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Abstract 

Land cover maps are of vital importance to various fields such as land use policy development, ecosystem services, 
urban planning and agriculture monitoring, which are mainly generated from remote sensing image classification 
techniques. Traditional land cover classification usually needs tremendous computational resources, which often 
becomes a huge burden to the remote sensing community. Undoubtedly cloud computing is one of the best choices 
for land cover classification, however, if not managed properly, the computation cost on the cloud could be surpris-
ingly high. Recently, cutting the unnecessary computation long tail has become a promising solution for saving cost 
in the cloud. For land cover classification, it is generally not necessary to achieve the best accuracy and 85% can be 
regarded as a reliable land cover classification. Therefore, in this paper, we propose a framework for cost-effective 
remote sensing classification. Given the desired accuracy, the clustering algorithm can stop early for cost-saving whilst 
achieving sufficient accuracy for land cover image classification. Experimental results show that achieving 85%-99.9% 
accuracy needs only 27.34%-60.83% of the total cloud computation cost for achieving a 100% accuracy. To put it into 
perspective, for the US land cover classification example, the proposed approach can save over $1,593,490.18 for the 
government in each single-use when the desired accuracy is 90%.
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Introduction
Land cover maps represent the spatial information of 
different categories of physical coverage (e.g., forests, 
wetlands, grasslands, lakes.) on surfaces of the earth [1], 
where dynamic land cover maps may contain changes 
in land cover categories over time, thereby capturing 
the changes of land arrangements, human activities, 
and the inputs people make within a land cover type to 
produce, alter or maintain it. Frequently updated land 
cover map is essential for a variety of environmental and 
socioeconomic applications, including urban planning 
[2], agricultural monitoring [3], forestry [4], sustainable 
development [5] and so on.

Considering the large geographic area and high tem-
poral frequency covered by remote sensing satellite 
imagery, it provides a unique opportunity to obtain land 
cover information through the image classification. Land 
cover classification is the grouping of pixels in the images 
into homogeneous regions, each of which corresponds to 
a specific land cover type, usually modelled as a cluster-
ing problem [6–8]. Generally, unsupervised clustering is 
widely used in the land cover classification [9] because 
remote sensing images are often not available with 
ground truth of labels.

To generate updated land cover information at differ-
ent scales, a series of remote sensing image classification 
techniques have been proposed in recent years [10]. Most 
representative clustering algorithms (e.g., k-means [11], 
ISODATA​ [12], Expectation-Maximum [13], Markov 
Random Field  [14]) consider the pixel as the basic anal-
ysis unit, with which each pixel is labeled as a single 
land cover type. However, these pixel-wise clustering 
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approaches, when applied to heterogeneous regions, may 
have limitations as the size of an object may be much 
smaller than the size of a pixel. In particular, a pixel may 
not only contain a single land cover type, but a mixture 
of several land cover types. Therefore, fuzzy clustering 
approaches have been developed for unsupervised land 
type classification [15, 16].

The advancement of spatial, spectral, temporal, and 
angular data has facilitated the generation of petabytes 
of data every year [17–19]. Land cover classification 
usually needs tremendous computational resources and 
becomes a huge burden to the remote sensing companies 
and organisations. With the ever-increasing demand for 
storing and analyzing large volumes of remote sensing 
imagery, cloud computing offers a suitable solution for 
the remote sensing community [20]. By acting as a near-
real-time insight platform, cloud computing can rapidly 
perform big data analysis. It is a mature platform that 
provides global users with high-end computing resources 
without a huge IT infrastructure investment budget, and 
provide efficient and low-cost solutions for remote sens-
ing classification.

However, the cost of cloud computing environments 
for big data storage and analytics is drawing increas-
ing attention from researchers, which becomes a bot-
tleneck for land cover classification in the cloud. For 
example, running 100 m4-2xlarge EC2 virtual machines 
(VM) instances in Amazon Sydney datacenter costs up 
to $62,496 per month [21]. Li et al. [22] found that cut-
ting the unnecessary long tail (see Fig. 1) in the cluster-
ing process is a promising solution for cost-effective 
cloud computing, which inspires us that we can explore 
achieving sufficiently satisfactory clustering accuracy 
with the lowest possible computation cost. In particular, 
this method could be effectively applied to the land cover 
classification.

In most clustering scenarios (e.g., spatial data analy-
sis, weather forecast, marketing), we do not always 
need to have the optimal solution because users usu-
ally don’t need 100% accuracy. Taking weather fore-
cast as an example, clustering techniques have been 
used to predict weather conditions (e.g., rainy, snowy, 
sunny) based on various factors such as air tempera-
ture, air pressure, humidity, amount of cloud cover, and 
speed of the wind. In this case, a reasonable margin of 
inaccuracy is acceptable because users do not need to 
know 100% accurate weather information. As long as 
they have a general understanding of the weather, they 
will be able to make decisions about what to wear or 
whether to bring an umbrella when going out. In the 
real world, there will never be completely accurate for 
clustering, such as weather forecasting and land cover 
classification. It is critical to stop clustering at a reason-
able point to save computation costs when achieving a 
sufficiently satisfactory accuracy at lower cost is prefer-
able instead of achieving 100% accuracy at higher cost.

For the land cover classification problem, it is also 
not necessary to achieve the best accuracy all the time. 
Normally at least 85% accuracy can be considered a 
reliable land cover classification [23]. To achieve cost-
effective land cover classification, a new framework 
needs to be explored to improve cost-effectiveness per-
formance, rather than using the same methods in the 
general big data clustering scenarios. In general, there 
are three main challenges to be addressed for the design 
of the new framework: 1) unlike traditional pixel-wise 
clustering methods, we adopt fuzzy clustering meth-
ods (e.g., the FCM algorithm) to assign pixels to mul-
tiple land cover types; 2) before building the regression 
models between the change rate of objective function 
and accuracy, we first detect and remove the anomalies; 
3) compared to the commonly used quadratic polyno-
mial regression in previous literature [22], more regres-
sion models are explored for more cost-effective land 
cover classification.

In this research, we propose a generalized framework 
for cost-effective land cover classification with remote 
sensing images. We are the first to apply the FCM clus-
tering algorithm to cost-effective land cover classifica-
tion. Rand Index is used as the accuracy metric and Local 
Outlier Factors (LOF) [24] is employed to remove anom-
alies between the change rate of objective function and 
accuracy. Support Vector Regressor (SVR) [25] is applied 
to fit the relationship between the change rate of objec-
tive function and accuracy. Experimental results show 
that achieving 85%, 90%, 95%, 99%, 99.9% accuracy need 
only 27.34%, 29.33%, 33.25%, 55.93% and 60.83% of the 
computation cost required for achieving a 100% accu-
racy. Our contributions are as follows:Fig. 1  Long tail phenomenon during the clustering process
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•	 We propose a generalized framework for the cost-
effective land cover classification problem, with 
which the clustering algorithm can stop at an early 
point given the desired accuracy for cost-saving.

•	 We are the first to adopt the LOF algorithm to 
remove anomalies before fitting the relation between 
the change rate of objective function and accuracy, 
which improves the cost-effectiveness in the land 
cover classification.

•	 Experimental results show that the proposed frame-
work can achieve sufficient accuracy and save much 
computation cost in the cloud.

The remainder of the paper is organised as follows. Sec-
tion  2 discusses the current related works on remote 
sensing classification and the cost of cloud computing. In 
Section 3, we introduce the background knowledge used 
in our study and in Section  4 we demonstrate our gen-
eralized framework for land cover classification. Then, in 
Section 5, we conduct extensive experiments to illustrate 
the cost-effectiveness of the proposed framework. Sec-
tion 6 gives conclusions and future work.

Related works
Remote sensing imagery classification
Fuzzy C-means (FCM) is first proposed by Dunn and 
improved by Bezdek [26], which is frequently used in the 
image segmentation field. Foody et al. [27] used the FCM 
algorithm for sub-urban land use mapping from remote 
sensing images. They found that the classification results 
can be improved significantly when using fuzzy cluster-
ing compared with hard clustering methods. Wang et al. 
[15] incorporated the spatial context to improve the 
robustness of the FCM algorithm in image segmenta-
tion. By combining these two concepts and modifying the 
objective function of the FCM algorithm, they solved the 
problems of sensitivity to noisy data and the lack of spa-
tial information, and improved the image segmentation 
results. Sowmya et al. [16] proposed the reformed fuzzy 
C-means (RFCM) technique for land cover classification. 
Image quality metrics such as error image, peak signal to 
noise ratio (PSNR) and compression ratio were used to 
compare the segmented images.

Zhang et  al. [28] compared six popular segmenta-
tion models for land cover classification of remote sens-
ing images, and then proposed the model ASPP-U-Net 
which outperforms the other methods in both classifica-
tion accuracy and time efficiency. De et al. [29] proposed 
to use pixel-based classification with random forest (RF) 
classifiers to generate high-quality land cover products. 
Their method achieved an overall accuracy of 83% and 
81% for Liberia and Gabon and outperformed previous 
land cover products in these countries in terms of subject 

content and accuracy. Nguyen et al. [30] adopted object-
based random forest classification to generate land cover 
information for the Vu Gia - Thu Bon river basin in 2010. 
They classified seven types of land cover (i.e., planted for-
est, natural forest, paddy field, urban residential, rural 
residential, bare land, and water surface), achieving the 
overall accuracy of 73.9% with kappa = 0.70.

Cost‑effective cloud computing
With the development of the pay-as-you-go cost model, 
IT resources are often provided and utilized by cloud 
computing. Since most of the benefits offered by cloud 
computing are around the flexibility of the pay-as-you-go 
model, cost-effectiveness has become a key issue in the 
cloud computing area. With the continuous improve-
ment of cloud services provided by cloud vendors, many 
scientists are beginning to pay attention to the perfor-
mance and cost-effectiveness of public cloud services. 
In-depth research has been conducted on cost-effective 
computation in cloud environments.

Cui et al. [31] identified the high tail latency problem in 
cloud CDN via analyzing a large-scale dataset collected 
from 783,944 users in a major cloud CDN. A workload 
scheduling mechanism was presented aiming to optimize 
the tail latency while meeting the cost constraint given by 
application providers. A portfolio optimization approach 
was then proposed by [32] for cost-effective healthcare 
data provisioning. Li et al. [33] modelled the task sched-
uling on IoT-cloud infrastructure as bipartite graph 
matching, and proposed a resource estimating method.

A semi-elastic cluster computing model [34] was 
introduced for organizations to reserve and dynamically 
adjust the size of cloud-based virtual clusters. The experi-
ment results indicated that such a model can save more 
than 60% cost for individual users acquiring and manag-
ing cloud resources without leading to longer average job 
wait times. The MapReduce cloud model Cura was pro-
posed to offer a cost-effective solution to effectively deal 
with production resources, which implemented a glob-
ally effective resource allocation process that significantly 
reduces the cost of resource use in the cloud. Flutter [35] 
was designed and implemented as a task scheduler and 
reduced the completion time and the network cost for 
large-scale data processing tasks over data centres in dif-
ferent regions.

Berriman et  al. [36] used Amazon EC2 to study the 
cost-effectiveness of cloud computing applications and 
Amazon EC2 was compared with the Abe high-perfor-
mance cluster. They concluded that Amazon EC2 can 
provide better performance for memory- and processor-
bound applications than I/O-bound applications. Simi-
larly, Carlyle et  al. [37] compared the computation cost 
of high-performance in Amazon EC2 environments and 



Page 4 of 12Li et al. Journal of Cloud Computing           (2022) 11:62 

traditional HPC environments with Purdue University’s 
HPC cluster program. Their research indicated that the 
in-house cluster can be more cost-effective while organi-
zations take advantage of clusters or have IT depart-
ments that can maintain an IT infrastructure or prioritize 
cyber-enabled research. These features of in-house clus-
ters actually demonstrated the cost-effectiveness and 
flexibility of running computation-intensive applications 
in the cloud.

A random multi-tenant framework was proposed 
by Wang et  al. [38] for investigating the cloud services 
response time as an indicator with a universal probabil-
ity distribution. Similarly, Hwang et  al. [39] tested the 
performance of Amazon cloud services with 5 different 
benchmark applications and found it was more cost-
effective in sustaining heavier workload, by compar-
ing the scale-out strategies and the scale-up strategies. 
To explore the minimal cost of storing and regenerat-
ing datasets in multiple clouds, [40] proposed a novel 
algorithm that implements the best compromise among 
storage, bandwidth, and computation cost in the cloud. 
Jawad et al. [41] proposed an intelligent power manage-
ment system in order to minimize data centre operating 
costs. The system can coordinate the workload of data 
centre, renewable power, battery bank, diesel genera-
tors, real-time transaction price for the purpose of reduc-
ing the cost of consumption. Aujla et  al. [42] proposed 
an efficient workload slicing scheme for handling data-
intensive applications in multi-edge cloud environments 
using software-defined networks (SDN) to reduce the 
migration delay and cost.

In order to save costs in the cloud, it is also important 
for algorithms to reduce processing time and improve 
their efficiency. Teerapittayanon et  al. [43] proposed a 
deep network architecture BranchyNet, allowing predic-
tions for most of the test samples to exit the network 
early through these branches, at which point the samples 
can already be inferred with high confidence. Combin-
ing the advantages of BranchyNet and the Edge-Cloud 
architecture, an open source framework based on Kafka-
ML [44] was designed to support fault-tolerant and 
low-latency AI prediction. Their experimental results 
obtained a 45.34% improvement in response time com-
pared to a pure cloud deployment. Passalis et  al. [45] 
proposed a Bag-of-Features (BoF) based method that 
enables the construction of efficient hierarchical early 
exit layers with minimal computational overhead. They 
provided an adaptive inference method, allowing the 
inference process to be stopped early when the network 
has sufficient confidence in its output, resulting in signifi-
cant performance benefits. Though above works explored 
the early stop schemes, they focused more on improved 

the architecture of deep learning networks which is not 
applicable for traditional clustering scenarios.

The current research on cloud computing indicates the 
prevalence of running computation-intensive applica-
tions in the cloud, which provides a general overview of 
the cost-effectiveness of big data analysis in the cloud by 
comparing traditional cluster environments and cloud 
environments. Li et al. [22] proposed a method for cut-
ting the unnecessary long tail in the clustering process 
to achieve cost-effective big data clustering in the cloud. 
Sufficiently satisfactory accuracies can be achieved at the 
lowest possible costs by setting the desired accuracies, 
which presented an important step toward cost-effective 
big data clustering in the cloud. In this research, we adopt 
the approach proposed in [22] to a more specific field: 
remote sensing land cover classification, and explore 
more advanced and efficient ways to improve the perfor-
mance of cost-effective clustering in the cloud.

In summary, different from previous studies, our work 
has several advantages: (1) we explore stopping tradi-
tional clustering algorithms early to save cloud com-
puting costs, while others [43–45] typically focus on 
improving deep learning architectures that are neither 
intuitive nor easy to use for end users; (2) we remove 
anomalies to improve the cost-effectiveness in the cloud 
before fitting the relation between the change rate of 
objective function and accuracy while [22] does not 
consider the influence of anomalies; (3) to the best of 
our knowledge, we are the first to investigate the cost-
effective land cover classification problem based on the 
remote sensing research while previous research usually 
focuses on general clustering problem with fixed algo-
rithm, which is less scalable and less effective in practical 
applications.

Background
This section mainly introduces the background of the 
proposed cost-effective land cover classification method, 
including the fuzzy c-means clustering algorithm, accu-
racy calculation method, and the cloud cost computing 
model.

Fuzzy c‑means clustering
As one of the most commonly used fuzzy clustering 
methods, the FCM algorithm [26, 46] is a clustering tech-
nique allowing each data point to belong to more than 
one cluster. Fuzzy logic principles are used to assign each 
point a membership in each cluster center from 0 to 1, 
which indicates the degree to which data points belong 
to each cluster. Therefore, the FCM algorithm can be 
very powerful compared to traditional hard clustering 
(i.e., K-means [47]) where every point can only belong to 



Page 5 of 12Li et al. Journal of Cloud Computing           (2022) 11:62 	

exactly one class. FCM clustering is based on minimizing 
the objective function as follows:

where m is a real number larger than 1 and means the 
mth iteration during the clustering process. uij means 
the degree of membership of xi in the cluster j, xi indi-
cates the ith d-dimensional measured data, cj is the jth 
d-dimension center of the cluster, and �∗� is any norm 
expressing the similarity between any measured data 
and the center. Fuzzy partitioning is conducted through 
an iterative optimization of the objective function shown 
below, with the update of membership uij and the cluster 
centers cj by:

This iteration will stop when

where ε is a termination criterion between 0 and 1, 
whereas k is the iteration step. This procedure converges 
to a local minimum or a saddle point of Jm . Overall, the 
algorithm is composed of the following steps: 

1	 Initialize matrix U = [uij] as U0.
2	 In k step, calculate the centers vectors Ck = [cij] with 

Uk based on Eq. (3).
3	 Update Uk and Uk+1.
4	 If 

∥

∥Uk+1 − Uk
∥

∥ < ε , then stop; other wise, return to 
Step 2.

Rand index
Accuracy is a key metric for assessing the effectiveness of 
big data clustering. As suggested by [22], to demonstrate 
that the clustering accuracy gradually increases itera-
tion by iteration, we adopt the final clustering partition 
Pf  as a reference partition as 100% accuracy. By com-
paring the clustering results obtained in each iteration, 
we exhibit how the accuracy of the intermediate parti-
tion Pi ∈ {P1,P2, ...,Pf } increases during the clustering 
process.

(1)Jm =

N
∑

i=1

C
∑

j=1

umij
∥

∥xi − cj
∥

∥

2
, 1 ≤ m < ∞,m ∈ R

(2)
uij =

1

∑C
k=1

(

�xi−cj�
�xi−ck�

)

2
m−1

(3)cj =

∑N
i=1 u

m
ij · xi

∑N
i=1 u

m
ij

(4)maxij

{∣

∣

∣
uk+1
ij − ukij

∣

∣

∣

}

< ε, 0 < ε < 1, ε ∈ R

In our research, the accuracy of the clustering algo-
rithm can be measured by the similarity between Pi 
and Pf  . Rand Index [48] is adopted to evaluate the sim-
ilarity between two clustering partitions, which is a 
popular method of accuracy calculation in the field of 
data clustering. Each partition is treated as a group of 
(m− 1)×m/2 pairs of data points, where m represents 
the size of the dataset. For each pair of data points, the 
partition either assign them to the same cluster or differ-
ent clusters. Therefore, the similarity between the parti-
tions P1 and P2 can be measured as follows:

where: 

m00	� indicates the number of data point pairs located 
in the different clusters in both P1 and P2;

m11	� indicates the number of data point pairs located 
in the same clusters in both P1 and P2;

m01	� indicates the number of data point pairs located 
in the same clusters in P1 but in different clusters 
in P2;

m10	� indicates the number of data point pairs located 
in different clusters in P1 , but in the same clusters 
in P2.

With the Rand Index as the measure of similarity, the 
clustering accuracy can be calculated in each iteration 
of the clustering process. Take Fig.  2 for instance, the 
data point pairs located in the same cluster (indicated 
with same color) in P1 and P2 includes (n1, n2), (n3, n4), 
(n5, n7), (n5, n8), (n7, n8). The pairs that are placed in dif-
ferent clusters in both P1 and P2 include (n1, n3), (n1, n4), 
(n1,  n5), (n1,  n6), (n1,  n7), (n1,  n8), (n2,  n3),(n2,  n4), 

(5)

Rand(P1,P2) =
m00 +m11

m00 +m01 +m10 +m11
=

m00 +m11

m
2

Fig. 2  An example of calculating Rand Index between P1 and P2
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(n2,  n5), (n2,  n6), (n2,  n7), (n2,  n8), (n3,  n5), (n3,  n7), 
(n3,  n8), (n4,  n5), (n4,  n7), (n4,  n8). Then, there is 
Rand(P1,P2) = (5+ 18)/28 = 82.14% . Clearly, the value 
of Rand Index increases as the number of iterations 
increases. In the last iteration of clustering process where 
Pi = Pf  , there is Rand(Pi,Pf ) = 1 , indicating that the 
clustering process completes with a 100% accuracy.

Cloud computing model
The computation cost for remote sensing image classifi-
cation can be computed by the cost models provided by 
cloud vendors. Amazon EC2 web services are adopted 
in this research which usually have 4 different models: 
spot instances, on-demand, dedicated hosts and reserved 
instances. As the most basic cost model, on-demand 
model is paid by time and does not require upfront 
payments or long-term commitments. Therefore, the 
on-demand cost model is adopted in this research for cal-
culating the computation cost in the cloud.

Similar to [22], computation time Tcomp is the CPU time 
(not the wall clock time) used by the cloud instances 
for the clustering processing. The unit price Priceunit is 
defined by the computational resource used in running 
the algorithm. Take Amazon EC2 for instance, there are 
7 major types of EC2 virtual machine instances: RHEL, 
SLES, Linux, windows, Windows with SQL Web, Win-
dows with SQL Enterprise and windows with SQL Stand-
ard. Different types of EC2 VM instances have different 
unit prices. For example, in Windows type, 36 EC2 VM 
instances are displayed for 4 types: Compute Optimized, 

(6)Costcomp = Priceunit × Tcomp

General Purpose, Storage Optimized, and Memory Opti-
mized. Unit prices vary from region to region, ranging 
from $0.0066 to $38.054 per hour.

In this paper, for the sake of simplicity, the computa-
tion time is used as an indicator for calculating the com-
putation cost. When we use a specific Amazon EC2 
VM instance, we can see that the computation time and 
computation cost are positively correlated. The longer 
the computation time, the higher the computation cost. 
Some other costs may occur before running the algo-
rithm, such as data transfer costs and storage costs for 
large datasets in the cloud. However, the cost of data 
storage and data transfer is independent of the cluster-
ing process. Therefore, in this study, we only focus on the 
computational cost of the land cover classification pro-
cess and isolate it from other costs.

Approach
Figure  3 shows the proposed framework consisting of 
two phases: training phase and testing phase. For the 
training phase, we learn the relation between the accu-
racy and the change rate of objective function. Through 
the testing phase, we set the desired accuracy and stop 
the clustering algorithm at an early point by meeting suf-
ficient accuracy. The detailed process is as follows:

Training phase
In the training phase, the FCM clustering algorithm is 
applied on RGB channels of training images. During the 
clustering process, we get Jm and Lm , indicating the 
objective function and the predicted labels at the mth 
iteration of total n iterations, where the predicted labels 

Fig. 3  Framework of cost-effective remote sensing image classification
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at the last iteration are noted with Ln . Once the cluster-
ing is finished, rm (the accuracy at mth iteration) is calcu-
lated through the Rand Index between Lm and Ln based 
on Eq. (5).

The rate of change of objective function �Jm is com-
puted using the Eq. (7). For simplicity, we use ’change 
rate’ instead of ’the rate of change’ in this paper. The 
change rate is used to describe the percentage change in 
value over a specific period of time. In this research, we 
define the change rate of objective function as:

where �Jm indicates the change rate of objective func-
tion at the mth iteration of total n iterations.

For each training image, we can calculate the value of 
rm and �Jm,m ∈ {2, ...n} . As a result, we get n− 1 data 
points for each training image. To model the relation-
ship between rm and �Jm , anomaly points need to be 
mitigated first. As the most well-known anomaly detec-
tion algorithm, the LOF [24] is an unsupervised machine 
learning algorithm that finds anomalies by measuring the 
local deviation of a given data point based on its neigh-
bors. In our research, the LoF algorithm is applied to mit-
igate the anomaly points.

With anomalies removed, we have tried several com-
monly used regression models to fit the relation between 
rm and �Jm in the remaining points, such as SVR, 
Standard Linear Regressor (LR) [49], Gradient Boot-
ing Regressor(GBR) [50], Bayesian Ridge Regressor [51] 
and Random Forest Regressor (RFR) [52]. Support Vector 
Machine (SVM) [25] in regression problems, commonly 
known as SVR, is one of the most widely used regression 

(7)�Jm =
Jm

Jm−1
× 100%, 1 < m � n

models. LR is a linear model which assumes the linear 
relationship between two variables. GBR is an ensemble 
method that combines a set of weak predictors to achieve 
reliable and accurate regression. Bayesian Ridge Regressor 
formulates linear regression by using probability distri-
butions. RFR follows the idea of random forest in clas-
sification and can estimate the importance of different 
features.

After extensive experiments, we found that when SVR 
is applied, the experimental results usually show better 
performance. As a result, SVR is adopted as the regres-
sion model to fit the relationship between rm and �Jm . 
Given the desired accuracy r̄ (e.g., 85%, 90%, 95%, 99%, 
99.9%), the predicted value of �J̄  can be calculated from 
the trained regressor (see Fig. 4).

Testing phase
In the testing phase, we run the FCM clustering algo-
rithm with the testing images. �J  at each iteration is 
calculated and compared with �J̄  . When �J < �J̄  , we 
record the early stopping point at this iteration, e.g., sth 
iteration. In the real scenario of remote sensing classifi-
cation, we can stop the clustering algorithm at this point 
with the confidence of achieving the desired accuracy r̄ at 
the sth iteration.

Evaluation method. To evaluate the performance 
of the proposed approach, we run the FCM algorithm 
until it is fully completed during training. Then we cal-
culate the achieved accuracy rs and computation time Ts 
at the sth iteration. Finally, we can evaluate the proposed 
method from two dimensions: the achieved accuracy 
(through comparing rs and r̄ ) and the percentage of saved 
time ( Ts/Tn).

Fig. 4  Relation between change rate of objective function and accuracy
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Cloud Computation Cost. Total computation time 
Tcomp includes the overall clustering time in the training 
process Ttrain , and the actual clustering time Tactual (i.e., 
early-stop computation time) when clustering reaches 
the desired accuracy, which is computed as:

The training phase is carried out only once. Once it is 
completed, the regression model can be applied repeat-
edly to the remote sensing image classification in the 
future. Thus, Ttrain can be negligible compared with the 
overall cost in the long term. Since the computation time 
is the primary indicator of the cost in our research, the 
cost-effectiveness percentage Costeffective can be exhibited 
as follows:

where Ttotal represents the expected computation time 
in the clustering when 100% accuracy is achieved. The 
smaller the value of Costeffective is, the higher the cost-
effectiveness of the clustering.

Experimental evaluation
In this section, we first introduce the experimental set-
tings and the dataset. Then we conduct the experiments 
consisting of the training phase and testing phase. After 
that, we evaluate the proposed framework from two 
aspects: the achieved accuracy and the cost-effectiveness. 
Finally, we discuss the performance of the cost-effective 
land cover classification and real-world applications.

Experimental setup
The experiments were conducted on a laptop (Microsoft 
Corporation - Surface Laptop 4) with a 2.60 GHz Intel (R) 
Core (TM) i5 processor and 8G memory, and the oper-
ating system is 64-bit Windows 10 enterprise. The code 
was written in Python 3.6 and developed in PyCharm 4.5 
IDE, making use of Scikit-learn, skfuzzy, Numpy, Pan-
das, SciPy and Matplotlib package for machine learning, 
mathematical, statistical operation and visualization.

We conduct experiments on the public satellite 
imagery dataset SpaceNet [53]. The dataset is released by 
Digital Globe, an American vendor of space imagery and 
geospatial content. The dataset includes a large amount 
of geospatial information related to various downstream 
use cases, e.g., infrastructure mapping and land cover 
classification. SpaceNet contains more than 17,533 high-
resolution remote sensing images ( 438× 406 pixels). 
SpaceNet is hosted as the Amazon Web Services public 
dataset, which contains approx. 67,000 square kilometers 
of high-resolution imagery in different cities (e.g., Las 

(8)Tcomp = Ttrain + Tactual

(9)Costeffective ≈
Tactual

Ttotal

Vegas, Khartoum, Rio De Janeiro, Shanghai), more than 
11 million building footprints, and approx. 20,000 kilo-
meters of road labels, making it the most popular open-
source dataset for geospatial machine learning research 
[22, 54]. Due to the huge size of the SpaceNet dataset, we 
randomly select 200 sample remote sensing images as the 
training dataset so that we could perform the clustering 
and simulate the regression process accurately.

In the experiment, the FCM clustering algorithm 
(ncenters = 6, error = 0.005, m = 2) was applied for 
cost-effective remote sensing image classification. Usu-
ally, finding the optimal number of clusters is crucial for 
the unsupervised clustering. For the SpaceNet dataset, 
through visual inspection, we find that the images can 
be generally divided into six different regions, i.e., forest, 
water, road, building, grassland, and wasteland. There-
fore, we set the number of clusters ncenters = 6. m is an 
array exponentiation applied to the membership function 
at each iteration which is usually set to 2 for the FCM 
algorithm. The error indicates the stopping criterion and 
we use the default value error = 0.005 like previous stud-
ies [22].

After clustering, the LoF technique (outliers_frac-
tion = 0.03, n_neighbors = 40) was applied to remove 
the anomalies. For the parameters outliers_fraction and 
n_neighbors, we experimented with different parameter 
settings, and we achieve the best performance of the 
proposed method using the above settings. Next, SVR 
(kernel=’RBF’) was used to predict the change rate of 
objective function with the desired accuracy (i.e., 85%, 
90%, 95%, 99%, 99.9%). We choose the desired accuracy 
from 85% because it is generally regarded as a reliable 
accuracy for land cover classification [23]. Then, we eval-
uate the proposed approach from two dimensions: the 
achieved accuracy and the percentage of saved time.

Experiment results
Our experiment includes two phases: training phase and 
testing phase. For training remote sensing images, we 
first cluster the pixels in RGB channels with the FCM 
algorithm. We compute the objective function Jm , pre-
dict label Lm at the mth iteration until the last iteration 
n. Then, in each iteration, the change rate of objective 
function �Jm is computed based on from Eq. (7) and the 
accuracy rm is computed from Eq. (5). Figure 4 shows the 
relation between �Jm and rm.

After that, the LoF technique is used to remove the 
anomalies. In Fig. 4, red points represent the normal ones 
and yellow dots mean the detected dots anomalies. SVR 
is then applied to fit the relation between rm and �Jm . 
The green line represents the regression line with anoma-
lies and blue line means the fitting line without anoma-
lies. It can be observed that, given the same desired 
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accuracy, the predicted value with anomalies (green line) 
is generally smaller than the predicted value without 
anomalies (blue line).

Given the desired accuracy r̄ , we can predict the cor-
responding �J̄  . Table 1 shows the different change rate 
of objective function with different required accuracies 
(e.g. 85%, 90%, 95%, 99%, 99.9%) for the FCM cluster-
ing algorithm with and without LOF anomaly detection. 
The results show that in the real-world scenario, if the 
desired accuracy is r̄ (i.e., 99%), we can apply the FCM+

LOF algorithm on the remote sensing images, compute 
the change rate of objective function at each iteration 
and stop the algorithm when the change rate of objective 
function is below �J̄  (e.g., 1.84e-6). However, when we 
make the FCM+LOF algorithm stop at an early point, is 
the achieved accuracy really up to 99%? How much time 
could we save by this approach? To evaluate the per-
formance of our method, we propose two criteria: the 
achieved accuracy and cost-effectiveness (the percentage 
of saved time).

Achieved accuracy. To evaluate our proposed method, 
given the desired accuracy of r̄ , we first calculate the 
corresponding change rate of objective function (see 
Table 1). Then, we run the FCM+LOF algorithm on test-
ing images, calculate the change rate of objective func-
tion until it reaches �J̄  at the sth iteration.

In this research, we complete the whole clustering pro-
cess and calculate the achieved accuracy at the sth itera-
tion. After that, the achieved accuracy rs is compared 
with the desired accuracy r̄ . Table 2 shows the result of 
the average achieved accuracy (with standard deviation) 
of different desired accuracy for the FCM algorithm with 
and without LOF anomaly detection. We can see that 
the achieved accuracy is very close yet above the given 
desired accuracy and even higher than the desired accu-
racy for the FCM+LOF method. For example, on average, 
the achieved accuracy reaches 99.27% when the desired 
accuracy is 99%, and 99.92% when the desired accuracy 
is 99.9%. However, if we do not apply the LOF anomaly 
detection algorithm and adopt FCM algorithm only, the 
achieved accuracy may not reach to the desired accuracy 
in some cases. This illustrates that the proposed method 
has high accuracy on the FCM+LOF method and 

anomaly detection algorithm is necessary for the cost-
effective clustering process.

Cost-effectiveness. Table 3 shows the actual percent-
age of saved computation time with different desired 
accuracy for the FCM algorithm with and without 
LOF anomaly detection. For the FCM+LOF method, it 
can be found that we only use 27.34%, 29.33%, 33.25%, 
55.93%, 60.83% computation time when the desired 
accuracies are 85%, 90%, 95%, 99% or 99.9% respec-
tively. Since the cost of cloud computation is directly 
related to the actual computation time, the FCM algo-
rithm can achieve high cost-effectiveness in the cloud 
with the proposed framework. It is worth noting that we 
do not show the result of the actual computation time, 
but only the actual time as a percentage of the expected 
time ( Tactual/Ttotal ), namely the Costeffective calculated 
with the Eq.  9. The reason is that the actual computa-
tion time may vary with different hardware resources or 
cloud computing platforms, and we aim to achieve high 
cost-effectiveness by stopping the clustering process at 
an early point, regardless of the platforms and hardware 
settings.

Discussion
Figure  4 shows the relation between the accuracy and 
the change rate of objective function. It can be seen that 
the predicted change rate of objective function without 
anomalies is generally lower than the predicted value 
with anomalies, indicating that the proposed methods 
can achieve higher accuracy compared to the previous 
methods without anomaly detection algorithms when 
given the same desired accuracy.

Table 1  Change rate of objective function with different desired 
accuracies

Algorithm Desired accuracy

85% 90% 95% 99% 99.9%

FCM+LOF 2.67e-4 1.76e-4 8.59e-5 1.61e-6 6.50e-7

FCM only 6.03e-4 3.42e-4 1.73e-4 1.58e-6 5.43e-7

Table 2  Average achieved accuracy over different desired accuracies

Algorithm Desired accuracy

85% 90% 95% 99% 99.9%

FCM+LOF 89.15% 93.16% 95.07% 99.27% 99.92%

(0.0594) (0.0544) (0.0370) (0.0044) (0.0018)

FCM only 83.03% 89.40% 94.49% 99.36% 99.94%

(0.0786) (0.0645) (0.0409) (0.0041) (0.0021)

Table 3  Actual time (percentage) with different desired accuracies

Algorithm Desired accuracy

85% 90% 95% 99% 99.9%

FCM+LOF 27.34% 29.33% 33.25% 55.93% 60.83%

FCM only 22.94% 27.80% 31.39% 56.05% 62.30%
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Figure  5 shows the boxplot between the achieved 
accuracy and the desired accuracy for the proposed 
method. It can be seen that the achieved accuracy is 
very close to the desired accuracy in different settings. 
The variation of accuracy becomes smaller with the 
increase of the desired accuracy, which proves the high 
performance of the proposed cost-effective land cover 
classification method.

From the experiments, we have observed that the 
higher the desired accuracy, the longer the compu-
tation time and the less the time saved. by using the 
proposed approach, users can save more money with 
lower but sufficient accuracy (e.g., 90%). For example, 
achieving 90% accuracy needs only 29.33% computa-
tion cost of 100% accuracy. For the SpaceNet dataset, 
the training process is only computed once. The train-
ing process for 200 remote sensing images (using the 
FCM algorithm) took 6431.04 seconds and was only 
computed once. Taking the California land cover sta-
tistics as the instance for 423,  970 km2 land, which 
needs around 2.567× 107 partitioned remote sens-
ing images ( 438× 406 pixels) with each covering a 
16, 520.74m2 land. With the proposed approach, the 
saved computation time is approximately 162,  035.31 
hours when the desired accuracy is 90%. Based on 
Amazon EC2 pricing [21], if we run m5.xlarge vir-
tual machine instances ($0.424 per hour), the cloud 
computation cost saved can be up to $68,702.97 for 
California. Apparently, the cost in the training phase 
($0.378) is negligible to the whole computation cost.

In real-world applications, the training phase is per-
formed once and once completed, we can utilize the 
regression model many times. For instance, we can 
use the same regression model to carry out the whole 
United States land cover classification, which would 

save the computation cost up to $1,593,490.18 in each 
single-use for the case of the desired accuracy of 90%.

Conclusion
Traditional land cover classification usually requires huge 
computational resources, and how to save computation 
costs in the cloud has become an increasingly important 
issue. For land cover classification, it is often not neces-
sary to achieve the best accuracy all the time, usually no 
less than 85% can be regarded as a reliable land cover 
classification.

In this research, we proposed a generalized frame-
work for cost-effective remote sensing classification. 
FCM algorithm was applied for clustering remote sens-
ing images, with Rand Index as the accuracy calculation 
method and Local Outlier Factors (LOF) as the anomaly 
detection algorithm. The Support Vector Regressor (SVR) 
was used to fit the relation between the change rate of 
objective function and accuracy. Extensive experimental 
results showed that given the desired accuracy (e.g., 85%, 
90%, 95%,99%, 99.99%), we can make the FCM clustering 
process on remote sensing images stop earlier and there-
fore save a huge amount of computation time. Also, the 
achieved accuracy (i.e., 89.15%, 93.16%, 95.07%, 99.27%, 
99.92%) are very close to yet above the desired accuracy. 
Especially, it is noteworthy that the main contribution 
of this research is not the widely used algorithms (e.g., 
FCM, LOF, SVR) but the proposed framework for cost-
effective land cover classification. The biggest advantage 
of the proposed framework is that it is intuitive, flexible, 
and highly scalable, making it convenient for users to 
save a lot of cloud computing costs while achieving the 
desired accuracy.

However, there are some threats to the validity of this 
research. One main threat is the representativeness of the 
dataset used in the experiments. The real-world remote 
imagery dataset SpaceNet is used in our study, which cov-
ers 67000 square kilometers and is informative to be gen-
eral enough for this study. Additionally, our framework is 
flexible and researchers can adjust the clustering algorithm, 
accuracy calculation method, anomaly detection algorithm, 
and regression model in different clustering scenarios (not 
limited to the SpaceNet datasets or even land cover clas-
sification problem) based on their own needs. They can 
also set the desired accuracy and then make the clustering 
algorithm stop early with sufficient accuracy to save much 
computation cost. Another threat is the representativeness 
of the experiment environment. We conduct experiments 
on the Microsoft Surface Laptop 4 with 64-bit Windows 10 
enterprise, instead of using the EC2 VM instances on the 
Amazon cloud directly. The reason we do not compare the 
performance of the proposed framework is that we aim to 
achieve high cost-effectiveness by stopping the clustering 

Fig. 5  Boxplot of achieved accuracy over different desired accuracy
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process at an early stop point, and the saved time by reduc-
ing the number of iterations is independent of the platform. 
In the future, the proposed framework can be easily ported 
to different cloud platforms such as AWS Lambda, EC2, 
and Azure. Therefore, the threats to the validity are mini-
mal in this research.

In future research, we will focus on several aspects to 
improve our proposed framework. Firstly, we will com-
pare the performance of different clustering algorithms 
using the proposed framework. Secondly, more remote 
sensing datasets will be explored to verify the robustness 
and the generality of the framework. Additionally, we 
will investigate methods to bound the achieved accuracy 
within a given error range.

Appendix
The notations used in this research are shown in Table 4.

Abbreviations
LOF: Local outlier factors; SVR: Support vector regressor; FCM: Fuzzy C-means; 
LR: Standard linear regressor; GBR: Gradient boosting regressor; RFR: Random 
forest regressor; SVM: Support vector machine.
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