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of fault tolerance management. As there are different 
types of cloud failure, we pay particular attention to the 
prediction of job and task failure. Both failures are inter-
connected (i.e., a job contains one or more tasks) and 
should be tackled simultaneously.

Therefore, in this paper, our aim is to build and evaluate 
a set of trained models to predict the job and task termi-
nation status (i.e. failure or success). For this reason, we 
have chosen five traditional machine learning algorithms 
(TML) and three variants of deep learning algorithms 
(DL). TML algorithms include logistic regression (LR), 
decision tree (DT), random forest (RF), gradient boost 
(GB), and extreme gradient boost (XGBoost). Meanwhile, 
the DL algorithms refer to single-layer long-short-term 
memory (LSTM), two-layer (bi-layer) LSTM, and three-
layer (tri-layer) LSTM. We used the benchmark dataset, 
Google Cluster Traces (GCT), published in 2011, to train 
and test the models. We then perform a series of evalua-
tions to find the best models. Therefore, this work con-
tributes threefold. First, an approach to comprehensively 
produce and evaluate predictive failure models (Sec-
tion 3). Second, the results and findings of four types of 
analyzes, namely exploratory data analysis, feature analy-
sis, performance analysis, and scalability analysis (Sec-
tion  4). Third, a review of cloud failure prediction and 
machine learning approaches specifically related to GCT, 
as well as other datasets (Section 5).

The remainder of this paper is organized as follows. 
Section  2 explains the dataset used and the fundamen-
tal background of cloud failures. Section  3 presents the 
approach to conducting this study. Section 4 provides the 
results and findings of the analysis. Section 5 summarizes 
the related works. Section  6 concludes the paper with 
several future works.

Background
In this section, the dataset used in this study is intro-
duced, followed by a fundamental understanding of cloud 
failures.

Google Cluster Traces
Overview
Up to date, Google has released three public trace data-
sets for research and academic use. The first one was 
released in 2007 and contains 7-hour workload details. 
The dataset contains only basic information, including 
time, job id, task id, job category, and number of cores 
and memory. Both the cores and the memory count have 
been normalized.

The second dataset contains traces of 29 days’ workload 
from about 12,500 machines in the month of May 2011. 
The data consist of 672,074 jobs and around 26 million 
tasks that have been submitted by the user [6]. Unlike 

the previous dataset, this one includes more information 
about each task’s resource utilization, as well as informa-
tion about the task itself, such as scheduling class and 
task priority.

The third dataset is the most current, documenting the 
use of cloud resources from eight separate clusters, with 
one cluster containing roughly 12,000 computers in May 
2019, and was released in early 2020 [7]. Compared to the 
2011 dataset, this dataset focuses on resource requests 
and utilization and contains no information about end 
users. The 2019 dataset has three additions: CPU utiliza-
tion information histograms for each 5 minute period, 
information regarding shared resources reservation by a 
job, and job-parent information for master/worker rela-
tionships such as MapReduce’s jobs.

2011 Dataset
The data provided in this version can generally be divided 
into machine details, and job and task details.

The machine details are provided in two tables, which 
are machines events and machine attributes. Every 
unique machine in both of these tables is identified by 
machine ID, a unique 64-bit identifier. The table machine 
events consists of a timestamp, machine ID, event type, 
platform ID, and the capacity of each machine. This table 
records all events related to a machine, such as adding 
and removing machines from the cluster. Each record has 
its own timestamp that indicates when the event occurs. 
There is also information on the machine platform repre-
senting the microarchitecture and chip-set version of the 
machine, and the normalized value of the machine CPU 
and memory capacity. In the case of the table machine 
attributes, it contains details of machine properties such 
as kernel version, machine operation clock speed, and the 
external IP address that is linked to the machine.

Four tables are provided to describe the details of the 
job and tasks, which are table job event, table task event, 
table task constraint, and table resource usage.

Tables job event and task event are used to describe the 
life cycle of the job or the task. Each job is identified by a 
unique 64-bit identifier, while each unique task is identi-
fied by the combination of job ID and task index. Every 
event from submission to termination is recorded in 
these tables. The type of event is identified by their event 
type column, where the value zero indicates the job or 
task submitted by the user, the value one indicates that 
the task has been scheduled to run on a machine, values 
two to six indicate that the task has been terminated, 
while values seven and eight indicate that the task details 
or requirements have been updated.

Furthermore, there is also a column that indicates 
whether a task or a job has been synthesized as a replace-
ment for a missing record. Alongside all the columns 
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mentioned above, there is a column for scheduling class 
in both tables. The scheduling class is indicated by a sin-
gle integer value from zero to three, where zero indicates 
a nonproduction task, while three indicates a latency-
sensitive task. Lastly, there is one column for a username 
and two more columns for job names. These columns 
have been anonymized by combining data from several 
internal name fields.

In the case of the table task event, there are six more 
columns in addition to all the ones mentioned above. 
One of the columns is the machine ID, which determines 
which machine the task is run on. The second column 
is the priority of the task, which is valued from zero as 
the least priority to 11 as the most important task. Next, 
there are three columns detailing the normalized amount 
of every requested resource, which are CPU resources, 
memory resources, and disk space resources. Lastly, there 
is a column that attributes the constraint of running on a 
different machine. If there is a value in the column, we 
note that the task must be executed on a machine differ-
ent from the machine currently running a different task 
from the same job.

The table task constraint discloses the constraints asso-
ciated with each task, which may be zero or one or more. 
Task constraints prevent a task from running on a certain 
machine. Each record in the task constraint table rep-
resents exactly one task event record. Finally, there is a 
table resource usage. This table discloses the amount of 
computing resources, such as CPU, memory, and disk 
space, that have been used for each task. This usage is 
recorded for each 5-minute or 300-second measurement 
period.

Failure in Cloud
This section explains the failure and fault tolerance cat-
egories in the cloud environment.

Categories of Cloud Failure
The cloud computing, like any other computing system, 
is susceptible to failure. Cloud computing system fails 
when it fails to perform its predefined function due to 
hardware failures or unexpected software failures. The 
more complex the computing system, the higher the 
probability that the system will fail. There are two clas-
sifications of failures, namely architecture-based and 
occurrence-based failures [3]. These failure categories are 
summarized in Table 1.

Architecture-based failures include two types of fail-
ure, defined as service and resource failures. Service 
failure usually occurs due to software failure, such as 
unplanned reboots and cyberattacks, or scheduling fail-
ure, such as service timeout. Meanwhile, resource failure 
is caused by hardware failure, such as power outages, 

system breakdown, memory problems, and complex cir-
cuit design. The occurrence-based failure consists of two 
types of failure, specifically correlated and independent 
failures. Correlated failure is a failure that occurs due to 
another domain of failure. For example, a cloud resource 
is unavailable due to a power outage that affects the cloud 
infrastructure. Meanwhile, independent failure is caused 
by external factors, such as human error and computer 
overheating.

As we are concerned about the termination status of 
the job and task, our work can be associated with ser-
vice failure, where the main cause is driven by scheduling 
failure.

Fault Tolerance in Cloud Computing
Despite the advancement of cloud computing technol-
ogy, cloud computing performance is still hampered by 
its vulnerability to failure. Therefore, fault tolerance is 
one of the fundamental requirements of cloud comput-
ing. There are different ways of classifying fault toler-
ance approaches [5, 8, 9]. Here, we highlight two major 
tolerance approaches, namely the reactive and proactive 
approach.

The reactive fault tolerance approach reduces the effect 
of failure on the execution of an application. When a fail-
ure occurs in the cloud environment, the reactive fault 
tolerance approach takes effect. There are several tech-
niques used in the reactive fault tolerance approach. One 
of them is task replication [10]. This technique is used to 
duplicate tasks on multiple resources. This replication 
increases the likelihood that at least one task will be com-
pleted correctly. The second technique is the re-submis-
sion of tasks [11]. When a task fails, it will be rerun with 
the same node or with a different resource.

The proactive fault tolerance approach is based on the 
principle of preventing the entire failure from occur-
ring. For this approach, the condition of the physical 
system is constantly monitored, and the occurrence of a 
system failure must be predicted. If the probability of a 

Table 1  Classification of failure and its cause [3]

Type of failure Classification Cause of failure

Service Failure Architecture Based Software Failure

Scheduling Failure

Resource Failure Hardware Failure

Correlated Failure Occurrence Based Based On Two Temporal Or 
Spatial Correlation Of Two 
Failure

Independent Failure Denser System Packing

Human Error

Heat Issue
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fault occurring is high, cloud service providers will take a 
preventive measure, such as removing hardware from the 
service cluster or performing corrective measures on the 
software. Failure prediction can be built using the infor-
mation collected from previous cloud failures. Machine 
learning is an excellent tool for predicting software and 
hardware failures in cloud infrastructures. Failure predic-
tion is considered a proactive fault tolerance approach if 
it is implemented in the cloud infrastructure [12].

Existing work has implemented the proactive toler-
ance approach, such as predicting hardware failure in 
the cloud farm [13] and predicting memory failure in a 
computer system [14]. Another example is the work of 
[15], where a machine learning algorithm is constructed 
to predict task failure in the cloud system. The predic-
tion model enables the system to efficiently manage the 
resources available in the cloud system, ensuring that 
minimum failure occurs, potentially disrupting the avail-
ability of the cloud resources.

Method
This section introduces and explains the approach pro-
posed to carry out this study.

Overview
Figure 1 shows the approach to implement the compre-
hensive comparison study of the prediction of job and 
task failure driven by the GCT dataset. We divide the 
activities involved into three phases, namely data han-
dling, model generation, and analysis and experiments. 
Phase data handling comprises the activity of extracting 
from the published tables (that is, the job event and task 

event tables) and preparing the two datasets, which we 
call data set A, which comprises the job-level termination 
data and dataset B, which comprises the task-level termi-
nation data. Table 2 shows the sample of dataset A, while 
Table 3 shows the sample of dataset B. Phase model gen-
eration involves the process of developing and training 
predictive models based on the TML and DL algorithms. 
The predictive model is meant to address the classifica-
tion problem, that is, to classify the termination status of 

Fig. 1  This figure shows the approach to implement a comprehensive comparison study of the prediction of job and task failure driven by the GCT 
dataset

Table 2  Dataset A

Event Scheduling CPU Memory Disk Space
Type Class Request Request Request

SUCCESS 1 0.06250 0.006218 0.000045

SUCCESS 1 0.06250 0.103400 0.000038

SUCCESS 1 0.03125 0.009323 0.000154

SUCCESS 1 0.01250 0.028630 0.000077

SUCCESS 1 0.03125 0.011250 0.000011

Table 3  Dataset B

Event Scheduling Priority CPU Memory Disk Space
Type Class Priority Request Request Request

SUCCESS 0 2 0.02499 0.07959 0.000386

FAILURE 0 9 0.0625 0.006218 0.00003815

FAILURE 2 0 0.01562 0.01553 0.0002155

SUCCESS 1 9 0.04688 0.0636 0.00003815

SUCCESS 0 2 0.02499 0.07959 0.000386
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each job or task, either success or failure. Phase analysis 
and experiments comprises four analyzes, namely explor-
atory data analysis (EDA), performance analysis (PA), 
feature importance analysis (FA) and scalability analysis 
(SA). The EDA is applied to uncover the behavior of the 
dataset. The input data for the EDA are referred to the 
published dataset. PA is used to determine the quality of 
predictive models based on certain metrics to determine 
the best models. FA is used to identify the feature impor-
tance of the predictive models. SA is applied to under-
stand the scalability of predictive models in relation to 
different data sizes. The input data for PA, FA, and SA are 
referred to datasets A and B.

Furthermore, Fig. 2 shows the technical workflow and 
platforms for implementing the proposed approach pre-
sented in Fig. 1. There are two platforms that are used to 
implement the overall phases. First, we use the Google 
Cloud Platform (GCP)  [16] to handle data and gener-
ate models. Second, we used a local machine to perform 
analysis and experiments. For the GCP, we configure a 
virtual machine with 4 CPU cores and 16 GB of memory 
with a NVIDIA Tesla T4 GPU. Meanwhile, the specifi-
cation of local machine is based on 2 CPU cores with a 
clock speed of 2.30 GHz and 20 GB of memory.

Data Handling
In this section, we elaborate on the two main tasks for 
data handling, namely, data extraction and preparation, 
as presented in Fig. 1.

Data Extraction
The sources of data are retrieved from Google Cloud 
Storage (GCS). Information on the dataset is available 
at  [17] for the 2011 version. We downloaded the GCT 
dataset with a size of approximately 400 GB. urllib library 

was used to access the data stored in the GCS. The files 
were stored in a zipped file and partitioned. The num-
ber of partitions was embedded in the Uniform Resource 
Locator (URL) of the GCS. Then, all data were extracted 
using the gzip library to generate the intermediate data-
set, namely, the job event table and task event table in 
csv format. To automate this task, a function was built to 
load, extract, and save the intermediate dataset into the 
respective directory.

Data Preparation
This task involves several subtasks, which are data clean-
ing, data integration, data reduction, data transforma-
tion, and class balancing. We utilized the Dask library 
instead of Pandas to process the data since Dask enables 
parallelism. Having said that, Dask provides similar capa-
bility as Pandas, since it is built on top of Pandas. The 
intermediate data sets, namely, the job event table and 
the task event table, are the main input for this task. The 
aim is to prepare two new datasets, namely, a job-level 
termination dataset (i.e., dataset A) and a task-level ter-
mination dataset (i.e., dataset B). The details of each sub-
task are as follows.

Data Cleaning
In the case of the GCT dataset, we perform data clean-
ing, in particular, we handle missing values in the task 
event table. There are three columns affected by this 
problem, namely CPU request, memory request, and disk 
space request. We solve this problem by removing related 
records that contain missing values using the Pandas 
function dropna. We then make use of the visualization 
approach to check the data. We used a boxplot to observe 
the data distribution for the continuous data chart and 
a bar and pie chart to observe the categorical data. It is 

Fig. 2  This figure shows the technical workflow and platforms to implement the proposed approach
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important to note that we also found some outliers in the 
task event table. However, we have decided to keep these 
records because they can potentially contribute to identi-
fying the termination status of the job and predicting task 
failure.

Data Integration
In this study, we need to integrate data from the job event 
and task event table into a single table to produce the 
job-level termination data set (i.e., data set A). This task 
is needed to increase the relevant features for dataset A. 
To support data integration, we need to identify the most 
appropriate values from the task event table to be merged 
with the record in the job event table. This is important 
since one job event can have multiple task events. For this 
reason, we apply a data aggregation step in which each set 
of task event records associated with each job is aggre-
gated based on their three features, namely CPU requests, 
memory requests, and disk space requests. The purpose is 
to find the maximum value for each of them. These maxi-
mum values are then used to merge with the job event 
records. The data integration task is implemented using 
the merge function of the Dask library. Meanwhile, data-
set B is not involved in the integration task because the 
existing features are sufficient for modeling purposes.

Data Reduction
This task is carried out to obtain the subset of the entire 
dataset. It is needed to enable us to conduct the analy-
sis and experiments using the available platform with a 
limited budget. Hence, this task involves two objectives. 
The first is to reduce the number of columns or features, 
which is supported by the correlation analysis. The sec-
ond objective is to reduce the number of rows by decid-
ing the subset of the dataset.

For the first objective, we first change the string data-
type of the respective features into a numerical datatype. 
This is done using Pandas’ astype function. After that, we 
construct a Heatmap to identify the correlation between 
all the respective features and to determine which fea-
tures to be removed from the dataset. In general, those 
features that have weak to no correlation with the out-
come of a job or task are removed. Once removed, the 
only features that remain in dataset A are the scheduling 
class and resource-related requests (i.e. CPU requests, 
memory requests and disk space requests). Meanwhile, 
the remaining features of dataset B are scheduling class, 
priority and resource-related requests.

For the second objective, we reduce the rows or records 
on the basis of two filters. The first filter uses the times-
tamp feature, where we have decided to select data from 
the first fourteen (14). As the value is in a timestamp for-
mat, we have to convert the day into microseconds to 

enable the filtering task. For the second filter, we have 
decided to remove some records using the event type fea-
ture. There are 9 distinct values in event type. Here, we 
have chosen to remove those with their event types con-
sidered incomplete lifecycle (that is, job / task submission 
(0), job / task scheduled (1), update while still in queue 
(7), and update during running (8)).

Data Transformation
In this task, the focus is on re-categorizing the termina-
tion status in both datasets, A and B. Hence, the even 
type feature is used for this reason. Due to the previous 
data reduction, the remaining event type values are evict 
(2), fail (3), finished (4), kill (5) and lost (6) which indicate 
the termination status of each job or task. Based on these 
values, we categorize the type of event into two, success 
(that is, where the type of event equals 4) and failure (i.e., 
other than 4).

Class Balancing
This task is needed due to the number of records of the 
failure and success classes being imbalanced. There are 
several techniques that can be used to balance them. 
Here, we apply the synthetic minority sampling tech-
nique (SMOTE) [18]. In general, SMOTE facilitates the 
selection of examples that are closed in the feature space, 
drawing a line between the examples in the feature space, 
and drawing a new sample at a point along that line. The 
SMOTE process will increase the amount of data for the 
minority class and will also aid in model construction and 
training, especially for the DL models in the later stage.

Model Generation
During this phase, two types of machine learning algo-
rithms are implemented, classified as TML and DL algo-
rithms. Each dataset, A and B, is divided into two parts, 
specifically 70% for training and 30% for testing. The 
algorithms involved are as follows.

Traditional Machine Learning Algorithms
We have implemented three types of algorithms to 
address the classification problem, which are regression, 
tree, and ensemble, respectively. In the case of regression, 
LR [19] is chosen since it is the most investigated regres-
sion algorithm in machine learning. For the tree, we have 
selected DT  [20] since it is the primary tree machine 
learning algorithm for the classification problem. Lastly, 
for the ensemble category, we have chosen RF  [21], 
GB [22], and XGBoost [23]. These machine learning algo-
rithms were implemented using the scikit-learn library 
[24], except XGBoost, which was implemented using the 
XGBoost  [23] library. All models were built as a default 
model with a small change in the default arguments. 
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However, for the LR model, the number of maximum 
iterations has been changed because the default value is 
insufficient for converging all solvers. Solver is an optimi-
zation algorithm for calculating the loss of the LR model.

Deep Learning Algorithms
The last three machine learning algorithms will be three 
different variants of the LSTM  [25] based algorithms. 
They are differentiated by the number of layers. The three 
variants of the DL model are Single Layer LSTM algo-
rithm, Bi-Layer LSTM algorithm (two hidden layers), 
and Tri-Layer LSTM (three hidden layers), respectively. 
Finally, we add a dense layer to ensure that our algorithm 
produces only a single value for a prediction. The epoch 
is set to 100 to ensure we gain the best model possible. 
To reduce training times and prevent overfitting of the 
model, training is automatically stopped if there is no 
improvement of the validation loss value after 10 epochs.

Analysis & Experiments
This phase comprises exploration activities, identification 
of the feature importance and determination of the best 
models in terms of performance and scalability. Each of 
them is explained below.

Exploratory Data Analysis
This analysis focuses on exploring the data in the job 
event table and the task event table before preparing the 
data for the machine learning task. The job event table 
comprises of eight columns namely Timestamp, Missing 
Info, Job ID, Event Type, User Name, Scheduling Class, 
Job Name, and Logical Job Name, Meanwhile, the task 
event table comprises of thirteen columns namely Times-
tamp, Missing Info, Job ID, Task Index, Machine ID, 
Event Type, User Name, Scheduling Class, Priority, CPU 
Request, Memory Request, Disk Space Request, and Dif-
ferent Machine Constraint. Several types of analysis are 
performed, namely data distribution analysis for explor-
ing the continuous type features and data classification 
analysis for exploring the discrete type features. We 
then produce a series of visualizations, specifically a bar 
chart and a pie chart to visualize the results of data cat-
egorization and a box plot to visualize the results of data 
distribution.

Performance Analysis
This analysis focuses on measuring the performance of 
predictive models towards building highly accurate clas-
sifiers. The analysis is divided into job-level and task-level 
predictive models. A large amount is used to train and 
test the models, namely 1 million records for the job-level 
prediction and 14 million records for the task-level pre-
diction. A set of evaluation metrics is applied to measure 

each model, namely error rate, precision, sensitivity, 
specificity, and F-score. These measures can be obtained 
from the confusion matrix generated, which consists of 
four parameters: True positive (TP), true negative (TN), 
false positive (FP) and false negative (FN).

Feature Importance Analysis
The feature importance refers to the score that measures 
the importance of each feature in a predictive model. 
Feature importance helps to understand the relative 
importance of each feature in estimating the models. 
Feature importance does not relate to the accuracy of the 
model. The importance of each feature is determined by 
a score calculated by predicting the training data. A high 
score means that the feature will have high priority in 
determining the outcome of the prediction. In this study, 
the scores of feature importance are calculated using the 
library Dalex [26].

Scalability Analysis
This analysis focuses on measuring the scalability of pre-
dictive models, which means the ability of the models 
to scale in response to the amount of data. It is deter-
mined by measuring the time taken to make the predic-
tion based on the given input data. For this analysis, we 
have prepared a few sets of data for analyzing the job-
level and task-level predictive models. In the case of the 
job level, there are three sets of input data of different 
sizes, namely (1) 10,000 rows, (2) 100,000 rows, and (3) 
1,000,000 rows. For the task level, we prepared four sets 
of input data, specifically, (1) 10,000 rows, (2) 100,000 
rows, (3) 1,000,000 rows, and (4) 10,000,000 rows. These 
input data are taken from the job event table and the 
task event table. For this analysis, the event type (i.e. the 
dependent variable) is ignored, and only the independ-
ent variables are considered. The process of preparing the 
data is similar to the process of data handling discussed 
in Section 3.2 that excludes data reduction, data transfor-
mation, and class balancing.

Results and Findings
This section explains the results of analysis and experi-
ments, namely, related to exploratory data analysis, per-
formance, feature importance, and scalability aspects.

Results of Exploratory Data Analysis
We explain the results based on two tables, which are the 
job event and the task event table.

Job Event Table
This table contains eight columns (or features) and 
2,012,242 rows, where three of the columns take a hash 
string type and the rest are defined as integer type. 
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Meanwhile, there are only 672,074 unique job identifi-
ers. Each job has at least three occurrences, namely, job 
submission, job scheduling, and job termination. Fig-
ure 3 shows the distribution of scheduling classes in the 
job event table, while Fig. 4 shows the job termination 
status classified by their scheduling class.

There are four scheduling classes where schedul-
ing class 0 indicates the non-production jobs (e.g. non-
business critical analysis), scheduling class 3 represents 
latency-sensitive jobs (e.g. serving revenue-generating 
user requests), while scheduling classes 1 and 2 repre-
sent the jobs that are somewhere between the least and 
the most latency one. Based on Fig. 3, almost half of the 
jobs are identified as class 0. There are around 5,000 jobs 
designated as class 3, 215,000 jobs as class 1 and 194,000 
jobs as class 2. From Fig. 4, about 385,582 jobs finished 
normally, and 274,341 jobs were killed due to user inter-
ruption, or their dependent jobs have died. About 10,000 
jobs were failed due to task failures. Lastly, about 22 jobs 
were evicted because of executing jobs with higher pri-
ority, the scheduler overcommitted, the actual demands 
exceeded the machine capacity, the machines became 
unusable, or the disks were failed.

Figure  5 shows the correlation between the features 
in the job event table using heatmap. As shown, we can 
observe that event type is highly correlated with missing 
info. Also, note that other features have a weak or no cor-
relation with event type. Two features, namely user name 
and job name, are not considered in this correlation, as 
we focus only on anonymous values.

Task Event Table
This table contains 13 columns (or features) and 
144,648,288 rows, where eight of the columns are integer 
types, three are floating types, and one column is string 
type. There are 25,424,731 unique tasks in the table. A 
unique task is identified by the combination of the job id 
and the task index. Similarly to the job event table, a sin-
gle task may contain at least three occurrences, namely, 

Fig. 3  The figure shows the distribution of scheduling class in job 
event table. Most of the job events are classified as 0 which indicates 
a non-production job

Fig. 4  The figure shows the distribution of termination status categorized based on the scheduling class. Most of the job events terminates with 
the finish status
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Fig. 5  Job Event Table Correlation. The figures shows the the heat map of the correlation analysis of the job event table

Fig. 6  The figure shows the distribution of task priority in the task event table. The left chart depicts the overall distribution of task priority, whereas 
the right chart depicts a detailed distribution of job priority, that is smaller than 5%
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task submission, task scheduling, and task termination. 
Of 25,424,731 rows, 18,375 rows were synthesized, which 
is approximately 7% of the total records. Figure 6 shows 
the distribution of priority tasks, while Fig. 7 shows the 
termination status of tasks categorized by priority.

From Fig. 6, we can see that more than half of the task 
priority in the dataset is identified as level 0 which rep-
resents the least priority task. Unlike the job, task prior-
ity plays a significant role in determining the resource 
access for each task. From Fig. 7, we can see that the ratio 

of failed tasks to finished tasks is 3 to 4. This means that 
from the total of failed tasks and finished tasks, 3 of 4 
tasks did not finish correctly. This ratio is abnormal, as 
a cloud service provider usually aims for 99.9% service 
availability. Therefore, we can assume that there were a 
series of outages at the site while monitoring the traces.

The distribution of resource requests is shown in 
Fig. 8. As shown, the average value for the CPU request 
per task is around 0.0125 to 0.0625 of the total CPU 
resources in a machine. The amount of memory request 

Fig. 7  The figure shows the distribution of the tasks’ termination status in the task event table. Level 0 is the least priority task, while level 11 is the 
highest priority task

Fig. 8  The figures show the distribution of the resource requests (CPU request, memory request, disk space request)
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required is usually in the range of 0.01553 to 0.03180, 
while the disk space request is in the range of 0.000058 
to 0.000404. The values of all resources have been nor-
malized from 0 to 1. As a result, we may conclude that 
the amount of disk space needed is insignificant com-
pared to the available resource. We can also see that 
each requested task takes less than 10% or 0.1 of the 
total CPU and memory requests.

Figure  9 shows the correlation of features in the task 
event table using heatmap. From the figure, we can see 
that event type has a weak correlation with other features. 
In addition to that, we notice that there is a positive cor-
relation between resource usage and priority. Scheduling 
class does not appear to be affected by the amount of 
resources requested and the status of the task. Although 
it is a weak correlation, missing info is adversely corre-
lated with resource requests.

Fig. 9  This figures show the heatmap of the correlation between features of the task event table
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Feature Importance Results
Herein, we present the results of feature importance 
based on job-level and task-level failure prediction.

Job Level Failure Prediction
Figure 10 shows the features that matter the most for all 
models driven by machine learning. With the exception 
of the GB and XGBoost models, in general, scheduling 
class and CPU request are the most significant features 
in determining the result of the job termination sta-
tus. These two features score around 30 to 35% for their 
importance in cloud job termination status. For the three 
DL algorithms, it has been shown that CPU request is 
the most important feature in determining the termina-
tion status of the cloud job, whereas for the LR model, 
memory request is the most important feature in predict-
ing the termination status of the job.

Task Level Failure Prediction
As shown in Fig.  11, the priority is the most impor-
tant feature in predicting the termination status of the 
task. For the TML algorithms, with the exception of 
GB, the priority importance score is 0.2, which means 
that it has been the main factor in determining 20% of 
the result of the given dataset. In the case of resource-
related requests (i.e., CPU request, memory request, 
disk space request), it has been determined that memory 
request is the most important feature for TML models, 
excluding the DT model where disk space request is 
the most important. For DL models, it has shown that 
memory request is the most important feature to pre-
dict the outcome in Single-Layer LSTM and Bi-Layer 
LSTM, while for Tri-Layer LSTM, disk space request in 
the most important resource request.

Fig. 10  This figures show the feature importance for the job level prediction models

Fig. 11  This figure shows the feature importance for the task level prediction models



Page 13 of 19Tengku Asmawi et al. Journal of Cloud Computing           (2022) 11:47 	

Performance Results
We present the performance results based on the predic-
tion of failures for the job level and the task level.

Job Level Failure Prediction
Table 4 shows the performance of each model using the 
training dataset, while Table  5 shows the performance 
of all models trained to classify the termination status of 
the test dataset. We can observe that the performance 
of all LSTM models is lower than the performance of 
the TML models, excluding the LR model. Specifically, 
the XGBoost model has the best accuracy at 93.25% end 
at 93.10%. The F-score scores of 0.9325 and 0.9310 fur-
ther demonstrated that XGBoost is the best model of all 
the models generated in this experiment. XGBoost also 
demonstrated the highest precision, correctly identifying 
94.31% of the termination statuses of the job. Further-
more, the XGBoost sensitivity and specificity scores are 
91.92% and 96.07%, respectively, indicating that it can 
successfully predict the termination status of the job.

The second highest accuracy is recorded by the DT 
model. The results for the XGBoost and DT models 
show only a slight difference in terms of accuracy, preci-
sion, and specificity performance during the testing and 

training phase. The DT model has achieved 93.27% accu-
racy during training and 93.23% accuracy during testing, 
with a precision of 92.19% during training and 91.95% 
during testing. Similarly to XGBoost, the DT model also 
obtained a high score for sensitivity and specificity dur-
ing the training and testing phase, demonstrating that the 
model can correctly classify the job termination status.

The GB model has the third highest accuracy at 90.72% 
during the testing phase compared to the RF at 89.65%. 
However, during the training phase, the GB model 
shows a lower accuracy at 90.72% compared to the RF 
at 93.27%. It has also shown better performance during 
the testing phase, where its F-score is 0.8874 during the 
testing phase, while the F-score in the training phase is 
0.8098. Therefore, the RF model is the fourth model used 
to predict job failure prediction, although the accuracy 
is slightly lower during testing, which is 89.65%. The LR 
model has the least accuracy compared to another model. 
This model has the lowest F-score and accuracy among 
the other TML models in this experiment. The LR model 
managed to obtain the accuracy score of 65% and incor-
rectly classify the result of 35% of the jobs in the dataset.

Finally, with the exception of the LR model, the three 
LSTM models developed for this experiment performed 

Table 4  This table presents the performance results of each predictive model for the job level based on the training dataset, where 
the model in bold represents the best model

Model Accuracy(%) Error rate(%) Precision(%) Sensitivity(%) Specificity(%) F-Score

Logistic Regression 63.11 34.66 41.44 55.65 66.30 0.4751

Decision Tree 93.43 8.08 92.19 91.56 94.70 0.9187

Random Forest 93.27 7.63 91.47 91.80 94.26 0.9163

Gradient Boosting 90.72 9.43 91.40 86.35 93.96 0.8098

XGBoost 94.49 6.27 94.46 92.08 96.19 0.9325
Single Layer LSTM 88.83 12.27 85.75 86.42 90.44 0.8609

Bi-Layer LSTM 89.91 11.42 86.42 88.29 90.97 0.8734

Ti-Layer LSTM 85.10 14.77 81.75 81.34 87.65 0.8155

Table 5  This table presents the performance results of each prediction model for the job level based on the test dataset, where the 
model in bold represents the best model

Model Accuracy(%) Error rate(%) Precision(%) Sensitivity(%) Specificity(%) F-Score

Logistic Regression 63.13 36.87 41.36 55.90 66.21 0.5755

Decision Tree 93.23 6.77 91.95 91.34 94.52 0.9165

Random Forest 89.65 10.35 50.97 52.21 94.07 0.5158

Gradient Boosting 90.65 9.35 91.25 86.37 93.83 0.8874

XGBoost 94.35 5.65 94.31 91.92 96.07 0.9310
Single Layer LSTM 88.78 11.22 85.64 86.47 90.33 0.8605

Bi-Layer LSTM 89.78 10.22 56.26 90.82 88.19 0.8722

Ti-Layer LSTM 85.14 14.86 81.57 81.64 57.52 0.8161
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somewhat worse than other TML algorithms. This may 
be caused by underfitting the models when there is not 
enough data for the model to interpret the complexity 
of the data to make the correct classification. We also 
observed that there were not many differences in perfor-
mance despite their differences in the number of hidden 
layers. We also can conclude that the amount of LSTM 
hidden layer suitable for this experiment is two, as we 
can see there is a dip in performance for Tri-Layer LSTM 
compared to Bi-Layer LSTM.

Task Level Failure Prediction
Table 6 shows the performance of each model using the 
training dataset, while Table 7 shows the performance of 
each model trained based on the test dataset. As shown, 
the best models to predict task-level failure prediction 
are the RF and DT models. Both achieved 89.75% accu-
racy during the testing phase. However, the RF model 
gains a slight edge during the training phase with 92.47% 
accuracy, while the obtained DT model achieved 89.75%. 
Both the DT and RF models managed to correctly clas-
sify 78.4% of the task that ended normally. This trend can 
be seen in most machine learning models.

XGBoost has the third highest accuracy at 89.35% dur-
ing the testing phase compared to GB at 87.87%. The 
same is true for the training phase where the accuracy for 
the GB model is 87.81% and the accuracy for XGBoost at 
89.34%. F-Score for XGBoost is 0.9120 and 0.9119, while 
the F-Score for the GB model is 0.9003. The LR model 
has the lowest accuracy compared to another model. This 
model has the lowest F-score and accuracy among the 
other TML models for this experiment. The LR model 
has achieved 70% accuracy and wrongly classified 30% of 
the task in the dataset.

Finally, similar to the job-level failure prediction, the 
three LSTM models performed marginally worse than all 
TML models excluding the LR model. The accuracy score 
for all LSTM models is between 86% and 87%. We also 
observed that there are not many differences in terms of 
performance between the three LSTM models despite 
their differences in the number of hidden layers.

Scalability Results
We present the scalability results based on the prediction 
of the failure level of the job and the task level.

Table 6  This table presents the performance results of each predictive model for the task level based on the training dataset, where 
the model in bold represents the best model

Model Accuracy(%) Error rate(%) Precision(%) Sensitivity(%) Specificity(%) F-Score

Logistic Regression 69.68 30.32 71.09 79.95 55.67 0.7526

Decision Tree 89.75 10.25 85.44 98.56 78.42 0.9153

Random Forest 92.47 7.53 90.66 99.13 78.86 0.9471
Gradient Boosting 87.81 12.19 84.81 95.92 76.86 0.9003

XGBoost 89.34 10.66 85.04 98.30 77.89 0.9119

Single Layer LSTM 87.74 12.26 83.94 96.85 75.87 0.8994

Bi-Layer LSTM 86.93 13.07 81.36 98.18 73.84 0.8898

Ti-Layer LSTM 87.54 12.46 82.90 79.53 75.27 0.8962

Table 7  This table presents the performance results of each predictive model for the task level based on the test dataset, where the 
models in bold represent the best models

Model Accuracy(%) Error rate(%) Precision(%) Sensitivity(%) Specificity(%) F-Score

Logistic Regression 69.69 30.31 85.45 98.57 78.42 0.9154

Decision Tree 89.75 10.25 85.45 98.57 78.42 0.9154
Random Forest 89.75 10.25 85.43 98.58 78.40 0.9154
Gradient Boosting 87.87 12.13 84.80 95.94 76.88 0.9003

XGBoost 89.35 10.65 85.05 98.31 77.89 0.9120

Single Layer LSTM 87.82 12.18 83.39 96.86 76.20 0.8994

Bi-Layer LSTM 86.95 13.05 81.39 98.18 13.87 0.8900

Ti-Layer LSTM 87.55 12.45 82.92 97.53 75.28 0.8963
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Job Level Failure Prediction
Figure  12 illustrates the scalability result of the job-
level prediction models. For the TML models, we found 
that on average a single prediction will take around 2 to 
3 microseconds per prediction, whereas the DL models 
take around 2 to 3 milliseconds for a single prediction. 
The best model for TML is based on the LR model, 
where it can predict up to 1 million inputs in under one 
second.

Task Level Failure Prediction
We notice that the time taken for a task-level prediction 
is similar to that for the job-level prediction. Figure  13 
illustrates the scalability result of the task-level prediction 
models. For the TML models, we found that on average 
a single prediction will take around 2 to 3 microseconds 
per prediction, whereas the DL models take around 2 to 
3 milliseconds for a single prediction. The best model for 
the TML model is based on the LR model, where it can 
predict up to 10 million inputs in less than two seconds.

Fig. 12  This figure shows the scalability of job level failure prediction models in relation to different amount of data

Fig. 13  This figure shows the scalability of task level failure prediction models in relation to different amount of data
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Related Works
In this section, we discuss related work in three aspects. 
First, we review the work that has addressed the pre-
diction of job and task failure using the GCT dataset, 
as shown in Table  8. Second, we review the work that 
addressed different types of failure prediction using dif-
ferent types of dataset, as shown in Table  9. Third, we 
review other types of prediction that have specifically 
used the GCT dataset as shown in Table 10.

The review resulting in Table  8 is based on three 
key elements. First, we identify the prediction scope 
to determine whether the related work addresses job 
failure or task failure, or both. Second, we identify the 
feature studied in relation to the GCT dataset. Third, 
we determine the applied machine learning algorithms 
for producing predictive models, which we categorize 
into SML, TML, and DL. For comparison purposes, we 
focus on the first and third elements, whilst the sec-
ond element is meant to provide more information of 
the related works. From the prediction scope, we can 
conclude that most related work addresses either job 
or task failure prediction. Limited work has addressed 
both failures. With regard to the algorithms applied, we 
notice that most of the related work has applied TML 
algorithms. There are limited studies that applied DL 
and only one study applied SML. Our work concerns 

addressing both job and task failure prediction, where 
highly accurate predictive models are constructed and 
evaluated from two categories of algorithms, namely 
the TML and DL algorithms. Thus, compared to related 
works, our work is more comprehensive in determining 
the best predictive models, since we cover both types of 
failure and utilize more algorithms from TML and DL.

We then expand our review beyond the prediction 
of job and task failures. We are concerned with the 
coverage of algorithms applied in related work. The 
review resulting in Table  9 is also based on three key 
elements, similar to Table 8. The main difference is that 
the table contains related works that utilized a dataset 
other than GCT. Therefore, its failure prediction scope 
is not intended to train predictive models for job and 
task failure. However, we take them into account, since 
these works are still within the cloud computing area, 
and the applied algorithms can also be categorized into 
SML, TML, and DL. This review can provide additional 
references to interested readers in a broader context of 
failure prediction and also beyond the use of the GCT 
dataset. Although these works are not comparable 
to our work in relation to the targeted failure predic-
tion problem, we can conclude that there are still lim-
ited works that comprehensively evaluate the failure 

Table 8  This table presents the related works of job and task failure prediction using GCT dataset. The algorithm in bold refers to 
the best model mentioned in the respective article. [Note: SML - Statistical Machine Learning Algorithms, TML - Traditional Machine 
Learning Algorithms, DL - Deep Learning Algorithms]

Article Prediction scope Feature studied SML TML DL

Chen et al. [27] Job and Task Failure Job Priority, Resource Requested - - RNN

Soualhia et al. [28] Task Failure Waiting Time, Serving Time, Schedul‑
ing Class, Priority, Resource Request, 
Resource Usage

- Tree, Boost, GLM, CT, RF NN

Rosa et al. [29] Job Failure Task Priority, Resource Request, Schedul‑
ing Class, Job Size

LDA, ELDA, QDA LR -

Tan et al. [30] Task Failure Scheduling Class, Priority, Task Duration, 
Hourly Failure Frequency, Resource 
Usage

- K-Means, Clustering -

Islam and Manivannan [31] Job and Task Failure Resource Usage, Priority, Scheduling 
Class, Job Duration, Number Of Task Re-
Submission, Scheduling Delay

- - LSTM

Liu et al. [32] Job Failure Scheduling Time, Scheduling Class, Job 
Size, Task Priority, Resource Request

- SVM, OS-SVM ELM, OS-ELM

El-Sayed et al. [33] Job Failure Job Priority, Sheduling Class Job Size, 
Resource Request, Resource Usage

- RF -

Jassas and Mahmoud [34] Job Failure Resource Request, Scheduling Class, 
Priority

- DT, RF -

Shetty et al. [35] Task Failure Resource Usage, Job Duration - XGBoost -

Gao et al. [15] Task Failure Task Priority, Task Re-Submission, Sched‑
uling Delay, Resource Usage

- - Bi-LSTM

Jassas and Mahmoud [36] Job Failure Resource Request, Scheduling Class, 
Priority

- DT, RF ANN
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predictive models (i.e., using multiple types of machine 
learning algorithm) as presented in the table.

Furthermore, the review that resulted in Table  10 is 
also based on three key elements, similar to Table  8. 
The main similarity is that the related work is those 
utilized in the GCT dataset. Meanwhile, the key dif-
ference is that we broaden the scope of the prediction 

beyond the failure prediction perspective. This sum-
mary may provide a wider context for the use of GCTs 
to interested readers. As shown, we can conclude that, 
in addition to failure prediction, GCT has been used 
mainly to predict workload. We can also conclude that 
more work has applied multiple categories of machine 
learning algorithms to find the best models. Therefore, 

Table 9  This table presents the related works of other types of failure prediction using other datasets. The algorithm in bold refers to 
the best model mentioned in the respective article. [Note: SML - Statistical Machine Learning Algorithms, TML - Traditional Machine 
Learning Algorithms, DL - Deep Learning Algorithms]

Article Data source Prediction scope Feature studied SML TML DL

Guan et al. [37] Private Data System Failure CPU usage, Memory Usage, 
Swap Space Utilization Page 
Faults, Interrupts, Network 
Activity, I/O and Data Transfer, 
Power Management

- Bayesian Network, DT -

Adamu et al. [38] NERSC Component Failure Failed Component, Failure 
Time

- LR, SVM -

Pitakrat et al. [39] Private Data System Failure Resource Usage, Failure Infor‑
mation, Failure Time

- RF -

Zhang et al. [40] Public Dataset Switch Failure Message Template Sequence, 
Frequency, Seasonality, Surge

HSMM RF, SKSVM -

Lin et al. [41] Private Cloud Node Failure Resource Usage, Group Policy, 
Domain Group, Rack Location

- LR, SVM, RF LSTM

Han et al. [42] Alibaba’s Cloud, Backblaze 
SMART​

Disk Failure SMART Log, SysLog, Trouble 
Ticket

- LGBM -

Mohammed et al. [43] NERSC Component Failure 
and Service Failure

Multiple Sources of Failure ARIMA LDA, CART, RF, SVM, KNN -

Chen et al. [44] Microsoft Cloud System Outage Prediction Storage Location, Physical 
Networking, Storage Stream‑
ing Component

- SVM, PLR, Bayesian 
Network, XGBoost

-

Li et al. [13] System X Node Failure Resource Usage, Group Policy, 
Domain Group, Rack Location

- RF LSTM

Rawat et al. [45] Private Cloud VM Failure Number of VM Used ARIMA - -

Yu et al. [46] Alibaba Cloud System DRAM Failure System Kernel Log, MCA Data 
Log

- XGBoost -

Table 10  This table presents the related works of other kind of prediction using GCT dataset. The algorithm in bold refers to the best 
model mentioned in the respective article. [Note: SML - Statistical Machine Learning Algorithms, TML - Traditional Machine Learning 
Algorithms, DL - Deep Learning Algorithms]

Article Prediction scope Feature Studied SML TML DL

Rasheduzzaman et al. [47] Workload Prediction Resource Usage, Resource Request ANFIS, NARX, ARIMA - -

Liu et al. [48] Workload Prediction Job Duration, Job Waiting Time, Job 
Status, Machine Availability

MA, WMA MR NN

Zhang et al. [49] Workload Prediction Resource Request - - RNN

Hemmat and Hafid [50] SLA Violation Resource Request, Resource Usage, 
Resource Availability

- DT, RF -

Zhang et al. [51] Request Prediction Resource Request - - DBN

Chen et al. [52] Workload Prediction Resource Usage - SA RNN, 
LSTM, 
GRU​, ESN

Gao et al. [53] Workload Prediction Resource Usage, Resource Request ARIMA BRR, SVR LSTM

Di et al. [54] Workload Prediction Resource Usage SMA, LWMA, EMA, AR Bayesian Network -
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it supports our strategy to comprehensively address 
the failure prediction problem with TML and DL. Fur-
thermore, our work also contributes to the use of GCT 
from a failure prediction perspective with a compre-
hensive evaluation.

Conclusion and Future Work
In this paper, we have proposed a comprehensive evalua-
tion approach to predict task failure and failure. For this 
reason, we constructed five TML models and three DL 
models and compared their performance in predicting 
job and task failure using the GCT dataset. Our perfor-
mance analysis showed that the best performing model 
for predicting job-level failures is the XGBoost classifier, 
which has achieved an accuracy score of 94.35% and an 
F-score of 0.9310. In the case of task-level prediction, we 
found two best-performing models, which are based on 
DT and RF. Both models have obtained an accuracy score 
of 89.75% and an F-score of 0.9154. Overall, the results 
have shown that the TML models perform slightly better 
than the DL models in classifying job and task termina-
tion status. Furthermore, our analysis of feature impor-
tance determined that scheduling class and CPU request 
are the most significant features for TML, while disk 
space request and memory request are the most impor-
tant features for DL in the context of prediction of job 
failure. Meanwhile, for task-level prediction, resource 
requests is the dominant one for TML while priority is 
the most important feature for DL models. Finally, our 
scalability analysis found that TML models can make the 
prediction in a reasonably short time, even though they 
are executed on consumer-level hardware.

There are several recommendations for future work. 
First, a multi-objective prediction will be useful for sup-
porting cloud resource management. For example, the 
prediction of workload and failure can be addressed 
simultaneously when automatically deciding on resource 
allocation, scheduling, or provisioning. Training for this 
kind of predictive model can benefit from the GCT data-
set. Second, the scope of the prediction can be expanded 
to the energy efficiency aspect. This challenge is impor-
tant for cloud service providers to minimize their costs. 
Additionally, it also supports the Sustainable Develop-
ment Goals agenda. However, training for this kind 
of model should use other potential datasets. Third, 
the application of transfer learning techniques can be 
explored towards producing the best quality of predictive 
models for the cloud resource management.
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