
Choi ﻿Journal of Cloud Computing (2022) 11:63
https://doi.org/10.1186/s13677-022-00337-y

RESEARCH

Fog computing application of cyber‑physical
models of IoT devices with symbolic
approximation algorithms
Deok‑Kee Choi*    

Abstract 

Smart manufacturing systems based on cloud computing deal with large amounts of data for various IoT devices,
resulting in several challenges, including high latency and high bandwidth usage. Since fog computing physi‑
cally close to IoT devices can alleviate these issues, much attention has recently been focused on this area. Fans are
nearly ubiquitous in manufacturing sites for cooling and ventilation purposes. Thereby, we built a fan system with an
accelerometer installed and monitored the operating state of the fan. We analyzed time-series data transmitted from
the accelerometer. We applied machine learning under streaming data analytics at the fog computing level to create
a fan’s cyber-physical model (CPM). This work employed the symbolic approximation algorithm to approximate the
time series data as symbols of arbitrary length. We compared the performance of CPMs made with five time-series
classification (TSC) algorithms to monitor the state of the fan for anomalies in real time. The CPM made with the BOSS
VS algorithm, a symbol approximation algorithm, accurately determined the current state of the fan within a fog com‑
puting environment, achieving approximately 98% accuracy at a 95% confidence level. Furthermore, we conducted a
posthoc analysis, running statistical rigor tests on experimental data and simulation results. The workflow proposed in
this work would be expected to be utilized for various IoT devices in smart manufacturing systems.

Keywords:  Fog computing, Cyber-physical model, Symbolic approximation algorithms, Smart manufacturing, IoT,
Machine learning

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
In cloud computing, smart manufacturing is built with
various IoT devices. A managing intelligence observes the
states of devices and takes necessary actions immediately
to prevent disruption in manufacturing if any problems
arise. This intelligence incorporated with domain-spe-
cific knowledge can be labeled as a cyber-physical model
(CPM) [1]. However, there are some practical difficulties
in creating CPM for real-world phenomena. For example,
IoT devices are spatially densely installed in a manufac-
turing environment; thus, lessening device heat is essen-
tial in manufacturing. Although a fan is primarily used

for cooling or ventilation, a study on cyber-physical mod-
eling of fans has not drawn as much attention as installed
devices. If the fan stops working; as a result, the device’s
temperature may rise and eventually fail to function cor-
rectly, causing significant interruptions to the entire
manufacturing system. It is reported that a cooling fan is
one of the top 10 failing components in electronic prod-
ucts [2]. Therefore, a study on the state of a cooling fan
in smart manufacturing would be practically meaningful.

In general, the state of a fan can be monitored by
analyzing data sent from sensors alongside devices on
the site. The transmitted data from the sensor is Time
Series (TS) with a temporal structure, so it requires
non-conventional algorithms than those used for typical
tabular data. A conventional data analytics algorithm,
including machine learning, is suitable for dealing with

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: dkchoi@dankook.ac.kr

Department of Mechanical Engineering, Dankook University, 152, Jukjeon‑ro,
Suji‑gu, 16890 Yongin‑si, Gyeonggi‑do, Republic of Korea

http://orcid.org/0000-0002-3474-3430
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00337-y&domain=pdf

Page 2 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

pooled data, making it inappropriate to apply directly
to TS. The pooled data is data that, unlike TS, does not
consider the temporal sequence. As a non-conventional
algorithm, Time Series Classification (TSC) algorithm
[3] has been known as an algorithm that best fits TS for
classification because it takes raw TS to keep its tempo-
ral structure intact. The role of the TSC algorithm is to
compare TS sent from the sensor and classify it by pre-
defined class. In this way, this algorithm helps to get the
fan’s state in real time. TSC algorithms can be regarded
as the core of CPM, determining which of a set of des-
ignated classes in TS belongs. The classes for classifica-
tion here are defined by multiple collections of data for
machine learning.

TSC algorithms can be divided into three types
according to how to interpret TS [4]. The first is the
similarity-based technique, taking raw TS as input.
However, this technique has disadvantages, such as
relatively long computation time and weak scalabil-
ity. The second type is conventional machine learning,
disregarding the temporal structure of TS. However,
in so doing, most of the information related to the
time domain may be lost. A third type, the symbolic
approximation technique, has recently drawn much
attention, in which raw TS is converted into symbols of
arbitrary length. This type’s advantage is the dramatic
reduction of high dimensionality and noise. The BOSS
algorithm has been recognized as a state-of-the-art [5],
which was adopted for creating the final CPM in this
work. This algorithm runs a sliding window across each

series, discretizes the window to form a word, develops
a histogram of word counts over the dictionary, then
constructs a classifier of the histograms. Once a TSC
algorithm is chosen, the next would be having physical
laws incorporated with CPM.

Thereby, in creating CPM, domain-specific knowledge
plays a crucial role [6–9]. The complexity of phenom-
ena occurring around the cooling fan can immediately go
beyond our understanding in a real-world situation. Hence,
there are barriers to establishing and solving physical laws
or governing equations to determine the effect of each
unknown element on the state of the fan. There are too
many unknowns associated with physical interactions, even
for a simple IoT device like the fan. Hence, setting up and
directly solving such equations is not easy. We employed
machine learning with TSC algorithms, a data-driven mod-
eling approach, to resolve the complicated issues in this
work. We set up a cooling fan system with an accelerometer
installed for collecting experimental data. The physical ele-
ments related to the state of the fan can be acoustic noise,
wind speed, rotation, vibration, counter-wind, and pressure
change, as shown in Fig. 1. In order to set up data-driven
modeling, devices for data generation are required, such
as sensors. The larger the number of sensors mounted, the
more accurate the classification model is. However, as the
number of transmitted data increases and the uncertainties
grow, making a lightweight CPM work efficiently over lim-
ited computing resources makes it challenging.

Upon considering the implementation of intelligence
[10] onto a less powerful computing environment, CPM

Fig. 1  A cyber-physical model is expected to sufficiently explain the effect of real-world elements such as acoustic noise, mechanical failure,
temperate change, revolution (rpm), the pressure distribution of blades, vibration, counter-wind occurrence, and wind velocity, etc

Page 3 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

must be sufficiently adequate and lightweight compared
to that in cloud computing. Fog computing refers to a
sublayer of an IoT system shown in Fig. 2. By CPM run-
ning in fog computing, we may expect IoT devices’ oper-
ating states to be fully aware without relying heavily on
cloud computing [11]. In cloud computing, efforts are
being made to ensure that heavy loads are efficiently dis-
tributed as various applications require immediate atten-
tion in real-time [12, 13]. Thus, much research in recent
years has been focused on smart manufacturing in fog
computing [14, 15].

Several advantages of CPM created in this work can be
addressed: Firstly, it can dramatically reduce the amount
of data directly transmitted from the sensor to cloud
computing. In other words, an intelligent CPM close
to the sensor can self-determine the device’s state and
notify the administrator only at critical moments. Sec-
ondly, the types of sensors and data are as diverse and
heterogeneous as the devices used in smart manufactur-
ing. For example, the dispatch cycle of data sent by sen-
sors is generally not the same. While there are sensors
that send data more frequently, sensors send at consid-
erable time intervals. Therefore, if intelligence can be
materialized to account for this time interval, the prob-
lem of inconsistency over the data transfer cycle can
also be solved spontaneously. This discrepancy is also
directly related to latency and bandwidth in cloud com-
puting. Therefore, intelligence operating on fog com-
puting is vital, which can alleviate the heavy burden on
cloud computing.

We demonstrated how to create an intelligent CPM for
the cooling fan that worked with great accuracy, demand-
ing the least amount of computing resources. As a result,
we learned that in fog computing, which has a minimal

computing resource compared to cloud computing, CPM
could be used to ascertain the state of the fan with the
high performance considering possible uncertainties in
real-world situations. Therefore, the workflow proposed
in this work may increase overall production efficiency
by expanding the utilization of fog computing in smart
manufacturing.

The paper is organized as follows: The Related work sec-
tion discusses the related work. A detailed explanation of
how to set up CPM, closely following Bayes’ rule, is shown
in CPM set up with Bayes’ rule section. The Symbolic Fou-
rier Approximation (SFA) section explains the symbolic
approximation algorithm with sub-algorithms. Bag-of-SFA-
Symbols VS section presents the BOSS algorithm and an
extended BOSS VS algorithm. Results and discussion sec-
tion explains the experimental implementation of the fan
with the sensor, the exploratory data analysis, and multiple
comparisons of CPM types with different algorithms. Lastly,
the Conclusion section concludes this paper and discusses
the further study.

Related work
This study aims to create a cyber-physical model (CPM)
[16] that can accurately determine the operating state
of the cooling fan as an IoT device in fog computing.
Time series classification (TSC) algorithms that can cor-
rectly interpret the time series (TS) transmitted from the
accelerometer attached to the fan are required. Domain-
specific knowledge, which can describe the fan’s charac-
teristics, is also essential. A time-series Ti is defined as an
ordered sequence Ti = {t1, . . . , tn} . The univariate TS has
only one feature ( d = 1 ); on the other hand, the multi-
variate TS has several features ( d > 1 ), that is ∀j, tj ∈ Rd ,
where d is the number of features.

Fig. 2  Three levels of IoT system. As the top-level, IoT employing a cloud system associated with big data analytics. Fog computing resides in the
middle, equipped with fast streaming data analytics. At the bottom level, IoT devices such as sensors are located with consecutive temporal data
requiring real-time data analytics

Page 4 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

Although research on TSC has drawn much attention
for years, most results are related to accuracy improve-
ment and not scalability. However, recent IoT sensor-
driven applications have to deal with precisely these
scaled data in classification, making methods unimpor-
tant that do not scale [17, 18]. In particular, TSC work-
ing in fog computing has to meet stringent limits over the
usage of resources. Therefore, TSC algorithms should be
lightweight, fast, and accurate in a fog computing con-
text. Next, the three most widely used TSC algorithms
are discussed.

Firstly, One-Nearest-Neighbor and Dynamic Time
Warping (1-NN DTW) [19] is a TSC algorithm that
defines the similarity among multiple TS by calculating
the distance of each element of TS for comparison. The
principle of the algorithm is that the farther away the two
TS data are in distance, the less alike they are. Thus, from
the perspective of TSC, it is easy to determine to which
class a given TS belongs. The algorithm has been used for
years because it is straightforward and intuitive. Moreo-
ver, this algorithm is still used as a baseline to validate the
performance of newly proposed algorithms; however, as
the number of data increases, the amount of computa-
tion and the memory required grow, making it challeng-
ing to utilize in fog computing.

The second type of TSC includes machine learning
techniques such as KNN [20], artificial neural networks
(ANN) [21], and Long Short-Term Memory (LSTM)
[22]. However, those algorithms may not be considered
genuine TSC from a strict perspective because they do
not consider TS’s temporal structure. Therefore, valuable
information on the time domain might be lost. In addi-
tion, this algorithm is commonly called a black box type
because it is intricate to understand the process by which
the results are derived.

Thirdly, the symbolic approximation algorithm has
attracted much attention recently. The algorithm has
brought a breakthrough in dealing with large amounts
of TS. The fundamental principle of the algorithm is to
divide continuous TS into appropriate intervals and
replace it with symbols of arbitrary length. Bag-Of-SFA-
Symbols (BOSS) [23, 24], Symbolic Aggregate approxi-
mation (SAX) [25, 26], and ExtrAction for time SEries
cLassification (WEASEL) [27] have been most famous.
WEASEL builds on the bag-of-patterns (BOP) approach.
It activates a sliding window over TS and extracts fea-
tures in each window fed into TSC on machine learn-
ing training. Still, we found that the BOP method tends
to take longer in computation than the BOSS algorithm
[28]. SAX is a symbolic approximation method used in
many applications. In SAX, Piecewise Aggregate Approx-
imation (PAA) is utilized to discretize the mean value of
each segment. However, this approach considers only the

mean value of each segment; thereby, it often may fail to
distinguish different time series with similar mean values,
resulting in relatively less accurate classification. Fur-
thermore, it has the disadvantage of constantly recalcu-
lating means for new data. The BOSS algorithm is based
on Symbolic Fourier Approximation (SFA) [29], and
SFA consists of Discrete Fourier Transform (DFT) for
approximation and Multiple Coefficient Binning (MCB)
for quantization. BOSS is an algorithm running a sliding
window across each series, discretizing the window to
form a word, developing a histogram of word counts over
the dictionary, then constructing a classifier in the form
of the histograms.

As for the subject of TSC, two contributions, which
we made through this work, can be presented as fol-
lows: The first is about extending algorithms into ones
that can deal with multivariate TS. Most of the previ-
ously published studies on TSC relate to the univari-
ate TS. However, TS transmitted from IoT devices is
more likely multivariate TS [30]. For example, this work
transmitted multivariate TS data from a multi-channel
acceleration sensor mounted on the fan. TSC handling
the multivariate TS is much more complex than that for
the univariate TS because they also need to find correla-
tions between multiple TS data at each time element. We
employed BOSS, WEASEL, and other algorithms to cope
with the issue and modified algorithms to address mul-
tivariate TS. Eventually, the BOSS algorithm, recognized
as state of the art in the field, resulted in the best CPM
for accuracy and scalability in this work. The second is of
use of real-world data mixed with noise in experiments.
In papers published on TSC algorithms [31, 32], most
results were obtained using publicly available data in the
UCR machine learning repository [33]. In order to com-
pare and analyze the various algorithms, it is common to
verify the results using well-known data. However, there
is an issue that domain-specific knowledge, which can
account for real-world phenomena, may not be directly
applicable to CPM because using the data provided by
the UCR repository is not directly experimented with by
researchers. Thereby, it is believed that using data with
much noise obtained in real-world situations might yield
somewhat different results, which is also pointed out in
literature as a concerning issue [34]. Therefore, we estab-
lished an experimental system in this study and consid-
ered real-world data that might be observed in actual
manufacturing instead.

CPM should be created for a comprehensive account
of real-world phenomena using as much information as
possible about the fan, commonly referred to as domain-
specific knowledge. The traditional way is to obtain infor-
mation through experiments, and numerical simulations
[35]. Computer simulations of a fan performance require

Page 5 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

physical laws or government requirements related to
fluid dynamics. Coggiola et al. [36] employed the compu-
tational fluid dynamics that interprets the flow equations:
Steady and Unsteady Reynolds-averaged Navier-Stokes
equations [37]. However, since these equations are given
in partial differential equations with many variables
for inputs, it is not easy to solve even numerically and
require considerable computing resources [38]. In addi-
tion, multiple-input variables are needed to solve the
equations, for example, a fan’s velocity, pressure, tem-
perature, and humidity. For these input variables, sensors
capable of measuring corresponding physical elements
are required. In other words, different sensors for flow
velocity, pressure change, temperature variance, and
humidity measurement are needed, respectively. Further-
more, as the number of sensors increases, the creation of
CPM can become more involved.

Thus, efforts to create CPM recently have received
significant attention by actively exploiting data from
sensors. For example, to comprehend the effect of the
vibration of a fan, another physical law that can relate
the vibration and flow through a fan is required, which
may not be known to date. Consequently, traditional
methods have encountered many complications that
cannot be quickly answered. Oh et al. [39] monitored
the state of a cooling fan by applying three parameters:
acoustic noise mission, shaft rotational speed, and cur-
rent. However, it requires at least three different sen-
sors. For better accuracy of models, other parameters
need to be sought that can affect the state of the fan,
and it might take quite some time to find out. Jin et al.
[40] used vibration signals to determine the fan’s state
and find similarity by calculating Mahalanobis distance
(MD) for TS data to compare with a baseline. However,
this method has the disadvantage of being compu-
tationally intensive and weak to scalability as a TSC,
similar to the 1-NN DTW introduced earlier. Once a
data-driven modeling approach is employed rather
than the conventional one, domain-specific knowledge
must be assimilated into CPM somehow. Practically,
domain-specific knowledge could be implemented by
determining the type or number of sensors mounted
on the fan. Therefore, machine learning techniques
can be utilized to analyze data to find essential fea-
tures. Consequently, much domain-specific knowledge
is needed when building a model. This study installed
an accelerometer that detects the fan’s movement to
identify the fan’s state. Thus, some domain-specific
knowledge may come from the accelerometer. The
next task is how we attained a lightweight CPM work-
ing in fog computing.

As the type and number of connected devices
increases, cloud computing becomes more challenging

to manage. Such problems include latency, bandwidths,
and scalability [41]. If the latency between cloud com-
puting and the device is high, it is not easy to cope
with real-time events. In addition, specific IoT devices
often transmit more data than others, which poses a
significant challenge in cloud computing bandwidth.
Moreover, scalability issues cannot be overlooked
because large amounts of data must be processed at
a time. Thus, it would be more convenient in many
ways to implement intelligence in fog computing near
devices so that we can be fully aware of the situation
without relying heavily on cloud computing. Accord-
ingly, much research in recent years has been focused
on smart manufacturing applications in fog computing:
IoT deployment in fog computing [42], IoT data sched-
uling in fog computing [43], IoT task scheduling in fog
computing [44], and IoT tasks offloading in edge-cloud
environments [45]. However, those research is not for
specific real-world systems. In this study, taking advan-
tage of machine learning with TSC algorithms, we could
develop an efficient and lightweight CPM of the fan sys-
tem with minimal sensors installed. We demonstrated
that this model worked smoothly in fog computing.

We obtained two promising results in this work: The
first was reducing the high dimensionality of incoming
TS from the sensor using the BOSS algorithm. Second,
the CPM with the BOSS algorithm acted as a low-pass
filter, diminishing the noise significantly. An intelligent
system for the operating state of the cooling fan was
explained in detail. We demonstrated that such intelli-
gence as CPM works smoothly in fog computing to accu-
rately determine the device’s state by analyzing the data
transmitted through the IoT device or sensor in real time.
Next, a detailed discussion on setting up CPM, closely
following Bayes’ rule, is presented.

CPM set up with Bayes’ rule
In this study, the CPM was sought to classify the fan’s
state (or class) solely based on the sensor data. The class
set C = {C1, · · · ,CK } with K = 3 classes that are nor-
mal, counter-wind, and mechanical failure states of the
fan. The CPM can be expressed as a function f : T → C ,
where T = {T1, . . . ,TN } , and in probabilistic con-
text, it can be expressed as a joint probability distribu-
tion p(C,T) . However, finding the mutual relationship
between C and T in an actual situation to complete the
joint probability is not straightforward. For example, after
observing only the TS transmitted from the IoT sensor
installed in the fan, it is challenging to determine the state
of the fan at once. Therefore, to alleviate this difficulty, we
employed a technique of reducing the unknowns using
a marginalization based on the Bayes’ rule [46], which is
handy to describe whole processes here logically. With

Page 6 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

the rule, the maximization over a class C on the posterior
p(C|T) is equivalent to the function f (T):

The denominator of Eq. (1) is not related to class C, as a
result, the CPM function f (T) can be approximated into
the multiplication of the likelihood p(T|C) and the prior
p(C) . This function is internally composed of histograms
for symbols, so it retains the nature of probability, a fas-
cinating result. Because most machine learning models
learned from the data are given in the form of linear or
nonlinear algebraic equations, not a probability. If the
classification results of a CPM are presented as prob-
abilities, we could interpret the result in a probabilistic
way; thus, the higher the probability, the more probable
the state of the fan becomes. In addition, we compared
the classification results for the five different CPMs by
performing rigorous statistical tests of accuracy and
scalability.

Once the CPM is complete, labeling a new TS data
Q = {q1, · · · , qm} and ∀i , qi ∈ Rd for i = 1 . . .m with d
being the feature can be performed shown in Eq. (2).

(1)

f (T) = argmax
C∈C

p(C|T)

= argmax
C∈C

p(C,T)

p(T|C)p(C)dC

∝ argmax
C∈C

p(T|C)p(C)

That is, label(Q) is a formula for the classification pro-
cess. It is noted that p(C|Q) can be interpreted as the
entity with newly arrived data Q plugged into p(C|T) .
Internally, this process is implemented in vector multipli-
cation, and mathematical details of the BOSS algorithm
will be explained in the following sections.

An entire procedure of creating a CPM here is sche-
matically diagrammed in Fig. 3, divided into three phases:
observation, machine learning, and status update. In the
observation phase, streaming data is stored for 3T sec.
Once it passes 3T sec, Machine Learning trains the model
for 2T sec. It should be noted that even while learning the
model, the new data is still coming in to be stored. After
the training is finished, a CPM conducts classification over
new data for T sec. It is important to note that Machine
Learning and Status Update must complete within 3T sec;
otherwise, this process can be out of work.

Symbolic Fourier Approximation (SFA)
This section introduces Symbolic Fourier Approximation
(SFA) used in the BOSS algorithm. SFA consists of Dis-
crete Fourier Transformation (DFT) and Multiple Coef-
ficient Binning (MCB).

(2)

label(Q) = argmax
Ck∈C

p(C|Q)

= argmax
Ck∈C

p(Q|C)p(C)

Fig. 3  The workflow of Fog computing in the present study. Fog computing comprises three distinctive modes in a single time sequence:
observation, machine learning, and status update. The observation phase executes streaming data storing. The Machine Learning phase does data
processing and learning the model. The status update phase carries out a classification of a fan status with the trained model. A red box refers to
a sliding window corresponding to a process of the workflow on the timeline. For example, the box which is on the second from the left indicates
data storing. Likewise, the fifth box from the left is of learning the model

Page 7 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

Discrete Fourier Transformation (DFT)
Discrete Fourier Transform (DFT) extracts Fourier coeffi-
cients from each time series T:

where ai and bi are the real and the imaginary element of
Fourier coefficients. Figure 4 shows that low-pass filter-
ing and smoothing of a sample of acceleration in x-axis
upon Discrete Fourier Transform (DFT), where DFT
result is obtained by taking first two Fourier coefficients
in Eq. (3).

Multiple Coefficient Binning (MCB)
Next, the Multiple Coefficient Binning (MCB) quantization
is carried out with training data. M matrix is constructed
using the Fourier transform of N training time series with
the first l of Fourier coefficients being equivalent to an SFA
word of length l as defined in Eq. (4).

where Mj being j − th column of M matrix for all of N
training data. Mi is then divided into intervals of c and
is sorted by value and then divided into c bins of equi-
depth policy. That is, the i − th row of M corresponds to
the Fourier transform of the ith time series Ti . With the
columns Mj for j = 1, . . . , l , and an alphabet space Al of

(3)DFT(T) = {a1, b1, . . . , am, bm}

(4)

M =







DFT(T1)
...

DFT(TN)







=







(a1, b1)1 . . . (al/2, bl/2)1
...

...
...

(a1, b1)N . . . (al/2, bl/2)N







size c, the breakpoints βj(0) < · · · < βj(c) for each col-
umn Mj are generated. Each bin is labeled by applying the
ath symbol of the alphabet Al to it. For all combination
of (j, a) with j = 1, . . . , l and a = 1, . . . , c , the labeling
symbol(a) for Mj can be done by

It is noted that this process in Eq. (5) applies to all train-
ing data.

SFA working example
SFA word can be obtained from SFA(T) = s1, . . . , sl
with DFT where DFT(T) = t ′1, . . . , t

′
l and t ′s are trans-

formed time series with Fourier transform. That is,
SFA: Rl → Al , where Al is the alphabet set of which
size is c. For a working example, in Fig. 5, we set l = 1
and c = 2 . Six samples as shown Fig. 5a are randomly
selected from the experimental data. The data then is
transformed via DFT, resulting in the Fourier coeffi-
cients for each sample. A vector of the Fourier coef-
ficient values of the first sample reads (-1.352, 5.043)
as shown in Fig. 5b. Next, MCB is conducted with an
alphabet set A1 = {aa, ab,ba,bb} as shown in Fig. 5c.
Thereby, an SFA word of the first sample is mapped
into a word ab shown in Fig. 5d. Likewise, the other
samples can be transformed into their respective SFA
words.

Bag‑of‑SFA‑Symbols VS
The Bag-Of-SFA-Symbols VS (BOSS VS) represents the
time series representation with the structure-based rep-
resentation of the bag-of-words model. The sequence of
SFA words for six samples in Fig. 5d reads as follows:

The values that count the appearance of SFA words in Eq.
(6) are expressed upon numerosity reduction:

It is noted that SFA words in Eq. (6) now results in the
BOSS histogram shown in Eq. (7). Therefore, the BOSS
model B can be regarded as a random variable, that is,
B : S → N  . The probability mass function p(B) can
be addressed by p(B = aa) = 1/3 , p(B = ab) = 1/6 ,
p(B = ba) = 1/6 , and p(B = bb) = 1/3 . This provides
us with quite important information about the structure
of the samples, which structure is being used as features
for machine learning.

BOSS VS model is an extended BOSS model. A
time series T = {t1, . . . , tn} of length n is divided into
sliding windows of length of w is Si,w , where w ∈ N  .
The SFA word is defined as SFA(Si,w) ∈ Al , with

(5)[βj(a− 1),βj(a)] ≈ symbol(a)

(6)S = {ab,ba,bb, aa, aa,bb}

(7)B : aa = 2, ab = 1, ba = 1, bb = 2

Fig. 4  Low-pass filtering and smoothing of a sample of acceleration
in x-axis upon Discrete Fourier Transform (DFT). In this plot, DFT result
is obtained by taking only first two Fourier coefficients

Page 8 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

i = 1, 2, . . . , (n− w + 1) , where A is the SFA word space
and l ∈ N is the SFA word length. The BOSS histo-
gram B(S) : Al → N  . The number in the histogram is
the count of appearance of an SFA word within T upon
numerosity reduction. BOSS VS model allows frequent
updates, such as fast streaming data analytics. As shown
in Fig. 6a and b, the BOSS VS model operates slid-
ing windows unto each time series resulting in multi-
ple windowed subsequences. Next, each subsequence
is transformed into the SFA words shown in Fig. 6c.
All of the subsequences eventually result in the BOSS
histogram shown in Fig. 6d. However, since the BOSS
histogram itself is not suitable for performing multiple
matrix calculations, it is vectorized through Term Fre-
quency Inverse Document Frequency (TF-IDF) algo-
rithm shown in Fig. 6e.

Term frequency inverse document frequency
The BOSS VS model employs Term Frequency Inverse
Document Frequency (TF-IDF) algorithm to weight each
term frequency in the vector. This assigns a higher weight

to signify words of a class. The term frequency tf for SFA
words S of a time series T within class C is defined as

where B(S) is the BOSS histogram in Eq. (7). The inverse
document frequency idf is given by

In this study, for classification purposes, we employed
three different states of a running fan, which is presented
as a set of classes (states) C . The elements of the set are
C = {C1,C2,C3} . It is noted that each element Ck for
k = 1, 2, 3 represents a certain state of the fan. As for the
human-readable format, we have assigned name-tags to
each class such as C1 = “Normal′′ , C2 = “Counter Wind′′ ,
and C3 = “Mechanical Failure′′ , respectively. The inverse
document frequency indicates the frequency of an SFA
word in a class Ck . Therefore, in this study, the numerator

(8)

��(�,�) =

�

1 + log
�
∑

T∈� B(�)
�

, if
∑

T∈� B(�) > 0
0, otherwise

(9)idf(S,C) = log
|C|

|{C|T ∈ C ∩ B(S) > 0}|

Fig. 5  A pictorial diagram of symbolic Fourier approximation (SFA) procedure: a Incoming sensor data of six time-series, b The data is then
transformed via Fourier transform, c The Fourier coefficients are quantized via Multiple Coefficient Binning (MCB), and d Each time series has been
mapped into its respective SFA word

Page 9 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

of Eq. (9) of |C| denotes a numeric value 3. Multiplying
Eq. (8) by Eq. (9), the tfidf of an SFA word S within
class C is defined as

The result of tfidf(S,C) on three states is displayed
in Fig. 6e. It is noted that a high weight in Eq. (10) is
obtained by a high term frequency in the given class.

Classification
Classification of new data Q can be carried out using the
cosine similarity metric CosSim:

It is noted that in Eq. (11) tf(S,Q) is of the term fre-
quency of Q as shown in Fig. 7b, which is the BOSS

(10)

�����(�,�) = ��(�,�) ⋅ ���(�,�)

=

[

1 + log

(

∑

T∈�

B(�)

)]

⋅

log
|�|

|{�|T ∈ � ∩ B(�) > 0}|

(11)

������(�,�) =

∑

�∈� ��(�,�) ⋅ �����(�,�)
�

∑

�∈� ��
2(�,�)

�

∑

�∈� �����
2(�,�)

histogram of Q . Then, CosSim(Q,C) is calculated in Eq.
(11). Upon maximizing the cosine similarity, a query Q is
thus classified into the class Ck as shown in Eq. (12):

In conclusion, the BOSS VS algorithm comprises
two notions: Bag-of-words and TF-IDF. What makes
the BOSS VS different from other algorithms is a way
of taking features of data. This algorithm does not
construct a loss function like other machine learning
algorithms but uses Bag-of-Words instead. With time
series being transformed into sequences of symbols,
Bag-of-words approaches are then used to extract fea-
tures from these sequences. Time series are presented
as histograms with designated symbols. And then, each
histogram is transformed into TF-IDF vectors for clas-
sification. We have discussed building a model with
quite a complexity; thereby, we sorted out the proce-
dure step by step with a lookup table. Table 1 displays
the lookup table for the probabilistic models and cor-
responding algorithms.

(12)label(Q) = arg max
Ck∈C

(CosSim(Q,Ck))

Fig. 6  BOSS model and BOSS VS: a Samples are being scanned with a sliding window, b multiple windowed subsequences are generated, c all
of the subsequences are transformed into SFA words, d SFA words are summarized in the form of BOSS histogram (BOSS model), and e the BOSS
histogram is vectorized through Term Frequency Inverse Document Frequency (TF-IDF) model, which finally results in TF-IDF vectors for training
data

Page 10 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

Results and discussion
Experiments
The experimental apparatus is a three-blade fan on the
wheels with a low-power digital accelerometer made in
Analog Device (ADXL345 GY-80) as shown in Fig. 8.
The dimension of the apparatus the width of 18.5 mm,
length of 12.3 mm, and height of 30 mm. We consid-
ered three of the most probable states of the fan we can
think of in a real-world situation for classification. The
normal state where the fan runs without any noticeable
event (see left pane in Fig. 8). The counter-wind state
occurs when the counter-wind intermittency against
the fan (see center pane in Fig. 8). The mechanical fail-
ure state where one of the blades is broken off (see right
pane in Fig. 8). The average rotational speed of the fan
was 114 rpm in the normal state, 41 rpm in the coun-
ter-wind state, and 107 rpm in the mechanical-failure
state, respectively. Each data set was collected at a sam-
pling rate of 100 Hz for 3 seconds from the accelerom-
eter. For example, we built 2,700 data sets (900 data

sets for each fan state). Thus, we made balanced data,
and each state has the same amount of data. For exam-
ple, 900 samples for each state of the fan were collected
via x and y channels, so the number of data points sums
900 samples× 2 channels× 300× 3 states = 1, 620, 000  .
It took 2 hours and 15 minutes to collect 1,620,000 data
points at each measurement. The experiment data sets
are shown as a set of time series along with mean and
standard deviation into three states in Fig. 9.

For the learning model, we divided the whole data
into training and test data with a ratio of 9:1. That is,
270 data sets out of 2,700 were assigned to test data. We
performed 10-fold cross-validation over five scenarios,
respectively. The cross-validation results are shown in
Table 6. For comparison, we listed two different accu-
racies: non-cross-validation and cross-validation. In
scenario II, where 900 data sets are used for machine
learning, one of five models, the 1-NN DTW, crashed
during the simulations. Such an issue may be caused
by limited computing resources in the fog-computing

Fig. 7  Schematic diagram of classification with the cosine similarity: a New data for query is first transformed into SFA words, b the SFA words of
the new data is transformed into the BOSS histogram, c the trained model in the form of tf-idf algorithm is given, and d the classification is carried
out through calculating the cosine similarity between the trained model and the query

Table 1  Lookup table for the probabilistic models and corresponding algorithms

Note Model Prior Trained Model Transformed Classifier

Probability p(T|C) p(C) p(C|T) p(Q|C) p(C|Q)

Algorithm tf(S,C) idf(S,C) tfidf(S,C) tf(Q,C) CosSim(Q,C)

Page 11 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

facility. Thus, the cross-validation over the 1-NN DTW
model could not go forward for larger data sets (listed as
N/A in Table 6).

In this study, the operating state of the fan is classified
into three categories: normal state, counter-wind state,
and mechanical failure state. In Fog computing, CPM is
learned by machine learning using data from acceleration
sensors and five different TSCs and analyzing the newly
input data to distinguish the state of the fan. Fog comput-
ing in this study was Intel Core i3-8100 CPU 3.60 GHz at
4 GB memory on Ubuntu 20.04.1 LTS.

Exploratory data analysis
Exploratory Data Analysis (EDA) is carried out to
identify data property. In Fig. 9, the raw data, its roll-
ing mean, and the standard deviation are overlaid.
Since raw data contains much noise, it is necessary to
filter it out for a better analysis. The rolling mean is
one such filtering tool. The standard deviation can be
used for estimating the variance of data. In addition, we
need to know how many trends, repetition over inter-
vals, white noise, and other uncertainty are. We should
never take these data characteristics lightly because
they can determine the authenticity of the experiment.
We employed the Augmented Dickey-Fuller (ADF) test
with the null hypothesis of whether it was stationary.
The test results of p-value ≤ 0.05 as shown in Table 2
for the three states with time series from experimen-
tal data; therefore, we can reject the null hypothesis at
a 95% confidence level. Thus, we may affirm that the
experimental data was stationary.

Comparison of models
We employed five different models: WEASEL MUSE,
BOSS VS, random forest (RF), logistic regression (LR),
and one-nearest neighbor DTW (1-NN DTW). Table 3

describes the characteristics of five models according to
temporal structure (Temporal), low-pass filtering (Filter),
transformation (Transform), and critical features (Fea-
tures). Only 1-NN DTW keeps the temporal structure
of data, and the others do not consider the order of data
points over time. Algorithms for feature extraction are χ2
test for WEASEL MUSE, Term-Frequency Inverse Docu-
ment Frequency algorithm for BOSS VS, Entropy for
RF, the cost function for LR, and Euclidean distance for
1-NN DTW.

Classification with BOSS VS
Table 4 shows the numerical expression of the trained
model p(C|T) in Table 1, which is the result of vector
tfidf(S,C) calculated using training data. The sym-
bolic algorithm SFA converts the whole training data
to S = {aa, ab,ba,bb} . For example, the features of the
normal state (C1) are aa , ab , ba , and bb with the numer-
ical values (3.5649, 3.5649, 3.5649, 3.6390) as displayed
in Table 4. For the counter-wind state ( C2 ), the value
reads (3.1972, 2.9459, 3.3025, 3.3025), which is clearly
distinguished from those of the normal state.

Table 5 shows the classifier p(C|Q) in Table 1 for
Q . For example, the first sample Q1 is predicted as the
normal state because of the largest value of 0.9990
throughout the column to which it belongs. In the same
fashion, the classification is performed for the remain-
ing time series, such as the counter-wind state for Q2 ,
the mechanical failure state for Q5 , etc.

Post‑Hoc analysis
Often in many studies, the results tend to be presented
without statistical rigor. However, it is essential to check
if it was statistically significant before further discussion,
called Post-Hoc analysis.

Fig. 8  Photos of the three-blade fan in the three states: Normal state (left), Counter-wind state (center), and Mechanical failure state (right). The
counter-wind state indicates the state where the counter-wind being blown by another fan in front of the fan. The mechanical failure refers to the
state in which one of the blades having been removed off

Page 12 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

As shown in Table 6, the BOSS VS model indicates
the highest accuracy for all data sizes. In addition, even
though the number of data is increased from 180 k to
1.6 million, it shows a bit change in accuracy, so we may
conclude that the BOSS VS model is not significantly
affected by the data size. The smaller the number of data
used, the shorter the run time, but on the other hand, the
model tends to be overfitted to the data. For example, in
scenario I, we used 180,000 data points; for the BOSS VS
model, the accuracy turned out to be 100%. This result
indicates overfitting, where we used too little data for

training. If the number of data is increased, the time for
preprocessing and calculation also increases accordingly.
Machine learning models tend to suffer from overfitting
one way or another for several reasons. The reviewer cor-
rectly pointed out that using a proper validation method
is essential. Furthermore, the most apparent reason
might be lacking data. In machine learning communities,
it is well known that too little data for simulation does
not bring significant results. In this study, we experienced
overfitting when only 300 data sets were used for simu-
lation. As we used more data, such overfitting does not

Fig. 9  Experimental time series data for three states of the fan: Normal state (top row), counter-wind state (middle row), and mechanical failure
state (bottom row). Raw data from the accelerometer overlaid with the rolling mean and standard deviation. Each row represents both x (left) and y
(right) acceleration in g unit

Page 13 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

appear anymore. Therefore, more data can be a cure for
the issue in this particular case.

Table 6 does not tell whether the difference in the accu-
racy of each model is statistically meaningful. Another
ambiguity arises in the results of the run time. Thus,
we carried out the ANOVA (Analysis of Variance) test
that provides statistical significance among differences.
Table 7 shows the ANOVA test result for accuracy with
F = 60.8 , and p-value ≤ 0.05 at a 95% confidence level.
This result indicates that the null hypothesis is rejected.
Therefore, we can say that the mean values for the accu-
racy of each model differ significantly. In addition, the
difference in run time for each model is statistically sig-
nificant, with F = 4.58 , and p-value = 0.008. In conclu-
sion, we can confirm the simulation over five scenarios
for accuracy and run time with five statistically signifi-
cant models.

However, the ANOVA test results shown in Table 7
alone cannot tell which model is different in accuracy and
run time from others. Thereby, another test should be
carried out to see which model is significantly different
from the others. We employed Tukey’s Honest Significant
Difference test (Tukey Test) for all pairwise comparisons
while controlling multiple comparisons. In this study,
the suitability of models was sought statistically in two
aspects: accuracy and scalability.

Accuracy
The Tukey test result, which is multiple comparisons of
accuracy from five models, is summarized in Table 8.
Two cases, 1-NN DTW vs. WEASEL MUSE and LR vs.
RF, are not statistically significant upon a 95% confi-
dence level. This result implies that two pairs may have
a remarkable similarity in making poor predictions. On
the contrary, all pairwise comparisons with the BOSS
VS model are proven statistically significant at a 95%
confidence level. Figure 10 shows yet another aspect
of the trend of accuracy over run time for all five mod-
els, where the BOSS VS model outputs a far outstand-
ing performance in accuracy and run time. As a result,

Table 2  Augmented Dickey-Fuller (ADF) Test Results: The
results show that all of six time-series are found to be stationary
of being statistically significant owing to p-value ≤ 0.05 ( 95%
confidence level), which indicates evidence against the null
hypothesis H0

Time Series ADF statistic P-value Critical
Value
(5%)

x-acc (Normal) -4.629 1.1× 10−4 -2.871

y-acc (Normal) -6.137 8.1× 10−8 -2.871

x-acc (Counter Wind) -6.486 1.2× 10−8 -2.871

y-acc (Counter Wind) -5.839 3.8× 10−7 -2.871

x-acc (Mechanical Failure) -4.577 1.4× 10−4 -2.871

y-acc (Mechanical Failure) -4.459 2.3× 10−4 -2.871

Table 3  Comparison of characteristics of five models via
conducting normalization (Norm.), keeping temporal structure
(Temporal), carrying out low-pass filtering (Filter), executing
transformation (Transform), and key features (Features)

Temporal Filter Transform Features

WEASEL MUSE No Yes Yes χ2 test

BOSS VS No Yes Yes Term Frequency

RF No No No Entropy

LR No No No Cost

1-NN DTW Yes No No Distance

Table 4  The trained model p(C|T) with equivalent of TF-IDF
vector tfidf(S,C) for the training data. S = {aa, ab,ba,bb} is the
SFA words and C = {C1, C2, C3} is three states of the fan

Class C1 C2 C3

aa 3.5649 3.1972 2.9459

ab 3.5649 2.9459 2.3862

ba 3.5649 3.3025 2.0986

bb 3.6390 3.3025 2.3862

Table 5  The classifier p(C|Q) with equivalent to Cosine similarity between the trained model p(C|T) for each class and new samples
Q = {Q1, . . . ,Q6} as a query. C = {C1, C2, C3} is three states of the fan. The similarity results in the prediction for the new samples. The
maximum value of the cosine similarity for each sample is boldfaced

Q1 Q2 Q3 Q4 Q5 Q6

Normal 0.9990 0.9958 0.9987 0.9963 0.9943 0.9970

Counter Wind 0.9964 0.9977 0.9988 0.9942 0.9909 0.9991
Mechanical Failure 0.9908 0.9791 0.9924 0.9855 0.9985 0.9868

Page 14 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

98% accuracy was obtained at a 95% confidence level by
adopting the model with the BOSS VS algorithm.

Scalability
In general, a scalable model shows consistently good per-
formance despite increasing the amount of data. Multiple
comparisons of run time for five models are summa-
rized in Table 9. All pairwise cases for the 1-NN DTW

model vs. the other models are significant. Thus, we may
conclude that the 1-NN DTW model is far less scal-
able. Figure 10 shows the scalability of models. Except
for the 1-NN DTW model, the other models keep rela-
tively small changes in the run-time subject to increas-
ing data size. In Fig. 11, the scalability comparison of
five models is shown. As the amount of data increases,
the 1-NN-DTW model shows the worst scalability. We
observed that the BOSS VS model performs excellent
scalability with the best accuracy among the other mod-
els. Figure 12 shows the comparison of the 95% confi-
dence interval (CI) of the accuracy of each model using
experimental data of different sizes. The accuracy of
the BOSS VS model fell into CI = 0.9872± 0.0073 , of
which statistical behavior is much better compared to
CI = 0.8205± 0.1319 in the second-place RF model.
Moreover, the deviation of 0.0073 of the BOSS VS model
is quite small compared to 0.1319 of the RF model. This

Table 6  Comparison of performance of five models according to five scenarios: The number of data points is increased from 180k up
to 1.6 Million. As for Fog computing facility: Intel Core i3-8100 CPU 3.60GHz at 4GB memory, and the OS is Ubuntu 20.04.1 LTS. BOSS
VS model shows excellent scalability while keeping the highest accuracy among the other models. N/A denotes that simulation data
is unavailable due to computation crashes caused by hardware limitations in this Fog computing facility. The 10-fold cross-validation
accuracy is shown in the 95% confidence level

Scenario Data points (data sets) Model Time (sec) Accuracy (non CV) Cross
Validation
Accuracy

I 180,000 (300) WEASEL MUSE 0.39 0.20 0.46± 0.17

BOSS VS 0.46 1.00 0.98± 0.04

RF 0.44 0.56 0.70± 0.12

LR 0.25 0.63 0.57± 0.14

1-NN DTW 10.40 0.26 0.35± 0.06

II 540,000 (900) WEASEL MUSE 1.00 0.33 0.49± 0.08

BOSS VS 1.42 0.97 0.98± 0.02

RF 1.16 0.82 0.85± 0.06

LR 2,700 0.65 0.64± 0.06

1-NN DTW 89.54 0.37 N/A

III 900,000 (1,500) WEASEL MUSE 1.810 0.34 0.56± 0.08

BOSS VS 2.456 0.98 0.98± 0.01

RF 1.961 0.90 0.89± 0.06

LR 7.153 0.74 0.70± 0.09

1-NN DTW 246.794 0.40 N/A

IV 1,080,000 (1,800) WEASEL MUSE 2.193 0.36 0.54± 0.06

BOSS VS 2.966 0.98 0.98± 0.01

RF 2.472 0.87 0.89± 0.03

LR 12.921 0.76 0.70± 0.05

1-NN DTW 352.067 0.41 N/A

V 1,620,000 (2,700) WEASEL MUSE 3.851 0.37 0.55± 0.03

BOSS VS 8,100 0.98 0.98± 0.01

RF 3.910 0.92 0.91± 0.02

LR 32.183 0.71 0.73± 0.02

1-NN DTW 793.22 0.38 N/A

Table 7  ANOVA test result of accuracy and run time among five
models

sumsq df F PR(>F)

Algorithms (Accuracy) 1.64 4.0 60.80 6.56× 10−11

Residual 0.13 20.0 - -

Algorithms (Run time) 346268.91 4.0 4.58 0.008631

Residual 377628.33 20.0 - -

Page 15 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

Table 8  Multiple Comparison of Means of Accuracy - Tukey HSD test

Group1 Group2 meandiff p-adj lower upper reject

1-NN DTW BOSS VS 0.614 0.001 0.458 0.770 True

1-NN DTW LR 0.328 0.001 0.172 0.484 True

1-NN DTW RF 0.447 0.001 0.292 0.603 True

1-NN DTW WEASEL MUSE -0.049 0.862 -0.205 0.106 False

BOSS VS LR -0.286 0.001 -0.441 -0.130 True

BOSS VS RF -0.166 0.032 -0.322 -0.011 True

BOSS VS WEASEL MUSE -0.663 0.001 -0.819 -0.508 True

LR RF 0.119 0.187 -0.036 0.274 False

LR WEASEL MUSE -0.377 0.001 -0.533 -0.222 True

RF WEASEL MUSE -0.497 0.001 -0.652 -0.341 True

Fig. 10  Accuracy comparison of five models (WEASEL MUSE, BOSS VS, Random Forest, Logistic Regression, and 1-Nearest-Neighbor DTW). 1-NN
DTW model shows the worst performance both in accuracy and run time. On the contrary, the BOSS VS model shows excellent accuracy over the
others. Note: the upper left being the overall best performance

Page 16 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

Table 9  Multiple Comparison of Means of run time - Tukey HSD

Group1 Group2 meandiff p-adj lower upper reject

1-NN DTW BOSS VS -296.01 0.020 -556.08 -35.93 True

1-NN DTW LR -287.39 0.025 -547.47 -27.32 True

1-NN DTW RF -296.41 0.020 -556.49 -36.34 True

1-NN DTW WEASEL MUSE -296.55 0.020 -556.62 -36.48 True

BOSS VS LR 8.61 0.900 -251.45 268.68 False

BOSS VS RF -0.405 0.900 -260.47 259.66 False

BOSS VS WEASEL MUSE -0.542 0.900 -260.61 259.53 False

LR RF -9.02 0.900 -269.09 251.05 False

LR WEASEL MUSE -9.15 0.900 -269.23 250.91 False

RF WEASEL MUSE -0.137 0.900 -260.21 259.93 False

Fig. 11  Scalability comparison of five models. As the amount of data is increased, the 1-NN-DTW model shows the worst scalability. On the
contrary, the other models offer good scalability. The BOSS VS model performs excellent scalability yet keeping the best accuracy

Page 17 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

result explains good scalability, which indicates that the
BOSS VS model is robust to changes in data size.

Conclusion
While most literature on the subject was published using
the results using well-preprocessed public data, in this
work, we implemented noisy real-world data into the
classification models.

A primary goal of this study is to build an excellent
cyber-physical model (CPM) of an IoT device with sig-
nificant classification accuracy in fog computing. To
this end, some critical issues must be resolved: one is of
time series classification (TSC) algorithms and domain-
specific knowledge that can identify the state of an IoT
device, and the other is about how to process streaming
sensor data in real-time properly. A data-driven mod-
eling approach could alienate quite the burden of such
complicated theoretical domain-specific knowledge by
using a vast amount of data to take advantage of machine

learning and statistical inference. With a large amount
of data transmitted in real-time from a networked IoT
device, it is significant to correctly classify the device’s
state, a core of smart manufacturing. Recently, there has
been a growing tendency to solve this issue in fog com-
puting close to IoT devices because of the heavy loading
on cloud computing.

We studied a three-blade fan with an accelerometer
installed for an IoT device to create CPMs that can clas-
sify the state of the fan. Using state-of-the-art TSC algo-
rithms, upon the classification performance of five CPMs
with real-world data, we achieved an accuracy of about
98% at a 95% confidence level with the BOSS VS algo-
rithm, which resulted in excellent classification and sig-
nificant size reduction in streaming data.

In this work, we produced a lightweight CPM that
works well in fog computing, which can determine the
state of the fan, but, in the field, since there are a large
number of fans installed, creating models for each fan will

Fig. 12  The result of comparing the 95% confidence interval (CI) of the accuracy of five models using five scenarios of data size. This illustrates
the scalability of each model’s performance in classification. The accuracy of the BOSS VS model fell into CI = 0.9872± 0.0073 resulting in the best
performance

Page 18 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63

be costly. In addition, the status model for fans will not be
the same because the type and environment of installed
fans are different. Therefore, further study on techniques
that can economically create models for various fans
should be a priority. As the state of the cooling fan can
be intelligently determined at the fog computing level, it
will ease the load that cloud computing has to bear sig-
nificantly. In addition, we believe that the development of
computer hardware is evolving very swiftly and that later
research on intelligent models that work on-device levels
can also be essential. Thus, further studies should be con-
ducted for efficient models and algorithms against ever-
increasing sensors in smart manufacturing. Therefore, it
is necessary to expand this study to explore techniques
applicable even in larger manufacturing environments.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13677-​022-​00337-y.

Additional file 1: Supplementary Materials.

Authors’ contributions
Conceptualization, Experiment Setup, Experimentation, Data Collection,
Analysis, Programming, Visualization, Writing, and Editing has been done by
Deok-Kee Choi, Ph.D. The author has read and agreed to the published version
of the manuscript.

Authors’ information
The author is a professor of the department of mechanical engineering at
Dankook University, Korea. His area of research is the application of machine
learning into smart manufacturing and application in various computing
environments such as cloud computing, fog computing, and on-device
computing.

Funding
Not applicable.

Availability of data and materials
Experimental data file is attached.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 April 2021 Accepted: 28 September 2022

References
	1.	 Oks SJ, Jalowski M, Fritzsche A, Möslein KM (2019) Cyber-physical

modeling and simulation: A reference architecture for designing
demonstrators for industrial cyber-physical systems. Procedia CIRP
84:257–264

	2.	 Schroeder B, Gibson GA (2007) Understanding disk failure rates: What
does an mttf of 1,000,000 hours mean to you? ACM Transactions on
Storage (TOS) 3(3):8–es

	3.	 Diaz CP, Postol M, Simon R (2019) Time-series data analysis for classifi‑
cation of noisy and incomplete internet-of-things datasets. Tech. rep.,
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)

	4.	 Shifaz A, Pelletier C, Petitjean F, Webb GI (2020) Ts-chief: a scalable and
accurate forest algorithm for time series classification. Data Min Knowl
Discov 34(3):742–775

	5.	 Schäfer P (2015) The boss is concerned with time series classification in
the presence of noise. Data Min Knowl Discov 29(6):1505–1530

	6.	 Georgoulas G, Karvelis P, Loutas T, Stylios CD (2015) Rolling element
bearings diagnostics using the symbolic aggregate approximation.
Mech Syst Signal Process 60:229–242

	7.	 Shin I, Lee J, Lee JY, Jung K, Kwon D, Youn BD, Jang HS, Choi JH (2018)
A framework for prognostics and health management applications
toward smart manufacturing systems. Int J Precis Eng Manuf-Green
Technol 5(4):535–554

	8.	 Lee CM, Park J, Park S, Kim CH (2020) Fall-detection algorithm using
plantar pressure and acceleration data. Int J Precis Eng Manuf
21(4):725-737

	9.	 Koo B, Kim J, Kim T, Jung H, Nam Y, Kim Y (2020) Post-fall detec‑
tion using ann based on ranking algorithms. Int J Precis Eng Manuf
21(10):1985-1995

	10.	 Patel P, Ali MI, Sheth A (2017) On using the intelligent edge for iot
analytics. IEEE Intell Syst 32(5):64–69

	11.	 Qi Q, Tao F (2019) A smart manufacturing service system based on
edge computing, fog computing, and cloud computing. IEEE Access
7:86769–86777

	12.	 Xu Z, Zhang Y, Li H, Yang W, Qi Q (2020) Dynamic resource provision‑
ing for cyber-physical systems in cloud-fog-edge computing. J Cloud
Comput 9(1):1–16

	13.	 Hu Y, Wang H, Ma W (2020) Intelligent cloud workflow management
and scheduling method for big data applications. J Cloud Comput
9(1):1–13

	14.	 Chen S, Zhang T, Shi W (2017) Fog computing. IEEE Int Comput
21(2):4–6

	15.	 Peralta G, Iglesias-Urkia M, Barcelo M, Gomez R, Moran A, Bilbao J (2017)
Fog computing based efficient iot scheme for the industry 4.0. In: 2017
IEEE international workshop of electronics, control, measurement, signals
and their application to mechatronics (ECMSM). New York: Institute of
Electrical and Electronics Engineers; p 1–6

	16.	 Qi Q, Zhao D, Liao TW, Tao F (2018) Modeling of cyber-physical systems
and digital twin based on edge computing, fog computing and cloud
computing towards smart manufacturing. In: ASME 2018 13th Interna‑
tional Manufacturing Science and Engineering Conference, American
Society of Mechanical Engineers, New York NY 10016-5990

	17.	 Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv
(CSUR) 45(1):1–34

	18.	 Schäfer P (2016) Scalable time series classification. Data Min Knowl
Discov 30(5):1273–1298

	19.	 Salvador S, Chan P (2007) Toward accurate dynamic time warping in
linear time and space. Intell Data Anal 11(5):561–580

	20.	 Wagner N, Antoine V, Koko J, Lardy R (2020) Fuzzy k-nn based classifiers
for time series with soft labels. In: International Conference on Informa‑
tion Processing and Management of Uncertainty in Knowledge-Based
Systems. New York: Springer; p 578–589

	21.	 Wang Z, Yan W, Oates T (2017) Time series classification from scratch
with deep neural networks: A strong baseline. In: 2017 International joint
conference on neural networks (IJCNN). New York: Institute of Electrical
and Electronics Engineers; p 1578–1585

	22.	 Karim F, Majumdar S, Darabi H, Chen S (2017) Lstm fully convolutional
networks for time series classification. IEEE Access 6:1662–1669

	23.	 Montero Quispe KG, Sousa Lima W, Macêdo Batista D, Souto E (2018)
Mboss: A symbolic representation of human activity recognition using
mobile sensors. Sensors 18(12):4354

	24.	 Hatami N, Gavet Y, Debayle J (2019) Bag of recurrence patterns represen‑
tation for time-series classification. Patt Anal Appl 22(3):877–887

	25.	 Senin P, Malinchik S (2013) Sax-vsm: Interpretable time series classifica‑
tion using sax and vector space model. In: 2013 IEEE 13th international
conference on data mining. New York: Institute of Electrical and Electron‑
ics Engineers; p 1175–1180

	26.	 Baldini G, Giuliani R, Steri G, Sanchez I, Gentile C (2017) The applica‑
tion of the symbolic aggregate approximation algorithm (sax) to radio
frequency fingerprinting of iot devices. In: 2017 IEEE Symposium on
Communications and Vehicular Technology (SCVT). New York: Institute of
Electrical and Electronics Engineers; pp 1–6

https://doi.org/10.1186/s13677-022-00337-y
https://doi.org/10.1186/s13677-022-00337-y

Page 19 of 19Choi ﻿Journal of Cloud Computing (2022) 11:63 	

	27.	 Schäfer P, Leser U (2017) Fast and accurate time series classification with
weasel. In: Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management. New York: Association for Computing
Machinery; p 637–646

	28.	 Large J, Bagnall A, Malinowski S, Tavenard RR (2019) On time series
classification with dictionary-based classifiers. Intelligent Data Analysis
23(5):1073-1089

	29.	 Schäfer P, Högqvist M (2012) Sfa: a symbolic fourier approximation and
index for similarity search in high dimensional datasets. In: Proceedings
of the 15th international conference on extending database technology.
New York: Association for Computing Machinery; p 516–527

	30.	 Karimi-Bidhendi S, Munshi F, Munshi A (2018) Scalable classification of
univariate and multivariate time series. In: 2018 IEEE International Confer‑
ence on Big Data (Big Data). New York: Institute of Electrical and Electron‑
ics Engineers; pp 1598–1605

	31.	 Sun Y, Li J, Liu J, Sun B, Chow C (2014) An improvement of symbolic
aggregate approximation distance measure for time series. Neurocom‑
puting 138:189–198

	32.	 Fawaz HI, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, Webb GI,
Idoumghar L, Muller PA, Petitjean F (2020) Inceptiontime: Finding alexnet
for time series classification. Data Min Knowl Discov 34(6):1936–1962

	33.	 Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The
ucr time series classification archive. https://​www.​cs.​ucr.​edu/​~eamonn/​
time_​series_​data_​2018/. Accessed 29 Sept 2022.

	34.	 Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time
series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Min Knowl Discov 31(3):606–660

	35.	 Reister H, Ross F (1997) Numerical simulation of an axial cooling fan. Tech.
rep, SAE Technical Paper

	36.	 Coggiola E, Dessale B, Moreau S, Broberg R, Bakir F (1998) Cfd based
design for automotive engine cooling fan systems. Tech. rep, SAE Techni‑
cal Paper

	37.	 Sanjose M, Moreau S (2012) Numerical simulations of a low-speed radial fan.
Int J Eng Syst Model Simul 4(1–2):47–58

	38.	 Jian-Hui Z, Chun-Xin Y (2008) Design and simulation of the cpu fan and
heat sinks. IEEE Trans Components Packag Technol 31(4):890–903

	39.	 Oh H, Shibutani T, Pecht M (2012) Precursor monitoring approach for
reliability assessment of cooling fans. J Intell Manuf 23(2):173–178

	40.	 Jin X, Chow TW (2013) Anomaly detection of cooling fan and fault clas‑
sification of induction motor using mahalanobis-taguchi system. Exp Syst
Appl 40(15):5787–5795

	41.	 Chang H, Hari A, Mukherjee S, Lakshman T (2014) Bringing the cloud
to the edge. In: 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). New York: Institute of Electrical and
Electronics Engineers; pp 346–351

	42.	 Aazam M, Zeadally S, Harras KA (2018) Deploying fog computing
in industrial internet of things and industry 4.0. IEEE Trans Ind Inf
14(10):4674–4682

	43.	 Chekired DA, Khoukhi L, Mouftah HT (2018) Industrial iot data scheduling
based on hierarchical fog computing: A key for enabling smart factory.
IEEE Trans Ind Inf 14(10):4590–4602

	44.	 Yin L, Luo J, Luo H (2018) Tasks scheduling and resource allocation in fog
computing based on containers for smart manufacturing. IEEE Trans Ind
Inf 14(10):4712–4721

	45.	 Almutairi J, Aldossary M (2021) A novel approach for iot tasks offloading
in edge-cloud environments. J Cloud Comput 10(1):1–19

	46.	 Gelman A, Shalizi CR (2013) Philosophy and the practice of bayesian
statistics. Br J Math Stat Psychol 66(1):8–38

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

	Fog computing application of cyber-physical models of IoT devices with symbolic approximation algorithms
	Abstract
	Introduction
	Related work
	CPM set up with Bayes’ rule
	Symbolic Fourier Approximation (SFA)
	Discrete Fourier Transformation (DFT)
	Multiple Coefficient Binning (MCB)
	SFA working example

	Bag-of-SFA-Symbols VS
	Term frequency inverse document frequency
	Classification

	Results and discussion
	Experiments
	Exploratory data analysis
	Comparison of models
	Classification with BOSS VS
	Post-Hoc analysis
	Accuracy
	Scalability

	Conclusion
	References

