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Abstract 

Smart manufacturing systems based on cloud computing deal with large amounts of data for various IoT devices, 
resulting in several challenges, including high latency and high bandwidth usage. Since fog computing physi‑
cally close to IoT devices can alleviate these issues, much attention has recently been focused on this area. Fans are 
nearly ubiquitous in manufacturing sites for cooling and ventilation purposes. Thereby, we built a fan system with an 
accelerometer installed and monitored the operating state of the fan. We analyzed time-series data transmitted from 
the accelerometer. We applied machine learning under streaming data analytics at the fog computing level to create 
a fan’s cyber-physical model (CPM). This work employed the symbolic approximation algorithm to approximate the 
time series data as symbols of arbitrary length. We compared the performance of CPMs made with five time-series 
classification (TSC) algorithms to monitor the state of the fan for anomalies in real time. The CPM made with the BOSS 
VS algorithm, a symbol approximation algorithm, accurately determined the current state of the fan within a fog com‑
puting environment, achieving approximately 98% accuracy at a 95% confidence level. Furthermore, we conducted a 
posthoc analysis, running statistical rigor tests on experimental data and simulation results. The workflow proposed in 
this work would be expected to be utilized for various IoT devices in smart manufacturing systems.
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Introduction
In cloud computing, smart manufacturing is built with 
various IoT devices. A managing intelligence observes the 
states of devices and takes necessary actions immediately 
to prevent disruption in manufacturing if any problems 
arise. This intelligence incorporated with domain-spe-
cific knowledge can be labeled as a cyber-physical model 
(CPM) [1]. However, there are some practical difficulties 
in creating CPM for real-world phenomena. For example, 
IoT devices are spatially densely installed in a manufac-
turing environment; thus, lessening device heat is essen-
tial in manufacturing. Although a fan is primarily used 

for cooling or ventilation, a study on cyber-physical mod-
eling of fans has not drawn as much attention as installed 
devices. If the fan stops working; as a result, the device’s 
temperature may rise and eventually fail to function cor-
rectly, causing significant interruptions to the entire 
manufacturing system. It is reported that a cooling fan is 
one of the top 10 failing components in electronic prod-
ucts [2]. Therefore, a study on the state of a cooling fan 
in smart manufacturing would be practically meaningful.

In general, the state of a fan can be monitored by 
analyzing data sent from sensors alongside devices on 
the site. The transmitted data from the sensor is Time 
Series (TS) with a temporal structure, so it requires 
non-conventional algorithms than those used for typical 
tabular data. A conventional data analytics algorithm, 
including machine learning, is suitable for dealing with 
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pooled data, making it inappropriate to apply directly 
to TS. The pooled data is data that, unlike TS, does not 
consider the temporal sequence. As a non-conventional 
algorithm, Time Series Classification (TSC) algorithm 
[3] has been known as an algorithm that best fits TS for 
classification because it takes raw TS to keep its tempo-
ral structure intact. The role of the TSC algorithm is to 
compare TS sent from the sensor and classify it by pre-
defined class. In this way, this algorithm helps to get the 
fan’s state in real time. TSC algorithms can be regarded 
as the core of CPM, determining which of a set of des-
ignated classes in TS belongs. The classes for classifica-
tion here are defined by multiple collections of data for 
machine learning.

TSC algorithms can be divided into three types 
according to how to interpret TS [4]. The first is the 
similarity-based technique, taking raw TS as input. 
However, this technique has disadvantages, such as 
relatively long computation time and weak scalabil-
ity. The second type is conventional machine learning, 
disregarding the temporal structure of TS. However, 
in so doing, most of the information related to the 
time domain may be lost. A third type, the symbolic 
approximation technique, has recently drawn much 
attention, in which raw TS is converted into symbols of 
arbitrary length. This type’s advantage is the dramatic 
reduction of high dimensionality and noise. The BOSS 
algorithm has been recognized as a state-of-the-art [5], 
which was adopted for creating the final CPM in this 
work. This algorithm runs a sliding window across each 

series, discretizes the window to form a word, develops 
a histogram of word counts over the dictionary, then 
constructs a classifier of the histograms. Once a TSC 
algorithm is chosen, the next would be having physical 
laws incorporated with CPM.

Thereby, in creating CPM, domain-specific knowledge 
plays a crucial role [6–9]. The complexity of phenom-
ena occurring around the cooling fan can immediately go 
beyond our understanding in a real-world situation. Hence, 
there are barriers to establishing and solving physical laws 
or governing equations to determine the effect of each 
unknown element on the state of the fan. There are too 
many unknowns associated with physical interactions, even 
for a simple IoT device like the fan. Hence, setting up and 
directly solving such equations is not easy. We employed 
machine learning with TSC algorithms, a data-driven mod-
eling approach, to resolve the complicated issues in this 
work. We set up a cooling fan system with an accelerometer 
installed for collecting experimental data. The physical ele-
ments related to the state of the fan can be acoustic noise, 
wind speed, rotation, vibration, counter-wind, and pressure 
change, as shown in Fig. 1. In order to set up data-driven 
modeling, devices for data generation are required, such 
as sensors. The larger the number of sensors mounted, the 
more accurate the classification model is. However, as the 
number of transmitted data increases and the uncertainties 
grow, making a lightweight CPM work efficiently over lim-
ited computing resources makes it challenging.

Upon considering the implementation of intelligence 
[10] onto a less powerful computing environment, CPM 

Fig. 1  A cyber-physical model is expected to sufficiently explain the effect of real-world elements such as acoustic noise, mechanical failure, 
temperate change, revolution (rpm), the pressure distribution of blades, vibration, counter-wind occurrence, and wind velocity, etc
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must be sufficiently adequate and lightweight compared 
to that in cloud computing. Fog computing refers to a 
sublayer of an IoT system shown in Fig. 2. By CPM run-
ning in fog computing, we may expect IoT devices’ oper-
ating states to be fully aware without relying heavily on 
cloud computing [11]. In cloud computing, efforts are 
being made to ensure that heavy loads are efficiently dis-
tributed as various applications require immediate atten-
tion in real-time [12, 13]. Thus, much research in recent 
years has been focused on smart manufacturing in fog 
computing [14, 15].

Several advantages of CPM created in this work can be 
addressed: Firstly, it can dramatically reduce the amount 
of data directly transmitted from the sensor to cloud 
computing. In other words, an intelligent CPM close 
to the sensor can self-determine the device’s state and 
notify the administrator only at critical moments. Sec-
ondly, the types of sensors and data are as diverse and 
heterogeneous as the devices used in smart manufactur-
ing. For example, the dispatch cycle of data sent by sen-
sors is generally not the same. While there are sensors 
that send data more frequently, sensors send at consid-
erable time intervals. Therefore, if intelligence can be 
materialized to account for this time interval, the prob-
lem of inconsistency over the data transfer cycle can 
also be solved spontaneously. This discrepancy is also 
directly related to latency and bandwidth in cloud com-
puting. Therefore, intelligence operating on fog com-
puting is vital, which can alleviate the heavy burden on 
cloud computing.

We demonstrated how to create an intelligent CPM for 
the cooling fan that worked with great accuracy, demand-
ing the least amount of computing resources. As a result, 
we learned that in fog computing, which has a minimal 

computing resource compared to cloud computing, CPM 
could be used to ascertain the state of the fan with the 
high performance considering possible uncertainties in 
real-world situations. Therefore, the workflow proposed 
in this work may increase overall production efficiency 
by expanding the utilization of fog computing in smart 
manufacturing.

The paper is organized as follows: The Related work sec-
tion discusses the related work. A detailed explanation of 
how to set up CPM, closely following Bayes’ rule, is shown 
in CPM set up with Bayes’ rule section. The Symbolic Fou-
rier Approximation (SFA)  section explains the symbolic 
approximation algorithm with sub-algorithms. Bag-of-SFA-
Symbols VS section presents the BOSS algorithm and an 
extended BOSS VS algorithm. Results and discussion  sec-
tion explains the experimental implementation of the fan 
with the sensor, the exploratory data analysis, and multiple 
comparisons of CPM types with different algorithms. Lastly, 
the Conclusion section concludes this paper and discusses 
the further study.

Related work
This study aims to create a cyber-physical model (CPM) 
[16] that can accurately determine the operating state 
of the cooling fan as an IoT device in fog computing. 
Time series classification (TSC) algorithms that can cor-
rectly interpret the time series (TS) transmitted from the 
accelerometer attached to the fan are required. Domain-
specific knowledge, which can describe the fan’s charac-
teristics, is also essential. A time-series Ti is defined as an 
ordered sequence Ti = {t1, . . . , tn} . The univariate TS has 
only one feature ( d = 1 ); on the other hand, the multi-
variate TS has several features ( d > 1 ), that is ∀j, tj ∈ Rd , 
where d is the number of features.

Fig. 2  Three levels of IoT system. As the top-level, IoT employing a cloud system associated with big data analytics. Fog computing resides in the 
middle, equipped with fast streaming data analytics. At the bottom level, IoT devices such as sensors are located with consecutive temporal data 
requiring real-time data analytics
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Although research on TSC has drawn much attention 
for years, most results are related to accuracy improve-
ment and not scalability. However, recent IoT sensor-
driven applications have to deal with precisely these 
scaled data in classification, making methods unimpor-
tant that do not scale [17, 18]. In particular, TSC work-
ing in fog computing has to meet stringent limits over the 
usage of resources. Therefore, TSC algorithms should be 
lightweight, fast, and accurate in a fog computing con-
text. Next, the three most widely used TSC algorithms 
are discussed.

Firstly, One-Nearest-Neighbor and Dynamic Time 
Warping (1-NN DTW) [19] is a TSC algorithm that 
defines the similarity among multiple TS by calculating 
the distance of each element of TS for comparison. The 
principle of the algorithm is that the farther away the two 
TS data are in distance, the less alike they are. Thus, from 
the perspective of TSC, it is easy to determine to which 
class a given TS belongs. The algorithm has been used for 
years because it is straightforward and intuitive. Moreo-
ver, this algorithm is still used as a baseline to validate the 
performance of newly proposed algorithms; however, as 
the number of data increases, the amount of computa-
tion and the memory required grow, making it challeng-
ing to utilize in fog computing.

The second type of TSC includes machine learning 
techniques such as KNN [20], artificial neural networks 
(ANN) [21], and Long Short-Term Memory (LSTM) 
[22]. However, those algorithms may not be considered 
genuine TSC from a strict perspective because they do 
not consider TS’s temporal structure. Therefore, valuable 
information on the time domain might be lost. In addi-
tion, this algorithm is commonly called a black box type 
because it is intricate to understand the process by which 
the results are derived.

Thirdly, the symbolic approximation algorithm has 
attracted much attention recently. The algorithm has 
brought a breakthrough in dealing with large amounts 
of TS. The fundamental principle of the algorithm is to 
divide continuous TS into appropriate intervals and 
replace it with symbols of arbitrary length. Bag-Of-SFA-
Symbols (BOSS) [23, 24], Symbolic Aggregate approxi-
mation (SAX) [25, 26], and ExtrAction for time SEries 
cLassification (WEASEL) [27] have been most famous. 
WEASEL builds on the bag-of-patterns (BOP) approach. 
It activates a sliding window over TS and extracts fea-
tures in each window fed into TSC on machine learn-
ing training. Still, we found that the BOP method tends 
to take longer in computation than the BOSS algorithm 
[28]. SAX is a symbolic approximation method used in 
many applications. In SAX, Piecewise Aggregate Approx-
imation (PAA) is utilized to discretize the mean value of 
each segment. However, this approach considers only the 

mean value of each segment; thereby, it often may fail to 
distinguish different time series with similar mean values, 
resulting in relatively less accurate classification. Fur-
thermore, it has the disadvantage of constantly recalcu-
lating means for new data. The BOSS algorithm is based 
on Symbolic Fourier Approximation (SFA) [29], and 
SFA consists of Discrete Fourier Transform (DFT) for 
approximation and Multiple Coefficient Binning (MCB) 
for quantization. BOSS is an algorithm running a sliding 
window across each series, discretizing the window to 
form a word, developing a histogram of word counts over 
the dictionary, then constructing a classifier in the form 
of the histograms.

As for the subject of TSC, two contributions, which 
we made through this work, can be presented as fol-
lows: The first is about extending algorithms into ones 
that can deal with multivariate TS. Most of the previ-
ously published studies on TSC relate to the univari-
ate TS. However, TS transmitted from IoT devices is 
more likely multivariate TS [30]. For example, this work 
transmitted multivariate TS data from a multi-channel 
acceleration sensor mounted on the fan. TSC handling 
the multivariate TS is much more complex than that for 
the univariate TS because they also need to find correla-
tions between multiple TS data at each time element. We 
employed BOSS, WEASEL, and other algorithms to cope 
with the issue and modified algorithms to address mul-
tivariate TS. Eventually, the BOSS algorithm, recognized 
as state of the art in the field, resulted in the best CPM 
for accuracy and scalability in this work. The second is of 
use of real-world data mixed with noise in experiments. 
In papers published on TSC algorithms [31, 32], most 
results were obtained using publicly available data in the 
UCR machine learning repository [33]. In order to com-
pare and analyze the various algorithms, it is common to 
verify the results using well-known data. However, there 
is an issue that domain-specific knowledge, which can 
account for real-world phenomena, may not be directly 
applicable to CPM because using the data provided by 
the UCR repository is not directly experimented with by 
researchers. Thereby, it is believed that using data with 
much noise obtained in real-world situations might yield 
somewhat different results, which is also pointed out in 
literature as a concerning issue [34]. Therefore, we estab-
lished an experimental system in this study and consid-
ered real-world data that might be observed in actual 
manufacturing instead.

CPM should be created for a comprehensive account 
of real-world phenomena using as much information as 
possible about the fan, commonly referred to as domain-
specific knowledge. The traditional way is to obtain infor-
mation through experiments, and numerical simulations 
[35]. Computer simulations of a fan performance require 
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physical laws or government requirements related to 
fluid dynamics. Coggiola et al. [36] employed the compu-
tational fluid dynamics that interprets the flow equations: 
Steady and Unsteady Reynolds-averaged Navier-Stokes 
equations [37]. However, since these equations are given 
in partial differential equations with many variables 
for inputs, it is not easy to solve even numerically and 
require considerable computing resources [38]. In addi-
tion, multiple-input variables are needed to solve the 
equations, for example, a fan’s velocity, pressure, tem-
perature, and humidity. For these input variables, sensors 
capable of measuring corresponding physical elements 
are required. In other words, different sensors for flow 
velocity, pressure change, temperature variance, and 
humidity measurement are needed, respectively. Further-
more, as the number of sensors increases, the creation of 
CPM can become more involved.

Thus, efforts to create CPM recently have received 
significant attention by actively exploiting data from 
sensors. For example, to comprehend the effect of the 
vibration of a fan, another physical law that can relate 
the vibration and flow through a fan is required, which 
may not be known to date. Consequently, traditional 
methods have encountered many complications that 
cannot be quickly answered. Oh et al. [39] monitored 
the state of a cooling fan by applying three parameters: 
acoustic noise mission, shaft rotational speed, and cur-
rent. However, it requires at least three different sen-
sors. For better accuracy of models, other parameters 
need to be sought that can affect the state of the fan, 
and it might take quite some time to find out. Jin et al. 
[40] used vibration signals to determine the fan’s state 
and find similarity by calculating Mahalanobis distance 
(MD) for TS data to compare with a baseline. However, 
this method has the disadvantage of being compu-
tationally intensive and weak to scalability as a TSC, 
similar to the 1-NN DTW introduced earlier. Once a 
data-driven modeling approach is employed rather 
than the conventional one, domain-specific knowledge 
must be assimilated into CPM somehow. Practically, 
domain-specific knowledge could be implemented by 
determining the type or number of sensors mounted 
on the fan. Therefore, machine learning techniques 
can be utilized to analyze data to find essential fea-
tures. Consequently, much domain-specific knowledge 
is needed when building a model. This study installed 
an accelerometer that detects the fan’s movement to 
identify the fan’s state. Thus, some domain-specific 
knowledge may come from the accelerometer. The 
next task is how we attained a lightweight CPM work-
ing in fog computing.

As the type and number of connected devices 
increases, cloud computing becomes more challenging 

to manage. Such problems include latency, bandwidths, 
and scalability [41]. If the latency between cloud com-
puting and the device is high, it is not easy to cope 
with real-time events. In addition, specific IoT devices 
often transmit more data than others, which poses a 
significant challenge in cloud computing bandwidth. 
Moreover, scalability issues cannot be overlooked 
because large amounts of data must be processed at 
a time. Thus, it would be more convenient in many 
ways to implement intelligence in fog computing near 
devices so that we can be fully aware of the situation 
without relying heavily on cloud computing. Accord-
ingly, much research in recent years has been focused 
on smart manufacturing applications in fog computing: 
IoT deployment in fog computing [42], IoT data sched-
uling in fog computing [43], IoT task scheduling in fog 
computing [44], and IoT tasks offloading in edge-cloud 
environments [45]. However, those research is not for 
specific real-world systems. In this study, taking advan-
tage of machine learning with TSC algorithms, we could 
develop an efficient and lightweight CPM of the fan sys-
tem with minimal sensors installed. We demonstrated 
that this model worked smoothly in fog computing.

We obtained two promising results in this work: The 
first was reducing the high dimensionality of incoming 
TS from the sensor using the BOSS algorithm. Second, 
the CPM with the BOSS algorithm acted as a low-pass 
filter, diminishing the noise significantly. An intelligent 
system for the operating state of the cooling fan was 
explained in detail. We demonstrated that such intelli-
gence as CPM works smoothly in fog computing to accu-
rately determine the device’s state by analyzing the data 
transmitted through the IoT device or sensor in real time. 
Next, a detailed discussion on setting up CPM, closely 
following Bayes’ rule, is presented.

CPM set up with Bayes’ rule
In this study, the CPM was sought to classify the fan’s 
state (or class) solely based on the sensor data. The class 
set C = {C1, · · · ,CK } with K = 3 classes that are nor-
mal, counter-wind, and mechanical failure states of the 
fan. The CPM can be expressed as a function f : T → C , 
where T = {T1, . . . ,TN } , and in probabilistic con-
text, it can be expressed as a joint probability distribu-
tion p(C,T) . However, finding the mutual relationship 
between C and T in an actual situation to complete the 
joint probability is not straightforward. For example, after 
observing only the TS transmitted from the IoT sensor 
installed in the fan, it is challenging to determine the state 
of the fan at once. Therefore, to alleviate this difficulty, we 
employed a technique of reducing the unknowns using 
a marginalization based on the Bayes’ rule [46], which is 
handy to describe whole processes here logically. With 
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the rule, the maximization over a class C on the posterior 
p(C|T) is equivalent to the function f (T):

The denominator of Eq. (1) is not related to class C, as a 
result, the CPM function f (T) can be approximated into 
the multiplication of the likelihood p(T|C) and the prior 
p(C) . This function is internally composed of histograms 
for symbols, so it retains the nature of probability, a fas-
cinating result. Because most machine learning models 
learned from the data are given in the form of linear or 
nonlinear algebraic equations, not a probability. If the 
classification results of a CPM are presented as prob-
abilities, we could interpret the result in a probabilistic 
way; thus, the higher the probability, the more probable 
the state of the fan becomes. In addition, we compared 
the classification results for the five different CPMs by 
performing rigorous statistical tests of accuracy and 
scalability.

Once the CPM is complete, labeling a new TS data 
Q = {q1, · · · , qm} and ∀i , qi ∈ Rd for i = 1 . . .m with d 
being the feature can be performed shown in Eq. (2).

(1)

f (T) = argmax
C∈C

p(C|T)

= argmax
C∈C

p(C,T)

p(T|C)p(C)dC

∝ argmax
C∈C

p(T|C)p(C)

That is, label(Q) is a formula for the classification pro-
cess. It is noted that p(C|Q) can be interpreted as the 
entity with newly arrived data Q plugged into p(C|T) . 
Internally, this process is implemented in vector multipli-
cation, and mathematical details of the BOSS algorithm 
will be explained in the following sections.

An entire procedure of creating a CPM here is sche-
matically diagrammed in Fig. 3, divided into three phases: 
observation, machine learning, and status update. In the 
observation phase, streaming data is stored for 3T sec. 
Once it passes 3T sec, Machine Learning trains the model 
for 2T sec. It should be noted that even while learning the 
model, the new data is still coming in to be stored. After 
the training is finished, a CPM conducts classification over 
new data for T sec. It is important to note that Machine 
Learning and Status Update must complete within 3T sec; 
otherwise, this process can be out of work.

Symbolic Fourier Approximation (SFA)
This section introduces Symbolic Fourier Approximation 
(SFA) used in the BOSS algorithm. SFA consists of Dis-
crete Fourier Transformation (DFT) and Multiple Coef-
ficient Binning (MCB).

(2)

label(Q) = argmax
Ck∈C

p(C|Q)

= argmax
Ck∈C

p(Q|C)p(C)

Fig. 3  The workflow of Fog computing in the present study. Fog computing comprises three distinctive modes in a single time sequence: 
observation, machine learning, and status update. The observation phase executes streaming data storing. The Machine Learning phase does data 
processing and learning the model. The status update phase carries out a classification of a fan status with the trained model. A red box refers to 
a sliding window corresponding to a process of the workflow on the timeline. For example, the box which is on the second from the left indicates 
data storing. Likewise, the fifth box from the left is of learning the model
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Discrete Fourier Transformation (DFT)
Discrete Fourier Transform (DFT) extracts Fourier coeffi-
cients from each time series T:

where ai and bi are the real and the imaginary element of 
Fourier coefficients. Figure  4 shows that low-pass filter-
ing and smoothing of a sample of acceleration in x-axis 
upon Discrete Fourier Transform (DFT), where DFT 
result is obtained by taking first two Fourier coefficients 
in Eq. (3).

Multiple Coefficient Binning (MCB)
Next, the Multiple Coefficient Binning (MCB) quantization 
is carried out with training data. M matrix is constructed 
using the Fourier transform of N training time series with 
the first l of Fourier coefficients being equivalent to an SFA 
word of length l as defined in Eq. (4).

where Mj being j − th column of M matrix for all of N 
training data. Mi is then divided into intervals of c and 
is sorted by value and then divided into c bins of equi-
depth policy. That is, the i − th row of M corresponds to 
the Fourier transform of the ith time series Ti . With the 
columns Mj for j = 1, . . . , l , and an alphabet space Al of 

(3)DFT(T ) = {a1, b1, . . . , am, bm}

(4)

M =







DFT(T1)
...

DFT(TN )







=







(a1, b1)1 . . . (al/2, bl/2)1
...

...
...

(a1, b1)N . . . (al/2, bl/2)N







size c, the breakpoints βj(0) < · · · < βj(c) for each col-
umn Mj are generated. Each bin is labeled by applying the 
ath symbol of the alphabet Al to it. For all combination 
of (j,  a) with j = 1, . . . , l and a = 1, . . . , c , the labeling 
symbol(a) for Mj can be done by

It is noted that this process in Eq. (5) applies to all train-
ing data.

SFA working example
SFA word can be obtained from SFA(T) = s1, . . . , sl 
with DFT where DFT(T) = t ′1, . . . , t

′
l and t ′s are trans-

formed time series with Fourier transform. That is, 
SFA: Rl → Al , where Al is the alphabet set of which 
size is c. For a working example, in Fig. 5, we set l = 1 
and c = 2 . Six samples as shown Fig. 5a are randomly 
selected from the experimental data. The data then is 
transformed via DFT, resulting in the Fourier coeffi-
cients for each sample. A vector of the Fourier coef-
ficient values of the first sample reads (-1.352, 5.043) 
as shown in Fig. 5b. Next, MCB is conducted with an 
alphabet set A1 = {aa, ab,ba,bb} as shown in Fig.  5c. 
Thereby, an SFA word of the first sample is mapped 
into a word ab shown in Fig.  5d. Likewise, the other 
samples can be transformed into their respective SFA 
words.

Bag‑of‑SFA‑Symbols VS
The Bag-Of-SFA-Symbols VS (BOSS VS) represents the 
time series representation with the structure-based rep-
resentation of the bag-of-words model. The sequence of 
SFA words for six samples in Fig. 5d reads as follows:

The values that count the appearance of SFA words in Eq. 
(6) are expressed upon numerosity reduction:

It is noted that SFA words in Eq. (6) now results in the 
BOSS histogram shown in Eq. (7). Therefore, the BOSS 
model B can be regarded as a random variable, that is, 
B : S → N  . The probability mass function p(B) can 
be addressed by p(B = aa) = 1/3 , p(B = ab) = 1/6 , 
p(B = ba) = 1/6 , and p(B = bb) = 1/3 . This provides 
us with quite important information about the structure 
of the samples, which structure is being used as features 
for machine learning.

BOSS VS model is an extended BOSS model. A 
time series T = {t1, . . . , tn} of length n is divided into 
sliding windows of length of w is Si,w , where w ∈ N  . 
The SFA word is defined as SFA(Si,w) ∈ Al , with 

(5)[βj(a− 1),βj(a)] ≈ symbol(a)

(6)S = {ab,ba,bb, aa, aa,bb}

(7)B : aa = 2, ab = 1, ba = 1, bb = 2

Fig. 4  Low-pass filtering and smoothing of a sample of acceleration 
in x-axis upon Discrete Fourier Transform (DFT). In this plot, DFT result 
is obtained by taking only first two Fourier coefficients
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i = 1, 2, . . . , (n− w + 1) , where A is the SFA word space 
and l ∈ N  is the SFA word length. The BOSS histo-
gram B(S) : Al → N  . The number in the histogram is 
the count of appearance of an SFA word within T upon 
numerosity reduction. BOSS VS model allows frequent 
updates, such as fast streaming data analytics. As shown 
in Fig.  6a and b, the BOSS VS model operates slid-
ing windows unto each time series resulting in multi-
ple windowed subsequences. Next, each subsequence 
is transformed into the SFA words shown in Fig.  6c. 
All of the subsequences eventually result in the BOSS 
histogram shown in Fig.  6d. However, since the BOSS 
histogram itself is not suitable for performing multiple 
matrix calculations, it is vectorized through Term Fre-
quency Inverse Document Frequency (TF-IDF) algo-
rithm shown in Fig. 6e.

Term frequency inverse document frequency
The BOSS VS model employs Term Frequency Inverse 
Document Frequency (TF-IDF) algorithm to weight each 
term frequency in the vector. This assigns a higher weight 

to signify words of a class. The term frequency tf for SFA 
words S of a time series T within class C is defined as

where B(S) is the BOSS histogram in Eq. (7). The inverse 
document frequency idf is given by

In this study, for classification purposes, we employed 
three different states of a running fan, which is presented 
as a set of classes (states) C . The elements of the set are 
C = {C1,C2,C3} . It is noted that each element Ck for 
k = 1, 2, 3 represents a certain state of the fan. As for the 
human-readable format, we have assigned name-tags to 
each class such as C1 = “Normal′′ , C2 = “Counter Wind′′ , 
and C3 = “Mechanical Failure′′ , respectively. The inverse 
document frequency indicates the frequency of an SFA 
word in a class Ck . Therefore, in this study, the numerator 

(8)

��(�,�) =

�

1 + log
�
∑

T∈� B(�)
�

, if
∑

T∈� B(�) > 0
0, otherwise

(9)idf(S,C) = log
|C|

|{C|T ∈ C ∩ B(S) > 0}|

Fig. 5  A pictorial diagram of symbolic Fourier approximation (SFA) procedure: a Incoming sensor data of six time-series, b The data is then 
transformed via Fourier transform, c The Fourier coefficients are quantized via Multiple Coefficient Binning (MCB), and d Each time series has been 
mapped into its respective SFA word
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of Eq. (9) of |C| denotes a numeric value 3. Multiplying 
Eq. (8) by Eq. (9), the tfidf of an SFA word S within 
class C is defined as

The result of tfidf(S,C) on three states is displayed 
in Fig.  6e. It is noted that a high weight in Eq. (10) is 
obtained by a high term frequency in the given class.

Classification
Classification of new data Q can be carried out using the 
cosine similarity metric CosSim:

It is noted that in Eq. (11) tf(S,Q) is of the term fre-
quency of Q as shown in Fig.  7b, which is the BOSS 

(10)

�����(�,�) = ��(�,�) ⋅ ���(�,�)

=

[

1 + log

(

∑

T∈�

B(�)

)]

⋅

log
|�|

|{�|T ∈ � ∩ B(�) > 0}|

(11)

������(�,�) =

∑

�∈� ��(�,�) ⋅ �����(�,�)
�

∑

�∈� ��
2(�,�)

�

∑

�∈� �����
2(�,�)

histogram of Q . Then, CosSim(Q,C) is calculated in Eq. 
(11). Upon maximizing the cosine similarity, a query Q is 
thus classified into the class Ck as shown in Eq. (12):

In conclusion, the BOSS VS algorithm comprises 
two notions: Bag-of-words and TF-IDF. What makes 
the BOSS VS different from other algorithms is a way 
of taking features of data. This algorithm does not 
construct a loss function like other machine learning 
algorithms but uses Bag-of-Words instead. With time 
series being transformed into sequences of symbols, 
Bag-of-words approaches are then used to extract fea-
tures from these sequences. Time series are presented 
as histograms with designated symbols. And then, each 
histogram is transformed into TF-IDF vectors for clas-
sification. We have discussed building a model with 
quite a complexity; thereby, we sorted out the proce-
dure step by step with a lookup table. Table 1 displays 
the lookup table for the probabilistic models and cor-
responding algorithms.

(12)label(Q) = arg max
Ck∈C

(CosSim(Q,Ck))

Fig. 6  BOSS model and BOSS VS: a Samples are being scanned with a sliding window, b multiple windowed subsequences are generated, c all 
of the subsequences are transformed into SFA words, d SFA words are summarized in the form of BOSS histogram (BOSS model), and e the BOSS 
histogram is vectorized through Term Frequency Inverse Document Frequency (TF-IDF) model, which finally results in TF-IDF vectors for training 
data
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Results and discussion
Experiments
The experimental apparatus is a three-blade fan on the 
wheels with a low-power digital accelerometer made in 
Analog Device (ADXL345 GY-80) as shown in Fig.  8. 
The dimension of the apparatus the width of 18.5 mm, 
length of 12.3 mm, and height of 30 mm. We consid-
ered three of the most probable states of the fan we can 
think of in a real-world situation for classification. The 
normal state where the fan runs without any noticeable 
event (see left pane in Fig.  8). The counter-wind state 
occurs when the counter-wind intermittency against 
the fan (see center pane in Fig.  8). The mechanical fail-
ure state where one of the blades is broken off (see right 
pane in Fig.  8). The average rotational speed of the fan 
was 114 rpm in the normal state, 41 rpm in the coun-
ter-wind state, and 107 rpm in the mechanical-failure 
state, respectively. Each data set was collected at a sam-
pling rate of 100 Hz for 3 seconds from the accelerom-
eter. For example, we built 2,700 data sets (900 data 

sets for each fan state). Thus, we made balanced data, 
and each state has the same amount of data. For exam-
ple, 900 samples for each state of the fan were collected 
via x and y channels, so the number of data points sums 
900 samples× 2 channels× 300× 3 states = 1, 620, 000  . 
It took 2 hours and 15 minutes to collect 1,620,000 data 
points at each measurement. The experiment data sets 
are shown as a set of time series along with mean and 
standard deviation into three states in Fig. 9.

For the learning model, we divided the whole data 
into training and test data with a ratio of 9:1. That is, 
270 data sets out of 2,700 were assigned to test data. We 
performed 10-fold cross-validation over five scenarios, 
respectively. The cross-validation results are shown in 
Table  6. For comparison, we listed two different accu-
racies: non-cross-validation and cross-validation. In 
scenario II, where 900 data sets are used for machine 
learning, one of five models, the 1-NN DTW, crashed 
during the simulations. Such an issue may be caused 
by limited computing resources in the fog-computing 

Fig. 7  Schematic diagram of classification with the cosine similarity: a New data for query is first transformed into SFA words, b the SFA words of 
the new data is transformed into the BOSS histogram, c the trained model in the form of tf-idf algorithm is given, and d the classification is carried 
out through calculating the cosine similarity between the trained model and the query

Table 1  Lookup table for the probabilistic models and corresponding algorithms

Note Model Prior Trained Model Transformed Classifier

Probability p(T|C) p(C) p(C|T) p(Q|C) p(C|Q)

Algorithm tf(S,C) idf(S,C) tfidf(S,C) tf(Q,C) CosSim(Q,C)
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facility. Thus, the cross-validation over the 1-NN DTW 
model could not go forward for larger data sets (listed as 
N/A in Table 6).

In this study, the operating state of the fan is classified 
into three categories: normal state, counter-wind state, 
and mechanical failure state. In Fog computing, CPM is 
learned by machine learning using data from acceleration 
sensors and five different TSCs and analyzing the newly 
input data to distinguish the state of the fan. Fog comput-
ing in this study was Intel Core i3-8100 CPU 3.60 GHz at 
4 GB memory on Ubuntu 20.04.1 LTS.

Exploratory data analysis
Exploratory Data Analysis (EDA) is carried out to 
identify data property. In Fig.  9, the raw data, its roll-
ing mean, and the standard deviation are overlaid. 
Since raw data contains much noise, it is necessary to 
filter it out for a better analysis. The rolling mean is 
one such filtering tool. The standard deviation can be 
used for estimating the variance of data. In addition, we 
need to know how many trends, repetition over inter-
vals, white noise, and other uncertainty are. We should 
never take these data characteristics lightly because 
they can determine the authenticity of the experiment. 
We employed the Augmented Dickey-Fuller (ADF) test 
with the null hypothesis of whether it was stationary. 
The test results of p-value ≤ 0.05 as shown in Table  2 
for the three states with time series from experimen-
tal data; therefore, we can reject the null hypothesis at 
a 95% confidence level. Thus, we may affirm that the 
experimental data was stationary.

Comparison of models
We employed five different models: WEASEL MUSE, 
BOSS VS, random forest (RF), logistic regression (LR), 
and one-nearest neighbor DTW (1-NN DTW). Table  3 

describes the characteristics of five models according to 
temporal structure (Temporal), low-pass filtering (Filter), 
transformation (Transform), and critical features (Fea-
tures). Only 1-NN DTW keeps the temporal structure 
of data, and the others do not consider the order of data 
points over time. Algorithms for feature extraction are χ2 
test for WEASEL MUSE, Term-Frequency Inverse Docu-
ment Frequency algorithm for BOSS VS, Entropy for 
RF, the cost function for LR, and Euclidean distance for 
1-NN DTW.

Classification with BOSS VS
Table 4 shows the numerical expression of the trained 
model p(C|T) in Table  1, which is the result of vector 
tfidf(S,C) calculated using training data. The sym-
bolic algorithm SFA converts the whole training data 
to S = {aa, ab,ba,bb} . For example, the features of the 
normal state (C1) are aa , ab , ba , and bb with the numer-
ical values (3.5649, 3.5649, 3.5649, 3.6390) as displayed 
in Table  4. For the counter-wind state ( C2 ), the value 
reads (3.1972, 2.9459, 3.3025, 3.3025), which is clearly 
distinguished from those of the normal state.

Table  5 shows the classifier p(C|Q) in Table  1 for 
Q . For example, the first sample Q1 is predicted as the 
normal state because of the largest value of 0.9990 
throughout the column to which it belongs. In the same 
fashion, the classification is performed for the remain-
ing time series, such as the counter-wind state for Q2 , 
the mechanical failure state for Q5 , etc.

Post‑Hoc analysis
Often in many studies, the results tend to be presented 
without statistical rigor. However, it is essential to check 
if it was statistically significant before further discussion, 
called Post-Hoc analysis.

Fig. 8  Photos of the three-blade fan in the three states: Normal state (left), Counter-wind state (center), and Mechanical failure state (right). The 
counter-wind state indicates the state where the counter-wind being blown by another fan in front of the fan. The mechanical failure refers to the 
state in which one of the blades having been removed off
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As shown in Table  6, the BOSS VS model indicates 
the highest accuracy for all data sizes. In addition, even 
though the number of data is increased from 180 k to 
1.6 million, it shows a bit change in accuracy, so we may 
conclude that the BOSS VS model is not significantly 
affected by the data size. The smaller the number of data 
used, the shorter the run time, but on the other hand, the 
model tends to be overfitted to the data. For example, in 
scenario I, we used 180,000 data points; for the BOSS VS 
model, the accuracy turned out to be 100%. This result 
indicates overfitting, where we used too little data for 

training. If the number of data is increased, the time for 
preprocessing and calculation also increases accordingly. 
Machine learning models tend to suffer from overfitting 
one way or another for several reasons. The reviewer cor-
rectly pointed out that using a proper validation method 
is essential. Furthermore, the most apparent reason 
might be lacking data. In machine learning communities, 
it is well known that too little data for simulation does 
not bring significant results. In this study, we experienced 
overfitting when only 300 data sets were used for simu-
lation. As we used more data, such overfitting does not 

Fig. 9  Experimental time series data for three states of the fan: Normal state (top row), counter-wind state (middle row), and mechanical failure 
state (bottom row). Raw data from the accelerometer overlaid with the rolling mean and standard deviation. Each row represents both x (left) and y 
(right) acceleration in g unit



Page 13 of 19Choi ﻿Journal of Cloud Computing           (2022) 11:63 	

appear anymore. Therefore, more data can be a cure for 
the issue in this particular case.

Table 6 does not tell whether the difference in the accu-
racy of each model is statistically meaningful. Another 
ambiguity arises in the results of the run time. Thus, 
we carried out the ANOVA (Analysis of Variance) test 
that provides statistical significance among differences. 
Table 7 shows the ANOVA test result for accuracy with 
F = 60.8 , and p-value ≤ 0.05 at a 95% confidence level. 
This result indicates that the null hypothesis is rejected. 
Therefore, we can say that the mean values for the accu-
racy of each model differ significantly. In addition, the 
difference in run time for each model is statistically sig-
nificant, with F = 4.58 , and p-value = 0.008. In conclu-
sion, we can confirm the simulation over five scenarios 
for accuracy and run time with five statistically signifi-
cant models.

However, the ANOVA test results shown in Table  7 
alone cannot tell which model is different in accuracy and 
run time from others. Thereby, another test should be 
carried out to see which model is significantly different 
from the others. We employed Tukey’s Honest Significant 
Difference test (Tukey Test) for all pairwise comparisons 
while controlling multiple comparisons. In this study, 
the suitability of models was sought statistically in two 
aspects: accuracy and scalability.

Accuracy
The Tukey test result, which is multiple comparisons of 
accuracy from five models, is summarized in Table  8. 
Two cases, 1-NN DTW vs. WEASEL MUSE and LR vs. 
RF, are not statistically significant upon a 95% confi-
dence level. This result implies that two pairs may have 
a remarkable similarity in making poor predictions. On 
the contrary, all pairwise comparisons with the BOSS 
VS model are proven statistically significant at a 95% 
confidence level. Figure  10 shows yet another aspect 
of the trend of accuracy over run time for all five mod-
els, where the BOSS VS model outputs a far outstand-
ing performance in accuracy and run time. As a result, 

Table 2  Augmented Dickey-Fuller (ADF) Test Results: The 
results show that all of six time-series are found to be stationary 
of being statistically significant owing to p-value ≤ 0.05 ( 95% 
confidence level), which indicates evidence against the null 
hypothesis H0

Time Series ADF statistic P-value Critical 
Value 
(5%)

x-acc (Normal) -4.629 1.1× 10−4 -2.871

y-acc (Normal) -6.137 8.1× 10−8 -2.871

x-acc (Counter Wind) -6.486 1.2× 10−8 -2.871

y-acc (Counter Wind) -5.839 3.8× 10−7 -2.871

x-acc (Mechanical Failure) -4.577 1.4× 10−4 -2.871

y-acc (Mechanical Failure) -4.459 2.3× 10−4 -2.871

Table 3  Comparison of characteristics of five models via 
conducting normalization (Norm.), keeping temporal structure 
(Temporal), carrying out low-pass filtering (Filter), executing 
transformation (Transform), and key features (Features)

Temporal Filter Transform Features

WEASEL MUSE No Yes Yes χ2 test

BOSS VS No Yes Yes Term Frequency

RF No No No Entropy

LR No No No Cost

1-NN DTW Yes No No Distance

Table 4  The trained model p(C|T) with equivalent of TF-IDF 
vector tfidf(S,C) for the training data. S = {aa, ab,ba,bb} is the 
SFA words and C = {C1, C2, C3} is three states of the fan

Class C1 C2 C3

aa 3.5649 3.1972 2.9459

ab 3.5649 2.9459 2.3862

ba 3.5649 3.3025 2.0986

bb 3.6390 3.3025 2.3862

Table 5  The classifier p(C|Q) with equivalent to Cosine similarity between the trained model p(C|T) for each class and new samples 
Q = {Q1, . . . ,Q6} as a query. C = {C1, C2, C3} is three states of the fan. The similarity results in the prediction for the new samples. The 
maximum value of the cosine similarity for each sample is boldfaced

Q1 Q2 Q3 Q4 Q5 Q6

Normal 0.9990 0.9958 0.9987 0.9963 0.9943 0.9970

Counter Wind 0.9964 0.9977 0.9988 0.9942 0.9909 0.9991
Mechanical Failure 0.9908 0.9791 0.9924 0.9855 0.9985 0.9868
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98% accuracy was obtained at a 95% confidence level by 
adopting the model with the BOSS VS algorithm.

Scalability
In general, a scalable model shows consistently good per-
formance despite increasing the amount of data. Multiple 
comparisons of run time for five models are summa-
rized in Table  9. All pairwise cases for the 1-NN DTW 

model vs. the other models are significant. Thus, we may 
conclude that the 1-NN DTW model is far less scal-
able. Figure  10 shows the scalability of models. Except 
for the 1-NN DTW model, the other models keep rela-
tively small changes in the run-time subject to increas-
ing data size. In Fig.  11, the scalability comparison of 
five models is shown. As the amount of data increases, 
the 1-NN-DTW model shows the worst scalability. We 
observed that the BOSS VS model performs excellent 
scalability with the best accuracy among the other mod-
els. Figure  12 shows the comparison of the 95% confi-
dence interval (CI) of the accuracy of each model using 
experimental data of different sizes. The accuracy of 
the BOSS VS model fell into CI = 0.9872± 0.0073 , of 
which statistical behavior is much better compared to 
CI = 0.8205± 0.1319 in the second-place RF model. 
Moreover, the deviation of 0.0073 of the BOSS VS model 
is quite small compared to 0.1319 of the RF model. This 

Table 6  Comparison of performance of five models according to five scenarios: The number of data points is increased from 180k up 
to 1.6 Million. As for Fog computing facility: Intel Core i3-8100 CPU 3.60GHz at 4GB memory, and the OS is Ubuntu 20.04.1 LTS. BOSS 
VS model shows excellent scalability while keeping the highest accuracy among the other models. N/A denotes that simulation data 
is unavailable due to computation crashes caused by hardware limitations in this Fog computing facility. The 10-fold cross-validation 
accuracy is shown in the 95% confidence level

Scenario Data points (data sets) Model Time (sec) Accuracy (non CV) Cross 
Validation 
Accuracy

I 180,000 (300) WEASEL MUSE 0.39 0.20 0.46± 0.17

BOSS VS 0.46 1.00 0.98± 0.04

RF 0.44 0.56 0.70± 0.12

LR 0.25 0.63 0.57± 0.14

1-NN DTW 10.40 0.26 0.35± 0.06

II 540,000 (900) WEASEL MUSE 1.00 0.33 0.49± 0.08

BOSS VS 1.42 0.97 0.98± 0.02

RF 1.16 0.82 0.85± 0.06

LR 2,700 0.65 0.64± 0.06

1-NN DTW 89.54 0.37 N/A

III 900,000 (1,500) WEASEL MUSE 1.810 0.34 0.56± 0.08

BOSS VS 2.456 0.98 0.98± 0.01

RF 1.961 0.90 0.89± 0.06

LR 7.153 0.74 0.70± 0.09

1-NN DTW 246.794 0.40 N/A

IV 1,080,000 (1,800) WEASEL MUSE 2.193 0.36 0.54± 0.06

BOSS VS 2.966 0.98 0.98± 0.01

RF 2.472 0.87 0.89± 0.03

LR 12.921 0.76 0.70± 0.05

1-NN DTW 352.067 0.41 N/A

V 1,620,000 (2,700) WEASEL MUSE 3.851 0.37 0.55± 0.03

BOSS VS 8,100 0.98 0.98± 0.01

RF 3.910 0.92 0.91± 0.02

LR 32.183 0.71 0.73± 0.02

1-NN DTW 793.22 0.38 N/A

Table 7  ANOVA test result of accuracy and run time among five 
models

sumsq df F PR(>F)

Algorithms (Accuracy) 1.64 4.0 60.80 6.56× 10−11

Residual 0.13 20.0 - -

Algorithms (Run time) 346268.91 4.0 4.58 0.008631

Residual 377628.33 20.0 - -
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Table 8  Multiple Comparison of Means of Accuracy - Tukey HSD test

Group1 Group2 meandiff p-adj lower upper reject

1-NN DTW BOSS VS 0.614 0.001 0.458 0.770 True

1-NN DTW LR 0.328 0.001 0.172 0.484 True

1-NN DTW RF 0.447 0.001 0.292 0.603 True

1-NN DTW WEASEL MUSE -0.049 0.862 -0.205 0.106 False

BOSS VS LR -0.286 0.001 -0.441 -0.130 True

BOSS VS RF -0.166 0.032 -0.322 -0.011 True

BOSS VS WEASEL MUSE -0.663 0.001 -0.819 -0.508 True

LR RF 0.119 0.187 -0.036 0.274 False

LR WEASEL MUSE -0.377 0.001 -0.533 -0.222 True

RF WEASEL MUSE -0.497 0.001 -0.652 -0.341 True

Fig. 10  Accuracy comparison of five models (WEASEL MUSE, BOSS VS, Random Forest, Logistic Regression, and 1-Nearest-Neighbor DTW). 1-NN 
DTW model shows the worst performance both in accuracy and run time. On the contrary, the BOSS VS model shows excellent accuracy over the 
others. Note: the upper left being the overall best performance



Page 16 of 19Choi ﻿Journal of Cloud Computing           (2022) 11:63 

Table 9  Multiple Comparison of Means of run time - Tukey HSD

Group1 Group2 meandiff p-adj lower upper reject

1-NN DTW BOSS VS -296.01 0.020 -556.08 -35.93 True

1-NN DTW LR -287.39 0.025 -547.47 -27.32 True

1-NN DTW RF -296.41 0.020 -556.49 -36.34 True

1-NN DTW WEASEL MUSE -296.55 0.020 -556.62 -36.48 True

BOSS VS LR 8.61 0.900 -251.45 268.68 False

BOSS VS RF -0.405 0.900 -260.47 259.66 False

BOSS VS WEASEL MUSE -0.542 0.900 -260.61 259.53 False

LR RF -9.02 0.900 -269.09 251.05 False

LR WEASEL MUSE -9.15 0.900 -269.23 250.91 False

RF WEASEL MUSE -0.137 0.900 -260.21 259.93 False

Fig. 11  Scalability comparison of five models. As the amount of data is increased, the 1-NN-DTW model shows the worst scalability. On the 
contrary, the other models offer good scalability. The BOSS VS model performs excellent scalability yet keeping the best accuracy
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result explains good scalability, which indicates that the 
BOSS VS model is robust to changes in data size.

Conclusion
While most literature on the subject was published using 
the results using well-preprocessed public data, in this 
work, we implemented noisy real-world data into the 
classification models.

A primary goal of this study is to build an excellent 
cyber-physical model (CPM) of an IoT device with sig-
nificant classification accuracy in fog computing. To 
this end, some critical issues must be resolved: one is of 
time series classification (TSC) algorithms and domain-
specific knowledge that can identify the state of an IoT 
device, and the other is about how to process streaming 
sensor data in real-time properly. A data-driven mod-
eling approach could alienate quite the burden of such 
complicated theoretical domain-specific knowledge by 
using a vast amount of data to take advantage of machine 

learning and statistical inference. With a large amount 
of data transmitted in real-time from a networked IoT 
device, it is significant to correctly classify the device’s 
state, a core of smart manufacturing. Recently, there has 
been a growing tendency to solve this issue in fog com-
puting close to IoT devices because of the heavy loading 
on cloud computing.

We studied a three-blade fan with an accelerometer 
installed for an IoT device to create CPMs that can clas-
sify the state of the fan. Using state-of-the-art TSC algo-
rithms, upon the classification performance of five CPMs 
with real-world data, we achieved an accuracy of about 
98% at a 95% confidence level with the BOSS VS algo-
rithm, which resulted in excellent classification and sig-
nificant size reduction in streaming data.

In this work, we produced a lightweight CPM that 
works well in fog computing, which can determine the 
state of the fan, but, in the field, since there are a large 
number of fans installed, creating models for each fan will 

Fig. 12  The result of comparing the 95% confidence interval (CI) of the accuracy of five models using five scenarios of data size. This illustrates 
the scalability of each model’s performance in classification. The accuracy of the BOSS VS model fell into CI = 0.9872± 0.0073 resulting in the best 
performance
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be costly. In addition, the status model for fans will not be 
the same because the type and environment of installed 
fans are different. Therefore, further study on techniques 
that can economically create models for various fans 
should be a priority. As the state of the cooling fan can 
be intelligently determined at the fog computing level, it 
will ease the load that cloud computing has to bear sig-
nificantly. In addition, we believe that the development of 
computer hardware is evolving very swiftly and that later 
research on intelligent models that work on-device levels 
can also be essential. Thus, further studies should be con-
ducted for efficient models and algorithms against ever-
increasing sensors in smart manufacturing. Therefore, it 
is necessary to expand this study to explore techniques 
applicable even in larger manufacturing environments.
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