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Abstract 

As the State Grid Multi-cloud IoT platform grows and improves, an increasing number of IoT applications generate 
massive amounts of data every day. To meet the demands of intelligent management of State Grid equipment, we 
proposed a scheme for constructing the defect knowledge graph of power equipment based on multi-cloud. The 
scheme is based on the State Grid Multi-cloud IoT architecture and adheres to the design specifications of the State 
Grid SG-EA technical architecture. This scheme employs ontology design based on a fusion algorithm and proposes 
a knowledge graph reasoning method named GRULR based on logic rules to achieve a consistent and shareable 
model. The model can be deployed on multiple clouds independently, increasing the system’s flexibility, robustness, 
and security. The GRULR method is designed with two independent components, Reasoning Evaluator and Rule 
Miner, that can be deployed in different clouds to adapt to the State Grid Multi-cloud IoT architecture. By sharing 
high-quality rules across multiple clouds, this method can avoid vendor locking and perform iterative updates. Finally, 
the experiment demonstrates that the GRULR method performs well in large-scale knowledge graphs and can com-
plete the reasoning task of the defect knowledge graph efficiently.
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Introduction
With the rapid development of Internet of Things (IoT) 
technology and the increasing popularity of IoT devices, 
there are more and more computing-intensive IoT appli-
cations [1–3]. However, due to the limited hardware and 
software resources of IoT devices, it is difficult to meet 
the requirements of localized data processing [4, 5]. 
Cloud computing is a popular solution to this problem. 
It can provide resources in a low-cost and flexible way 
[6, 7].However, relying on a single cloud to provide all 
resources and services for IoT users is difficult [8]. The 
multi-cloud architecture has gained more attention and 
application than the single cloud architecture due to its 
greater flexibility, robustness, and avoidance of service 

resource locking [9–13]. Therefore, State Grid provides 
services for IoT users through multi-cloud.

Every day, the State Grid IoT devices produce a con-
siderable volume of heterogeneous data [14]. Along 
with business information and equipment monitoring 
data, these data also include basic equipment informa-
tion [15]. Currently, the operation and maintenance staff 
mostly fill out and upload the equipment defect inspec-
tion data to the cloud platform after fixing the site’s flaws. 
Manual entry will result in omitted and incomplete data 
[16, 17]. Additionally, there are numerous different types 
of devices that are extensively used. Dealing with these 
heterogeneous data in a large-scale, real-time manner is 
still quite challenging [18, 19]. We provide a scheme to 
construct an equipment defect knowledge graph in order 
to address the aforementioned issues and intelligently 
manage the equipment in the multi-cloud scenario of 
the State Grid IoT [20]. The scheme adheres to the State 
Grid SG-EA technical architectural design specification 
and is based on the State Grid Multi-cloud Architecture 
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of the IoT. The multi-layer technology system design is 
implemented using dynamic software technology based 
on components and the consistent and shareable data 
model.

Ontology design, knowledge extraction, knowledge 
fusion, and knowledge reasoning are all included in our 
KG construction approach [21, 22]. The KG of equip-
ment defects, which is based on the integration of various 
business system equipment databases, expert experience 
databases, defect data, defect reports, standards, specifi-
cations, rules, and regulations, etc., provides intelligent 
and individualized power equipment defect knowledge 
services for professional equipment management [23, 24]. 
Offer a smart multi-round question and answer (Q &A) 
service for equipment problems for the queries entered 
by users. The Q &A’s major focus is on knowledge Q &A 
related to common defect business scenarios, such as 
equipment defect cases, defect categorization and judg-
ment bases, topology information of the equipment grid, 
defect treatment procedures, etc. Our proposed scheme 
is based on natural language processing technology, 
which is superior to existing knowledge graph construc-
tion methods in that it can intelligently process hetero-
geneous data in a multi-cloud scenario. To increase the 
effectiveness of data processing in a multi-cloud scenario, 
the construction process utilizes a fully automated con-
struction method without manual involvement (Fig. 1).

A logic rule-based KG reasoning method called 
GRULR is suggested in order to efficiently harness the 
value of the defect knowledge graph. This approach 
uses maximum likelihood estimation to update the 
network parameters of the Gate Recursive Unit (GRU) 
and posterior probability to identify high-quality logic 
rules. For iterative training, the Expectation Maximi-
zation (EM) technique is employed. Actually, there are 
many ways to learn logic rules from the KG [25]. Most 
traditional methods, such as path sorting algorithm 

[26], ProPPR [27], and Markov logic network [28], enu-
merate the relationship paths on the graph as candidate 
logic rules and then learn the weight of each candi-
date logic rule according to the algorithm to evaluate 
the rule quality. Recently, some researchers have put 
forward some methods based on neurologic program-
ming, which can learn logic rules and their weights in 
a differentiable way at the same time [29, 30]. Although 
these methods are effective for prediction empiri-
cally, their search space is exponential, so it is difficult 
to identify high-quality logic rules. In addition, some 
studies describe the learning problem of logic rules as 
a continuous decision-making process and use rein-
forcement learning [31] to search for logic rules, which 
greatly reduces the complexity of searching. However, 
due to the large action space and low returns in the 
learning process, the effect of extracting logical rules by 
these methods is still not satisfactory.

In summary, our contributions are as follows:

•	 We examined the power equipment defect knowl-
edge, enhanced and refined the architecture of the 
ontology, and provided a knowledge graph construc-
tion strategy appropriate for the multi-cloud State 
Grid IoT scenario.

•	 We proposed a flexible, reliable, and effective KG 
reasoning approach GRULR, which is ideal for multi-
cloud State Grid IoT applications.

•	 We created and executed the power equipment 
defect KG application in the context of the multi-
cloud State Grid IoT scenario, which offers sugges-
tions for the use and innovation of KG in the power 
industry.

Table 1 explains the abbreviations in the figure and the 
symbols in the formula, making it easier to read this 
paper.

Fig. 1  Schematic diagram of KG construction of power equipment defects
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Related Work
The construction of KG needs to be applied to vari-
ous information processing technologies. Knowledge 
extraction, which extracts knowledge from various 
data sources and stores it in the KG, is the foundation 
of building a large-scale KG [32, 33]. Knowledge fusion 
can solve the heterogeneity of different KGs. Through 
knowledge fusion, the heterogeneous KGs of differ-
ent data sources can be connected and operated with 
each other, thus improving the quality of KGs. Knowl-
edge calculation is the main output capacity of KGs, 
and knowledge reasoning is one of the most important 
capabilities [10, 34]. Knowledge extraction has gone 
through three stages: manual rule writing, traditional 
machine learning, and deep learning, which are mainly 
divided into named entity identification and relation 
extraction [14]. Knowledge fusion eliminates the ambi-
guity of the processes, and integrates heterogeneous 

and diverse knowledge from different data sources in 
the same framework, thus realizing the fusion of data, 
information, and other perspectives [18, 35]. The core 
of knowledge integration is the generation of mapping. 
At present, knowledge fusion techniques can be divided 
into ontology fusion and data fusion. Our KG construc-
tion method combines the characteristics of the State 
Grid IoT cloudy environment and the requirements 
for bandwidth and computing resources, and can well 
complete the task of building the domain KG.

The work of this paper is related to the existing KG rea-
soning work based on logic rules. In early methods, the 
relationship path between entities was used as candidate 
logic rules to enumerate, and the quality was evaluated 
by learning the weight of the rules [36, 37]. Some recent 
methods learn logic rules and weights in a differentiable 
way at the same time. These methods are mainly based on 
neural networks and transform the feature distribution 
of input data from the original space to another feature 

Table 1  Symbols and their representations in the proposed approaches

Symbol Representation

Q & A question and answer

DB database

ES elasticsearch

OSS Object Storage Service

MOM Message Oriented Middleware

ISC Internet Service Customer

S6000 a network equipment

r(X0, Xn) the relationship between X0 and Xn
G the knowledge graph

Pd the representation of training data

q the question to be queried

a the inference result

pw the probability of an answer conditioned defined by Reasoning Evaluator

pθ the prior probability of an answer conditioned defined by Rule Miner

R the representation of rule set

E the maximum likelihood estimation

wrule the weight of the rule

scorew the score of candidate answer in set A

exp the representation of exponential function in softmax

log the representation of log function

H the score of rules’ quality

t the representation of tail entity of knowledge triple

A the set of candidate answers

MD the representation of polynomial distribution

N the sampling number parameter in polynomial distribution

GRU​ the representation of Gate Recurrent Unit

f the representation of explicit function mapping used in GRU network

K the number of high-quality rules to output

maxO the representation of maximizing the loglikelihood of the ruleset
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space through nonlinear transformation, and automati-
cally learn the feature representation [9, 25]. The method 
in this paper is similar to these methods in thought, and 
its purpose is to learn logic rules and weights. The main 
innovation of this method is to divide the model into two 
parts: Rule Miner and Reasoning Evaluator. Rules and 
weights are studied separately. The search efficiency is 
high, it is suitable for the cloud deployment of IoT, and it 
also has a good reasoning effect.

Tensor decomposition is a process of decomposing 
high-dimensional arrays into several low-dimensional 
matrices. Using tensor decomposition to learn the 
embedding of entities and relations has always been a 
hot research direction, but these methods often only 
learn some simple logic rules [38–40]. Compared with 
this method, this method can discover more complicated 
logic rules.

KG Construction
System scheme
As shown in Fig. 2, the architecture of the power equip-
ment defect KG system is divided into four layers, 
including the data layer, support layer, service layer, and 
application layer from bottom to top. The data layer is 
based on the State Grid multi-cloud platform, including 
graph database, third-party relational database, cache 
database, object storage services, etc. The supporting 
layer realizes the basic functions of KG construction, 

such as knowledge computing, entity alignment, 
knowledge modeling, knowledge storage, knowledge 
error correction, and so on. The service layer provides 
a graphic analysis model, system log, query service, rule 
setting, document management, etc. The application 
layer mainly provides external services, such as knowl-
edge Q &A, error analysis, defect intelligent retrieval, 
and so on, based on a power equipment defect KG.

The data layer is abstracted on the State Grid multi-
cloud platform, and various database data sources are 
integrated to provide services to the upper layer. This 
design improves the system’s flexibility and security. It 
strengthens deployment and expansion in multi-cloud 
scenarios.

As shown in Fig. 3, the technical architecture of this 
scheme is based on the State Grid multi-cloud architec-
ture of the IoT and follows the design specification of 
the State Grid SG-EA technical architecture [40]. This 
scheme makes use of component and dynamic software 
technology, along with a consistent and shareable data 
model. The visualization layer, application layer, ser-
vice layer, security layer, data layer, and so on are all 
part of the multi-layer technology system. Through the 
application integration of the basic support platform, 
the scheme realizes cooperation and integration of the 
interface components of the State Grid’s work busi-
ness in the enterprise, as well as reuse to meet business 
requirements.

Fig. 2  System architecture of power equipment defect KG
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Ontology design
Ontology mainly describes domain knowledge, pro-
vides strong support for common understanding, 
determines commonly recognized vocabulary in the 
domain, and formally gives a clear definition of vocabu-
lary and the relationship between vocabulary [29]. That 
is to say, ontology is the abstract expression of knowl-
edge and the top-level structure for describing knowl-
edge. Ontology design refers to the establishment of 
the data model of the KG, that is, the concept, attrib-
ute, and relationship among concepts of the ontology 
model. Generally, knowledge modeling includes the 
methods based on industry standardization models 
and the “top-down” method gradually refining from the 
top concept; As well as a “bottom-up” method based 
on entity induction to form bottom-level concepts and 
gradually abstract upwards. The ontology design of the 
equipment defect KG adopts the method of combining 
both. The top-down ontology design requires expert 
intervention in the early stages, and the bottom-up 
ontology design is updated using natural language pro-
cessing technology in the later stages. In comparison to 
other ontology design schemes, our scheme combines 

the benefits of both design patterns and significantly 
improves system efficiency.

At present, the results of ontology design are based 
on business data such as defect records, defect standard 
library, defect analysis, common code table, and docu-
ments such as standards, guides, and reports. In the 
system, 25 concepts, including defects, defect proper-
ties, equipment, components, parts, power stations/
lines, manufacturers, people, etc., were constructed, 
and 131 relationships were defined. Currently, the sys-
tem has 10493 entities and 152600 attributes. As shown 
in Fig. 4, taking equipment defects as the core, referring 
to the basic ontology design concepts of “people, events, 
objects, rules”, and combining the equipment defect 
business and model, the equipment defect ontology is 
constructed with the main vertex concepts such as unit, 
equipment, defect standard, defect description, defect 
treatment, defect elimination and acceptance, and family 
defects [41].

Knowledge extraction and fusion
As shown in Fig.  5, in the process of building the 
defect KG, it is necessary to clean and mark all kinds 

Fig. 3  Technical framework of power equipment defect KG
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Fig. 4  Example of ontology design for power equipment defect KG

Fig. 5  Defect KG construction process
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of equipment defect data collected and visited. The 
goal of data cleaning is to filter and delete duplicate 
and redundant data, supplement missing data, and 
correct or delete wrong data. The goal of data annota-
tion is to turn the original data into usable data for the 
algorithm. According to the type, it can be generally 
divided into text, image, audio, and video annotation. 
Based on the data from different sources and structures 
such as equipment defect data, standard specifications, 
system guidelines, defect reports, etc. The equipment 
map object, equipment event definition, and equip-
ment history information are formed by using various 
methods such as information extraction, D2R conver-
sion, graph mapping, etc.

Knowledge fusion mainly includes the fusion of the 
device data pattern layer (concept, the relationship 
between concepts and attributes of concept) and the 
device data layer. Data layers are the key to the fusion 
of equipment KGs. The data of equipment defect KGs 
comes from multiple business systems and offline docu-
ments, so it is necessary to realize the efficient real-time 
integration of massive equipment defect data from differ-
ent sources and forms. Knowledge retrieval or knowledge 
reasoning is mainly used for the completion and quality 
inspection of KG, that is, using the existing facts or rela-
tionships to infer new facts or relationships. The methods 
mainly include graph mining calculation, ontology rea-
soning, and rule-based reasoning.

KG reasoning
This section introduces a knowledge graph reasoning 
method that probabilistically formalizes knowledge graph 
reasoning. The definition of the probability model we use 
is derived from RNNLogic [39]. The theory behind the 
model was proved in the original paper. To accommodate 
the unique requirements of the multi-cloud State Grid 
IoT scenario, we revised the probability model. Reason-
ing Evaluator and Rule Miner are designed as two inde-
pendent models that may be deployed separately to adapt 
to the state grid multi-cloud architecture. The system can 
be made flexible and dependable while avoiding supplier 
locking by performing iterative updates by sharing high-
quality rules among multi-cloud.

In this paper, logic rules are expressed in the form 
of first-order logical conjunction operators, namely 
∀{Xi}

n

i=0
r(X0,Xn) ← r1(X0,X1) ∧ r2(X1,X2) ∧⋯ ∧ rn(Xn−1,Xn)   . 

This representation can not only facilitate the processing 
of anti rules ¬r and inverse rules r−1 but also displays the 
structure of the KG. Model the KG reasoning, and rep-
resent the training data as Pd(G, q, a) . This paper refers 
to the definition of the probability distribution model 
defined by RNNLogic [39]:

where G is the KG, the set of knowledge triples (h, r, t), 
q is the question to be queried, and a is the inference 
result. The purpose is to infer the possible answer based 
on a given R and q to establish a probability distribution 
model p(a | G, q) . The Rule Miner defines a prior pθ on 
latent rules R conditioned on a query q. At the same time, 
the Reasoning Evaluator gives a probability pw on an 
answer conditioned on the latent rule R, the query q, and 
the KG G.

The Rule Miner and Reasoning Evaluator are jointly 
trained by maximizing the likelihood of the sample, and 
the objective function is defined as follows:

Reasoning Evaluator Algorithm
The Reasoning Evaluator is defined as pw(a | G, q,R) 
which constructs a Markov logic network [27] according 
to the logic rules and predicts the answer a by reasoning 
through a group of logic rules R on the KG G. For each 
query question, q = (h, r, ?) , different paths on the KG 
G can be found by combining these rules, inferring dif-
ferentiable candidate answers. Any answer deduced from 
these logical rules constitutes set A. For each answer a 
in the set, the score can be calculated by the following 
formula:

To simplify the calculation, this paper sets the path’s 
weight to 1, so it does not participate in the analysis. wrule 
is the weight of the rule. Each rule in the set will have a 
contribution score to the reasoning result, and the score 
is accumulated to represent the answer’s score. Calcu-
late the possibility of each entity as the answer through 
softmax:

Candidate entities with higher scores can be considered 
as reasoning answers. In addition, the high-quality rules 
need to be identified from those given rules, and the fol-
lowing formula can calculate a score H:

In the above formula, log GRUθ ( rule | q) is the prior 
probability of the Rule Miner, and the rules with higher H 

(1)
pw,θ (a | G, q) =

R

pw(a | G, q,R)pθ (R | q)

=Epθ (R|q)[pw(a | G, q,R)]

(2)max
θ ,w

O(θ ,w) = E(G,q,a)∼p d [log pw,θ (a | G, q)]

(3)scorew(a) =
∑

rule ∈R

wrule

(4)pw(a = t | G, q,R) =
exp (scorew(a))∑

a′∈A exp (scorew(a′))

(5)
H( rule ) = scorew(t | rule)+ log GRUθ ( rule | q)
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scores are given to the Rule Miner as high-quality rules. 
The posterior probability combines the knowledge of the 
Rule Miner and the Reasoning Evaluator. Therefore, the 
high-quality logical rules can be discovered using a pos-
teriori probability sampling. Calculate the probability 
distribution of those rules through softmax:

Rule Miner Algorithm
For the Rule Miner pθ , this paper focuses on the rela-
tion r in the KG instead of the entity. To answer a query 
q(h, r, ?), these logical rules can be expressed as the fol-
lowing sequence relationship[rq , ri, . . . , re] , where rq is the 
query relationship, re represents the end of the rule, and 
ri is the reasoning logic rules.Therefore, The Rule Miner 
generates logical rules based on the GRU network for 
reasoning to answer queries. To calculate the generation 
probability of rules, the distribution of generation rule set 
R is defined as the following polynomial distribution:

Where MD represents the polynomial distribution, N 
represents the size of the set R, and GRUθ (q) stands for 
the distribution over a group of rules for query q.

The process of generating the ruleset R is very specific 
because the GRU network can output N rules to form R. 
The GRU network generates the following relation based 
on the currently given sequence relation and gives the 
probability for generating the relation. The GRU network 
used is defined as follows:

Where h0 is the hidden layer of the initial state, ht is the 
hidden layer of the t state, f1 and f2 are linear transfor-
mation functions, vr is the embedding vector of the head 
relationship of the query q, vrt is the embedding vector 
of the relationship with vr , [vr , vrt ] is vector concatenation 
operation. The probability of using softmax to give the 
next state relation rt+1 is:

Assuming that the relationship set is denoted as R, trans-
form ht+1 into |R| dimensional vector by linear transfor-
mation f3 , and then apply the softmax function to the |R| 
dimensional vector to obtain the probability of each rela-
tion and generate rt+1.

Finally, K high-quality rules Rk are output by the Rea-
soning Evaluator as part of the trained data, update the 

(6)prule =
exp (H(rule))∑

rule′∈R exp (H(rule′))

(7)pθ (R | q) = MD(R | N ,GRUθ (q))

(8)
h0 =f1(vr)

ht =GRU(ht−1, f2([vr , vrt ]))

(9)softmax(f3(ht+1))

Rule Miner parameter θ by maximizing the log-likelihood 
of the ruleset:

Experiments
Datasets
This paper selects four datasets for experiments, includ-
ing two small datasets, KINSHIP and UMLS [42], and 
two large datasets, WN18RR and FB15K-237 [43]. The 
KINSHIP dataset consists of names and kinships of 
persons in two families in Australia. The UMLS dataset 
comes from the biomedical domain, where biomedical 
concepts (e.g., disease, drug) are entity data, and treat-
ments and diagnoses are relation data. WN18RR is a 
subset extracted from WordNet. FB15K-237 is a subset 
drawn from the Freebase subset FB15K. For each data-
set, we randomly select 50% of the dataset as the train-
ing set, 30% as the test set, and the remaining 20% as the 
validation set. The statistics of each dataset are shown in 
Table 2.

Evaluation Criteria
To comprehensively evaluate the effectiveness of our 
model, we adopt several representative evaluation met-
rics [28]: HITS@N, Mean Reciprocal Rank (MRR).

•	 The formula for calculating HITS@N is: 

 Where S is the triplet set, |S| is the number of tri-
plet sets, and ranki refers to the inference prediction 
rank of the i-th triplet. The HITS@N indicator refers 
to the average proportion of results ranking less than 
or equal to N in the inference prediction. The larger 
the value, the better. In this paper, the value of N is 1, 
3, and 10.

•	 The formula for calculating MRR is: 

(10)max
θ

O(θ) =
∑

rule ∈Rk

logGRU θ ( rule | q)

(11)HITS@N =
1

|S|

|S|∑

i=1

I(ranki ≤ N )

Table 2  Statistics of each data set

Dataset Entities Relations Triples Mean degree

KINSHIP 104 25 8544 85.15

UMLS 135 46 5216 38.63

WN18RR 40945 11 86835 2.19

FB15K-237 14505 237 272115 19.74
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 MRR is an internationally used mechanism for eval-
uating search algorithms, the first result matches 
with a score of 1, the second matches with a score of 
1/2, and the nth matches with a score of 1/n. If there 
is no match, the score is 0. The final score is the sum 
of all scores. The larger the value, the better, indicat-
ing that the inference result conforms to the facts.

Benchmark methods
We compare the proposed model GRULR with sev-
eral state-of-the-art methods. Benchmark methods are 
divided into three categories: embedding-based, rule-
based logic, and reinforcement learning-based methods.

•	 Embedding-based representative methods: DistMult, 
ComplEx, and ConvE. ConvE and ComplEx utilize 
the method proposed by Dettmers et al. [44].

•	 Representative methods based on logical rules: NLP 
and DRUM [45].

•	 a usual method based on reinforcement learning: 
MINERVA [31].

First, Table  3 shows the experimental comparison 
results of our method and other benchmark methods 
on standard datasets. As shown in Table 3, on the large 
datasets WN18RR and FB15K-237, all inference abil-
ity and accuracy drop significantly, such as embedding-
based methods (ComplEx, DistMult, and ConvE) MRR 
metrics drop by more than 50%. However, the HITS@1, 

(12)MRR =
1

|S|

|S|∑

i=1

1

ranki

3, 10, and MRR results of the method proposed in this 
paper are generally higher than other benchmark meth-
ods. The MRR metrics of GRULR on the large datasets 
WN18RR and FB15K-237 reach 0.450 and 0.329, respec-
tively, and the HITS@3 metrics also get 0.471 and 0.360. 
In conclusion, the model GRULR proposed in this paper 
outperforms the other six methods on the large datasets 
WN18RR and FB15K-237, mainly because GRULR can 
jointly optimize the Rule Miner and Reasoning Evaluator 
to generate high-quality logical rules for KG reasoning. 
In addition, the evaluation criteria HITS@N and MRR of 
the GRULR model are slightly lower than the embedding-
based methods (i.e., ComplEx, DistMult, and ConvE) on 
the small datasets KINSHIP and UMLS. This is mainly 
because these datasets are not designed to test the mod-
el’s ability to learn logical rules. Considering its small 
scale and simple logic rules, the embedding-based model 
can achieve high performance. Furthermore, the GRULR 
model outperforms both rule-based learning methods 
(NLP, DRUM) and reinforcement learning-based meth-
ods (MINERVA) on small and large datasets. Based on 
the above experimental results, the method proposed in 
this paper is more suitable for complex KG reasoning on 
large datasets.

As shown in Fig.  6, we compare the HITS@N metric 
changes of three different methods on the large data-
sets WN18RR and FB15K-237. In Fig.  6, the proposed 
models GRULR, DRUM, and ComplEx all increase 
as N increases. Moreover, the growth rate of GRULR 
and ComplEx on the WN18RR dataset is relatively 
fast. In conclusion, the model GRULR proposed in this 
paper outperforms the other two methods (DRUM and 

Table 3  Inference results on common datasets

Bold numbers are the results obtained by the best method in the table

Dataset Metric ComplEx DistMult ConvE NeuralLP DRUM MINERVA GRULR

HITS@1 0.754 0.808 0.697 0.475 0.183 0.605 0.568

KINSHIP HITS@3 0.910 0.942 0.886 0.707 0.378 0.812 0.824

HITS@10 0.980 0.979 0.974 0.912 0.675 0.924 0.912

MRR 0.838 0.878 0.797 0.619 0.335 0.720 0.715

HITS@1 0.823 0.916 0.894 0.643 0.358 0.728 0.730

UMLS HITS@3 0.962 0.967 0.964 0.869 0.699 0.900 0.893

HITS@10 0.995 0.992 0.992 0.962 0.854 0.968 0.963

MRR 0.894 0.944 0.933 0.778 0.548 0.825 0.814

HITS@1 0.410 0.390 0.400 0.368 0.369 0.413 0.412
WN18RR HITS@3 0.460 0.440 0.440 0.386 0.388 0.456 0.471

HITS@10 0.510 0.490 0.520 0.408 0.410 0.513 0.522
MRR 0.440 0.430 0.430 0.381 0.382 0.448 0.450
HITS@1 0.158 0.155 0.237 0.173 0.174 0.217 0.245

FB15K-237 HITS@3 0.275 0.263 0.356 0.259 0.261 0.329 0.360
HITS@10 0.428 0.419 0.501 0.361 0.364 0.456 0.497
MRR 0.247 0.241 0.325 0.237 0.238 0.293 0.329
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ComplEx) on the large datasets WN18RR and FB15K-
237, mainly because GRULR can generate high-quality 
logic rules to ensure the accuracy of inference results. 
The above experimental results further demonstrate that 
the method proposed in this paper is more suitable for 
complex KG reasoning on large datasets.

Table  4 shows some of the logic rules generated by 
the GRULR method on the FB15K-237 dataset in the 
multi-cloud IoT scenario. It can be seen that these rules 
are meaningful and diverse, and some of them are com-
plex multi-hop reasoning. Experiments show that our 
method can generate high-quality logic rules. The high-
quality logic rules are logic rules based on human natu-
ral understanding. For example, if actor X was born in 
the U state and the U state belongs to the country Y, it 

is easy to get the nationality of actor X as Y. As shown 
in Table 4, the logical inference is represented by sym-
bols: ActorNationality(X, Y) ← BornIn(X, U) ∧State-
Contain−1(U, Y). These meaningful logical rules are 
found through our model, so we conclude that GRULR 
can generate high-quality logical rules. We analyze the 
length of the rule paths that can be learned by the three 
types of techniques and finds that the size of the rule 
paths known by the GRULR method is more extended, 
which is more effective for KG reasoning in the multi-
cloud IoT scenario and can effectively mine potential 
knowledge data.

In Fig.  7, we used four RTX 3090 GPUs to simulate 
the training of the FB15k-237 dataset under the MEC 
scenario, completed five iterations of training within 

Fig. 6  Accuracy comparison on complex datasets

Table 4  Some rules found by GRULR on the FB15K-237 dataset

AppearsInRankedLists(X, Y) ← ArwardOf(X, Y)

AppearsInRankedLists(X, Y) ← ProgramCreatorBy(X, U)∧DirectBy(U, V) ∧ ArwardOf(V, Y)

ActorNationality(X, Y) ← BornIn(X, U) ∧StateContain−1(U, Y)

ActorNationality(X, Y) ← PlaceOfBirth(X, U) ∧TownInCity(U, V)∧CityInState(V, W)∧

                                       ActorOf(W, K)∧FilmReleaseRegionIn(K, L) ∧LanguageOf(L, Y)

TvProgramLanguage(X, Y) ← TvCountryOfOrigin(X, U)∧CountryOfficialLanguage(U, Y)

TvProgramLanguage(X, Y) ← ActorOf(X, U)∧FilmReleaseIn(U, V)∧CountryOfficialLanguage(V, Y)

Fig. 7  Training on FB15k-237 dataset
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two hours, and achieved good results. In fact, due to 
the high efficiency of our training method on large 
KGs, the initial iteration can achieve better KG rea-
soning results. As shown in Fig. 7, because newly dis-
covered high-quality logic rules are added after each 
iteration, the overall prediction effect of GRULR is 
slowly improving. At the same time, we also noticed 
that the number of rules sampled in the third itera-
tion decreased, resulting in a decrease in thrust perfor-
mance. According to the above experimental analysis, 
we know that the number of rules sampled significantly 
impacts the reasoning effect, so how to optimize and 
generate more high-quality logic rules will be the focus 
of our future research.

In the field of electric power, the GRULR method is 
applied to cognitive reasoning and intelligent knowl-
edge service in multi-cloud scenarios. In the application 
of electric power knowledge question answering, the 
accuracy of knowledge association reasoning increases 
by 18.3%, and 23.1% improves the combined search per-
formance; in the application of equipment knowledge 
base, the accuracy of knowledge association increases by 
15.4%, and the efficiency of robot response increases by 
21.2%, reducing manual pressure in business scenarios 
and promoting the reasoning, analysis, and application 
of knowledge. Increase the business system’s intelligence 
and practicality.

Conclusion
This paper proposes a power equipment defect KG con-
struction scheme. This scheme realizes intelligent man-
agement of the State Grid IoT’s big data and reduces 
the artificial burden. Simultaneously, a logic-based KG 
reasoning method GRULR is proposed. The experi-
mental results demonstrate that this method can per-
form KG reasoning in a multi-cloud environment. With 
the increasing data scale of the State Grid IoT, the main 
research direction in the future will be how to perform 
efficient KG reasoning on super large data sets.
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