
Xu et al. Journal of Cloud Computing (2022) 11:54
https://doi.org/10.1186/s13677-022-00330-5

RESEARCH

RDPNet: a single‑path lightweight CNN
with re‑parameterization for CPU‑type edge
devices
Jiarui Xu, Yufeng Zhao* and Fei Xu 

Abstract 

Deep convolutional neural networks have produced excellent results when utilized for image classification tasks,
and they are being applied in a growing number of contexts. Model inference on edge devices is challenging due to
the unending complicated structures needed to improve performance, which adds a significant computing burden.
According to recent research, the often utilized residual structure in models does not support model inference. The
idea of structural reparameterization is put out to address this shortcoming. The RepVGG produced with this method
is a high-performance, quick-inference single-path network. Even after reparameterization, the model still needs
GPUs and other specialized computing libraries to accelerate inference, however this still has a limit on how quickly
the model can infer at the edge. We construct RDPNet using depthwise separable convolution and structural repa-
rameterization to further reduce model size and accelerate inference. When utilizing an Intel CPU, this is a straightfor-
ward network that may be utilized for inference. For re-parameterization, we specifically adopt Depthwise separable
convolution as the basic convolution form. Create a multi-branch model for training on the training side, and then
simplify it into a single-branch model that the edge devices can easily infer. Research demonstrates that compared
to alternative lightweight networks that can attain SOTA performance, RDPNet offers a superior trade-off between
accuracy and latency.

Keywords:  Structural re-parameterization, Depthwise separable convolution, Lightweight networks, Edge devices

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In recent years, the development of CNN research is
obvious to all, and very significant results have been
achieved in the fields of image classification. Provides a
solid foundation for autonomous driving, object recog-
nition and object tracking scenarios. With the develop-
ment of cloud-edge computing, these tasks are becoming
more and more perfect in real-world applications. In
this context, deploying CNN models to the edge to meet
the needs of various cloud-edge computing scenarios
has become a research issue that must be considered.
Among these, the creation of the model architecture is

the cornerstone and essential stage for advancing CNNs.
Early designs that consist of stacks of single convolutional
layers, like [1] and [2], perform well on classification
tasks, sometimes even outperforming human recognition
levels. Complex structures like ResNet [3], the Inception
[4–7], and [8] were proposed in order to improve the
model’s performance, and these further improved out-
comes in classification tasks.

On the other side, as a model performs better, com-
putational complexity and network model parameters
likewise rise. The conventional method involves send-
ing massive amounts of edge-generated data to cloud
computing centers for processing, and then sending the
findings back to the edge in order to make complicated
networks usable in a larger range of application situa-
tions. This method cannot meet latency requirements

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: zyfzy99@163.com

Computer Science and Engineering, Xi’an Technological University, No. 2
Xuefu Middle Road, 710021 Xi’an, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00330-5&domain=pdf

Page 2 of 13Xu et al. Journal of Cloud Computing (2022) 11:54

and consumes a lot of bandwidth and energy. The major-
ity of edge technology leverages the CPU to do complex
tasks and remain efficient, taking into account cost,
latency, and the type of work that needs to be done.
Model inference becomes difficult as a result of the
direct deployment of computationally intensive models
to the edge.

This issue has been addressed recently by lowering the
model memory occupation and speeding up inference.
such as knowledge distillation [9, 10], network pruning
[11, 12], and quantization [13, 14]. These techniques to
compress data are based on current models. The perfor-
mance of the model is limited to the pre-trained Base-
line, and the compressed model performs worse than the
starting network. With fewer parameters and computa-
tions, compact network designs [15–19] achieve accept-
able accuracy. By using depthwise separable convolution
(DSC) in place of the conventional convolutional form,
the model can be made lighter. The multi-branch Con-
vNet layered by Bottleneck structure is the key to
achieving good performance with the proposed residual
structure. The connection of residual structures, how-
ever, is beneficial for model inference but not for model
training. These issues also exist in the lightweight neu-
ral network used in e.g. [18] and its extension using the
residual structure. To decrease the amount of memory
needed for inference, [20, 21] suggested converting the
multi-branch model into a straight-pipe structure. The
model nevertheless needs specialized software libraries
and hardware for acceleration.

Our work in this study primarily focuses on designing
the underlying convolutional blocks by hand in order to
construct a lightweight CNN. We contend, in the spirit
of RepVGG, that the form of DSC that results from repa-
rameterization enables the model to preserve accurate
inference while maintaining efficiency. Howard et al. [17]
and Chollet [22] suggested DW for feature extraction
of spatially correlated information and PW for channel
information integration in relation to DSC. According
to MobileNetV2, the latter PW is more important
because it incorporates channel correlation during fea-
ture extraction, which is crucial for block feature extrac-
tion. The similar point of view is presented with several
model modifications in [23, 24]. We also aware of how
important PW is for feature extraction while develop-
ing a multi-branch Module. So, we made the decision to
exclude the Identity mapping branch from PW. Addition-
ally, group convolutions are used in place of the convolu-
tional forms of other branches in the DW multi-branch
architecture to match the spatially correlated extraction
properties of DSC.

These characteristics guide the construction of a
new DSC-based multi-branch module, which is then

re-parameterized into a single-path model for infer-
ence. By stacking modules with the proper depth and
width requirements, we create the RDPNet. According to
experimental findings, RDPNet excels at building light-
weight neural networks and makes excellent trade-offs
while performing image classification and object recogni-
tion tasks.

The main contributions of this paper are as follows:

(1)	 We build a multi-branch structure based on the
depthwise separable convolution in the form of
convolution, and through the process of re-parame-
terization, we make it into a single-branch structure
that makes inference by edge devices easier.

(2)	 We suggest RPDNet, a thin neural network appro-
priate for portable embedded devices. In compari-
son to other networks that are capable of achieving
SOTA performance, experiments reveal that RDP-
Net offers a better trade-off between accuracy and
delay, and the model implementation is both easier
to use and more efficient.

The remainder of this essay is organized as follows: Sec-
tion 2 reviews relevant work in brief. In the Section 3, we
first analyze the impact of different model architectures
on inference. Then, the construction and transformation
of RDPNet-Module and the overall design of the model
are introduced. Presentation of experimental findings
and discussion (Section 4). The entire text is summarized
in Section 5, which also offers a look ahead to upcoming
work.

Related work
Compact network and multi‑branch model
On the ImageNet dataset, the single-path network [2]
obtains an accuracy of 70% , however the performance
of the model is constrained by gradient vanishing and
accuracy loss brought on by the stacking of deep convo-
lutional layers. A substantial amount of computation is
also added by the stacked single-path convolutional layer
network. Some network lightweight strategies have been
presented in order to expedite training and save compu-
tation. To minimize the dimension, [25] suggests adding
1 × 1 convolution before 3 × 3 convolution. To put a limit
on model parameters, [17] and [22] suggest DSC.

The network structure was then significantly altered by
the ResNet [3] proposal, and the residual structure was
adopted as the core model for feature extraction net-
works. The network employing the residual structure is
referred to in this paper as a multi-branch network since
there is a view [26] that the residual structure is an inte-
gration of many shallow networks. According to a dif-
ferent perspective [27], the residual structure facilitates

Page 3 of 13Xu et al. Journal of Cloud Computing (2022) 11:54 	

information transfer between layers, allows for the reuse
of features during forward propagation, and solves the
gradient disappearance issue during back propagation.

In a nutshell, the addition of Identity Mapping
increases the independence of each convolutional block,
better alleviates gradient disappearance during training,
and prevents model degradation during stacking. Sandler
et al. [18] proposes the inverse residual structure by com-
bining deep separable convolution and residual structure.
Zhang et al. [15]and Ma et al. [16] uses channel shuffling
and group convolution to optimize on this basis. Subse-
quent studies have proposed more detailed methods for
inverting residual structures. Han et al. [24] uses feature
multiplexing to improve the inverted residual structure
so that the model has fewer parameters. Yang et al. [23]
observes that the functions of the two PW parts are dif-
ferent, and adjusting the convolution dimension of the
two PWs obtains better results. Additionally, [28] reduces
connectivity between convolutional layers to simplify
operations and adds more intricate nonlinear functions
to make up for the loss of network depth. Zhou et al.
[29] makes inferences about the depth axis redundancy
of DSC based on a quantitative analysis of convolution
kernels. It swaps the original weight for a predetermined
weight to simplify calculations.

Despite the fact that these recently presented models
have few FLOPs, memory footprint and inference per-
formance are increased by several computation-saving
techniques and residual structures. At the same time, the
model is challenging to customize and execute due to its
complex multi-branch structure, and pruning and quan-
tization do not work well with it.

Some study areas have changed from manually creat-
ing neural networks to structural systems that adaptively
execute systematic search for particular tasks as a result
of the emergence of GPUs. A number of networks [30–
33] have been presented in a search area comparable to
ResNet/MobileNetV2. However, [32] and manually con-
figuring the search space demand a significant amount of
computational power, and the network model discovered
by searching requires a lot of hardware. The best solu-
tion can be found by searching the body of existing infor-
mation, and even better is to determine the best model
architecture for the model that already exists.

Structural re‑parameterization
In order to speed up the training process, DiracNet
[34] suggested a Block that had the re-presentation
y = σ(x + f (x)) and changed the network into a sin-
gle-branch structure based on the linear relationship
between the convolutional and BN layers. However, due
to nonlinearity’s limitations, the performance of the

DiracNet model developed using ResNet structure is
constrained.

In contrast to [20, 21], which indirectly generates a
three-branch structure for training, this method enables
the model to perform better. Ding et al. [21] suggests that
the model be trained to have a complicated multi-branch
structure to accommodate different network require-
ments. This structure can then be re-parameterized into
a 3 × 3 convolution-based network.Operations similar
to converting multiple convolution blocks into a single
block through linear transformation can be understood
as reparameterization operations [35–37]. The pur-
pose of linear transformation is to reduce the amount of
parameters and increase its inference efficiency. Struc-
tural re-parameterization has the benefit of allowing the
model to be optimally trained using complicated net-
work types for improved model performance. The altered
canonical network allows for improved quantization,
pruning, and the computation of the library’s accelerated
operators. Accordingly, the flaw is that the 3 × 3 convo-
lution model after conversion still requires a significant
amount of computation for edge devices, necessitating
additional compression processing. We suggest RDPNet,
which was inspired by the re-parameterization approach.
Create a DSC structure with a single path for inference
and a complex multi-branch structure for training.

RDPNet
In this section, We compare the inference effects of com-
mon network structures under different hardware, then
we examine the benefits of adopting the straight-tube
topology to deploy inference on edge devices. The net-
work structure is then described using a combination of
structural re-parameterization and depthwise separable
convolution. A lightweight model RDPNet is built using
the existing overall network architecture as a reference.

Problem description
Multi‑path branching
An example of a single-path ensemble is ResNet. Identity
Mapping, which is more suited to the training and depth
of the model, is used by the network to implement the
deep network during the training phase. Despite being
jointly trained, there isn’t much of a correlation between
the blocks in the network. The key is that the model’s
capacity to better match data is made possible by the
efficient multi-branch structure. The residual structure,
which enables the model to delay the disappearance of
gradients during training, is usually thought to be the
cause of ResNet’s exceptional performance.

Figure 1 depicts various multi-branch network archi-
tectures in their extended form. When the number of
input and output channels of Block is the same, the

Page 4 of 13Xu et al. Journal of Cloud Computing (2022) 11:54

difference from ResNet is that the training model of
RepVGG adds a 1 × 1 convolutional branch to expand the
path. In the experimental section of [20], ablation experi-
ments are performed on multi-way branches, which
demonstrate that the logical addition of branches to the
model is one of the factors contributing to its good per-
formance. Reusing features and adding numerous routes
to the model is a solid solution to improve model perfor-
mance and reduce the number of parameters [8]. Model
delay increases when more complicated models are
used. By using linear transformations, structural repa-
rameterization has the benefit of reducing computation.
The model’s study from the aforementioned viewpoint
also demonstrates that a suitably complex structure can
actually improve the model’s performance. Even though
the model’s solution space remained the same after re-
parameterization, the solution path was improved. The
side shows that an effective optimization method is one
of the keys to improving the model

Hardware computing mode
The CPU’s computing technique is distinguished by
a variety of complex computing models and a limited
number of single calculations. The benefit is that it can
handle many computing tasks of varying complexity and
computing kinds simultaneously, making it appropriate
for situations in which edge hardware is present. GPU

computing is characterized by simple computation types,
few repetitions, and a significant number of single calcu-
lations. When processing massive volumes of data, multi-
memory parallel computing is a computing technique
that is necessary.

The GPU of the cloud computing facility accelerates the
VGG-like model created by stacking three conventional
convolutions three times. The key to enabling the model
to carry out a high number of tensor-type operations on
the training side is the large number of arithmetic logic
units (ALUs) that exist on the GPU. Large-scale tensor-
type calculations cannot be supported by the edge CPU
due to a lack of ALUs and cache settings. As a result, the
deep learning model’s inference is constrained at the edge
and it is unable to satisfy the latency criteria necessary in
some cases (Table 1).

The structure of the model has a direct impact on
the inference speed at the CPU’s edge. The experimen-
tal gear consists of an Nvidia RTX3060ti GPU, an Intel
9400f CPU, a batch size of 1, a feature map size of 224×
224, and networks with black markers that use DSC. We
discovered that models employing DSC ran on CPU sub-
stantially more quickly. A number of factors, including
transporting hardware, computing libraries, and underly-
ing computing frameworks, must be taken into account
in real-world settings. These elements will affect model
inference more significantly.

Fig. 1  Multi-branch structure expansion diagram, multi branch network of two Residuals Blocks(top), multi branch of two Repvgg Blocks(bottom)

Page 5 of 13Xu et al. Journal of Cloud Computing (2022) 11:54 	

Consequences of structural changes
When the model is inferred, there is a distinct distinction
between the multi-branch structure and the straight-tube
form. To achieve the goal of accelerating the computation
on the CPU for the analysis in the preceding section, we
built the model as a computing mode with low memory
footprint for a single calculation.

ShffleNetv2 [16] makes the argument that even while
some multi-branch models have minimal FLOPs, this
statistic is insufficient to assess how well the model per-
forms when making inferences at the edge. The effect of
each operator in the network model on the latency dur-
ing inference is the unique performance that needs to
be taken into account. For instance, although though

the residual structure’s shortcut uses a little amount
of FLOPs, it has a high MAC. The model’s inference
speed increases by 20 % after the shortcut is eliminated.
As a result, we came to the conclusion that the multi-
branch model does not enable model inference. On an
Intel-CPU, we tested the speed of the straight-tube con-
struction and the multi-branch structure. According to
experimental findings, the straight-tube structure’s infer-
ence speed is noticeably quicker than the residual struc-
ture with numerous convolutions.

Figure 2 displays the specific outcomes. We stack the
model from 4 to 25 layers, with conv_0 denoting straight
structure, conv_2 denoting residual structure containing
two convolutional layers, and conv_3 denoting three con-
volutional layers.

Summary of the problem
From the theoretical analysis of the multi-branch struc-
ture and the speed test results of the presence or absence
of depthwise separable convolution, we summarize some
points. (1) The convolution form based on DSC greatly
reduces the amount of model parameters and is more
conducive to reasoning on CPU devices. (2) Although
the multi-branch model can improve the model perfor-
mance, it is not conducive to model inference. (3) It is
not difficult to see from the model speed measurement
that the computing library and hardware conditions
have a great influence on the model inference. Based on
the observations in this section, we design a lightweight

Table 1  The inference latency of different types of network
structures on GPU and CPU

Model Param(M) FLOPs(G) CUDA(ms) CPU(ms)

VGG16 138 15.5 467.0 122.78

Resnet18 11.7 1.8 22.29 65.58

Resnet50 25.6 4.1 85.55 107.67

MobilenetV3-small 3.6 0.1 20.31 30.43

Mobilenetv2-1x 3.5 0.3 38.29 45.62

Shufflunetv2-1.5x 3.5 0.3 28.31 36.05

RepVGG-A0 7.0 1.4 4.83 52.34

RDPNet-1.0x 1.3 0.3 12.45 23.14

Fig. 2  Comparison of inference delay between residual structure and straight structure

Page 6 of 13Xu et al. Journal of Cloud Computing (2022) 11:54

network for the usage characteristics of the model on
CPU devices, and deploy it on embedded devices with-
out the assistance of specific computing libraries for
accelerate.

RDPNet‑Module
Depthwise separable convolution
A number of lightweight networks have been derived
from DSC, which is a crucial link in lightweight networks
and whose features are commonly used in lightweight
networks. This technique is used in this paper, and unlike
conventional convolution, DSC splits conventional con-
volution into two pieces. Pointwise convolution(PW)
is the process of combining the features to create a
new dimension feature vector whereas depthwise
convolution(DW) is the process of filtering the input fea-
ture vector. The model’s computation and parameters are
drastically decreased after such change. Pointwise convo-
lution is the process of combining the features to create
a new dimension feature vector whereas depthwise con-
volution is the process of filtering the input feature vec-
tor. The model’s computation and parameters count are
drastically decreased after such change.

DSC works well since the model requires less work to
compute because to its computational form. More non-
linearity is added after the convolution is divided into two
to make up for the accuracy loss brought on by the point-
by-point convolution’s reduction of feature correlation.
The HS activation function took the place of the RELU
activation function in MobileNetv3 [30], which enhanced
the model’s performance. Additionally, more research is
being done on the correlation between DW channels, for
example, employing channel shuffling to boost the corre-
lation between channels [15, 16]. We discovered that the
network employing DSC has a large speedup on CPU in
contrast to the speed test performance on GPU. We think
that this is because the depthwise convolution, which
increases the computational parallelism of the model,
groups and convolves the feature maps. The number of
parameters and overall processing needed for a single
convolution operation are decreased by breaking the reg-
ular convolution into two sections. This way, it is com-
patible with the CPU’s low-computation and multi-batch
operating modes, hitting additional processing RAM to
meet the goal of accelerating inference.

Conventional transformation
The inference capabilities of the multi-branch model
and the straight-tube model at the edge were examined
in the preceding section. The multi-branch structure has
an effect on the model inference even though it can help
the model reach higher accuracy. We build and alter the

model using the structural re-parameterization method
to keep the model’s high performance and high-speed
inference capability.

Lossless model transformation using linear principles
is possible through structural re-parameterization in
convolutional and network architectures. The network
can be trained in a multi-branch structure on the train-
ing side thanks to structural reparameterization. The
multi-path convolution layer and BN layer have a lin-
ear transformation relationship that causes the complex
multi-path structure to be losslessly converted into a
single-path structure. Although the solution space of the
model has remained the same, the solution path has been
extended and optimized in light of the function fitting
data. This makes it simpler for the model to improve its
accuracy while being trained.

Citing the formula described in [20]. x represents the
branch path number. When Cin = Cout ,

{

αx,βx, γ x, δx
}

represents the mean value, standard deviation and learn-
ing scaling factor obtained by the BN layer in the 3 × 3
convolutional layer, 1 × 1 branch, and Identity branch,
respectively and bias term. In inference mode, the con-
volution-BN layers are directly combined into one con-
volutional layer. i is represented as the current number of
channels, ∀1 ≤ i ≤ Cout , for BN in different branches:

If W� is represented as the weight value of reparam-
eterization, and b� represents the bias term after repa-
rameterization, the output of the above BN layer can be
converted into:

Add the bias terms in each channel to obtain the final bias
term, and denote the modified weights and bias terms as
W and b, respectively. The final convolution kernel is cre-
ated by filling and superimposing the 3 × 3 convolution
kernel with the two 1 × 1 convolutions, which reduces the
multi-branch path to a single branch.

Block building
Reparameterization is to use a set of parameters to rep-
resent multiple sets of parameters according to the linear
relationship between the convolution and the BN layer to
simplify the operation. We build a special DSC module
based on multi-branch paths. The training-end model,
which is primarily made up of Depth-Block and Point-
Block, is displayed in Fig. 3a.

We transform the complex multiplex structure into a
DSC form that is optimized for CPU, drawing inspiration
from the model transformations in RepVGG and DBB.

(1)BN M,αx
,βx

, γ x
, δx

i
= (Mi − αi)

γi

βi
+ δi

(2)BN (M)i =
γi

βi
Wi −

αiγi

βi
δi = W�

i + b�i

Page 7 of 13Xu et al. Journal of Cloud Computing (2022) 11:54 	

We employ the same multiplex construction and repa-
rameterization in the Depth-block as in the RepVGG-
Block. Convolution is used to group the input feature
map at Depth-Block. In Point-Block, an 1 × 1 convolu-
tional two-path branch is built.It should be noticed that
the Point-Block module component is where the RDPNet
feature map downsampling is completed. Our proposed
RDPNet module is shown in Fig. 3a represents a multi-
branch training model, (b) represents a single-path infer-
ence model.The information flow of the Depth-Block
module in dimension matching is y = x + f1(x)+ g1(x) ,
where f1(x) is the depthwise convolution, g1(x) is the 1 × 1
branch group convolution, and x is the Identity Map-
ping. The representation of the Point-Block module is
y = f2(x)+ g2(x) , where f2(x) is pointwise convolution
and g2(x) is 1 × 1 branch convolution.

When adding Identity Mapping to the Point-Block, the
model’s performance will suffer. Additionally, according
to [22] and [18], we think that DW and PW separately fin-
ish various stages of the convolution and are in charge of
various feature extractions. The absence of channel infor-
mation was caused by the addition of Identity Mapping.
In the residual structure, it is more precisely represented

as y = x + f (x) in Identity Mapping. The issues of disap-
pearing gradients and compressing low-dimensional data
are lessened when f(x) is minimal since the lower layer
network roughly obtains the output of the higher layer x.
In the case of creating multi-way branches and matching
dimensions, the function of point-wise is to join features
to create feature vectors of additional dimensions. The
model will lose the channel information retrieved in PW
if x is significantly greater than f(x).

After extracting the depth features from the Depth-
Block in accordance with the specifications of DSC, we
introduced the Channel shuffle module to increase the
information linkage between channels.The outcomes
of the ablation trials demonstrate how much Channel
shuffle enhances the model’s performance. We can per-
form a lossless transformation of the training end model
thanks to the linear relationship between the training end
and the deployment end. Figure 4 displays the Module
deployment model (b).

Depth‑block transform
We re-parameterize Depth-Block based on stand-
ard transforms in this part. Depth convolution is a

Fig. 3  RDPNet multi-branch training model and single-path inference model, multi branch structure(left), single branch structure(right)

Page 8 of 13Xu et al. Journal of Cloud Computing (2022) 11:54

convolution technique that produces a single feature
map from a single channel of data using a single convo-
lution kernel. The feature map produced in this manner
matches the quantity of input channels. According to
Eq.(2) we can re-parameterize the weights within each
channel. where x is the input, W ∗ is the reparameterized
convolution kernel, b∗ is the reparameterized bias term,
and the number of convolution channels is z. ∀1 ≤ i ≤ z ,
the output form M of convolution BN can be written as:

Combine each channel as:

Because depthwise convolutions are performed as
grouped convolutions, branched 1 × 1 convolutions are
also constructed in the same way. The convolution pro-
cess in each channel is reparameterized and concate-
nated using standard transformation rules.

(3)Mi =
(

X ⊗W ∗
i + b∗i

)

(4)M = Concat(M1, . . . ,Mi)

Point‑block transform
This Transform component is just a straightforward lin-
ear addition. The acquired convolution kernel weights
and bias terms are, of course,

{

W 1,W 2, b1, b2
}

 through
standard transformation. W ∗ is the reparameterized
convolution kernel, b∗ is the reparameterized bias term.
Our reparameterization of two 1 × 1 convolutions is han-
dled as follows:

The Block built by the Module we built and [23, 38] dif-
fer from one another. The latter, which is helpful for
computing libraries to accelerate and enhance accuracy,
linearly transforms irregular convolution blocks into
regular convolution blocks. A multi-path complex model
is transformed into a thin, single-path lightweight model
using our module, which is useful for CPU inference. Our

(5)W ∗
= W 1

⊕W 2

(6)b∗ = b1 + b2

Fig. 4  RDPNet multi-branch training model and single-path inference model

Page 9 of 13Xu et al. Journal of Cloud Computing (2022) 11:54 	

Module transforms a complex multi-path model into a
simple single-path lightweight model that is suitable for
CPU inference.

When building the model, we followed the follow-
ing guidelines. (1) Because the purpose of building the
model is to reduce weight and satisfy the calculation
method of CPU. The construction of the deployment-
side model is related to the computing method of edge
hardware. (2) The model construction on the training
side is related to the performance of the model. The
model on the training side is more similar to the opti-
mization of the model, which refers to the multi-chan-
nel construction of the classical network. Therefore, we
improve the model based on the characteristics of DSC.
(3) The structural re-parameter is the transformation
relationship between linear operations such as the cor-
responding convolution and BN layers. It is necessary
to pay attention to the model correspondence between
train-time and deploy-time.The schematic diagram
of the reparameterization transformation is shown in
Fig. 4.

Model architecture
RDPNet’s overall architecture is depicted in Table 2
along with changes for various widths. RDPNet differs
from other topologies in that the model, after reparam-
eterization, comprises of DSC and nonlinear modules.
This makes it possible to use the model for edge-based
rapid inference more effectively. To downsample the
feature map, we divided the model into 5 Stages, each
with a Stride of 2. In order to output the classification
results when dealing with image classification jobs, a
global average pooling layer and a fully connected layer
are added after Stage 4.

The general architecture that we created, with its [1,
1, 4, 14, 1] layer count, is comparable to that created by
RepVGG and ResNet. Focus the main feature extraction
work on the stage where the feature map size is 14×14.
We initially utilize a one-layer convolutional RepVGG-
Block for feature extraction, since the feature maps that
need to be processed at the beginning of the model
are larger. At the same time, an appropriate number of

channels are employed to ensure model performance in
fully linked layers to preserve more features.

For the width of the model, the paradigm of ResNet
and VGG is followed, set to [64, 128, 256, 512], and the
width is scaled by α . The initial value of α is [1, 1, 1, 2.5],
and the scales are [0.25, 0.5, 0.75, 1, 1.25, 1.5] respec-
tively, and 6 sizes of networks are constructed. Used
as a benchmark against thin networks and scalability
schemes like the MobileNet and ShuffleNet series.

We use the basic architectural form to build the
model, which is designed to meet the inference require-
ments of edge devices. From the perspective of model
architecture, the main content of this paper is not to
focus on the effect that the model can be stacked with
more convolutional layers, but to focus on the perfor-
mance and latency of the model. This enables efficient
inference of models on edge devices.

Experiment
We test the model’s effectiveness on image classification
tasks on CIFAR10/100 [39] and ImageNet [40] using
RDPNet. As the Backbone, we used the PASCAL2007
[38] dataset to validate the model’s performance on
downstream tasks. When compared to other models, the
deploy-time model’s inference speed and performance
are evaluated. The image classification experiments in
this paper are based on Nvidia RTX3060Ti, Intel-CPU
9400f, memory 16GB, and the number of threads is 8.
The deep learning framework used is pytorch-1.7, and
the API used for model delay speed measurement is
torch-profiler.

Image classification
Cifar10/100 dataset
Cifar10/100 consist of 50k training set data and 10k test
set data respectively. The size of the picture is 32×32, and
it is divided into 10 categories and 100 categories. We
set the number of iterations to 200 epochs during train-
ing, used an SGD optimizer with a momentum of 0.9,
a weight decay of 0.0001, and an initial learning rate of
0.1. The learning rate decay strategy is Cosine Annealing
Method. Only random horizontal flipping of images is
used for image enhancement.

We swap out the Stride in the first two Stages for 1
to ensure that the final output feature map size is 4 × 4.
This is done to adapt to the feature map size. With this
change, we are able to obtain the RDPNet series’ results
for the CIFAR10/100 dataset. With a 32× 32 input image
size, we ran speed tests and performed inference of the
network model on the CPU. The latency value repre-
sents the amount of time needed to analyze an image. We
averaged the outcomes of 500 time-lapse tests in order
to remove natural errors. The outcomes are displayed in

Table 2  RDPNet series architecture

Stage Operator Stride Output size Channel width

Stage-0 RepVGGBlock 2 112× 112 1×min(64, 64α)

Stage-1 RDP-Module 2 56× 56 1× 64α

Stage-2 RDP-Module 2 28× 28 4× 128α

Stage-3 RDP-Module 2 14× 14 14× 256α

Stage-4 RDP-Module 2 7× 7 1× 512α

Page 10 of 13Xu et al. Journal of Cloud Computing (2022) 11:54

Table 3 after we scale the network width to create models
with 6 specifications and validate them.

The findings indicate that in terms of accuracy and
CPU inference speed, the RDPNet series of models per-
form significantly better than the MobileNet series of
networks. Between them, RDPNet-1.25x’s accuracy on
the CIFAR dataset is 94.5 and 75.1 percent, respectively.
The inference speed surpasses the performance of the
current network by a wide margin. The trade-off between
accuracy and inference speed is very good. Table 4 con-
tains information.

ImageNet dataset
We validate some models on the ImageNet dataset
in order to assess the classification performance of
the model on a sizable dataset. For testing, this data-
set includes 1.3 million and 50,000 images from 1000
different object categories. RDPNet-1x and RDPNet-
1.25x were our choices. The model architecture we
employed matches that in Table 2 in every way. With

a momentum of 0.9, the SGD optimizer was employed.
We use a weight decay of 0.0001 to reduce overfit-
ting. The learning rate decay rate depends on the batch
size and epoch size, and the learning rate adjustment
strategy uses the cosine annealing algorithm. Only

Table 3  Table caption

Model Param(M) FLOPs(M) CIFAR10 Acc.(%) CIFAR100 Acc.(%) Latency(ms)

RDPNet-0.25x 0.2 6.7 89.7 68.4 11.79

RPDNet-0.5x 0.46 21.9 92.0 70.5 13.0

RPDNet-0.75x 0.8 45.9 92.4 72.3 13.75

RDPNet-1.0x 1.3 78.5 93.7 73.8 14.67

RDPNet-1.25x 1.9 117.7 94.5 75.1 16.76

RDPNet-1.5x 2.6 164.3 94.7 75.6 17.36

Table 4  Comparison of RDPNet and MobileNet series on CIFAR10/100

Model Param(M) FLOPs(M) CIFAR10 Acc.(%) CIFAR100 Acc.(%) Latency(ms)

MobileNetV1-0.25x 0.24 13.01 90.4 68.23 14.18

MobileNetV2-0.25x 0.25 8.97 89.9 67.5 25.60

MobileNetV3-small-0.35 0.31 3.45 88.8 66.5 21.48

RDPNet-0.25x 0.20 6.70 89.7 68.4 11.79
MobileNetV1-0.5x 0.82 47.21 91.8 70.8 17.59

MobileNetV2-0.5x 0.70 27.32 92.0 72.5 27.21

MobileNetV3-small-0.75x 0.72 11.40 92.0 70.4 23.68

RDPNet-0.75x 0.80 45.9 92.4 72.3 13.75
MobileNetV1-0.75x 1.82 102.66 92.7 72.2 18.71

MobileNetV2-0.75x 1.63 55.13 93.1 73.2 37.13

MobileNetV3-large-0.75x 1.73 40.67 93.7 73.9 33.54

RDPNet-1.25x 1.86 117.7 94.5 75.1 16.76
MobileNetV1-1.0x 3.22 179.34 93.4 73.4 23.36

MobileNetV2-1.0x 2.24 92.40 93.6 74.9 42.23

MobileNetV3-large-1.0x 2.98 68.45 93.7 75.2 35.90

RDPNet-1.5x 2.60 164.3 94.7 75.6 17.36

Table 5  The performance of some RDPNet models on the
ImageNet dataset

Model Top-1 Acc.(%) Top-5 Acc.(%) Latency(ms)

MobileNetV2-0.5x 65.03 85.72 38.52

MobileNetV3-large-0.35x 64.78 83.56 23.83

ShuffleNetV2-0.5x 61.32 83.73 25.58

RDPNet-0.75x 67.23 88.93 18.58
MobileNetV1-1x 70.99 89.68 40.76

MobileNetV2-1x 72.15 90.65 46.62

MobileNetV3-small-1.25x 70.67 89.51 37.08

ShuffleNetV2-1.5x 71.63 90.15 36.76

RDPNet-1.25x 73.65 91.82 23.60

Page 11 of 13Xu et al. Journal of Cloud Computing (2022) 11:54 	

upscaling and horizontal flipping are employed for
image enhancement. For comparison, we chose FLOPs
and Param models that are similar to the RDPNet fam-
ily. The CPU device is the foundation for the inference
latency test. Wait test The average value of ten delay
tests was chosen to prevent human error. The outcomes
are displayed in Table 5.

We make use of a list of networks with SOTA per-
formance. Accuracy, computational complexity, and
delayed inference are all thoroughly assessed. The per-
formance on the ImageNet dataset is top-1 accuracy.
The latency test uses an Intel-CPU i5-9400f for an aver-
age of 500 inferences.

Object detection on PASCAL
On edge devices based on CPU type, we test the model’s
performance on downstream tasks. On the Faster-RCNN
[41] object detection framework, we use RDPNet-1.25x
as a Backbone. For validation, we made use of the PAS-
CAL2007 [38] dataset. we applied pretrained weights
from ImageNet dataset. We only alter Backbone’s latency
for CPU-based object detection tasks when it comes
to the object detection framework. Table 6 shows its
comparative effect as a backbone and the same type of
network

Semantic segmentation
We use RDPNet as the backbone to conduct semantic
segmentation experiments on the PASCAL2012 data-
set [38]. Unlike image classification tasks, semantic seg-
mentation models are generally divided into two parts:
one part is used for classification, and the other part is

used to segment regions. Our framework of choice is the
DeeplabV3plus [42, 43] model, with model training on an
Nvidia Tesla K80. We imported a pretrained model on
the ImageNet dataset for comparison with MobileNetV3
as the backbone model. The SGD optimizer is used when
training the model, the momentum is 0.9, the initial
learning rate is 0.01, and the latency test is based on Intel
CPU-9400f.The results are shown in Table 7. The seman-
tic segmentation framework with RDPNet as the back-
bone performs better in performance and latency.

Ablation study
We discovered that the channel features extracted by PW
have a significant impact on the network’s overall per-
formance during the construction of the multi-branch
model. Additionally, I used Channel shuffle to interac-
tively process the data between channels, which enhanced
the model’s general performance. Based on this, we ran
ablation experiments on these two components to con-
firm their role in the enhancement of network perfor-
mance as a whole. For validation on CIFAR100, we used
RDPNet-1.0x with a batch-size selection of 128 and an
input image size of 32×32. According to experiments,
alterations to these two components have almost no
impact on the CPU’s network inference delay (Table 8).

Limitations
With less emphasis on model depth and convergence
efficiency, the aim of this paper is to establish a net-
work model for effective inference at the edge for CPU
computing. At the edge, there are various types of hard-
ware, and each model has a different set of requirements.
Simply changing the model’s width and depth has a sig-
nificant impact on it and might not produce the desired
results. More precise pruning and quantization are
required, as well as cost-effective model size adjustment.
The framework found by NAS technology may be refer-
enced in the network architecture construction, which
can further enhance the model performance.

Conclusion
We propose the RDPNet, a DSC and RELU-based net-
work with a straight-tube structure that is suitable for
CPU operation. The structural re-parameterization

Table 6  On the PASCAL2007 dataset, RDPNet’s performance as
the backbone is contrasted with that of other models

Method Backbone mAP(%) Latency(ms)

Faster-RCNN MobileNetV3-large-0.35x 32.17 57.62

RDPNet-0.75x 31.67 43.62
MobileNetV3-small-1.25x 21.05 65.34

RDPNet-1.25x 21.36 55.39

Table 7  Semantic segmentation experiments on the PASCAL2012
dataset

Method Backbone mIoU(%) Latency(s)

DeeplabV3+ MobileNetv2-0.5x 0.708 0.317

MobileNetV3-large-0.35x 0.693 0.292

RDPNet-0.75x 0.721 0.237
MobileNetV2-1.0x 0.711 0.379

MobileNetV3-small-1.25x 0.768 0.350

RDPNet-1.25x 0.782 0.276

Table 8  Ablation Study for Identity and Channel shuffle

No Identity for
Point-wise

Channel shuffle Accuracy(%) Latency(ms)

70.6 12.43
√

71.3 12.40
√

72.5 13.54
√ √

73.8 14.67

Page 12 of 13Xu et al. Journal of Cloud Computing (2022) 11:54

method is used, which takes into account the charac-
teristics of CPU calculation. Transform highly accurate
complex models into simple one-way models for CPU
inference. In terms of accuracy and latency, RDPNet
achieves a better trade-off when compared to other net-
works that achieve SOTA performance. Model imple-
mentation is simpler and more efficient.

Abbreviations
DSC: Depthwise separable convolution; PW: Point-wise; DW: Depth-wise.

Acknowledgements
We would like to thank the authors of the literature cited in this article for
providing helpful ideas for this study. The authors would like to thank anony-
mous reviewers for their helpful insights and suggestions that have greatly
improved the content and presentation of this paper.

Authors’ contributions
Jiarui Xu, Yufeng Zhao, Fei Xu conceived and designed the study. Jiarui Xu per-
formed the simulations. Jiarui Xu wrote the paper. All authors reviewed and
edited the manuscript. All authors read and approved the final manuscript.

Funding
[1] Shaanxi Provincial Department of Science and Technology Regional Inno-
vation Capability Guidance Plan (2022QFY01-14): Research and exploration of
intelligent construction and operation of sports venues based on digital twins;
[2] Xi’an Beilin District Science and Technology Project (GX2137): Research on
key technologies of edge computing framework for cloud robots; [3] Aero-
space High Trust Embedded Software Engineering Technology Laboratory
Fund: Research on Trusted Artificial Intelligence Model Verification and Code
Generation Based on TensorFlow Computational Graph Model.

Availability of data and materials
The datasets used in this paper are public datasets, which are cited in the
references.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 23 July 2022 Accepted: 9 September 2022

References
	1.	 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with

deep convolutional neural networks. Commun ACM 60(6):84-90
	2.	 Simonyan K, Zisserman A (2015) Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014
	3.	 He K, Zhang X, Ren S, et al. (2016) Deep residual learning for image recog-

nition. arXiv Comput Vis Patt Recognit 2016:770-778
	4.	 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Van-

houcke V, Rabinovich A (2015) Going deeper with convolutions. arXiv
Comput Vis Patt Recognit 2015:1-9

	5.	 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016a) Rethinking the
inception architecture for computer vision. Comput Vis Patt Recognit
2016:2818-2826

	6.	 Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2016b) Inception-v4,
inception-resnet and the impact of residual connections on learning.
Thirty-first AAAI conference on artificial intelligence 2017

	7.	 Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network
training by reducing internal covariate shift. International conference on
machine learning PMLR 2015:448-456

	8.	 Huang G, Liu Z, van der Maaten L, Weinberger KQ (2016) Densely con-
nected convolutional networks. Proceedings of the IEEE conference on
computer vision and pattern recognition 2017:4700-4708

	9.	 Crowley EJ, Gray G, Storkey A (2018) Moonshine: Distilling with cheap
convolutions. Advances in Neural Information Processing Systems
2018:31

	10.	 Polino A, Pascanu R, Alistarh D (2018) Model compression via distillation
and quantization. arXiv preprint arXiv:1802.05668, 2018

	11.	 Han S, Mao H, Dally WJ (2015a) Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015

	12.	 Han S, Pool J, Tran J, Dally WJ (2015b) Learning both weights and con-
nections for efficient neural networks. Advances in neural information
processing systems 2015:28

	13.	 Courbariaux M, Bengio Y, David JP (2015) Binaryconnect: Training deep
neural networks with binary weights during propagations. Advances in
neural information processing systems 2015:28

	14.	 Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) Xnor-net: Imagenet
classification using binary convolutional neural networks. European
conference on computer vision. Springer, Cham, 2016: 525-542

	15.	 Zhang X, Zhou X, Lin M, Sun J (2018) Shufflenet: An extremely efficient
convolutional neural network for mobile devices. Proceedings of the IEEE
conference on computer vision and pattern recognition 2018:6848-6856

	16.	 Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: Practical guidelines
for efficient cnn architecture design. Proceedings of the European confer-
ence on computer vision (ECCV) 2018:116-131

	17.	 Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto
M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017

	18.	 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2:
Inverted residuals and linear bottlenecks. Proceedings of the IEEE confer-
ence on computer vision and pattern recognition 2018:4510-4520

	19.	 Tan M, Chen B, Pang R, Vasudevan VK, Sandler M, Howard A, Le QV
(2018) Mnasnet: Platform-aware neural architecture search for mobile.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition 2019: 2820-2828

	20.	 Ding X, Zhang X, Ma N, Han J, Ding G, Sun J (2021a) Repvgg: Making vgg-
style convnets great again. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2021:13733-13742

	21.	 Ding X, Zhang X, Han J, Ding G (2021b) Diverse branch block: Building a
convolution as an inception-like unit. Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition 2021:10886-10895

	22.	 Chollet F (2017) Xception: Deep learning with depthwise separable
convolutions. Proceedings of the IEEE conference on computer vision
and pattern recognition 2017:1251-1258

	23.	 Yang H, Shen Z, Zhao Y (2021) Asymmnet: Towards ultralight convolu-
tion neural networks using asymmetrical bottlenecks. Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
2021:2339-2348

	24.	 Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C (2019) Ghostnet: More features
from cheap operations. Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition 2020:1580-1589

	25.	 Iandola F, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016)
Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and<0.5mb model size. arXiv preprint arXiv:1602.07360 2016

	26.	 Veit A, Wilber MJ, Belongie S (2016) Residual networks behave like
ensembles of relatively shallow networks. Advances in neural information
processing systems 2016:29

	27.	 He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual
networks. European conference on computer vision. Springer,
Cham 2016:630-645

	28.	 Li Y, Chen Y, Dai X, Chen D, Liu M, Yuan L, Liu Z, Zhang L, Vasconcelos N
(2021) Micronet: Improving image recognition with extremely low flops.
Proceedings of the IEEE/CVF International Conference on Computer
Vision 2021:468-477

	29.	 Zhou D, Hou Q, Chen Y, Feng J, Yan S (2020) Rethinking bottleneck
structure for efficient mobile network design. European Conference on
Computer Vision. Springer, Cham 2020:680-697

	30.	 Howard A, Pang R, Adam H, Le QV, Sandler M, Chen B, Wang W, Chen LC,
Tan M, Chu G, Vasudevan VK, Zhu Y (2019) Searching for mobilenetv3.

Page 13 of 13Xu et al. Journal of Cloud Computing (2022) 11:54 	

Proceedings of the IEEE/CVF international conference on computer
vision 2019:1314-1324

	31.	 Wu B, Dai X, Zhang P, Wang Y, Sun F, Wu Y, Tian Y, Vajda P, Jia Y, Keutzer K
(2018) Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition 2019:10734-10742

	32.	 Real E, Aggarwal A, Huang Y, Le QV (2019) Regularized evolution for
image classifier architecture search. Proceedings of the aaai conference
on artificial intelligence 33(01):4780-4789

	33.	 Tan M, Le QV (2019) Efficientnet: Rethinking model scaling for convolu-
tional neural networks. International conference on machine learning.
PMLR 2019:6105-6114

	34.	 Zagoruyko S, Komodakis N (2017) Diracnets: Training very deep neural
networks without skip-connections. arXiv preprint arXiv:1706.00388,
2017

	35.	 Guo S, Alvarez JM, Salzmann M (2018) Expandnets: Linear over-parame-
terization to train compact convolutional networks. Advances in Neural
Information Processing Systems 33:1298-1310

	36.	 Cao J, Li Y, Sun M, Chen Y, Lischinski D, Cohen-Or D, Chen B, Tu C (2020)
Do-conv: Depthwise over-parameterized convolutional layer. arXiv
preprint arXiv:2006.12030

	37.	 Ding X, Guo Y, Ding G, Han J (2019) Acnet: Strengthening the kernel
skeletons for powerful cnn via asymmetric convolution blocks. Proceed-
ings of the IEEE/CVF international conference on computer vision.
2019:1911-1920

	38.	 Everingham M, Gool LV, Williams C, Winn J, Zisserman A (2010) The pascal
visual object classes (voc) challenge. International journal of computer
vision 88(2):303-338

	39.	 Krizhevsky A (2009) Learning multiple layers of features from tiny images.
Technical report 2009:7

	40.	 Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-
scale hierarchical image database. 2009 IEEE conference on computer
vision and pattern recognition Ieee 2009:248-255

	41.	 Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information
processing systems 2015:28

	42.	 Chen LC, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous
convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017

	43.	 Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation. Proceedings of the European conference on computer vision
(ECCV) 2018:801-818

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	RDPNet: a single-path lightweight CNN with re-parameterization for CPU-type edge devices
	Abstract
	Introduction
	Related work
	Compact network and multi-branch model
	Structural re-parameterization

	RDPNet
	Problem description
	Multi-path branching
	Hardware computing mode
	Consequences of structural changes
	Summary of the problem

	RDPNet-Module
	Depthwise separable convolution
	Conventional transformation
	Block building
	Depth-block transform
	Point-block transform

	Model architecture

	Experiment
	Image classification
	Cifar10100 dataset
	ImageNet dataset

	Object detection on PASCAL
	Semantic segmentation
	Ablation study
	Limitations

	Conclusion
	Acknowledgements
	References

