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Abstract 

Deep convolutional neural networks have produced excellent results when utilized for image classification tasks, 
and they are being applied in a growing number of contexts. Model inference on edge devices is challenging due to 
the unending complicated structures needed to improve performance, which adds a significant computing burden.
According to recent research, the often utilized residual structure in models does not support model inference. The 
idea of structural reparameterization is put out to address this shortcoming. The RepVGG produced with this method 
is a high-performance, quick-inference single-path network. Even after reparameterization, the model still needs 
GPUs and other specialized computing libraries to accelerate inference, however this still has a limit on how quickly 
the model can infer at the edge. We construct RDPNet using depthwise separable convolution and structural repa-
rameterization to further reduce model size and accelerate inference. When utilizing an Intel CPU, this is a straightfor-
ward network that may be utilized for inference. For re-parameterization, we specifically adopt Depthwise separable 
convolution as the basic convolution form. Create a multi-branch model for training on the training side, and then 
simplify it into a single-branch model that the edge devices can easily infer. Research demonstrates that compared 
to alternative lightweight networks that can attain SOTA performance, RDPNet offers a superior trade-off between 
accuracy and latency.
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Introduction
In recent years, the development of CNN research is 
obvious to all, and very significant results have been 
achieved in the fields of image classification. Provides a 
solid foundation for autonomous driving, object recog-
nition and object tracking scenarios. With the develop-
ment of cloud-edge computing, these tasks are becoming 
more and more perfect in real-world applications. In 
this context, deploying CNN models to the edge to meet 
the needs of various cloud-edge computing scenarios 
has become a research issue that must be considered. 
Among these, the creation of the model architecture is 

the cornerstone and essential stage for advancing CNNs. 
Early designs that consist of stacks of single convolutional 
layers, like [1] and [2], perform well on classification 
tasks, sometimes even outperforming human recognition 
levels. Complex structures like ResNet [3], the Inception 
[4–7], and [8] were proposed in order to improve the 
model’s performance, and these further improved out-
comes in classification tasks.

On the other side, as a model performs better, com-
putational complexity and network model parameters 
likewise rise. The conventional method involves send-
ing massive amounts of edge-generated data to cloud 
computing centers for processing, and then sending the 
findings back to the edge in order to make complicated 
networks usable in a larger range of application situa-
tions. This method cannot meet latency requirements 
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and consumes a lot of bandwidth and energy. The major-
ity of edge technology leverages the CPU to do complex 
tasks and remain efficient, taking into account cost, 
latency, and the type of work that needs to be done. 
Model inference becomes difficult as a result of the 
direct deployment of computationally intensive models 
to the edge.

This issue has been addressed recently by lowering the 
model memory occupation and speeding up inference. 
such as knowledge distillation [9, 10], network pruning 
[11, 12], and quantization [13, 14]. These techniques to 
compress data are based on current models. The perfor-
mance of the model is limited to the pre-trained Base-
line, and the compressed model performs worse than the 
starting network. With fewer parameters and computa-
tions, compact network designs [15–19] achieve accept-
able accuracy. By using depthwise separable convolution 
(DSC) in place of the conventional convolutional form, 
the model can be made lighter. The multi-branch Con-
vNet layered by Bottleneck structure is the key to 
achieving good performance with the proposed residual 
structure. The connection of residual structures, how-
ever, is beneficial for model inference but not for model 
training. These issues also exist in the lightweight neu-
ral network used in e.g. [18] and its extension using the 
residual structure. To decrease the amount of memory 
needed for inference, [20, 21] suggested converting the 
multi-branch model into a straight-pipe structure. The 
model nevertheless needs specialized software libraries 
and hardware for acceleration.

Our work in this study primarily focuses on designing 
the underlying convolutional blocks by hand in order to 
construct a lightweight CNN. We contend, in the spirit 
of RepVGG, that the form of DSC that results from repa-
rameterization enables the model to preserve accurate 
inference while maintaining efficiency. Howard et al. [17] 
and Chollet [22] suggested DW for feature extraction 
of spatially correlated information and PW for channel 
information integration in relation to DSC. According 
to MobileNetV2, the latter PW is more important 
because it incorporates channel correlation during fea-
ture extraction, which is crucial for block feature extrac-
tion. The similar point of view is presented with several 
model modifications in [23, 24]. We also aware of how 
important PW is for feature extraction while develop-
ing a multi-branch Module. So, we made the decision to 
exclude the Identity mapping branch from PW. Addition-
ally, group convolutions are used in place of the convolu-
tional forms of other branches in the DW multi-branch 
architecture to match the spatially correlated extraction 
properties of DSC.

These characteristics guide the construction of a 
new DSC-based multi-branch module, which is then 

re-parameterized into a single-path model for infer-
ence. By stacking modules with the proper depth and 
width requirements, we create the RDPNet. According to 
experimental findings, RDPNet excels at building light-
weight neural networks and makes excellent trade-offs 
while performing image classification and object recogni-
tion tasks.

The main contributions of this paper are as follows: 

(1) We build a multi-branch structure based on the 
depthwise separable convolution in the form of 
convolution, and through the process of re-parame-
terization, we make it into a single-branch structure 
that makes inference by edge devices easier.

(2) We suggest RPDNet, a thin neural network appro-
priate for portable embedded devices. In compari-
son to other networks that are capable of achieving 
SOTA performance, experiments reveal that RDP-
Net offers a better trade-off between accuracy and 
delay, and the model implementation is both easier 
to use and more efficient.

The remainder of this essay is organized as follows: Sec-
tion 2 reviews relevant work in brief. In the Section 3, we 
first analyze the impact of different model architectures 
on inference. Then, the construction and transformation 
of RDPNet-Module and the overall design of the model 
are introduced. Presentation of experimental findings 
and discussion (Section 4). The entire text is summarized 
in Section 5, which also offers a look ahead to upcoming 
work.

Related work
Compact network and multi‑branch model
On the ImageNet dataset, the single-path network [2] 
obtains an accuracy of 70% , however the performance 
of the model is constrained by gradient vanishing and 
accuracy loss brought on by the stacking of deep convo-
lutional layers. A substantial amount of computation is 
also added by the stacked single-path convolutional layer 
network. Some network lightweight strategies have been 
presented in order to expedite training and save compu-
tation. To minimize the dimension, [25] suggests adding 
1 × 1 convolution before 3 × 3 convolution. To put a limit 
on model parameters, [17] and [22] suggest DSC.

The network structure was then significantly altered by 
the ResNet [3] proposal, and the residual structure was 
adopted as the core model for feature extraction net-
works. The network employing the residual structure is 
referred to in this paper as a multi-branch network since 
there is a view [26] that the residual structure is an inte-
gration of many shallow networks. According to a dif-
ferent perspective [27], the residual structure facilitates 
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information transfer between layers, allows for the reuse 
of features during forward propagation, and solves the 
gradient disappearance issue during back propagation.

In a nutshell, the addition of Identity Mapping 
increases the independence of each convolutional block, 
better alleviates gradient disappearance during training, 
and prevents model degradation during stacking. Sandler 
et al. [18] proposes the inverse residual structure by com-
bining deep separable convolution and residual structure. 
Zhang et al. [15]and Ma et al. [16] uses channel shuffling 
and group convolution to optimize on this basis. Subse-
quent studies have proposed more detailed methods for 
inverting residual structures. Han et al. [24] uses feature 
multiplexing to improve the inverted residual structure 
so that the model has fewer parameters. Yang et al. [23] 
observes that the functions of the two PW parts are dif-
ferent, and adjusting the convolution dimension of the 
two PWs obtains better results. Additionally, [28] reduces 
connectivity between convolutional layers to simplify 
operations and adds more intricate nonlinear functions 
to make up for the loss of network depth. Zhou et  al. 
[29] makes inferences about the depth axis redundancy 
of DSC based on a quantitative analysis of convolution 
kernels. It swaps the original weight for a predetermined 
weight to simplify calculations.

Despite the fact that these recently presented models 
have few FLOPs, memory footprint and inference per-
formance are increased by several computation-saving 
techniques and residual structures. At the same time, the 
model is challenging to customize and execute due to its 
complex multi-branch structure, and pruning and quan-
tization do not work well with it.

Some study areas have changed from manually creat-
ing neural networks to structural systems that adaptively 
execute systematic search for particular tasks as a result 
of the emergence of GPUs. A number of networks [30–
33] have been presented in a search area comparable to 
ResNet/MobileNetV2. However, [32] and manually con-
figuring the search space demand a significant amount of 
computational power, and the network model discovered 
by searching requires a lot of hardware. The best solu-
tion can be found by searching the body of existing infor-
mation, and even better is to determine the best model 
architecture for the model that already exists.

Structural re‑parameterization
In order to speed up the training process, DiracNet 
[34] suggested a Block that had the re-presentation 
y = σ(x + f (x)) and changed the network into a sin-
gle-branch structure based on the linear relationship 
between the convolutional and BN layers. However, due 
to nonlinearity’s limitations, the performance of the 

DiracNet model developed using ResNet structure is 
constrained.

In contrast to [20, 21], which indirectly generates a 
three-branch structure for training, this method enables 
the model to perform better. Ding et al. [21] suggests that 
the model be trained to have a complicated multi-branch 
structure to accommodate different network require-
ments. This structure can then be re-parameterized into 
a 3 × 3 convolution-based network.Operations similar 
to converting multiple convolution blocks into a single 
block through linear transformation can be understood 
as reparameterization operations [35–37]. The pur-
pose of linear transformation is to reduce the amount of 
parameters and increase its inference efficiency. Struc-
tural re-parameterization has the benefit of allowing the 
model to be optimally trained using complicated net-
work types for improved model performance. The altered 
canonical network allows for improved quantization, 
pruning, and the computation of the library’s accelerated 
operators. Accordingly, the flaw is that the 3 × 3 convo-
lution model after conversion still requires a significant 
amount of computation for edge devices, necessitating 
additional compression processing. We suggest RDPNet, 
which was inspired by the re-parameterization approach. 
Create a DSC structure with a single path for inference 
and a complex multi-branch structure for training.

RDPNet
In this section, We compare the inference effects of com-
mon network structures under different hardware, then 
we examine the benefits of adopting the straight-tube 
topology to deploy inference on edge devices. The net-
work structure is then described using a combination of 
structural re-parameterization and depthwise separable 
convolution. A lightweight model RDPNet is built using 
the existing overall network architecture as a reference.

Problem description
Multi‑path branching
An example of a single-path ensemble is ResNet. Identity 
Mapping, which is more suited to the training and depth 
of the model, is used by the network to implement the 
deep network during the training phase. Despite being 
jointly trained, there isn’t much of a correlation between 
the blocks in the network. The key is that the model’s 
capacity to better match data is made possible by the 
efficient multi-branch structure. The residual structure, 
which enables the model to delay the disappearance of 
gradients during training, is usually thought to be the 
cause of ResNet’s exceptional performance.

Figure  1 depicts various multi-branch network archi-
tectures in their extended form. When the number of 
input and output channels of Block is the same, the 
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difference from ResNet is that the training model of 
RepVGG adds a 1 × 1 convolutional branch to expand the 
path. In the experimental section of [20], ablation experi-
ments are performed on multi-way branches, which 
demonstrate that the logical addition of branches to the 
model is one of the factors contributing to its good per-
formance. Reusing features and adding numerous routes 
to the model is a solid solution to improve model perfor-
mance and reduce the number of parameters [8]. Model 
delay increases when more complicated models are 
used. By using linear transformations, structural repa-
rameterization has the benefit of reducing computation. 
The model’s study from the aforementioned viewpoint 
also demonstrates that a suitably complex structure can 
actually improve the model’s performance. Even though 
the model’s solution space remained the same after re-
parameterization, the solution path was improved. The 
side shows that an effective optimization method is one 
of the keys to improving the model

Hardware computing mode
The CPU’s computing technique is distinguished by 
a variety of complex computing models and a limited 
number of single calculations. The benefit is that it can 
handle many computing tasks of varying complexity and 
computing kinds simultaneously, making it appropriate 
for situations in which edge hardware is present. GPU 

computing is characterized by simple computation types, 
few repetitions, and a significant number of single calcu-
lations. When processing massive volumes of data, multi-
memory parallel computing is a computing technique 
that is necessary.

The GPU of the cloud computing facility accelerates the 
VGG-like model created by stacking three conventional 
convolutions three times. The key to enabling the model 
to carry out a high number of tensor-type operations on 
the training side is the large number of arithmetic logic 
units (ALUs) that exist on the GPU. Large-scale tensor-
type calculations cannot be supported by the edge CPU 
due to a lack of ALUs and cache settings. As a result, the 
deep learning model’s inference is constrained at the edge 
and it is unable to satisfy the latency criteria necessary in 
some cases (Table 1).

The structure of the model has a direct impact on 
the inference speed at the CPU’s edge. The experimen-
tal gear consists of an Nvidia RTX3060ti GPU, an Intel 
9400f CPU, a batch size of 1, a feature map size of 224×
224, and networks with black markers that use DSC. We 
discovered that models employing DSC ran on CPU sub-
stantially more quickly. A number of factors, including 
transporting hardware, computing libraries, and underly-
ing computing frameworks, must be taken into account 
in real-world settings. These elements will affect model 
inference more significantly.

Fig. 1 Multi-branch structure expansion diagram, multi branch network of two Residuals Blocks(top), multi branch of two Repvgg Blocks(bottom)
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Consequences of structural changes
When the model is inferred, there is a distinct distinction 
between the multi-branch structure and the straight-tube 
form. To achieve the goal of accelerating the computation 
on the CPU for the analysis in the preceding section, we 
built the model as a computing mode with low memory 
footprint for a single calculation.

ShffleNetv2 [16] makes the argument that even while 
some multi-branch models have minimal FLOPs, this 
statistic is insufficient to assess how well the model per-
forms when making inferences at the edge. The effect of 
each operator in the network model on the latency dur-
ing inference is the unique performance that needs to 
be taken into account. For instance, although though 

the residual structure’s shortcut uses a little amount 
of FLOPs, it has a high MAC. The model’s inference 
speed increases by 20 % after the shortcut is eliminated. 
As a result, we came to the conclusion that the multi-
branch model does not enable model inference. On an 
Intel-CPU, we tested the speed of the straight-tube con-
struction and the multi-branch structure. According to 
experimental findings, the straight-tube structure’s infer-
ence speed is noticeably quicker than the residual struc-
ture with numerous convolutions.

Figure  2 displays the specific outcomes. We stack the 
model from 4 to 25 layers, with conv_0 denoting straight 
structure, conv_2 denoting residual structure containing 
two convolutional layers, and conv_3 denoting three con-
volutional layers.

Summary of the problem
From the theoretical analysis of the multi-branch struc-
ture and the speed test results of the presence or absence 
of depthwise separable convolution, we summarize some 
points. (1) The convolution form based on DSC greatly 
reduces the amount of model parameters and is more 
conducive to reasoning on CPU devices. (2) Although 
the multi-branch model can improve the model perfor-
mance, it is not conducive to model inference. (3) It is 
not difficult to see from the model speed measurement 
that the computing library and hardware conditions 
have a great influence on the model inference. Based on 
the observations in this section, we design a lightweight 

Table 1 The inference latency of different types of network 
structures on GPU and CPU

Model Param(M) FLOPs(G) CUDA(ms) CPU(ms)

VGG16 138 15.5 467.0 122.78

Resnet18 11.7 1.8 22.29 65.58

Resnet50 25.6 4.1 85.55 107.67

MobilenetV3‑small 3.6 0.1 20.31 30.43

Mobilenetv2‑1x 3.5 0.3 38.29 45.62

Shufflunetv2‑1.5x 3.5 0.3 28.31 36.05

RepVGG-A0 7.0 1.4 4.83 52.34

RDPNet‑1.0x 1.3 0.3 12.45 23.14

Fig. 2 Comparison of inference delay between residual structure and straight structure
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network for the usage characteristics of the model on 
CPU devices, and deploy it on embedded devices with-
out the assistance of specific computing libraries  for 
accelerate.

RDPNet‑Module
Depthwise separable convolution
A number of lightweight networks have been derived 
from DSC, which is a crucial link in lightweight networks 
and whose features are commonly used in lightweight 
networks. This technique is used in this paper, and unlike 
conventional convolution, DSC splits conventional con-
volution into two pieces. Pointwise convolution(PW) 
is the process of combining the features to create a 
new dimension feature vector whereas depthwise 
convolution(DW) is the process of filtering the input fea-
ture vector. The model’s computation and parameters are 
drastically decreased after such change. Pointwise convo-
lution is the process of combining the features to create 
a new dimension feature vector whereas depthwise con-
volution is the process of filtering the input feature vec-
tor. The model’s computation and parameters count are 
drastically decreased after such change.

DSC works well since the model requires less work to 
compute because to its computational form. More non-
linearity is added after the convolution is divided into two 
to make up for the accuracy loss brought on by the point-
by-point convolution’s reduction of feature correlation. 
The HS activation function took the place of the RELU 
activation function in MobileNetv3 [30], which enhanced 
the model’s performance. Additionally, more research is 
being done on the correlation between DW channels, for 
example, employing channel shuffling to boost the corre-
lation between channels [15, 16]. We discovered that the 
network employing DSC has a large speedup on CPU in 
contrast to the speed test performance on GPU. We think 
that this is because the depthwise convolution, which 
increases the computational parallelism of the model, 
groups and convolves the feature maps. The number of 
parameters and overall processing needed for a single 
convolution operation are decreased by breaking the reg-
ular convolution into two sections. This way, it is com-
patible with the CPU’s low-computation and multi-batch 
operating modes, hitting additional processing RAM to 
meet the goal of accelerating inference.

Conventional transformation
The inference capabilities of the multi-branch model 
and the straight-tube model at the edge were examined 
in the preceding section. The multi-branch structure has 
an effect on the model inference even though it can help 
the model reach higher accuracy. We build and alter the 

model using the structural re-parameterization method 
to keep the model’s high performance and high-speed 
inference capability.

Lossless model transformation using linear principles 
is possible through structural re-parameterization in 
convolutional and network architectures. The network 
can be trained in a multi-branch structure on the train-
ing side thanks to structural reparameterization. The 
multi-path convolution layer and BN layer have a lin-
ear transformation relationship that causes the complex 
multi-path structure to be losslessly converted into a 
single-path structure. Although the solution space of the 
model has remained the same, the solution path has been 
extended and optimized in light of the function fitting 
data. This makes it simpler for the model to improve its 
accuracy while being trained.

Citing the formula described in [20]. x represents the 
branch path number. When Cin = Cout , 

{

αx,βx, γ x, δx
}

 
represents the mean value, standard deviation and learn-
ing scaling factor obtained by the BN layer in the 3 × 3 
convolutional layer, 1 × 1 branch, and Identity branch, 
respectively and bias term. In inference mode, the con-
volution-BN layers are directly combined into one con-
volutional layer. i is represented as the current number of 
channels, ∀1 ≤ i ≤ Cout , for BN in different branches:

If W� is represented as the weight value of reparam-
eterization, and b� represents the bias term after repa-
rameterization, the output of the above BN layer can be 
converted into:

Add the bias terms in each channel to obtain the final bias 
term, and denote the modified weights and bias terms as 
W and b, respectively. The final convolution kernel is cre-
ated by filling and superimposing the 3 × 3 convolution 
kernel with the two 1 × 1 convolutions, which reduces the 
multi-branch path to a single branch.

Block building
Reparameterization is to use a set of parameters to rep-
resent multiple sets of parameters according to the linear 
relationship between the convolution and the BN layer to 
simplify the operation. We build a special DSC module 
based on multi-branch paths. The training-end model, 
which is primarily made up of Depth-Block and Point-
Block, is displayed in Fig. 3a.

We transform the complex multiplex structure into a 
DSC form that is optimized for CPU, drawing inspiration 
from the model transformations in RepVGG and DBB. 

(1)BN M,αx
,βx

, γ x
, δx

i
= (Mi − αi)

γi

βi
+ δi

(2)BN (M)i =
γi

βi
Wi −

αiγi

βi
δi = W�

i + b�i
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We employ the same multiplex construction and repa-
rameterization in the Depth-block as in the RepVGG-
Block. Convolution is used to group the input feature 
map at Depth-Block. In Point-Block, an 1 × 1 convolu-
tional two-path branch is built.It should be noticed that 
the Point-Block module component is where the RDPNet 
feature map downsampling is completed. Our proposed 
RDPNet module is shown in Fig. 3a represents a multi-
branch training model, (b) represents a single-path infer-
ence model.The information flow of the Depth-Block 
module in dimension matching is y = x + f1(x)+ g1(x) , 
where f1(x) is the depthwise convolution, g1(x) is the 1 × 1 
branch group convolution, and x is the Identity Map-
ping. The representation of the Point-Block module is 
y = f2(x)+ g2(x) , where f2(x) is pointwise convolution 
and g2(x) is 1 × 1 branch convolution.

When adding Identity Mapping to the Point-Block, the 
model’s performance will suffer. Additionally, according 
to [22] and [18], we think that DW and PW separately fin-
ish various stages of the convolution and are in charge of 
various feature extractions. The absence of channel infor-
mation was caused by the addition of Identity Mapping. 
In the residual structure, it is more precisely represented 

as y = x + f (x) in Identity Mapping. The issues of disap-
pearing gradients and compressing low-dimensional data 
are lessened when f(x) is minimal since the lower layer 
network roughly obtains the output of the higher layer x. 
In the case of creating multi-way branches and matching 
dimensions, the function of point-wise is to join features 
to create feature vectors of additional dimensions. The 
model will lose the channel information retrieved in PW 
if x is significantly greater than f(x).

After extracting the depth features from the Depth-
Block in accordance with the specifications of DSC, we 
introduced the Channel shuffle module to increase the 
information linkage between channels.The outcomes 
of the ablation trials demonstrate how much Channel 
shuffle enhances the model’s performance. We can per-
form a lossless transformation of the training end model 
thanks to the linear relationship between the training end 
and the deployment end. Figure  4 displays the Module 
deployment model (b).

Depth‑block transform
We re-parameterize Depth-Block based on stand-
ard transforms in this part. Depth convolution is a 

Fig. 3 RDPNet multi-branch training model and single-path inference model, multi branch structure(left), single branch structure(right)
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convolution technique that produces a single feature 
map from a single channel of data using a single convo-
lution kernel. The feature map produced in this manner 
matches the quantity of input channels. According to 
Eq.(2) we can re-parameterize the weights within each 
channel. where x is the input, W ∗ is the reparameterized 
convolution kernel, b∗ is the reparameterized bias term, 
and the number of convolution channels is z. ∀1 ≤ i ≤ z , 
the output form M of convolution BN can be written as:

Combine each channel as:

Because depthwise convolutions are performed as 
grouped convolutions, branched 1 × 1 convolutions are 
also constructed in the same way. The convolution pro-
cess in each channel is reparameterized and concate-
nated using standard transformation rules.

(3)Mi =
(

X ⊗W ∗
i + b∗i

)

(4)M = Concat(M1, . . . ,Mi)

Point‑block transform
This Transform component is just a straightforward lin-
ear addition. The acquired convolution kernel weights 
and bias terms are, of course, 

{

W 1,W 2, b1, b2
}

 through 
standard transformation. W ∗ is the reparameterized 
convolution kernel, b∗ is the reparameterized bias term. 
Our reparameterization of two 1 × 1 convolutions is han-
dled as follows:

The Block built by the Module we built and [23, 38] dif-
fer from one another. The latter, which is helpful for 
computing libraries to accelerate and enhance accuracy, 
linearly transforms irregular convolution blocks into 
regular convolution blocks. A multi-path complex model 
is transformed into a thin, single-path lightweight model 
using our module, which is useful for CPU inference. Our 

(5)W ∗
= W 1

⊕W 2

(6)b∗ = b1 + b2

Fig. 4 RDPNet multi-branch training model and single-path inference model
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Module transforms a complex multi-path model into a 
simple single-path lightweight model that is suitable for 
CPU inference.

When building the model, we followed the follow-
ing guidelines. (1) Because the purpose of building the 
model is to reduce weight and satisfy the calculation 
method of CPU. The construction of the deployment-
side model is related to the computing method of edge 
hardware. (2) The model construction on the training 
side is related to the performance of the model. The 
model on the training side is more similar to the opti-
mization of the model, which refers to the multi-chan-
nel construction of the classical network. Therefore, we 
improve the model based on the characteristics of DSC. 
(3) The structural re-parameter is the transformation 
relationship between linear operations such as the cor-
responding convolution and BN layers. It is necessary 
to pay attention to the model correspondence between 
train-time and deploy-time.The schematic diagram 
of the reparameterization transformation is shown in 
Fig. 4.

Model architecture
RDPNet’s overall architecture is depicted in Table  2 
along with changes for various widths. RDPNet differs 
from other topologies in that the model, after reparam-
eterization, comprises of DSC and nonlinear modules. 
This makes it possible to use the model for edge-based 
rapid inference more effectively. To downsample the 
feature map, we divided the model into 5 Stages, each 
with a Stride of 2. In order to output the classification 
results when dealing with image classification jobs, a 
global average pooling layer and a fully connected layer 
are added after Stage 4.

The general architecture that we created, with its [1, 
1, 4, 14, 1] layer count, is comparable to that created by 
RepVGG and ResNet. Focus the main feature extraction 
work on the stage where the feature map size is 14×14. 
We initially utilize a one-layer convolutional RepVGG-
Block for feature extraction, since the feature maps that 
need to be processed at the beginning of the model 
are larger. At the same time, an appropriate number of 

channels are employed to ensure model performance in 
fully linked layers to preserve more features.

For the width of the model, the paradigm of ResNet 
and VGG is followed, set to [64, 128, 256, 512], and the 
width is scaled by α . The initial value of α is [1, 1, 1, 2.5], 
and the scales are [0.25, 0.5, 0.75, 1, 1.25, 1.5] respec-
tively, and 6 sizes of networks are constructed. Used 
as a benchmark against thin networks and scalability 
schemes like the MobileNet and ShuffleNet series.

We use the basic architectural form to build the 
model, which is designed to meet the inference require-
ments of edge devices. From the perspective of model 
architecture, the main content of this paper is not to 
focus on the effect that the model can be stacked with 
more convolutional layers, but to focus on the perfor-
mance and latency of the model. This enables efficient 
inference of models on edge devices.

Experiment
We test the model’s effectiveness on image classification 
tasks on CIFAR10/100 [39] and ImageNet [40] using 
RDPNet. As the Backbone, we used the PASCAL2007 
[38] dataset to validate the model’s performance on 
downstream tasks. When compared to other models, the 
deploy-time model’s inference speed and performance 
are evaluated. The image classification experiments in 
this paper are based on Nvidia RTX3060Ti, Intel-CPU 
9400f, memory 16GB, and the number of threads is 8. 
The deep learning framework used is pytorch-1.7, and 
the API used for model delay speed measurement is 
torch-profiler.

Image classification
Cifar10/100 dataset
Cifar10/100 consist of 50k training set data and 10k test 
set data respectively. The size of the picture is 32×32, and 
it is divided into 10 categories and 100 categories. We 
set the number of iterations to 200 epochs during train-
ing, used an SGD optimizer with a momentum of 0.9, 
a weight decay of 0.0001, and an initial learning rate of 
0.1. The learning rate decay strategy is Cosine Annealing 
Method. Only random horizontal flipping of images is 
used for image enhancement.

We swap out the Stride in the first two Stages for 1 
to ensure that the final output feature map size is 4 × 4. 
This is done to adapt to the feature map size. With this 
change, we are able to obtain the RDPNet series’ results 
for the CIFAR10/100 dataset. With a 32× 32 input image 
size, we ran speed tests and performed inference of the 
network model on the CPU. The latency value repre-
sents the amount of time needed to analyze an image. We 
averaged the outcomes of 500 time-lapse tests in order 
to remove natural errors. The outcomes are displayed in 

Table 2 RDPNet series architecture

Stage Operator Stride Output size Channel width

Stage-0 RepVGGBlock 2 112× 112 1×min(64, 64α)

Stage-1 RDP-Module 2 56× 56 1× 64α

Stage-2 RDP-Module 2 28× 28 4× 128α

Stage-3 RDP-Module 2 14× 14 14× 256α

Stage-4 RDP-Module 2 7× 7 1× 512α
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Table 3 after we scale the network width to create models 
with 6 specifications and validate them.

The findings indicate that in terms of accuracy and 
CPU inference speed, the RDPNet series of models per-
form significantly better than the MobileNet series of 
networks. Between them, RDPNet-1.25x’s accuracy on 
the CIFAR dataset is 94.5 and 75.1 percent, respectively. 
The inference speed surpasses the performance of the 
current network by a wide margin. The trade-off between 
accuracy and inference speed is very good. Table 4 con-
tains information.

ImageNet dataset
We validate some models on the ImageNet dataset 
in order to assess the classification performance of 
the model on a sizable dataset. For testing, this data-
set includes 1.3 million and 50,000 images from 1000 
different object categories. RDPNet-1x and RDPNet-
1.25x were our choices. The model architecture we 
employed matches that in Table  2 in every way. With 

a momentum of 0.9, the SGD optimizer was employed. 
We use a weight decay of 0.0001 to reduce overfit-
ting. The learning rate decay rate depends on the batch 
size and epoch size, and the learning rate adjustment 
strategy uses the cosine annealing algorithm. Only 

Table 3 Table caption

Model Param(M) FLOPs(M) CIFAR10 Acc.(%) CIFAR100 Acc.(%) Latency(ms)

RDPNet-0.25x 0.2 6.7 89.7 68.4 11.79

RPDNet-0.5x 0.46 21.9 92.0 70.5 13.0

RPDNet-0.75x 0.8 45.9 92.4 72.3 13.75

RDPNet-1.0x 1.3 78.5 93.7 73.8 14.67

RDPNet-1.25x 1.9 117.7 94.5 75.1 16.76

RDPNet-1.5x 2.6 164.3 94.7 75.6 17.36

Table 4 Comparison of RDPNet and MobileNet series on CIFAR10/100

Model Param(M) FLOPs(M) CIFAR10 Acc.(%) CIFAR100 Acc.(%) Latency(ms)

MobileNetV1-0.25x 0.24 13.01 90.4 68.23 14.18

MobileNetV2-0.25x 0.25 8.97 89.9 67.5 25.60

MobileNetV3-small-0.35 0.31 3.45 88.8 66.5 21.48

RDPNet‑0.25x 0.20 6.70 89.7 68.4 11.79
MobileNetV1-0.5x 0.82 47.21 91.8 70.8 17.59

MobileNetV2-0.5x 0.70 27.32 92.0 72.5 27.21

MobileNetV3-small-0.75x 0.72 11.40 92.0 70.4 23.68

RDPNet‑0.75x 0.80 45.9 92.4 72.3 13.75
MobileNetV1-0.75x 1.82 102.66 92.7 72.2 18.71

MobileNetV2-0.75x 1.63 55.13 93.1 73.2 37.13

MobileNetV3-large-0.75x 1.73 40.67 93.7 73.9 33.54

RDPNet‑1.25x 1.86 117.7 94.5 75.1 16.76
MobileNetV1-1.0x 3.22 179.34 93.4 73.4 23.36

MobileNetV2-1.0x 2.24 92.40 93.6 74.9 42.23

MobileNetV3-large-1.0x 2.98 68.45 93.7 75.2 35.90

RDPNet‑1.5x 2.60 164.3 94.7 75.6 17.36

Table 5 The performance of some RDPNet models on the 
ImageNet dataset

Model Top‑1 Acc.(%) Top‑5 Acc.(%) Latency(ms)

MobileNetV2-0.5x 65.03 85.72 38.52

MobileNetV3-large-0.35x 64.78 83.56 23.83

ShuffleNetV2-0.5x 61.32 83.73 25.58

RDPNet‑0.75x 67.23 88.93 18.58
MobileNetV1-1x 70.99 89.68 40.76

MobileNetV2-1x 72.15 90.65 46.62

MobileNetV3-small-1.25x 70.67 89.51 37.08

ShuffleNetV2-1.5x 71.63 90.15 36.76

RDPNet‑1.25x 73.65 91.82 23.60
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upscaling and horizontal flipping are employed for 
image enhancement. For comparison, we chose FLOPs 
and Param models that are similar to the RDPNet fam-
ily. The CPU device is the foundation for the inference 
latency test. Wait test The average value of ten delay 
tests was chosen to prevent human error. The outcomes 
are displayed in Table 5.

We make use of a list of networks with SOTA per-
formance. Accuracy, computational complexity, and 
delayed inference are all thoroughly assessed. The per-
formance on the ImageNet dataset is top-1 accuracy. 
The latency test uses an Intel-CPU i5-9400f for an aver-
age of 500 inferences.

Object detection on PASCAL
On edge devices based on CPU type, we test the model’s 
performance on downstream tasks. On the Faster-RCNN 
[41] object detection framework, we use RDPNet-1.25x 
as a Backbone. For validation, we made use of the PAS-
CAL2007 [38] dataset. we applied pretrained weights 
from ImageNet dataset. We only alter Backbone’s latency 
for CPU-based object detection tasks when it comes 
to the object detection framework. Table  6 shows its 
comparative effect as a backbone and the same type of 
network

Semantic segmentation
We use RDPNet as the backbone to conduct semantic 
segmentation experiments on the PASCAL2012 data-
set [38]. Unlike image classification tasks, semantic seg-
mentation models are generally divided into two parts: 
one part is used for classification, and the other part is 

used to segment regions. Our framework of choice is the 
DeeplabV3plus [42, 43] model, with model training on an 
Nvidia Tesla K80. We imported a pretrained model on 
the ImageNet dataset for comparison with MobileNetV3 
as the backbone model. The SGD optimizer is used when 
training the model, the momentum is 0.9, the initial 
learning rate is 0.01, and the latency test is based on Intel 
CPU-9400f.The results are shown in Table 7. The seman-
tic segmentation framework with RDPNet as the back-
bone performs better in performance and latency.

Ablation study
We discovered that the channel features extracted by PW 
have a significant impact on the network’s overall per-
formance during the construction of the multi-branch 
model. Additionally, I used Channel shuffle to interac-
tively process the data between channels, which enhanced 
the model’s general performance. Based on this, we ran 
ablation experiments on these two components to con-
firm their role in the enhancement of network perfor-
mance as a whole. For validation on CIFAR100, we used 
RDPNet-1.0x with a batch-size selection of 128 and an 
input image size of 32×32. According to experiments, 
alterations to these two components have almost no 
impact on the CPU’s network inference delay (Table 8).

Limitations
With less emphasis on model depth and convergence 
efficiency, the aim of this paper is to establish a net-
work model for effective inference at the edge for CPU 
computing. At the edge, there are various types of hard-
ware, and each model has a different set of requirements. 
Simply changing the model’s width and depth has a sig-
nificant impact on it and might not produce the desired 
results. More precise pruning and quantization are 
required, as well as cost-effective model size adjustment. 
The framework found by NAS technology may be refer-
enced in the network architecture construction, which 
can further enhance the model performance.

Conclusion
We propose the RDPNet, a DSC and RELU-based net-
work with a straight-tube structure that is suitable for 
CPU operation. The structural re-parameterization 

Table 6 On the PASCAL2007 dataset, RDPNet’s performance as 
the backbone is contrasted with that of other models

Method Backbone mAP(%) Latency(ms)

Faster-RCNN MobileNetV3-large-0.35x 32.17 57.62

RDPNet‑0.75x 31.67 43.62
MobileNetV3-small-1.25x 21.05 65.34

RDPNet‑1.25x 21.36 55.39

Table 7 Semantic segmentation experiments on the PASCAL2012 
dataset

Method Backbone mIoU(%) Latency(s)

DeeplabV3+ MobileNetv2-0.5x 0.708 0.317

MobileNetV3-large-0.35x 0.693 0.292

RDPNet‑0.75x 0.721 0.237
MobileNetV2-1.0x 0.711 0.379

MobileNetV3-small-1.25x 0.768 0.350

RDPNet‑1.25x 0.782 0.276

Table 8 Ablation Study for Identity and Channel shuffle

No Identity for 
Point‑wise

Channel shuffle Accuracy(%) Latency(ms)

70.6 12.43
√

71.3 12.40
√

72.5 13.54
√ √

73.8 14.67
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method is used, which takes into account the charac-
teristics of CPU calculation. Transform highly accurate 
complex models into simple one-way models for CPU 
inference. In terms of accuracy and latency, RDPNet 
achieves a better trade-off when compared to other net-
works that achieve SOTA performance. Model imple-
mentation is simpler and more efficient.

Abbreviations
DSC: Depthwise separable convolution; PW: Point-wise; DW: Depth-wise.
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