
Mawgoud et al. Journal of Cloud Computing (2022) 11:97
https://doi.org/10.1186/s13677-022-00339-w

RESEARCH Open Access

© The Author(s) 2022, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A deep learning based steganography
integration framework for ad‑hoc cloud
computing data security augmentation using
the V‑BOINC system
Ahmed A. Mawgoud1*, Mohamed Hamed N. Taha1, Amr Abu‑Talleb2 and Amira Kotb1 

Abstract 

In the early days of digital transformation, the automation, scalability, and availability of cloud computing made a big
difference for business. Nonetheless, significant concerns have been raised regarding the security and privacy levels
that cloud systems can provide, as enterprises have accelerated their cloud migration journeys in an effort to provide
a remote working environment for their employees, primarily in light of the COVID-19 outbreak. The goal of this study
is to come up with a way to improve steganography in ad hoc cloud systems by using deep learning. This research
implementation is separated into two sections. In Phase 1, the “Ad-hoc Cloud System” idea and deployment plan were
set up with the help of V-BOINC. In Phase 2, a modified form of steganography and deep learning were used to study
the security of data transmission in ad-hoc cloud networks. In the majority of prior studies, attempts to employ deep
learning models to augment or replace data-hiding systems did not achieve a high success rate. The implemented
model inserts data images through colored images in the developed ad hoc cloud system. A systematic steganog‑
raphy model conceals from statistics lower message detection rates. Additionally, it may be necessary to incorporate
small images beneath huge cover images. The implemented ad-hoc system outperformed Amazon AC2 in terms of
performance, while the execution of the proposed deep steganography approach gave a high rate of evaluation for
concealing both data and images when evaluated against several attacks in an ad-hoc cloud system environment.

Keywords  Ad-hoc system, Cloud computing, Steganography, Cloud security, Deep learning, Encryption

Introduction
During the last decade, the cloud computing became
one of the massive growing technologies, it provided
both automated and orchestrated solution for both
individuals and corporates; its importance appeared
in the acceleration of the digital transformation pro-
cesses worldwide during the era of COVID-19. Recently,

cybersecurity threats have risen at a high rate [1]. Cloud
security is always the big topic when it comes to any
sort of edge computing process. Many research topics
provide various techniques for enhancing cloud secu-
rity. However, there is a huge room for contributions
regarding the critical security concerns regarding cloud
systems [2]. The ability to utilize existing resources to
supply cloud services within a scope of unreliable hosts
in comparison with one provided by ’Grid Comput-
ing’. Instead, the ‘Ad-hoc Cloud Model’ concept may be
somehow comparable to the ‘Volunteer Computing’, the
paradigm itself of the ad-hoc cloud systems including
various additional keys [3].

*Correspondence:
Ahmed A. Mawgoud
aabdelmawgoud@pg.cu.edu.eg
1 Information Technology Department, Faculty of Computers and Artificial
Intelligence, Cairo University, Giza, Egypt
2 Mechatronics Department, Faculty of Engineering, German University
in Cairo, Cairo, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00339-w&domain=pdf

Page 2 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

The ad‑hoc cloud computing paradigm
The design of the (Ad-hoc Cloud Computing) is having
a high rate of similarity of the classic (Grid Computing),
(Condor) [4] and (Volunteer Computing System) based
on Berkeley Open Infrastructure of Network Computing.
As the main idea is to re-use the host computing acces-
sible resources for operational tasks. Nevertheless, the
chosen computational design for resources utilization has
various encounters, which should be highlight to provide
a high performance evaluation for the end-user [5]. Con-
sequently, multiple standards should be implemented to
provide the same features of the ordinary cloud comput-
ing system. However, there were multiple key differences
the unified the ad-hoc computing system design:

•	 The system can work within a group of periodically
accessible hosts, which might possibly have some un-
excepted behavior from time to another [6].

•	 The provided resources from a cloud cluster or a grid
node can be dedicated to serve a single ad-hoc cloud
node.

•	 The end-user implies a consistent level of trust
towards the volunteer resources and grid systems; as
there is no existence for a trust relation between the
infrastructure system and the end user.

•	 Business continuity can be provided through a group
of unreliable nodes, the ad-hoc cloud system pro-
vides the availability for both host and guest users
within the ad-hoc cloud system in case any failure
case occurred periodically [7].

•	 The operated host processes –regardless the
resources’ consumption level- were not affected by
any means with the ad-hoc cloud system over the
passing time.

•	 The volunteer system includes various wide range of
options as resources (i.e. Disk Space, Memory and
I\O) [8].

Deep steganography
Steganography is the art of hiding data or images within
another image; the term was coined in the 15th century,
when communications were physically hidden [9]. Cur-
rently, steganography is a form of encryption technique.
Steganography offers a challenge since it can alter the
appearance and content of the carrier. Two factors affect
the degree of variation: Initially, the magnitude of mate-
rial was suppressed. Images have traditionally been used
to disguise messages within written text. The information
is concealed behind an image [10]. Bits-per-pixel (bpp) is
the unit of measurement for the hidden data rate. Most of
the time, this method limits the total amount of data to

0.3 bpp or less. As the message length increases, so does
the bpp, and the amount of change depends on the reso-
lution of the original image [11].

Motivation
As a result of the high complexity of cloud infrastruc-
ture operations, such as [12–14], as well as the existence
of unreliable resources, there were numerous obstacles
that needed to be addressed. These types of difficulties
and the essential techniques for overcoming them were
discussed in great depth. It is challenging to develop a
cloud solution prototype with a high-level data security
paradigm. The performance of LAN security may differ
from that of other network types [15]. It is well-known
that steganography can be used to conceal data for a
variety of purposes, including to perform malicious acts
using graphics on websites that conceal data [16]. Digi-
tal watermarks, on the other hand, could be used to add
data or images without degrading the image quality. As
embedding a message alters the appearance and essential
properties of the carrier [17], previously proposed suc-
cessful steganography systems have experienced signifi-
cant challenges. The most common impediments consist
of two points:

•	 The amount of the required data to be
•	 The level of change that must be achieved by the used

It is also essential to note that the extent of change
depends on the image itself. Utilizing high-frequency
image parts to conceal data resulted in fewer percepti-
ble interruptions [18] compared to using low-frequency
image sections. Various common steganography tech-
niques use the images’ ’Least Significant Bits’ (LSB) for
secret data hiding, if it is completed with flexibility and
consistency, as it is statistically difficult to observe the
output files’ alteration rate for multimedia data (i.e.,
images, audio, and video) [19]. Techniques such as
HUGO, which construct and match possible varieties of
’Cover Image’ clones based upon their first order attrib-
utes, strive to maintain image statistics if afflicted images
differ from their unaffected counterparts. HUGO is often
used for communications with a size of less than 0.5 bpp
[20]. So, neural networks were mostly used to explicitly
predict the availability of natural visuals and to embed
the whole photos in carrier graphics in a much more effi-
cient way than in previous studies [21].

Study contributions
This main target of this study was divided into
two phases, with the purpose of introducing a full
approach to:

Page 3 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

A.	Implement an ad-hoc cloud integrated architecture
as an end-to-end solution and then evaluate both
performance and privacy standards within the imple-
mented technique:

	 i.	 Design a steganography model for securing
data and images transmission in the ad-hoc
cloud system through using deep learning.

	 ii.	 Develop an ad-hoc cloud framework through
absorbing services through irregular and
unstable networks.

This study assumes that the technology should be used
primarily on LAN networks as objectives were aiming for
both availability and efficiency. WAN networks can be
utilized for evaluating the security measurements. Sys-
tems that demand exceptional security might not be effi-
cient for the ad-hoc cloud architecture. Whenever a host
crashes unexpectedly, data discrepancies can cause prob-
lems for applications, including those who communicate
to external monitoring.

B.	 Design a steganography technique structure with
deep learning utilization:

	 i.	 The implemented model should be able to con-
ceal a ‘Secret Image’ with overall N × N × RGB
pixels throughout a ‘Cover Image’ with its orig-
inal form ‘color channel = 8 bits’.

	 ii.	 Having the ability to provide a successful
approach for reducing the constraints through
which the ‘Secret Image’ has delivered without
any loss of the image quality, apart from those
researches.

	 iii.	 The main challenge here is to compromise
both reliability and the carrier security along
with the ‘Secret Image’.

Paper organization
The organization of the paper is as following: Section 2
highlights the both concepts of ad-hoc cloud systems
and steganography into ad-hoc cloud model. Section 3
describes the challenges that motivates the author for
this study. Section 4 has introduced the proposed ad-hoc
cloud system model and an illustration of the approach
of utilizing deep learning networks with steganogra-
phy. Section 5, an illustration of the ad-hoc cloud sys-
tem implementation model and the training network
approach for steganography. Section 6 has defined a dis-
cussion regarding the output result and the experiment

performance measurements, then an illustration of the
output limitations. Section 7 highlights both discussion
and analysis regarding the output of both strengths and
weaknesses. Section 8, it has provided a summarization
regarding the overall study work.

Literature review
Recently, the definition of ad-hoc cloud computing as
a definition was identified to explore various areas as a
part of the transformation phase from classic LAN/
WAN wireless networks into cloud systems; in order
to implement a distributed infrastructure - using non-
exclusive and intermittently accessible hosts and devices
[22]. There were two major existing projects that were
discussed for both ad-hoc cloud systems and volunteer
computing, and the present state of research, Table 1
below states the description of the mentioned acronyms
in the whole paper.

The idea of converting the virtualized infrastructure
system into an ad-hoc cloud system have been discussed
in this section, as we present:

•	 A discussion about previous proposed studies regard-
ing the ad-hoc cloud systems, this was done through
highlighting two key publications that explain the
definition as well as providing extended ideas for
future study.

•	 The related research aiming to turn volunteer com-
puting to have the features of cloud systems was
addressed.

•	 The ad-hoc cloud prototype’s framework, execution
and approach illustration from which the distrib-
uted volunteer infrastructure turns into a centralized
infrastructure.

Through the utilization of the ad-hoc cloud system, the
user has the ability submit a work to BOINC with the uti-
lization of a modified V-BOINC server, then the VM may
be scheduled to the nearest optimum ad-hoc host [4].
The essential purpose for implemented cloud system is to
bring reliability to the un-stable infrastructure V-BOINC,
regular check pointing, rescheduling, and recovery were
discussed in details [23].

Related work
Kirby et al. [24] have described the concept of ad-hoc
cloud systems first, they have suggested the idea of
implementing ad-hoc-cloud systems to be configured
incorporates through better usability of the existing
resources, minimizing net energy usage, and empower-
ing enterprises to run their own ad-hoc cloud system.
Their experiment presents one strategy to overcoming
the main research and project obstacles of ad-hoc cloud

Page 4 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

system. However, the main issue was to deal with inter-
mittent hosts and limit the effect on non-cloud opera-
tions. A modeler/manager module is implemented on
the VM in every cloud component shown in Fig. 1 below.

This monitors both the host’s resource utilization and
execution. The host-side counterpart checks the cloud
element’s effect on the host; tasks were assigned to nodes
using both ‘Broker’ and ‘Dispatcher’ architecture. Module
for the ad-hoc computing system design. The presented
systems differ significantly in scheduling strategies, QoS
assurances, and the mechanism in which the incorporate
reliability through an un-stable infrastructure, among
other aspects [25].

Chaumont [26] the authors have presented a full prac-
tical evaluation regarding the utilization of deep learning
in steganography and steganalysis. The study was limited
to the applied proposed techniques between 2015 and
2018 in order to provide new future directions through
highlighting the limitations of the reviewed techniques.
The main components of CNN were deeply discussed
from the perspective of both time and memory. Multiple
techniques were discussed in detail to get at the roots of
the idea of the recent proposed methods of using steg-
anography with deep learning methods. The study has
concluded that there were still limitations and challenges
that remain regarding the experimental phase of the pro-
posed studies, as there were a lot of restrictions that may
prevent applying the previous studies on a large scale. As
shown in Fig. 2 below, an example of a framework that
represents one of the discussed early deep steganography
approaches, which was the (Automatic Steganographic
Distortion Learning), from which they can get the (Alter-
ation Probability Map). Finally, based on a thorough
comparative analysis, the authors concluded that future
works should specify enhanced algorithms to improve
the efficiency of deep learning networks with various
types of steganography.

Chandra et al. [27] have studied various techniques
for implementing clouds with the usage of volunteer
resources. They describe the difficulties of constructing
clouds (Nebulas) from erratic resources through tackling
similar sort of issues with different methods as shown in
Fig. 3 below. Therefore, the distinctions between their
approaches were minor. Ad-hoc Cloud Systems, or Neb-
ulas, were dynamic infrastructures that combine features
of both ’Volunteer Computing’ and ’Cloud Computing’.
Various issues were arising an example; a software may
be experimental and not require strict system execution
assurances. They have proposed two solutions for errors
handling, they use replication to run a job on various
hosts simultaneously, or do VMs check pointing then
restoring those checkpoints on host failures.

It can be as well prohibitively costly for the migration
process, especially if it depends on massive volumes of
dispersed data. For software deployment, correctly for a
set of resources, resource scheduling is required. Larger
applications could be distributed on faster servers to

Table 1  Abbreviations Description

Acronym Description

API Application Programming Interface

ER Bit Error Rate

Bpp Bits per pixel

BOINC Berkeley Open Infrastructure for Network Computing

CA Cloud Jobs Assigned

CC Cloud Jobs Completed

CDTF Camera Display Transfer Function

CNN Convolutional Neural Networks

DB Database

DCGAN Deep Convolutional Generative Adversarial Networks

DCT Discrete Cosine Transform

DDH Decisional Diffie–Hellman

DNN Deep Neural Networks

ECC Elliptic Curve Cryptography

Gmond Ganglia Monitoring Daemon

GUI Graphical User Interface

gUse Grid and User Support Environment

HUGO Highly Undetectable steGO

LAN Local Area Network

LSB Least Significant Bit

LFM linear frequency modulation

MSB Most Significant Bits

NCC Normalized Cross Correlation

NF Number of Failures

OS Operating System

P2P Peer to Peer

QoS Quality of Service

RAM Random Access Memory

RGB Red Green Blue

RRD Redundancy Rate Distortion

ROC Report on Compliance

SLA Service Level Agreement

SOAP Simple Object Access Protocol

SSE Secret Space Encryptor

SSIM Structural Similarity Index Measure

V-BOINC Virtualized Berkeley Open Infrastructure for Network
Computing

VDI Virtual Desktop Infrastructure

VM Virtual Machine

WAN Wide Area Network

WS-PGRADE Web Services - Parallel Grid Runtime and Developer
Environment

UDH Unsigned Diffie-Hellman

XML Extensible Markup Language

Page 5 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

decrease the influence of the slowest host on actual
system execution; these hosts have to be reliable [28],
given that ad-hoc clouds often work on infrastructures
with limited host count, the ‘Task Redundancy’ was not
used, as using it can reduce the amount of accessible
ad-hoc hosts for new cloud workloads. Additionally, it
was suggested to calculate the network performance
for mitigating the anticipated performance degradation
[29].

Weissman et al. [30] described their early practices with
a model of the ‘Nebula Theory’, for scattered data- inten-
sive softwares working in centralized infrastructures, the
authors reiterate the existing cloud unsuitability through
the usage of the global research testbed (PlanetLab+),
they compare their prototype with the (Data-Intensive
Blog- Analysis) prototype. Using ’Nebula Master’, the
users have the ability to join the cloud and the admins
can monitor and control the system. Compute pool

Fig. 1  An illustration for the proposed designed nodes’ components between the cloud infrastructure and cloud elements that was proposed in
[24]

Fig. 2  The (Alteration Probability Map) looked at in [26] was made with the “Automatic Steganographic Distortion Learning” method

Page 6 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

elements control volunteer storage and computing
nodes. With more blogs to analyze, Nebula saved time
with a data transfer rate of 53% compared to a cloud
emulator. When a comparison is made with the (Cen-
tralized Cloud) framework, the ‘Nebula’ outperforms the
(Centralized Cloud) framework once the failure of a few
hosts. Nebula uses task duplication and re-execution to
provide fault tolerance. As stated before, ad- hoc cloud
systems face both various theoretical and practical obsta-
cles. However, preliminary results that indicate promis-
ing indications [30].

Duan et al. [31] They proposed an algorithm based-
steganography extraction through using the DNN, this
technique had the ability to combine both DCT and ECC
in an image. Firstly, the ‘Secret Image’ would be created
from transforming the original image that was previ-
ously written using steganography approach, through the
SegNet DNN paradigm, the classified image is incorpo-
rated in the host image. It would not be difficult for alter-
ing the host image, and the image quality would not be
affected adversely, while the anti-detection characteristic
is also strengthened. In addition, steganography capac-
ity is guaranteed; as the DNN framework was used, all
what was needed the ability to change the variables in
both processes, a) The embedding process, b) The extrac-
tion process, with no need for additional formulas to be
created, the applied models were employed to be with
higher adaptability level in the system [31].

Yi et al. [32] have discussed in their study both a) an
example of a cloud service provider (i.e., Dropbox) that
utilizes resources from non-dedicated servers, b) a basic
prediction methods combined with host rating provide
reliable long-term forecasts. The less dedicated servers
or cloud services means less costs for the web service

providers; as a result, the authors have limited their
method to the cloud service field, in which non-dedicated
hosts were employed for processing. Non-dedicated
hosts have restricted bandwidth and were not always
available. Nevertheless, the authors made an assump-
tion that the web service can provide both fault tolerance
and redundancy methods in order to deal with extremely
volatile non-dedicated servers, the authors study was
divided into two parts: Firstly, they have addressed other
research issues; to help forecast long-term fault toler-
ance for non-dedicated hosts, they evaluate strategies
to predict short-term fault tolerance through defining a
strategy to recognize ideal mixes of dedicated and non-
dedicated servers for both cost reduction and migrations.
Their results demonstrate that the average maximum and
minimum long-term availability forecast error rates were
around 22% and 15%. Moreover, with the existence of
high-rate non-dedicated servers’ number. Increasing data
redundancy also reduces the dedicated hosts’ number
necessary to achieve availability assurances. The weak-
ness of the proposed ad-hoc cloud is it lacks redundancy
and instead reacts to host failures.

It is expected that adding task redundancy for ad-hoc
cloud can improve task completion rates. Secondly, they
have proposed an optimization strategy to reduce web-
service provider charges or migrations. The authors
believe dedicated resources can be delivered through a
cloud service provider like (i.e., Amazon EC2), there-
fore every dedicated host cost 10$ / hour, the same goes
for Amazon EC2 instance. Data Transferring through
a failing non-dedicated host to a further one restores
processes. Finally, the authors compare the benefits of
employing dedicated versus non-dedicated hosts. In
order to use a non-dedicated host’s resources, a cloud

Fig. 3  The designed ‘Nebula Service’ system structure and its connections between ‘Data Nodes’ and ‘Compute Nodes’ as proposed in [27]

Page 7 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

service provider must first confirm the host’s availability
using weekly monitoring data, many machine-learning
classifiers were mainly utilized to group the servers based
on the projected short-term availability [32].

Wang et al. [33] have introduced in their study a unique
method of steganography based-Stego images created
through DCGANs. From another perspective, CNNs
were used to implementing a functional link among
both the ‘Secret Data’ and the ‘Stego Images’. Moreo-
ver, the CNNs models, which have extraction ability for
secret information from stego pictures, was the main
contribution of their study. Image steganography can
effectively evade steganalysis approaches because of the
proposed improved technique regarding the ‘Secret Data’.
DCGANs have two obstacles; as they would be used for
image steganography. Not all the created Stego images
have high quality; as the small size of the Stego image is
not meeting the minimum requirement to conceal a data.
The study discussed creating a resilient CNN to solve the
mentioned obstacles. Error-correction codes were added
to this approach; in order to improve the accuracy. As a
future work, many advanced algorithms could be pro-
posed to enhance the quality of the approach and to over-
come the addressed obstacles.

Mori et al. [34] have describes SpACCE’s as an ad-hoc
cloud infrastructure dedicated for software sharing. Their
goal is to implement a cloud environment through the
usage of an ad-hoc system named ’CollaboTray’, it can
move to another network node at any time (i.e. Micro-
soft Office Package). The server can re-locate in case the
node presently hosting it becomes overloaded or if the
service supplied to clients suffers. If a software needs
additional resources over the server capability, other
clients may be turned as servers; because their project
implementation is based on ad-hoc concept, the main
targets were similar: how to efficiently coexist through
user procedures, communicate over dynamic hosts, in
addition to component migration. Their findings reveal
that a server’s performance can suffer if only 40% acces-
sibility of the CPU. Consequently, resource heavy apps
cannot use ’CollaboTray’. For the migration process of
’CollaboTray’, it should be first shutdown, and then its
current state is moved to another node. Finally, it would
be restarted. However, ’CollaboTray’ was not using vir-
tualization, so the system’s security is compromised in
case the server has moved to a suspect node. In case the
server has moved to an un-reliable node, the software
performance would be affected. The proposed ad-hoc
system implementation phase have addressed all these
issues, in addition to providing additional capabilities (i.e.
monitor – schedule). From their perspective, the cloud
computing represents a business model that limits its
scientific software. A unified cloud concept is proposed

as a replacement to data centers. It’s called Cloud@
Home since it was comparable to ’Volunteer Resources’.
A ’HybridCloud’ permits users to resources’ subscription
from an ’OpenCloud’. Those two cloud frameworks can
be utilized separately, or linked to further cloud system,
respectively. Data privacy along with secure commu-
nication protocols offer security for centrally managed
resources and data. These were among the significant
challenges identified by the authors in their research.

Zhang et al. [35] have proposed a full framework of
using DNN with steganography, a better understanding
of how DNN-based deep hiding operates through con-
trasting it with the DDH utilized and the newly suggested
UDH. For example, if you want to hide a single image in
another, you can do it with this understanding. The con-
tainer picture can be utilized to give varied content to
various users based on their practical demands while we
demonstrate the capability of retrieving distinct hidden
images by different recipients. It has become a challenge,
with the increment of images/videos which were classi-
fied as intellectual property; the "Universal Watermark-
ing" definition was used, as the proposed UDH provides a
temporarily solution to for such a problem. UDH can also
be utilized to transmit small messages, as demonstrated
from the authors experiment; the study proved that the
results were promising for hiding an entire image, which
significantly increases the potential future works from
different directions [35].

Wu et al. [36] build a BOINC-based private cloud for
similar and distributed replication. With BOINC system
as a dispatcher, the author’s own load-balancing methods
were using schedule tasks for nodes inside the system.
They mention scheduling and infrastructure observing as
crucial components through private cloud platforms, but
do not mention the usage of BOINC or the framework
their technique based upon. In their view, cloud systems
represent business models that limit its scientific soft-
ware. A unified cloud concept is proposed as a replace-
ment to data centers. It’s called ’Cloud@Home’ since it’s
comparable to volunteer computing. The ’HybridCloud’
provides users subscribing resources from an ’Open-
Cloud’. These two cloud frameworks have the ability to be
used separately, or linked to further public/private cloud
platforms, respectively, they have designed a BOINC-
based private cloud for distributed implementation. With
BOINC role as a correspondent, the author’s own load-
balancing methods were mainly utilized for task schedul-
ing to nodes inside the system.

Girardin et al. [37] have designed a software named
Legion for generating web portals for various functions,
including uploading processes to V-BOINC. As it is done
by developing a cloud interface which communicates
through a Legion cloud service using SOAP. Therefore,

Page 8 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

legion creates and maintains redundant data based on
the BOINC database, making it difficult to connect with
V-BOINC tasks. ’Legion’ also needs more libraries for
submitting the task to V-BOINC; because ’Legion’ con-
ducts so many activities, it is analogous to the reason
’WS-PGRADE/gUSE’ did not utilize to submit jobs to
V-BOINC. Others that promise to permit ’Job Submis-
sion’ to V-BOINC were either considered unsuitable for
our requirements or have not provided the basic capabili-
ties we require. Therefore, we built a private ‘Job Submis-
sion System’ that works with BOINC [37].

Regardless of the limited ad-hoc cloud system success
as well as the merger of volunteer computing, mobile
computing provides more success and popularity since
2009 [38]. Mobile devices were considered as a ’Resource
Poor’ elements (i.e. Limited Storage Size, Computation,
and Memory Capability), they were as well constrained
by both battery lifetime and network connection [39].
Offloading into another remote computational platform
would be an advantageous in some instances, such as ren-
dering high-quality images in time the power is limited.
Most research focuses on whether executing apps within
ad-hoc mobile cloud systems is viable and whether per-
formance advantages might be attained. Success stories
vary, and the apparent benefits depend on the software,
because of WAN latencies or cloud platforms cannot be
properly offloaded [40]. However, some argue that off-
loading computing through Amazon EC2 can be practi-
cal and beneficial regarding latency-tolerant softwares.
In order to make the best use of locality, the autonomous
mobile nodes set termed cloudlets is proposed, allowing
devices to offload duties to extra users [41].

Wengrowski et al. [42] utilized the deep learning algo-
rithms for digital steganography into the photographic
realm for LFM, in which the coded images were conveyed
via light; to enable consumers for examining displays and
digital advertising with their webcams with no broadband
connection. Concerning the digital steganography, CDTF
has radio-metric effects, which have the ability of alter-
ing the image’s appearance; as CDTF was trained with
a dataset contains about one million images; in order to
model these impacts. The outcome represented the sys-
tem which formed hidden messages which could only
be retrieved with extreme precision, and consequently it
could not be seen using the normal eye. For each evalu-
ated camera-display combination, the LFM approach had
provided higher outcome of BER score than the previ-
ously proposed DNN and (Fixed Filter Steganography)
methodologies. Both (Camera Exposure Configurations)
and the (Camera Display Angles) have no effect on their
proposed study, which outperforms all previous stud-
ies at the angle of 45 degrees of screen sight. The dataset

contains 1 million pairs were collected through using 25
camera and screen pairs for the CameraDisplay. Finally,
these potential DNN-based techniques to steganography
provides interesting ideas for future works.

Satyanarayanan et al. [43] provide in their research a
simulation for a mobile cloud system that strictly resem-
bles our proposed technique without the usage of mobile
devices. In their work they, propose the usage of Virtual-
Box on mobile devices; nonetheless, some studies found
VM-based approaches ineffective. They have studied how
to shrink VM sizes in addition to the used approach to
move them between devices. Our technique of storing
pre- configured virtual computers on devices for sending
overlays (checkpoints) via a network that equals theirs.
However, they did not address some features such as
(Schedule – Task Recovery – Mobile Churn).

Problem statement
The huge amount of data that is shared between organiza-
tions and public cloud services makes it more likely that
privacy will be broken by accident or without permission.
Commonly, normal users are thought to be cloud plat-
form security flaws, information leakage, viruses, or illegal
behaviors, and cybercriminals aim to steal cloud infra-
structure security weaknesses for financial gain or other
illegal purposes [44]. Cloud services can monitor IT sys-
tems, but they are difficult to secure. Even though cloud
computing raises privacy concerns, this has not stopped
its growth or the decline of data centers. All organizations
need to reevaluate their system security rules to avoid
sending data without permission, losing service, and get-
ting bad press [45]. In addition to cloud services, public
APIs expose enterprises to new security concerns. Cyber-
attacks target cloud infrastructures, and the capability to
attack a suspect’s system using penetration testing tools on
a cloud platform is a frequent tactic employed by cyber-
criminals [46]. As it is common to confuse the concept
of cryptography with that of steganography, auto encoder
network (AEN) is the technology used for compressing
images [47]. The objective is to safeguard private data that
is sent over networks. During the training phase, the net-
work should adjust the compression techniques for secret
image data to the lowest levels of the "Cover Image." Sev-
eral of the previously described experiments utilized Deep
Neural Networks (DNN). As a result of the recent posi-
tive contributions of deep neural networks to steganalysis,
there have been numerous attempts to incorporate neural
networks into the actual concealing procedure; in order
to choose which LSBs to substitute in an image well with
representing the text message in a binary form, numerous
studies have used DNNs to determine which parts of the
image data should be retrieved [48]. Neural networks were

Page 9 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

used to figure out the time of encoding for the categorized
data, which was spread across the image’s bits. Encryp-
tion and decryption networks have been trained together
so that the hidden image can be found. Since networks
have only been trained once, the set of images used for the
hide and secret does not affect how well they work. This
work has a "cover image" with 8 bits for each color chan-
nel. Another "cover image" with N x N x RGB pixels can be
used to hide an encrypted image with N x N x RGB pixels
[49]. Even though previous studies required that encrypted
messages be transmitted with perfect decryption, we
relaxed this requirement in our investigation. Regarding
both "carrier" and "secret image," compromises would be
made based on the quality of the carrier and the hidden
image. We briefly discuss the discoverability level of the
detected message’s presence as an afterthought [50]. The
bit rates used were 10% to 40% higher than those seen in
previous research, which showed that buried message bit
rates (i.e., 0.1 bpp) could be found. Even if a hidden mes-
sage is difficult to detect directly, a quantitative analysis
cannot rule it out [51]. This research’s overarching goal was
broken up into two stages in order to introduce a compre-
hensive strategy for

A)	Deploy an end-to-end solution based on an ad hoc
cloud integrated architecture and then assess the
method’s adherence to performance and privacy
benchmarks. Create a deep learning-based steganog-
raphy model for protecting ad hoc cloud-based data
and image transmission. Make an ad hoc cloud archi-
tecture by bringing services in through unreliable and
unreliable networks. The goals of the study, which
were to improve both availability and efficiency, sug-
gest that the technology would work best on local
area networks. Broad Area Networks (WANs) can
be used to test the security procedures. In some
cases, the cloud’s ad hoc nature may not work well
for highly secure systems. When a host suddenly
crashes because of data inconsistencies, it can cause
problems for applications, especially those that send
information to outside monitoring.

B)	Plan the framework of a steganography method that
makes use of deep learning. The model implemented
should be able to hide a “secret image” of size N by
N by RGB pixels somewhere within a “cover image”
that retains the same color depth as the original. Sec-
ond, beyond those studies, it must be able to propose
a method for successfully lowering the limits through
which the “Secret Image” has supplied without
degrading the quality of the original image. The main
problem is that both the “Secret Image” and the secu-
rity of the carrier must be broken.

Proposed model
The proposed design for ad-hoc high-level modules that
were used for implementing an ad-hoc cloud system.
was built based on the V-BOINC, therefore, we inherit
several of V- BIONC features were inherited and an ini-
tial client- server architecture [52], the architecture of
the ad-hoc cloud was discussed in-detail in this section,
then comes a comprehensive design for the implemented
prototype. Figure 4 below represents the high-level fun-
damental components that is a part of ad-hoc cloud com-
puting system structure.

Ad‑hoc cloud computing system architecture
Ad-hoc computing systems should be set up according
to the following rules so that they do not have the same
problem that most cloud computing systems do:

○ Ad-hoc Cloud Model: The ad-hoc cloud model
derives heavily from both public and private cloud
system platforms, hence shares many specifications.
As an example, the ad-hoc cloud represents the PaaS
cloud that allows multi-tenancy and provide appro-
priate QoS [53]. The ad-hoc cloud system implemen-
tation success depends on creating an ad-hoc cloud
model based-on the architecture of the existing cloud
platforms. Now we will talk about the implementa-
tion mechanism of the presented ad-hoc cloud com-
puting model [54].
○ Volunteer computing: The ad-hoc cloud system
would not be able to monitor and control a huge
number of distributed and unexpected resources.
The ad-hoc cloud would include a component
that recognizes the host user accessibility to the
resources. As the virtualized BOINC platform
would be the best choice for the proposed ad-hoc
cloud computing system; because it provides these
features [55].
○ Virtualization: Securing the host resources and
procedures, the virtualization importance was dem-
onstrated in the earlier section regarding V-BOINC;
as the virtualization features like check pointing
might be used for extending the volunteer platform
and provide a system with high reliability for the
‘Cloud Jobs’; to provide fault- tolerance [56].
○ Scheduling: Owing to the ad-hoc cloud system
in-consistency, the reliability feature was considered
as one of the necessities for cloud operations to run
rapidly; extra scheduling algorithms must be devel-
oped that include resource demand, availability,
specification and reliability [57].
○ Monitoring: Beyond the presented controlling and
monitoring approaches by volunteer computer infra-

Page 10 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

structures, were essential to supply data for these deci-
sion schedules. Advanced controlling is also necessary
to provide monitoring for cloudlet, which provides
administrators to expand cloudlet resources [58].
○ Management: With infrastructure management,
administrators can undertake cloudlet, troubleshoot
issues with single hosts, or perform tasks across sev-
eral ad-hoc hosts [59].
○ Resource Adjustment: The possibility of limiting
the cloud process intrusion would decide the viabil-
ity, while this function could be difficult for appliance
in the proposed model; both the basic virtualization
technology and open-source tools can provide this
function [60].

Ad‑hoc cloud server
Ad-hoc servers represent the expansion of V-BOINC
servers. Although ad-hoc systems as well as V-BOINC
servers distribute VMs to volunteer servers, the (Ad-
hoc Cloud Host) can achieve more. It can accept jobs
from ad-hoc cloud users instead of V-BOINC or stand-
ard BOINC servers [61]. We configured the hosts in ad
hoc cloud workloads and VMs that were near optimal
in terms of resource load (current usage) and reliability.

•	 Transmit commands to ad-hoc
•	 Control and configure the system quickly.

These new features transform the V-BOINC infra-
structure into an (Ad-hoc Cloud System) as these two
aspects were previously available through two BOINC
features (VM Service and Job Service), in contrast to
the V-BOINC server, which serves volunteers via a
BOINC node scheme named V-BOINC. Figure 5 illus-
trates the structure of the ad-hoc cloud host.

The ’Job Service’ can obtain ’Cloud Jobs’ through the
ad-hoc hosts and register them with BOINC. After
registration, the ’Job Service’ must notify the ’VM Ser-
vice’ that the ’Cloud Job’ is ready for execution through
the guest on the host. The ’Ad-hoc Cloud Interface’ as
well can provide both users and admins to control their
BOINC users. The tool ’VM Service’ would be distrib-
uted through ad-hoc hosts. Determining near-optimal
ad-hoc migrations of hosts and virtual machines, send-
ing instructions to both ad-hoc hosts and ad-hoc guests,
and monitoring/controlling the overall system status.
Ideally, both ’Cloud Jobs’ and ’VMs’ might be handled
from only one V-BOINC scheme. Nevertheless, this
might not be achievable since there is a need to discrimi-
nate the two entities; as it has more functions than the
standard BOINC servers do, although its architecture to
the standard BOINC servers is comparable.

Ad‑hoc cloud client
The ad-hoc cloud system was represented through
the V-BOINC client add-on, as shown in Fig. 6 below.

Fig. 4  The six main principle features that represent the adapted model of ‘Ad-hoc Cloud System’ model structure from [34]

Page 11 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

Furthermore, for the execution of volunteer applications
on the VM volunteer host, the ad-hoc cloud client must
provide a reliable environment for the ’Job Execution’.
Unlike a conventional V-BOINC client, it has the ability to:

a)	 Create regular VM checkpoints.
b)	 Transmit checkpoints to the optimum ad-hoc hosts’.

c)	 Ad-hoc hosts collect the VM checkpoints from all the ad-
hoc hosts and restore them from terminated or unsuccessful.

d)	 Control both ad hoc and other users.

The structure of an ad-hoc client is more difficult than
the V-BOINC client because of the vast number of func-
tions implemented through the V-BOINC client.

Fig. 5  A diagram that focus on the ‘Ad-hoc Cloud Server’ four main components design between the ad-hoc user and the VM host

Fig. 6  A description of the (Ad-hoc Cloud Client) through its four main components: VM Operations, BOINC Scheduler, DepDisk and Reliabilities

Page 12 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

The main ad-hoc client modules together represented
all the ad-hoc cloud’s user interface, connectivity, lis-
tener, and reliability. The GUI (i.e., BOINC Manager)
controls the ad-hoc host’s membership in the ad-hoc
cloud. Meanwhile, the Listener component awaits any
instructions provided through the ad-hoc server; this
can involve functioning on the VM through the (Virtual
Machines Services Component), which handles all fea-
tures of the VM-VirtualBox connection.

Client and server interaction in the ad‑hoc cloud system
Both the server and the host in the ad-hoc cloud system
communicate with the usage of the BOINC connection
methods [62]. However, V-BOINC have been modi-
fied to allow customized data flow among the server.
For instance, for upgrading the server on the VM status,
BOINC enables client-server connection through send-
ing XML messages that were interpreted locally by the
received object; the host’s information is transmitted to
the server [63]. The authenticator identifies the (Host,
BOINC version and Platform Type), the V-BOINC was
restricted from consuming no more than the accessibility
of 90% from the memory by the volunteer users, which
provided in the volunteer host idle state.

Practical evaluation analysis of the (ad‑hoc cloud system)
A comparison was made between, a) the operation of the
(Ad-hoc Cloud System), b) the process of the (V-BOINC
Server), both client and server tasks and communication
techniques differ in the ad-hoc cloud system; as the ad-
hoc cloud host has to:

a)	 Install the ad-hoc client, after that automatically
requests a VM from the ad-hoc server.

b)	 The ad-hoc host gets a VM in addition to the decom-
pression script.

c)	 The VM is installed at a time it has work to achieve.
In contrast, once there was an established connec-
tion with the ad-hoc server, the VM would be quickly
deployed and ready to operate.

d)	 Various VM images cannot be used if there were not
enough cloud tasks to fill them. In this condition, the
user in the ad-hoc cloud can execute a job into the
ad-hoc cloud server, and then the ad-hoc cloud client
would be ready for the execution.

e)	 In case the job includes dependencies, the ad-hoc
server then might download the ‘DepDisk’ sent
through the user, V-BOINC’s actions were followed
by other procedures.

f)	 The ‘DepDisk’ is attached in this state and the new
VM disk is established and connected in case one
could not exist.

g)	 The new VM should be created, then assigning the
main function task for both ‘Cloud Job’ and ‘Cloud
Data’, which runs the job and shows the results for
the server.

Basically, despite the similarities in client-server
topologies, the individual components of both
’V-BOINC’ and ‘Ad- hoc Cloud System’ were very dis-
tinct. With these features, V-BOINC has evolved from
an ordinary virtualized volunteer infrastructure into an
ad-hoc cloud system, replacing BOINC and its virtual-
ized volunteer scheme.

V‑ BOINC submission system
The BOINC, the application that the volunteer hosts
were utilizing, was generated statically prior to the
server distribution; the V-BOINC platforms were then
brought to the ad-hoc cloud server, following which
BOINC authentication was performed. The first jobs
approved by WS-PGRADE [64] were those submitted
over the "Grid Network". It permits multiple connec-
tions to both the ’Access Grid’ and the ’Desktop Grid’
while requiring scripting for software implementation
on the infrastructure. In addition, the workflow-based
graphical user interface ’WSPGRADE/gUse’ supports
the ’Apache’ server-based Liferay portal; the configu-
ration can be performed on a local or distant host. To
facilitate job submission, WS-PGRADE leverages ’DCI-
Bridge,’ a technology that enables standardized com-
puting infrastructure accessibility [65]. WSPGRADE/
gUse is compatible with BOINC, but it is not a com-
ponent of BOINC; rather, it is a service that commu-
nicates alongside BOINC. Despite its reputation in
the scientific community and the availability of multi-
ple computing platforms, integrating ’WS-PGRADE/
gUSE’ using an ad hoc approach may be difficult. For
instance, ’WS-PGRADE/gUSE’ must be configured
on the local host. Create a unique web entry point for
sending work to the ad hoc cloud system. This obtains
more libraries and packages (i.e., Liferay portal project
[66]). In addition, the system ’WS-PGRADE/gUse’ with
some non-required features, such as ’WS-PGRADE’
and ’DCI-Bridge’, can be used to submit work for future
research on the ad hoc cloud system platform.

Ad‑hoc cloud system GUI
The graphical user interface of the proposed ad-hoc
system is based on the V-BOINC interface. A user’s
online account enables the modification of volunteer
user preferences and the tracking of the status of exist-
ing or previous work [67]. To enable using it with the
BOINC basic interface, testing additional software types

Page 13 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

was delegated as future work. As our testing is limited
to Ubuntu Server 14.02 [68], the ad-hoc cloud user can
choose from a wide variety of operating systems to run a
variety of applications in different circumstances. Users
can peruse V-home BOINC’s page, which lists tasks, to
acquire extensive information about the work. After a
user uploads and submits a ’DepDisk’ file, it is stored in
the jobs/directory of the ’Job Service’ project [69]. ’Sprite.
App’ and ’Sprite.Data’ were renamed along with the
software and other records/files within each numbered
directory in accordance with the proposed method. With
the use of BOINC, a daemon program known as "Task
Creator" [70] is employed; it is mostly used for register-
ing applications and plugins. As soon as a new piece of
software is submitted, it is split by conceivable entities
into software and input files. Using this data, an XML file
describing the properties of a job, including the program
and its input files, is generated [71]. We assume that the
results of any software are sent to a single output file for
testing; hence, we construct an output form file contain-
ing the software’s results. Using BOINC’s "Create Task
Function," these forms register the software with BOINC;
Fig. 7 depicts "Method Call.

The method generate work accepts the ’DB Work’ unit
object as its first argument, which describes the work
unit or ‘Cloud Task’ to be implemented. For instance, the
highest disk / memory utilization rate; because the cloud
job then can launch a VM that can only consume so many
ad-hoc cloud system resources, we let the work unit use
100% of every virtual resource. The next three arguments
represent the input form’s contents and the output form’s
term and destination. The ‘DepDisk’ should be transmit-
ted to the ad-hoc host just before the VM working; to
prepare an (Ad- hoc Cloud Host) for working before the
VM execution phase, there is a need for using the ‘Task
Creation’, and ‘SCHED CONFIG’ object with data related
to the V-BOINC project [72]. Upon a successful function
implementation, the BOINC work-unit was established
and saved in the ‘Job Service’ DB, work-unit ID and
logs were saved as well, then the ‘Ad-hoc Cloud Guest’
receives the work-unit from the ‘Job Service’ DB.

Job scheduler
Job Scheduling is a process that could be implemented
through the Ad-hoc Scheduler when a job is submitted
to BOINC. However, due to the separation of the "VM
Service" and the "Job Service" schemes, the "VM Ser-
vice" is unable to determine whether the "Job Service"
has received a job or not [73]. As a result, the (Work
Unit Listener) Daemon was added along with the ’VM
Service’ that scans for any new work-units in the ’Job
Service’ DB, as the ’Work Unit Listener’ periodically

checks the database. The ’Work Unit Listener’ notifies
the ’Ad-hoc Scheduler’ about newly-added ’Job Service’
work units. The ’Ad-hoc Scheduler’ can begin searching
for a suitable ’Ad-hoc Cloud Host’ to create the ’Ad-hoc
Cloud Guest’ based on the ’Cloud Jobs’ that exist and
are awaiting assignment into ’Ad-hoc Guests’. If the ad-
hoc cloud computing system has enough ad-hoc cloud
hosts to support cloud ’job scheduling,’ this decision
was influenced by the ’Ad-hoc Cloud Host’s accessibility,
requirements, resource demand, and performance. The
typical V-BOINC server scheduler can be represented
as a (Bag of Tasks) strategy in which a job is simply dis-
patched to the ’Volunteer Host’ [8], along with the nec-
essary requirements (i.e., memory and disk space) for
completing the project within a predetermined period.
V-BOINC runs a task on many volunteer computers and
then compares the results to make sure the task was done
correctly.

The (RIDGE System) is a consistent platform [74],
which considers a) performance, b) behavior, and c)
reliability. It has been created based on the V-BOINC
for measuring the ideal task redundancy level. The nor-
mal ‘V-BOINC Server Scheduler’ enhances every task
redundancy standard statically [75]. RIDGE outper-
forms the normal ‘V-BOINC Scheduler’ based on the

Fig. 7  The main parameters used for a work-unit implementation in
a V-BOINC system

Page 14 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

task throughput and might reduce the task completion
time through dynamically modifying redundancy levels.
This is based on the recent condition of the ‘Volunteer
Infrastructure’. Though the ad-hoc cloud computing
system might not use the ‘Job Redundancy’ for provid-
ing reliability, there were various approaches to calcu-
late the system reliability, as it was previously discussed
and compared in other studies [76–79]. Algorithms
that accurately reflect volunteer host standing can help
to confirm that the volunteer host set cannot be com-
bined to upload erroneous results. Some schedulers
have been proven to boost job accuracy while reducing
task completion time. Moreover, the "Reliability Sched-
ulers" can forecast future volunteer host availability to
detect the time in which the volunteer chores should
be executed. The ‘Volunteer Task’ can be broken down
into reduced variable length subtasks and distributed
across multiple volunteers. In case of matching each
volunteer host’s performance to the sub-resource task’s
requirements, the overall job completion time can be
lowered in many circumstances. Volunteer hosts can
be graded depending on the expected download time
for data-intensive apps working within the volunteer
resources. After that, the ‘Volunteer Task’ is assigned
to the volunteer host along with the fastest download
time. Subsequently, the ’Volunteer Task’ is allocated
into the ’Volunteer Host’, scheduling can alternatively
be reliant on White box/Blackbox methods, where a
lot or little regarding the software is identified before
execution. Jobs could be scheduled for the nearest ideal
hosts depend on the resource requirements, then the
nearest optimum host with the needed resources would
be chosen. End-user criteria (i.e., Budget Cost and Per-
formance Management) can also have an affection for
the scheduling decisions, while some other decisions
could be based on: a) computation time reduction. b)
provider profits enhancements and c) the required
SLAs appliance.

Previous papers have studied the potential develop-
ments to the used ’Scheduler’ in the implemented design
for the ad-hoc cloud system [76, 80–82]; as the reliability,
improvement of the scheduling plan would affect:

•	 The overall performance of the ‘Cloud Jobs’.
•	 The total time required for completion
•	 Increase in task throughput

Availability
The ‘Ad-hoc Cloud Server’ keeps a group list of acces-
sible hosts defined by the ’Availability Checker Daemon’
introduced into ’VM Service’ project. The ’Availabil-
ity Checker’ occasionally checks the VM Service DB to

regularly check the time in which an ad-hoc cloud client
last contacted the server. It is available if the client polled
the server within the last 3 min. Ordinary BOINC cli-
ents can communicate with the server for job. In most
circumstances, despite being accessible to run software,
a ‘V-BOINC Client’ might not be able to communicate
with the ‘V-BOINC Server’ for lengthy periods. A ’Peri-
odic Updater’ module has been installed into the client to
check the server connectivity per minute. The ’Periodic
Updater’ is built as a ’pthread’ generated in a time that the
client was created; this time period is saved as a log in the
project server DB, that notify the ’Availability Checker’ in
case any client in the ad-hoc cloud system has enrolled
within recent two minutes. They were inaccessible if they
have not been polled. Consequently, ’Ad-hoc Scheduler’
scans the ’VM Service’ DB for any available hosts.

Host hardware requirements
Formerly, accessible ad-hoc cloud hosts were assessed
in order to check if they could physically perform both
ad- hoc cloud guest. Assuming both a cloud task and an
ad-hoc cloud guest utilize fair amounts of resources, we
cannot identify how many resources would be needed
before the execution. Consequently, we suppose every
ad-hoc host has 16 GB of RAM, and 80 GB of storage. It
is conceivable to compare the consumed both times and
resources of previously run ’Cloud Jobs’ to anticipate both
times and resources of a newly submitted ’Cloud Task’.

It is difficult to identify if a cloud work, before its
compilation, shares features with the earlier compila-
tion. This task merits further research; when launched,
the V- BOINC client immediately records the volunteer
host’s resource status. These resources have restric-
tions and might be configured by the user options in
the V-BOINC client and ’Volunteer Software’. The
‘Cloud Scheduler’ observes the resources which the ad-
hoc visitor or cloud job possibly access. Ad-hoc hosts,
which might not be able to meet the resource require-
ments, were eliminated from consideration. OpenStack
nova-scheduler does something similar by calculating
acceptable servers for VM placement using the filters
(Core – RAM – Disk) filters.

Host resources
The supplementary ad-hoc cloud hosts’ resource loads
were recovered, this can happen through adding (Gan-
glia), “which is a scalable, distributed monitoring tool
for high-performance computing systems” [83], this
tool would be an addition for the client in the ad-hoc
cloud system, the host user might not need to setup
‘Ganglia’ independently after the client setup in the ad-
hoc cloud.

Page 15 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

The ‘Ganglia gmond daemon’ gathers data form the
hosts (CPU, Memory, Disc, and Network Usage) in
the ad-hoc cloud system. Network utilization could be
valuable in identifying which ‘Cloud Jobs’ can particu-
larly fit for the ‘Ad- hoc Cloud Server’. ‘Ganglia Daemon
Tool’ collects the ad-hoc hosts’ data in rrd files. RRD
Tool was utilized to be able to provide ‘Resource Loads’
[84], which collects the CPU requirements for every 15
second interval throughout 120 seconds. The ‘Ganglia’
averages monitoring data every 15 seconds in normal
state, but we average load every two minutes to smooth
out real-time oscillations and offer a good sense of
current demand. In case the ‘OpenStack Scheduler’
is incorporated for the ‘Ad-hoc Scheduler’, the nova-
scheduler has started selecting an accessible ‘Ad-hoc
Host’ that has the minimum requirement for working,
‘Ad-hoc Host’ processes not preferred to exceed more
than 65% of the CPU that has only RAM of 1GB.

‘Ad-hoc Scheduler’ uses the above output to assess
in case the existing load is suitable for both ‘Ad-hoc
Guest’ and ‘Cloud Task’ implementation. It also stores
prospective ‘Ad-hoc Hosts’ DB entries which could be
utilized to conduct pending cloud jobs. The ad-hoc
hosts should provide the minimum requirements; in
order to provide the minimum accepted performance
criteria. For instance, the ad-hoc server with 640 MB
RAM (Lower than the 1 GB requirement), meeting our
512 MB minimum accessible memory requirement, but
the low possibility for accessing greater resources could
not provide the ’Cloud Job’ the needed performance
in a time that more resources were required. Conse-
quently, the ’Scheduler’ filters the servers in the ad-hoc
cloud system depending on both ’Resource Loading’
and ’Hardware’.

Ad‑hoc cloud host reliability evaluation
Owing to the unpredictable nature of ad-hoc cloud sys-
tems, from which systems can fail or shutdown at any
time, host reliability must be considered, its reliability
was determined by five factors:

a.	 ‘Cloud Jobs’ pointed to ad-hoc host earlier.
b.	 Ad-hoc hosts overall completed ‘Cloud Jobs’.
c.	 User Errors.
d.	 Guest Failures.
e.	 Host Resource Loading.

Furthermore, any type of software/hardware issue that
prevents the client from working (i.e., Kernel Panic) can
cause host termination; the guest errors include configu-
ration, installation, processing, and shutdown failures;
the ad- hoc cloud server monitors reliability factors (a)

- (c). BOINC automatically saves the allocated number
for ‘Cloud Jobs’ per every ‘Ad-hoc Host’ in the ‘Job Ser-
vice’ DB. The ‘Ad-hoc Scheduler’ should be requested
from the ‘Job Service’ database. VM Services have an
‘Availability Checker Daemon’ that could terminate or
fail any ‘Ad-hoc Host’ after being without activity for a
couple of minutes. A cloud job’s ad-hoc client monitors
reliability of factors in previous mentioned points (d) and
(e). Timeouts can identify virtual machine configuration
errors such as VirtualBox registration failures or DepDisk
failures. The ’VBoxManage’ API polls the ad-hoc cloud
guest each 10 seconds to check the working operation,
to ensure that non-operational ad-hoc cloud guests were
identified fast and efficiently. The running VMs method
returns a set of VMs that were still running.

‘Ganglia Monitoring Tools’ provide functions for
controlling and monitoring the ad-hoc host’s existing
resource overloads [85]. It monitors non-BOINC soft-
ware’s total CPU consumption and suspends BOINC if
their overall CPU utilization exceeds a threshold con-
figured through a volunteer user. Ad-hoc cloud host
resource utilization can influence reliability in case
whatever monitoring approach is used, in case the host
might be substantially exploited by the ad-hoc cloud host
processes [86]. Consequently, the (Cloud Job) performs
poorly and can have a long time for finishing. The ad-
hoc cloud client notifies the ad-hoc cloud server regard-
ing any failure that occurs to the ad-hoc cloud guest. The
ad-hoc cloud server has the detection ability of any type
of poor performance regularly through the host, the reli-
ability level of an ad-hoc host can be measured at a time
in which:

a)	 The ‘Ad-hoc Cloud Job’ has completed its task.
b)	 The ‘Ad-hoc Cloud Guest’ stops working.
c)	 The ad-hoc cloud host has not polled for 2 min.

Decision procedure
The prospective execution candidates list has been cre-
ated based on ad-hoc cloud host (Availability, Hardware
Specifications and Existing Resource Demand). This list
would then be ranked with every ’Ad-hoc Cloud Host’
reliability, the ’Ad-hoc Cloud Scheduler’ chooses from a
list the most dependable host to allocate the ‘Cloud Job’.

During the schedule process of n number of ’Cloud
Jobs’, the first n number of users would be selected,
through this way it can be confirmed the reputation
level of ad-hoc cloud hosts with the existence of enough
resources always have work to do. This is a primary
scheduler, which has a possibility for improvements as
can be shown as an example in Table 2. For instance,
assigning a single ’Cloud Job’ to ’Ad-hoc Server’; because

Page 16 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

building a complicated ’Job Scheduler’ can be beyond
the focus of the proposed work, the performance assess-
ment and potential inclusion can be left for an upcoming
research work.

Cloud job working mechanism
In this part, an illustration for the selection process of
the ‘Ad-hoc Host’, it was configured for making the nec-
essary procedures to let the ’Cloud Job’ to process in the
VM. Since both conventional BOINC and V-BOINC
represent volunteer infrastructures, the host can con-
trol both implementations. Therefore, BOINC clients
rarely get notifications from servers unless they ask for
them. Ad-hoc servers can communicate with users with
no need for waiting for users in order to begin com-
munication. A job receiver can receive a task from any
host. After that, the ‘Ad-hoc Server’ re- directs the cli-
ents in the ad-hoc cloud system to the basic V_BOINC
server message provided to V-BOINC clients. The ‘Lis-
tener’ then the message would be parsed to identify the
action needed to be taken.

The (Job Receiver Listener) should keep the parsed
data and start obtaining the ’DepDisk MPI’ along with
an ad- hoc cloud system, such as V-BOINC, DepDisk
will connect to the retrieved VM and start it. The ‘Job
Receiver’ after that can direct the VM’s ‘V-BOINC
Client’ with the aim of communicating with ‘Job Ser-
vice’ that exists at this URL http://​129.​205.​80.​10/​Job_​
Servi​ce. The ad-hoc cloud-computing client leverages
the VirtualBox API’s guest- control function. Despite
knowing the work units to give every ad-hoc visitor, the
guest sends the ‘Work Unit’ ID request to the server.
The (Fault Tolerance) was delivered through the ad-
hoc computing system in specific to the client-server
interaction. For example, instead of periodically check-
ing for updates for every guest account, we use P2P
checkpoints that were assigned to the nearest optimum
ad-hoc hosts number, all in the matching cloudlet, to
achieve high reliability. The term cloudlet refers to a
group of ‘Ad-hoc Guests’, which share software require-
ments and ’DepDisk’, an example for the data analysis
interface through the cloudlet within the process can
be illustrated through Fig. 8 below.

If neither the ‘Ad-hoc Cloud Host’ nor the ‘Ad-hoc
Cloud Guest’ fails. Then, the ‘Ad-hoc Server’ notifies
the other ad-hoc cloud host for the checkpoint recov-
ery, the peer to peer network was represented in Fig. 9
below, the essentials of the implementations were men-
tioned in the below points:

•	 Each of ‘A’ to ‘N’ ad-hoc hosts will include an exe-
cuted cloud job, or they were waiting for commands

Table 2  An example for individual ‘Candidate List’ in ’Ad-hoc
Scheduler’

AdhocHost ID Reliability
Rate

CPU Memory Disk Space

14 96 37% 591 Mb 401 Gb

93 77 81% 1.8 Gb 967 Gb

22 58 96% 5.7 Gb 150 Gb

3 39 38% 854 Mb 13 Gb

Fig. 8  An example of the ‘Cloudlet’ controlling system interface while analyzing SQL live data [4].

http://129.205.80.10/Job_Service
http://129.205.80.10/Job_Service

Page 17 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

on the configured mechanism and set the guests
based on the configured method.

•	 Firstly, the ad-hoc cloud guest ‘A’ will obtain and exe-
cute the ‘Cloud Job’. Secondly, to confirm the check-
points transferring to reliable ad-hoc cloud hosts, the
guest should be periodically check pointed.

•	 The ad-hoc cloud host ‘A’ terminates prematurely,
disrupting the guest A’s (Cloud Job) implementation
after a period. Because of this failure, it is not recom-
mended to be used in a production environment.

As previously mentioned, the implementation phase
of the (Ad-hoc Cloud System) is mainly based on the
Berkeley Open Infrastructure for Network Comput-
ing (BOINC) [87], which is a user-server open source
solution that was chosen as a framework to harvest the
non-used resources from unreliable hosts and inte-
grate them to be part of the system execution. A virtu-
alized scheme of BOINC was created, which is called
V-BOINC. It makes the best utilization of virtualization
for compiling BOINC features through VMs, starting
with V-BOINC servers and ending with BOINC hosts,
including administration of the modified host BOINC,
which is called ’V-BOINC Host’. It is used for install-
ing the BOINC framework’s plugins. Figure 10 below

illustrates the overall operation cycle starting from ’VM
Request’ to ’Job Result’.

Firstly, the cloud host imports the data files through
the GUI, the overall imported data into the service were
located in a folder ’job’ inside the ’Job Service’ project,
then the process will continue through the developed
’Work Creator’ tool, this tool identifies whether the
import is application or data, along with adding XML
information to the files, after that the ’BOINC API’
is called for creating the ’BOINC Work Unit’. As the
’VM Service’ is notified with the ‘Ad- hoc Cloud Job’
creation through ’Job Service’, which allows the ’VM
Controller’ tool to implement a VM-based volunteer
resources regarding the task execution, this operation
is represented in Fig. 11 above. Then, the ’job’ in the
proposed architecture can be executed after a notifica-
tion is being sent, a ’job’ schedule will be assigned to
the host with high reliability through the ’VM Service’.
Based on certain specifications, the scheduler works
depending on:

a)	 The previous overall cloud jobs executed.
b)	 The previous overall ‘cloud jobs completed.
c)	 The failure rate of the host (hardware or software).

Fig. 9  A representation for the peer-to-peer network for achieving reliability, where the failed VMs, restored VMs and failure probability VMs are
represented with the colours of red, blue and grey respectively with their rate in percentage

Page 18 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

d)	 The failure rate of the guest VM errors (configura-
tion, installation, processing and termination).

e)	 The existing available resources.

The evaluation of the reliability measurement for
every host through the data transmission rate between
both ad- hoc (Host - Server) would be measured as
explained in equation 1, in which:

Where:
NF: The overall failure rate of both ad-hoc (Client - Guest).
𝐶𝐴: The overall jobs scheduled for the (Ad-hoc Cloud

Host).
𝐶𝐶: The overall finished jobs through the (Ad-hoc

Cloud Host).

(1)

Host Reliability =

⎧⎪⎨⎪⎩

0, if NF = CA

100, if NF = 0�
CC

CA

�
∗ 100 Otherwise

The VMs auto-checkpoints were made through the
usage of (Snapshot) function in the VMs API. Plac-
ing the snapshot files in the auto-assigned destination
folder in-which the VMs images were saved. There were
various conditions (i.e., VM Settings) that the auto-
checkpoint through the VM happens; those configu-
rations represent the hardware settings (i.e., Memory
and Desk Size) for each VM. The recent condition to
the existing VDI in each VM, this was considered to
be done through ’differencing images’ that save all the
operations’ logs. The recent memory condition, in case
the snapshot is saved during the VM processing, the
resultant file size depends on:

The assigned memory size for the VM.

a)	 The application memory usability.

Through memory size restrictions, the resultant
saved file will be low-sized. However, it can cause some
effects on application performance negatively. Regard-
ing monitoring the storage size that is being utilized by

Fig. 10  The ‘Ad-hoc Cloud Client-Server’ work flow design starting from data retrieving form the ‘Dependencies’ going through V-Boinc server,
V-Boinc Client, Boinc VMs ending with the output from the ‘Job Results’

Fig. 11  The ‘Ad-hoc Server’ diagram relation between BOINC and the database through both ‘Job Services’ and ‘VM Services’

Page 19 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

the ‘Ad-hoc Cloud Host’, V-BOINC was assigned to erase
the unneeded snapshot. For snapshot recovery, the ’Dif-
ferencing Image’ was turned on. As previously stated, the
adapted steganography method makes the best use of
auto-encoding systems. However, not only a bottleneck
for encoding an image is used. Also encoding two images;
with the purpose of making the raw image (i.e., container
image) has the highest possible similarity with the final
image (i.e., cover image). The main network mission was
to minimize the error rate through usage of equation 2 as
shown below:

Steganography based‑deep learning approach
The closest previous presented idea to the implemented
steganography in this study was the image size reduc-
tion via auto-encoding networks, regardless of two terms
were commonly used interchangeably [88–91]. The deep
learning model would be trained through a group of hid-
den images’ data using ‘Cover Image’ parts.

Firstly, the ‘Preparation Networks’ gradually expand the
‘Secret Image’ length towards the ‘Cover Image’ length,
dispersing the ‘Secret Image’ bits throughout the full N ×
N pixels, tests with smaller images were avoided for size
considerations, and rather than we focus on real photos.
It was crucial to convert the color scheme into further
useful elements for concise image recording - that has
edges – for overall concealed images sizes. The ’Prepa-
ration Network’ trains the hidden network in order to
extract the ‘Secret Image’.

Regularly, with the existence of a size of M × M ‘Secret
Image’ which was minor than the ’N × N’ ‘Cover Image’,

(2)

the ‘Preparation Network’ gradually raises the secret size
image till reaching as the same size of the ‘Cover Image’;
because of the ‘Secret Image’ distribution throughout
the overall N × N pixels. ‘Preparation Networks’ convert
color- based pixels into further usable characteristics,
which defines deformations done mostly by the ‘Prepara-
tion Network’. This represents the function strength with
all concealed images, regardless of their size, as repre-
sented in the Fig. 12 below, where:

•	 Left Part: Full-colored image.
•	 Center Part: ‘Preparation Network’ extracts data

channels that represent the center network input.
•	 Right Part: Edge detectors scaling in.

The ’Preparation Network’ alters the three-color
streams; the second stream was activated for greater res-
onance frequencies.

The ’Hiding Network’ represents the main network
that imports both the ‘Cover Image’ and the ’Preparation
Network’ output and the resultant created part called
the ’Container’ image. The (N × N) represents the input
size in pixels for this network, convolution ‘Cover Image’
RGB streams other than the modified ‘Secret Image’
streams with depth concatenation. More than thirty dif-
ferent network topologies were tested along with both 1.
Variable hidden layer, 2. Convolution sizes. The output
of five convolutions made up the optimum output out
of 50 filters. Finally, the image receiver that represents
the decoder uses the ’Reveal Network’, it gets only the
’Container Image’ without neither both the secret nor
the ‘Cover Image’; as the ‘Cover Image’ would be deleted
by the decoder to expose the ‘Secret Image’. When both
the ‘Preparation Network’ and ‘Cover Image’ were used

Fig. 12  An example that clarifies the resultant deformations output through the ‘Preparation Network’

Page 20 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

together as inputs, the ‘Hiding Network’ constructs
the Docker container. These channels were the depth
combined:

1)	 RGB channels of the ‘Cover Image’.
2)	 The ‘Secret Image’ converted channels that were fed

into this network.

As stated previously, c = ‘cover image’, s = ‘secret
image’ and β = ‘errors rate reformation’, both errors were
measured along with every error impact. Specifically, the
error part ||c − c′|| cannot be the same for the reveal
network that imports the ’Cover Image’ and exports the
‘Secret Image’. Contrariwise, all the error signals detected
by the systems β ||s – s′|| for re-building the hidden
image, through this way the process cycle that modeled

earlier in the ’Preparation Network’ is being controlled
along with ‘Cover Image’ reconstruction. Figure 13 below
shows the three networks during the training process for:

a-	 Preparation Network.
b-	Hiding Network.
c-	 Reveal Network.

The proposed framework designed in the Fig. 14 rep-
resents three trained phases in one network. Neverthe-
less, it was less difficult to divide them into three main
networks to describe them easily. About 20 models of
this network, including a different hidden layers’ num-
ber. In addition to convolutional sizes, were tested for our
research; the optimum had five convolution layers using
35 filters. Eventually, the image transmitter utilizes the

Fig. 13  The three networks (Prep Network, Hiding Network and Reveal Network) were trained as one network, Error Term ||c - c*|| affected both
(Prep Network) and (Hiding Network) while Error Term ||s – s*||

Fig. 14  The proposed system in divided in three main parts. a Preparing the ‘Secret Image’, b Concealing the image through the cover image and c
The reveal network usage for the hidden image exposure

Page 21 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

‘Reveal Network’, which can be considered the decoder.
Neither the cover nor the hidden images were sent to it.
The hidden data was revealed after the decoder removes
the ‘Cover Image’. During the network training phase, a
small rate of noise volume was injected into the second
network’s result (such as the created container image)
to confirm that the hidden picture is not automatically
encoded using LSBs. However, to prevent the hidden
image recovery from being contained solely in the LSB,
a reverse engineering was used towards the noise for
reversing the LSB every now and then. Furthermore, a
practical exploration to the network functions.

Experiments
The implementation The implementation phase was
accomplished by utilizing eight ASUS ROG Strix
GL702VS with AMD Radeon RX 580 4 GB processor,
RAM 32 GB DDR4 and a 512 GB SanDisk SSD hard disk
with Windows 10 [92], BOINC 7.16.20 [93] and VMware
15.2 [94]. The optimal checkpoint rate was determined to
be 15 per hour for a minimum of 2.52 GB of transmit-
ted data from each ad-hoc client. If in a worst-case sce-
nario, eight ad-hoc clients obtain a checkpoint from the
transmitter, the transmitter is capable of transmitting
8.2 GB of data every hour. Consequently, a supposition
would suggest that the ad-hoc cloud system has multiple
hosts for each working visitor. Consequently, consider-
ing the execution increment rate of "ad-hoc guests" and
"Cloud Jobs," the network failure rate increments for sev-
eral checkpoints that are compiled in concurrently. The
Cloud Job would be terminated if "Ad-hoc Client" assigns
"Ad-hoc Guest" as inactive and sends feedback to "Ad-
hoc Server". As indicated previously, in the event of a sys-
tem guest failure, the ad hoc scheduler would select the
optimal client for reintroducing the visitor into opera-
tion. While gathering requests for restoring the required
checkpoint, the ad-hoc client would compile a series of
successive events. According to the earlier ’Ad-hoc Cli-
ent’ evaluation of the assigned task in the overall ad-
hoc system, the total operation will likely be completed
within a minute.

The primary focus was the testing phase of deep steg-
anography operation performance on the ’Ad-hoc Server’,
to determine the server’s ability to operate in the ad-hoc
cloud system environment. AdaM [95] was used to con-
struct the three networks, while ImageNet was the pri-
mary dataset utilized [96]. The testing portion of these
networks comprised 1,000 photos from this dataset; to
evaluate the final output of the ’Cover Image’ encoding
with no ’Secret Image’ existence ’= 0’ across the same
network, since it gives the optimal reconstruction of the
’Cover Image’ failure through the same network. While
it is possible to replace the picture measurements, there

is an ongoing recovery process. Therefore, it can result
in a total reduction of pixel variation. It is necessary to
consider the error rate while constructing a container
using LSB replacement [97]. Using an expected average,
the persistent bits were reset to produce a fresh image in
which the noise was fully concealed. Using this method to
reconstruct the "Cover Image," the pixel intensity loss for
each channel was 4.43 (scaling from 0.0 to 255). Using the
median value for the deleted LSB bits would result in a
maximum average reconstruction error of 3.81 bits. This
inaccuracy of 3.0 or more was expected when the average
value was used to fill in the LSB. Removing 4 bits from
the encoding of a pixel reduces the number of intensi-
ties that may be represented by 16 times. By selecting the
average value to replace the missing bits, the highest pos-
sible error is eight, while the average error is four, pro-
vided that bits are equally distributed. Consider using the
average value for ’Cover Image’ to avoid any confusion.
Furthermore, the LSBs of the ‘Cover Image’ were stored
where the ‘Secret Image’ MSBs were stored. Therefore,
those bits must be used in this encoding scheme, and
hence the larger error. The reason which led to the recon-
struction cover image’s error being more than 3.81 is
the usage of MSB from the ‘Secret Image’ instead of the
LSB in the ‘Cover Image’. This results in a higher error
rate than utilizing the LSBs average values, while both
secret and cover samples were obtained within a similar
range, as they were far superior to the ones in our cur-
rent set-up, as can be illustrated from Fig. 15 below. If the
approximate amount was utilized to change the LSB, the
error rate of 4.0 was anticipated because 16x fewer inten-
sity levels could be presented by eliminating 4 bits from
the pixel’s encoding. Considering equally distributed bits,
using the arithmetic mean to replace lost bits results in a
total deviation of 8 and a median failure of 4. However,
the cover image’s LSBs were saved in the MSBs of the
hidden image. For clarification, this encoding strategy
requires the usage of those extra bits, which could lead to
many mistakes. As a result, there was a need to demon-
strate the drawbacks of this approach.

Several Steganographic approaches anticipate that an
attacker does not have a high detectability rate to reveal
the original ‘Cover Image’ (the encoded ‘Secret Image’
was not included) [98, 99]. However, in case the original
image was discovered or whatever information might be
gleaned regarding the ‘Secret Image’ in the case of the
decoding network unavailability, As it is shown in Fig. 15,
there was no difference between both the initial ’Cover–
Container’ and after it had been enhanced. It is essential
to highlight that the training was conducted for networks
using images from the (ImageNet) dataset, in which a
wide range of images were covered. Nevertheless, it is
important to analyze the impact when different types of

Page 22 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

features were employed. To illustrate this, five images
were included in Fig. 16. Pure white images were uti-
lized in the first row to monitor changes when a colorful
‘Secret Image’ was hidden. Using the ‘ImageNet’ dataset
of images in training, this basic scenario was not really
observed; the ‘Secret Image’ changes to consistent noise
in the 2nd and 3rd rows. As from the observation, the
retrieved ‘Secret Image’ was quite noisy, in spite of the
container image ‘4th column’ including only a small noise

volume. Circles and consistent noise regarding the last
two rows replaced the cover artwork. Recognized por-
tions of both the "Cover Images" and the "Secret Images"
could no longer be reconstructed due to considerable,
but predicted, faults in the process.

The left portion of Fig. 17 represents the control, as the
statistics in the top-left corner represent the change in
bit rate in only the container’s red channel; similarly, the
volume was correlated with the bit’s significance; this is

Fig. 15  The results consist of three phases sets, a It includes both the main ‘cover image’ and ‘Secret Image’, b Reconstructed Image and c) Secret/
Cover error rate after improvement by 5x, the lowest error rate in the first row (2.8, 4.2) while the highest error rate in the last row (4.3, 7.8)

Page 23 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

completely predictable, as the same can be said for both
black ’B’ and orange ’O’ channels. Consequently, a similar
bit flip within the container image affects all color char-
acteristics of the retrieved "Secret Image. For instance,
the reconstruction of the ’Secret Image’ was affected by
a single bit flip involving any color channel, which affects
all color channels within the container image. In addi-
tion, the error disregarded the priority order of the bit
positions. In addition, the data of the ’Secret Image’ was
dispersed across the color channels, which is why it had
remained undetected until now. StegExpose did not find
any encodings, but such a large volume of data could be
easily discovered using other methods. Similar studies
have demonstrated that deep neural networks can com-
pete with and frequently outperform more established
steganalysis techniques based on manually selected
image characteristics. Numerous non-blind steganalysis
techniques have been reported; as a result, they believe
they can exclusively locate photographs that have been
concealed using well-documented techniques. Therefore,
it is easier to steganalyze but harder to conceal. Instead of
examining the practical implications of this assumption,

the author does not do so. From this, it can be concluded
that any type of change to the bit position through a ran-
dom channel in the ’Container Image’ can have an effect
on the creation of the ’Secret Image’ via the overall color
channels. In addition, there is no bit order positioning
standard that the error can adhere to.

Results discussion and performance analysis
The proposed model of ad-hoc cloud perception was
evaluated in terms of security and reliability. The reli-
ability was tested by using 9 nodes. In order to make an
environment simulation with a reliable level, the ‘Nagios
Network Analysis Tool’ was used for 14 days on 5 hosts.
The resultant data of this monitoring operation was
parsed and calculated for every host performance for an
hour. The hour in which three hosts got the highest per-
formance represents the optimum hour. Consequently, to
test the security level, the focus was to enable the possi-
bility of validation to encode large data volumes through
an image using a restricted visually perceptible object that
provides the ability to hide the data presence from being
detected by a machine. At first, the ‘Secret Image’ data

Fig. 16  The images result in three doubled rows for ‘Cover Image’ and ‘Secret Image’ in three conditions: a Original Images, b Reconstructed
Images, and c Residual Error, along with the pixel error rate on the right side

Page 24 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

location should be identified to know in case the network
was hiding the ‘Secret Image’ data in LSB for the ‘Cover
Image’. Many existing tools were developed for the hid-
den data identification in the least significant bits. Steg-
Expose was chosen to measure the detection rate of the
hidden data in various tested samples. StegExpose is an
open-source toolkit that is utilized in steganalysis. When
the threshold was 0.15, the result was different all over a
wider range. As represented in Fig. 18, the StegExpose
numbers represent the receiver operating characteristics
of the Report on Compliance (ROC) rate comparison
between (False Positive Rate) and (True Positive Rate)
during the embedded image detection operation through
the proposed steganography approach. In previous stud-
ies, it was found that machine learning has the ability to
compete or even outperform traditional ‘Steganalysis’
approaches, which rely on hand-picked image attrib-
utes. Even though different "Steganalysis" algorithms can
find most of the hidden images using well-known hiding
techniques, and even though the data access option for

the cover image allocation is still available, this makes the
work of "Steganalysis" much easier while making the job
of hiding even harder.

Virtual machine recovery process
In the event that the ad-hoc server receives a notification,
the ’Ad-hoc Cloud Hosts’-implemented checkpoints must
be activated. The intended P2P strategy has conclusively
determined the resultant overheads associated with peri-
odic checkpoints as well as the potential for traffic man-
agement that were generated via a resource network. The
VM recovery performance expenses must be considered
when establishing a time limit for the Cloud Job. If an ad-
hoc client determines that an ad-hoc user has stopped
working, it notifies the (Ad-hoc Server) about the ter-
minated (Cloud Job), the nearest optimal ’Ad-hoc Cloud
Host’ selected by the (Ad-hoc Scheduler) for the recov-
ery process of the (Ad-hoc Cloud Guest), the decom-
pression process for the checkpoint, and VM recording,
and then completes the recovery. Figure 19 illustrates

Fig. 17  Changes in bits in the container image have the same effect on all the colors in the hidden picture that was retrieved

Page 25 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

the processing times required to calculate the perfor-
mance of a cloud-based operation over time. From the
moment of the ‘Ad-hoc Client’ detection regarding any
non-functioning ‘Ad-hoc Cloud Guest’ to the moment
of the recovery of the "Ad-hoc Guest" on another "Ad-
hoc Host". The overall operation takes around 60 sec-
onds. The operation’s overall time calculation was made
through reliability measurement; the recovery process
would averagely take about 35 seconds. In the event that
any of the ’Ad-hoc Host’ or ’Ad-hoc Server’ goes down,
the ’Ad-hoc Server’ cannot detect failure. In the event of
early detection of a failure, the recovery operation may
take longer to complete, averaging about 120 seconds
on average. Furthermore, an assumption was made that

availability for one ‘Ad-hoc Host’ should minimally exist
to schedule the recovery through the ad-hoc scheduler.
On the contrary, the time it takes the ‘Ad-hoc Host’ to
be accessible could make the complete time for system
recovery longer as well; it should be mandatory for the
‘Ad-hoc Client’, which was chosen by the ‘Ad-hoc Host’,
to make a checkpoint recovery. Lastly, in the event of the
recovery operation’s success, the client side would notify
the "Ad-hoc Server".

Cloud system performance evaluation
The execution level comparison of ’Cloud Jobs’ between
the ’Ad-hoc Cloud System’ in the proposed study and a
general host was performed on the Amazon platform.

Fig. 18  When using the proposed steganography analysis to identify hidden images, the rate comparison between (False Positive Rate) and (True
Positive Rate)

Fig. 19  The recovery process overheads of (Ad-hoc Cloud System) through time in seconds

Page 26 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

Specifically, the evaluation includes execution time in
addition to the checkpoint and VM recovery operations.
The total operation time was determined from the time
the job was submitted until its completion. The check-
point configuration has been set to 50/hour in an effort
to incorporate the VM recovery time. The transaction
has already taken approximately 35.8 seconds to com-
plete. Memory, I/O, and Disk resource executions were
performed on the Ad-hoc Cloud System prototype. Fig-
ure 20 depicts the results of a comparison of resource use
over time between the suggested ad-hoc cloud prototype,
a typical public cloud, and Amazon EC2. As anticipated,
there was a significant variation in the overall (Cloud
Job) execution time between the proposed ad hoc cloud
prototype, the public cloud, and Amazon EC2. The vari-
ance in processor timing was caused by hardware-based

virtualization, which results in a lower throughput than
Amazon EC2. However, the overall execution time can be
reduced if no migrations occur during the procedure. On
the other hand, it was projected that the overall amount
of time would increase by 15% to 25% for each migration
procedure that occurred within the system.

The (ad‑hoc cloud server) performance
Subsequently, the focus would be on evaluating the per-
formance of the ‘Ad-hoc Server’ that was implemented
in our experiment; to measure the operation level the
server can reach within the ad-hoc Cloud prototype
simulation. The ‘Ad-hoc Cloud Server’ was observed
through the (Command and Control Message Specifica-
tion) through the CPU within one hour. As illustrated in
Fig. 21, the ‘Ad-hoc Cloud Server’ has used its two main

Fig. 20  A comparison of the proposed (Ad-hoc Cloud System) and (Amazon EC2) performance metrics (Input/output rate, Memory utilization, and
Disk space)

Fig. 21  CPU usage rate in percentage measurement in the (Ad-hoc Cloud Server) within 60 min

Page 27 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

processes within the 12 minutes of experiment, it was
noticed a huge increment in CPU usage due to ‘BOINC
daemon’ that was utilized in both ‘Ad- hoc Server’ and
‘Ad-hoc Clients’; as the utilized memory were 3.56 GB
out of available 4.0 GB. The limitation in this part is not
in the CPU usage level, but due to the work-units that

were hosted on multiple VMs in the ‘Ad-hoc Cloud Host’
was the main reason for the high CPU usage, which can
represent an over CPU capacity usage on large scale net-
works, as illustrated in Fig. 22.

As shown in Fig. 23, there can be a major difference
regarding the software execution time. In this study,

Fig. 22  The data input/output in bytes per second for the ‘Ad-hoc Cloud Server’ through 60 min

Fig. 23  The time that has been taken by the (Ad-hoc Cloud System) to execute referred as the ‘Execution Time) in seconds throughout the daytime
in hours

Page 28 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

the evaluation of both the lowest (41 minutes) and the
highest execution time (82 minutes) has been done for
12 hours continuously. This difference in time was still
not acceptable as it could result in high costs for the user
for each usage hour. As an example, if the user tried to
execute software at 8:00 am, it might take 82 minutes at
most to finish the task, which is still considered a limi-
tation; for each additional minute, the user might be
charged with a higher cost.

Data utilization charging method
The service (Pay as You Go) that was being delivered
by Amazon EC2 was charging its users for using both
cloud resources and data packages in GB for every pass-
ing hour [100]. The charging rates for both ‘Storage’ and
‘Instance’ were low when compared to the ‘Data Trans-
fer’ rate charging, as there were various complex matrices
involved during the transfer (i.e. packet size, transferred
packets numbers, and data type) for instances and the
user. The test here is to evaluate Amazon EC2’s designed
transfer approach for controlling the cloud users dur-
ing data transfer. The evaluation was carried out on a
CentOS 7.2 i386 server [101], with various types of data
transferred from numerous cloud users, and a compari-
son made between the actual data transferred and the
transferred data measured by Amazon EC2.As an exam-
ple, an installation for a random application, the pack-
ages for the application were installed on both the local
machine of our implementation and the CentOS 7.2 on
(Amazon EC2), as illustrated in Fig. 24. “Cloud Watch”
is a packet analyzer tool, which was used to measure
the volume of the transferred data every hour, while the

utilization report from our local machine was used from
the other side.

Deep steganography performance results
As shown in Fig. 25, the enhancement level of the remaining
image can be increased by five, ten, or twenty times.

•	 First Row: The residue matching high rate regarding
the ‘Cover Image’ (at 20x).

•	 Second Row: It contains a combination result of both
types of images (cover - hidden).

•	 Third Row: ‘Secret Image’ aspects were exposed.

The comparison can only be done with an original
image that has not been changed. One standard way to
hide a “secret image” once it has been placed in a “cover
image” is to use cryptographic encodings. As an extra
choice, we show how to change the network’s error func-
tion. It was the relationship between the cover image’s
residual and the secret image’s corr (Rc, S), where
Rc = ||C C′|| and S denotes the ‘Secret Image’, that
caused the most concern. Various several distinct defi-
nitions of this term were evaluated. In the results given
in Fig. 25, the scale was assessed to be (0.15 x Channels
x Number of Pixels). Even with 20x of residual image
enhancement, various ‘Secret Image’ characteristics were
eliminated; this was accomplished by minimizing the
residual correlation only with encrypted images; because
of their strength and sturdiness, the reconstructions’
integrity has degraded in a few random places; the objec-
tive of this section was to demonstrate that a significant
data volume could be encoded via a single image while

Fig. 24  Measuring the data transmission between the implemented (Ad-hoc Cloud System) through the utilization report and (Amazon EC2)
platform through the Cloud Watch

Page 29 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

still leaving several discernible artifacts. Despite this,
no effort has been made to conceal the existence of this
data from machine detection. Since up to the majority of
a document’s contents are hidden messages, numerous
measures can be used to make it more difficult to decode.
In order for the network to conceal the existence of the
secret image, it was necessary to determine the loca-
tion of the hidden image’s data. Inconsequential cover
image fragments were insufficient to disguise the secret
image’s existence. The LSBs may include data that might
be revealed using a variety of methods. StegExpose, a free

toolbox for steganography, was used to see if the hidden
images could be found.

Testing the deep steganography performance
towards multiple attacks
In case for an accessibility to un-authorized users, the
(Geometrica Attack) has a high rate of resistance to
images with watermarks, the danger of these attacks is
that they have the ability to alter both of the image’s ‘data’
and ‘features’ as the output of a deformed version. In this
study, both (Rotation Attacks) and (Cropping Attacks)

Fig. 25  A description of the residual image computation that can be achieved in case the container image substation during the original image
leakage, as it shown in column 3, 4 and 5 then enhancement output can be seen in 3rd, 4th and 5th rows with enhancement rate of 5x, 10x and 15x
of residual image

Page 30 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

were considered. Harmonic transformation was mainly
utilized for image rotation, the output of pixels’ dis-
placement, whether in clockwise motion or anti-clock-
wise motion, the (Rotation Attack) can cause an image
deformation output along with edge pixels that have an
arrange of triangle model, the resultant effects of the
(Rotation Attacks) on watermarked images can be simu-
lated based on the image’s rotation degree as illustrated
in Fig. 26.

From the resultant output, it possible to state that
the case in which the watermarks obtainability relies
on the rotation range. As an instance, the implemented
technique has a BER lower than 10% when the rotation
degree is 50. In Fig. 27, ‘Pyramid’ image can compare
the (Normalized Cross Correlation) proposed approach
comparison to illustrate the (Rotation Attack) outcome
on each angle. The proposed methodology has the abil-
ity of attaining high performance towards the (Rota-
tion Attacks); that’s due to arbitrary block and selection
parameters, the random selection role ensures that in
case any type of modifications is made regarding the rota-
tion of the watermarked images. In Table 3 below, it pre-
sents the output rotation results based on both (Image’s
Attacks) and (Watermark Extraction), in case of the met-
rics results were presented genuinely, there is a 15o rota-
tion for multiple gray scale images. (Cropping Attack) is
a type of attacks in-which it often replaces image por-
tions (i.e. Square, Circle or Rectangle) with white/dark
pixels [102]. The difference in the cropped image phase
that it can start from 1% at least until 100% at most. For a

simulation testing, some random crops were made to the
‘Pyramid’ image at various parts; this resulted in a high
extraction image quality from the cropped images.

Regarding rotation, as previously stated, the perfor-
mance best case of the implemented technique con-
cerning cropping attacks for embedding is caused by
both (Arbitrary Block) and (Selection Parameters).
‘Pyramid Image’ was used to test the implemented
technique efficiency. During the transmission phase of
the watermarked images, many multiplicative noises
would be collected though all over the image; to eval-
uate the implemented approach’s performance. Sev-
eral watermarked images were tested using multiple
noise attacks with multiple densities of both (Output
Watermarks) and (NCC - BER), the images were evalu-
ated under case (Variance = 0.005, Mean = 0, Noise
Density = 0.05).

There is a high resistance level towards noise attacks in
this study along with high robustness level towards (His-
togram Attacks). Some limits in the performance can be
shown with lower results (i.e. Gaussian Noise). Corre-
spondingly, as it can be illustrated in Fig. 27, the result-
ant output form the proposed approach when evaluated
towards several types of attacks were put into compari-
son with [89, 103, 104].

From other different steganography methods, the
proposed steganography approach has provided a
high output results, which has the ability to hide data\
image through the deep learning usage [105], which
was designed from three main networks (Preparation

Fig. 26  The (Bit Error Rate) results towards different image’s rotation degrees

Page 31 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

Network, Hidden Network and Reveal Network), the
extraction possibilities by various method is low. Con-
sequently, there is an elasticity to change the data\image
concealing operation, which therefore lower the extrac-
tion possibilities for the hidden data\image. It is impor-
tant to mention that the extraction threat level can be
higher if the attack came within the same ad-hoc cloud
node [106]. Generally, it is approved that the designed
hiding data\information approach provide a high positive
rate of data transmission security through the (Ad-hoc
Cloud System).

Study limitations
If one of the two images (Cover Image / Secret Image)
was additionally provided, the network might be trained
to retrieve all these constituent elements in every one of
the repeated versions of container images made by the
target machine. There can be an appliance for a simplic-
ity restriction and perhaps other image deconstruction or
blind sources detachment approaches to see if it can limit
the attacker’s options if they do not have accessibility for
the "training" data. Getting a small amount of training
data would be helpful for defining variables and priors to

Fig. 27  The evaluation of ‘Pyramid’ image, a comparing the (Bit Error Rate) for gray scaling, b comparing the (Normalized Cross Correlation) for
color scaling when it is compared to the studies in [89, 103, 104]

Page 32 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

many of these approaches. However, the following steps
should be followed to enhance the system robustness:

•	 After concealing the hidden image, the pixels should
be permuted (in-place) in one of M agreed on tech-
niques; system subsequently hides the permuted-
secret-image as well as key (an index into M).

•	 The lack of structural configuration throughout the
residuals makes recovery significantly more challeng-
ing, unless the original image was accessible.

•	 Permutation keys were required for this method to
work properly (though this can be sent reliably in only
a few bytes).

•	 There were various complications for transmitting a
concatenated ‘Secret Image’, which increases the prob-
ability of reconstruction errors across the system.

Study conclusions
This paper has discussed data security in ad-hoc cloud
systems through the usage of enhanced steganography
approach with the usage of deep learning. The ‘Ad-hoc

Cloud System’ platform idea along with its deployment
approach were proposed in this work. An end- user’s
hardware was leveraged to launch a cloud feature on an
irregular basis. V-BOINC is an open-source tool, which
allows developers to bypass application-level security
checkpoints by solely using the V-BOINC VMs. The
ad-hoc cloud approach can help enhance network per-
formance along with usage while lowering costs. Sec-
ondly, this research expands the study of steganography,
then the utilization of pertinent data in images through
the usage of deep learning. Prior attempts to employ
machine-learning models to supplement or replace an
image-hiding scheme ratio have failed. A fully train-
able deep learning system was created consists of three
networks which seamlessly inserts a color image into
another one. The scheme would be designed to insert
data or another image. Implementing a steganography
technique through the usage of a deep learning approach,
the message must be hidden from statistical analysis. It
would require an additional training target and possibly
embedding tiny images beneath many ‘Cover Images’. No
image loss sources would be re-used with the suggested

Table 3  The output watermarks of both a) rotated images with 20o.b) various cropped lion images

Page 33 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

extracted features. The re-training phase of the already
trained networks is a required part of this strategy. Since
hidden systems would no longer take advantage of the
local architecture in the concealed image, the rest of the
system should be retained. Using steganography and
deep learning techniques for hiding additional data in
photographs in the proposed solution has never been
more accessible. More than one previously proposed
technique has attempted to use neural networks includ-
ing a replacement for some tiny component of an image-
hiding network. It has been proved where a completely
resilient system that produces visually good performance
in the placement of a full-size, color image further into a
picture has a possibility to be created. This was discussed
in terms of graphics, but the same system can be trained
to embed text or image as well, the project’s potential
for growth is limitless, both in the short and long terms,
these three were mentioned based on the priority level.

a)	 In order to create a holistic steganographic scheme,
the methodology of concealing the message exist-
ence in the statistical analyzer must be addressed, as
it most likely demands a new objective in training, in
addition to having a small image encoding technique
in a larger ‘Cover Image’.

b)	 The proposed embeddings that were addressed in
this study were not planned to be used with image
loss files, if the lossy encodings, (i.e., jpeg, bmp, or
png) were needed, then there was a possibility to
work directly with the DCT coefficients rather than
the spatial field.

c)	 The SSE error unit was utilized for the networks’
training. However, error units associated with SSIM
may be easily removed.

Future works
The proposed study has provided high positive results;
there are huge room for improvements for future stud-
ies regarding the previously mentioned limitations in
section 6. The reliability issue represents a real critical
point to be discussed as a separate study; because resource
load capabilities were not included regarding the measur-
ing the reliability features [107]. For instance, the ad-hoc
cloud system reliability computations were saved within
the VM Service project DB; these computations pro-
vide the needed estimations for the ’Ad-hoc Cloud Host’
behavior. However, there is a possibility that the reliabil-
ity computations could be modified for the host reliabil-
ity measurement (i.e., the host’s weekly/monthly patterns
might be utilized for allocating a ‘Cloud Job’); it is left for
future studies to investigate new approaches for solving

such issues [108]. Further future studies could be con-
ducted to see if the methods discussed in the presented
work can be modified to test the affection level in a case
of a cyberattack incident within a cloud environment.
The hidden image’s presence (but not its specific compo-
sition) could be accurately detected, in comparison to the
data of the ‘Cover Image’ information, this became sig-
nificantly beyond a state-of-art framework [109]. Unless
the cover image’s residual has a low enough measure of
correlation to the concealed image, it becomes harder
to decipher its elements [110]. Hence, future studies
could be focusing into providing an effective two-factor
encryption mechanism within a normal public cloud as
a start.

Authors’ contributions
All authors contributed to the study conception and design. Material prepara‑
tion, data collection and analysis were performed by Ahmed A. Mawgoud,
Amr Abu-Talleb and Mohamed Hamed N. Taha. The first draft of the manu‑
script was written by Ahmed A. Mawgoud under the supervision of Amira
Kotb. All authors read and approved the final manuscript.

Funding
This research received no external funding. Open access funding provided by
The Science, Technology & Innovation Funding Authority (STDF) in coopera‑
tion with The Egyptian Knowledge Bank (EKB).

Availability of data and materials
The data that support the findings of this study are available from the cor‑
responding author Ahmed A. Mawgoud, upon reasonable request.

Declarations

Ethics approval and consent to participate
This material is the authors’ own original work, which has not been previously
published elsewhere. The paper is not currently being considered for publica‑
tion elsewhere.

Competing interests
On behalf of all authors, the corresponding author states that there is no
conflict of interest.

Received: 31 March 2022 Accepted: 1 October 2022

References
	 1.	 Iivari N, Sharma S, Ventä-Olkkonen L (2020) Digital transformation of

everyday life–how COVID-19 pandemic transformed the basic educa‑
tion of the young generation and why information management
research should care? Int J Inf Manag 55:102183

	 2.	 Mollah MB, Azad MAK, Vasilakos A (2017) Security and privacy chal‑
lenges in mobile cloud computing: survey and way ahead. J Netw
Comput Appl 84:38–54

	 3.	 Grnarov A, Cilku B, Miskovski I, Filiposka S, Trajanov D (2008) Grid com‑
puting implementation in ad hoc networks. In: Advances in computer
and information sciences and engineering. Springer, Dordrecht, pp
196–201

	 4.	 McGilvary GA, Barker A, Atkinson M (2015) Ad hoc cloud computing. In:
2015 IEEE 8th international conference on cloud computing. IEEE, pp
1063–1068

Page 34 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

	 5.	 Buyya, R., Beloglazov, A., and Abawajy, J. (2010). Energy-efficient man‑
agement of data center resources for cloud computing: A vision, archi‑
tectural elements, and open challenges. arXiv preprint arXiv:1006.0308

	 6.	 Tian LQ, Lin C, Ni Y (2010) Evaluation of user behavior trust in cloud
computing. In: 2010 international conference on computer application
and system modeling (ICCASM 2010), vol 7. IEEE, pp V7–V567

	 7.	 Mawgoud AA, Taha MHN, Kotb A (2022) Steganography adaptation model
for data security enhancement in ad-hoc cloud based V-BOINC through
deep learning. In: International conference on advanced machine learning
technologies and applications. Springer, Cham, pp 68–77

	 8.	 Mengistu TM, Alahmadi AM, Alsenani Y, Albuali A, Che D (2018)
Cucloud: volunteer computing as a service (vcaas) system. In: Interna‑
tional conference on cloud computing. Springer, Cham, pp 251–264

	 9.	 Kahn D (1996) The history of steganography. In: International workshop
on information hiding. Springer, Berlin, Heidelberg, pp 1–5

	 10.	 Younes MAB, Jantan A (2008) A new steganography approach for
images encryption exchange by using the least significant bit insertion.
Int J Comput Sci Network Secur 8(6):247–257

	 11.	 Pradhan A, Sahu AK, Swain G, Sekhar KR (2016) Performance evaluation
parameters of image steganography techniques. In: 2016, international
conference on research advances in integrated navigation systems
(RAINS). IEEE, pp 1–8

	 12.	 Mawgoud AA (2020) A survey on ad-hoc cloud computing challenges.
In: 2020 international conference on innovative trends in communica‑
tion and computer engineering (ITCE). IEEE, pp 14–19

	 13.	 El Karadawy AI, Mawgoud AA, Rady HM (2020) An empirical analysis
on load balancing and service broker techniques using cloud analyst
simulator. In: 2020 international conference on innovative trends in
communication and computer engineering (ITCE). IEEE, pp 27–32

	 14.	 Liu Y, Wang L, Wang XV, Xu X, Jiang P (2019) Cloud manufacturing: key
issues and future perspectives. Int J Comput Integr Manuf 32(9):858–874

	 15.	 El-Rahman SA (2018) A comparative analysis of image steganography
based on DCT algorithm and steganography tool to hide nuclear reac‑
tors confidential information. Comput Electr Eng 70:380–399

	 16.	 Cheddad A, Condell J, Curran K, Mc Kevitt P (2010) Digital image
steganography: survey and analysis of current methods. Signal Process
90(3):727–752

	 17.	 Fridrich J, Pevný T, Kodovský J (2007) Statistically undetectable jpeg
steganography: dead-ends challenges, and opportunities. In: Proceed‑
ings of the 9th workshop on multimedia and security, pp 3–14

	 18.	 Thangadurai K, Devi GS (2014) An analysis of LSB based image steg‑
anography techniques. In: 2014 international conference on computer
communication and informatics. IEEE, pp 1–4

	 19.	 Marwaha P, Marwaha P (2010) Visual cryptographic steganography in
images. In: 2010 second international conference on computing, com‑
munication and networking technologies. IEEE, pp 1–6

	 20.	 Luo X, Song X, Li X, Zhang W, Lu J, Yang C, Liu F (2016) Steganalysis of
HUGO steganography based on parameter recognition of syndrome-
trellis-codes. Multimed Tools Appl 75(21):13557–13583

	 21.	 Xiang L, Guo G, Yu J, Sheng VS, Yang P (2020) A convolutional neural
network-based linguistic steganalysis for synonym substitution steg‑
anography. Math Biosci Eng 17(2):1041–1058

	 22.	 Al Mamun MA, Anam K, Onik MFA, Esfar-E-Alam AM (2012) Deploy‑
ment of cloud computing into vanet to create ad hoc cloud network
architecture. In: Proceedings of the world congress on engineering and
computer science, vol 1, pp 24–26

	 23.	 Alsenani Y, Crosby G, Velasco T (2018) SaRa: A stochastic model to
estimate reliability of edge resources in volunteer cloud. In: 2018 IEEE
international conference on EDGE computing (EDGE). IEEE, pp 121–124

	 24.	 Kirby, G., Dearle, A., Macdonald, A., and Fernandes, A. (2010). An
approach to ad hoc cloud computing. arXiv preprint arXiv:1002.4738

	 25.	 Shila DM, Shen W, Cheng Y, Tian X, Shen XS (2016) AMCloud: toward a
secure autonomic mobile ad hoc cloud computing system. IEEE Wirel
Commun 24(2):74–81

	 26.	 Chaumont M (2020) Deep learning in steganography and steganalysis.
In: Digital media steganography. Academic Press, pp 321–349

	 27.	 Chandra A, Weissman J, Heintz B (2013) Decentralized edge clouds. IEEE
Internet Comput 17(5):70–73

	 28.	 Jonathan A, Ryden M, Oh K, Chandra A, Weissman J (2017) Nebula: dis‑
tributed edge cloud for data intensive computing. IEEE Transact Parallel
Distributed Syst 28(11):3229–3242

	 29.	 Oh K, Zhang M, Chandra A, Weissman J (2021) Network cost-aware
geo-distributed data analytics system. IEEE Transact Parallel Distributed
Syst 33(6):1407–1420

	 30.	 Weissman JB, Sundarrajan P, Gupta A, Ryden M, Nair R, Chandra A (2011)
Early experience with the distributed nebula cloud. In: Proceedings
of the fourth international workshop on Data-intensive distributed
computing, pp 17–26

	 31.	 Duan X, Guo D, Liu N, Li B, Gou M, Qin C (2020) A new high capacity
image steganography method combined with image elliptic curve
cryptography and deep neural network. IEEE Access 8:25777–25788

	 32.	 Yi S, Kondo D, Andrzejak A (2010) Reducing costs of spot instances via
checkpointing in the amazon elastic compute cloud. In: 2010 IEEE 3rd
international conference on cloud computing. IEEE, pp 236–243

	 33.	 Hu D, Wang L, Jiang W, Zheng S, Li B (2018) A novel image steganogra‑
phy method via deep convolutional generative adversarial networks.
IEEE Access 6:38303–38314

	 34.	 Mori T, Nakashima M, Ito T (2012) SpACCE: A sophisticated ad hoc cloud
computing environment built by server migration to facilitate distrib‑
uted collaboration. Int J Space Based Situated Comput 2(4):230–239

	 35.	 Zhang C, Benz P, Karjauv A, Sun G, Kweon IS (2020) Udh: universal deep
hiding for steganography, watermarking, and light field messaging. Adv
Neural Inf Proces Syst 33:10223–10234

	 36.	 Wu Y, Cao J, Li M (2011) Private cloud system based on BOINC with
support for parallel and distributed simulation. In: 2011 IEEE 9th
international conference on dependable, autonomic and secure
computing. IEEE, pp 1172–1178

	 37.	 Girardin CAJ et al (2014) Productivity and carbon allocation in a
tropical montane cloud forest in the Peruvian Andes. Plant Ecol Diver
7(1–2):107–123

	 38.	 Mao, Y., You, C., Zhang, J., Huang, K., and Letaief, K. B. (2017). Mobile
edge computing: survey and research outlook. arXiv preprint
arXiv:1701.01090

	 39.	 Toh CK (2001) Maximum battery life routing to support ubiquitous
mobile computing in wireless ad hoc networks. IEEE Commun Mag
39(6):138–147

	 40.	 Wood T, Ramakrishnan KK, Shenoy P, Van der Merwe J (2011) Cloud‑
Net: dynamic pooling of cloud resources by live WAN migration of
virtual machines. ACM SIGPLAN Not 46(7):121–132

	 41.	 Singhal A, Pallav P, Kejriwal N, Choudhury S, Kumar S, Sinha R (2017)
Managing a fleet of autonomous mobile robots (AMR) using cloud
robotics platform. In: 2017 European conference on Mobile robots
(ECMR). IEEE, pp 1–6

	 42.	 Wengrowski E, Dana K (2019) Light field messaging with deep photo‑
graphic steganography. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp 1515–1524

	 43.	 Satyanarayanan M, Schuster R, Ebling M, Fettweis G, Flinck H, Joshi K,
Sabnani K (2015) An open ecosystem for mobile-cloud convergence.
IEEE Commun Mag 53(3):63–70

	 44.	 Aleem A, Sprott CR (2013) Let me in the cloud: analysis of the benefit
and risk assessment of cloud platform. J Financial Crime 20(No. 1):6-
24. https://​doi.​org/​10.​1108/​13590​79131​12873​37

	 45.	 Mawgoud A, Hamed N, Taha M, Eldeen M, Khalifa N (2020) QoS provi‑
sion for controlling energy consumption in ad-hoc wireless sensor
networks. ICIC Express Lett 14(8):761–767

	 46.	 Suryateja PS (2018) Threats and vulnerabilities of cloud computing: a
review. Int J Comput Sci Eng 6(3):297–302

	 47.	 Ge H, Huang M, Wang Q (2011) Steganography and steganalysis
based on digital image. In: 2011 4th international congress on image
and signal processing, vol 1. IEEE, pp 252–255

	 48.	 Canziani, A., Paszke, A., and Culurciello, E. (2016). An analysis of deep
neural network models for practical applications. arXiv preprint
arXiv:1605.07678

	 49.	 Abdullah AM, Aziz RHH (2016) New approaches to encrypt and
decrypt data in image using cryptography and steganography algo‑
rithm. Int J Comput Appl 143(4):11–17

	 50.	 Kini NG, Kini VG (2019) A secured steganography algorithm for hiding
an image in an image. In: Integrated intelligent computing, com‑
munication and security. Springer, Singapore, pp 539–546

	 51.	 Manisha S, Sharmila TS (2019) A two-level secure data hiding
algorithm for video steganography. Multidim Syst Sign Process
30(2):529–542

https://doi.org/10.1108/13590791311287337

Page 35 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97 	

	 52.	 Montes D, Añel JA, Pena TF, Uhe P, Wallom DC (2017) Enabling
BOINC in infrastructure as a service cloud system. Geosci Model Dev
10(2):811–826

	 53.	 Zhang F, Wang MM, Deng R, You X (2021) QoS optimization for
Mobile ad hoc cloud: A multi-agent independent learning approach.
IEEE Transactions on Vehicular Technology

	 54.	 Sun D, Zhao H, Cheng S (2016) A novel membership cloud model-
based trust evaluation model for vehicular ad hoc network of T-CPS.
Secur Commun Networks 9(18):5710–5723

	 55.	 Mengistu TM, Che D (2019) Survey and taxonomy of volunteer com‑
puting. ACM Comput Surv 52(3):1–35

	 56.	 Mbongue JM, Hategekimana F, Kwadjo DT, Bobda C (2018) Fpga
virtualization in cloud-based infrastructures over virtio. In: 2018 IEEE
36th international conference on computer design (ICCD). IEEE, pp
242–245

	 57.	 Arunarani AR, Manjula D, Sugumaran V (2019) Task scheduling tech‑
niques in cloud computing: A literature survey. Futur Gener Comput
Syst 91:407–415

	 58.	 Liu S, Guo L, Webb H, Ya X, Chang X (2019) Internet of things monitor‑
ing system of modern eco-agriculture based on cloud computing. IEEE
Access 7:37050–37058

	 59.	 Barik RK, Lenka RK, Dubey H, Mankodiya K (2018) Tcloud: cloud SDI
model for tourism information infrastructure management. In: GIS
applications in the tourism and hospitality industry. IGI Global, pp
116–144

	 60.	 Gong S, Yin B, Zheng Z, Cai KY (2019) Adaptive multivariable control
for multiple resource allocation of service- based systems in cloud
computing. IEEE Access 7:13817–13831

	 61.	 Arora R, Redondo C, Joshua G (2018) Scalable software infrastructure
for integrating supercomputing with volunteer computing and cloud
computing. In: Workshop on software challenges to Exascale comput‑
ing. Springer, Singapore, pp 105–119

	 62.	 El-Moursy A, Abdelsamea A, Kamran R, Saad M (2019) Multi-dimen‑
sional regression host utilization algorithm (MDRHU) for host overload
detection in cloud computing. J Cloud Comput 8(1):1–17

	 63.	 John J, Norman J (2019) Major vulnerabilities and their prevention
methods in cloud computing. In: Advances in big data and cloud
computing. Springer, Singapore, pp 11–26

	 64.	 Kiss T et al (2019) MiCADO—microservice-based cloud application-
level dynamic orchestrator. Futur Gener Comput Syst 94:937–946

	 65.	 Taylor SJ, Kiss T, Anagnostou A, Terstyanszky G, Kacsuk P, Costes J, Fantini
N (2018) The CloudSME simulation platform and its applications: A
generic multi-cloud platform for developing and executing commercial
cloud- based simulations. Futur Gener Comput Syst 88:524–539

	 66.	 Larsen, Peter Gorm, et al (2020). "A cloud-based collaboration platform
for model-based design of cyber-physical systems." arXiv preprint
arXiv:2005.02449

	 67.	 Anderson, D. P. (2020). BOINC: a platform for volunteer computing.
Journal of Grid Computing, 18(1), 99-122.

	 68.	 McGilvary GA, Barker A, Lloyd A, Atkinson M (2013) V-boinc: the virtu‑
alization of boinc. In: 2013 13th IEEE/ACM international symposium on
cluster, cloud, and grid computing. IEEE, pp 285–293

	 69.	 Alsenani Y, Crosby GV, Velasco T, Alahmadi A (2018) ReMot reputa‑
tion and resource-based model to estimate the reliability of the host
machines in volunteer cloud environment. In: 2018 IEEE 6th interna‑
tional conference on future internet of things and cloud (FiCloud). IEEE,
pp 63–70

	 70.	 Pretz JE, Link JA (2008) The creative task Creator: A tool for the genera‑
tion of customized, Web-based creativity tasks. Behav Res Methods
40(4):1129–1133

	 71.	 Do Q, Martini B, Choo K-KR (2015) A cloud-focused Mobile forensics
methodology. IEEE Cloud Comput 2(4):60–65. https://​doi.​org/​10.​1109/​
MCC.​2015.​71

	 72.	 Bharathi PD, Prakash P, Kiran MVK (2017) Energy efficient strategy for
task allocation and VM placement in cloud environment. In: 2017
innovations in power and advanced computing technologies (i-PACT).
IEEE, pp 1–6

	 73.	 Yaqoob I, Ahmed E, Gani A, Mokhtar S, Imran M, Guizani S (2016) Mobile
ad hoc cloud: A survey. Wirel Commun Mob Comput 16(16):2572–2589

	 74.	 Nie, J., Zhang, Z., Liu, Y., Gao, H., Xu, F., and Shi, W. (2019). Point cloud
ridge-valley feature enhancement based on position and normal guid‑
ance. arXiv preprint arXiv:1910.04942

	 75.	 Kim N, Cho J, Seo E (2014) Energy-credit scheduler: an energy-aware
virtual machine scheduler for cloud systems. Futur Gener Comput Syst
32:128–137

	 76.	 Zhu QH, Tang H, Huang JJ, Hou Y (2021) Task scheduling for multi-cloud
computing subject to security and reliability constraints. IEEE/CAA J
Automat Sin 8(4):848–865

	 77.	 Jeyalaksshmi S, Nidhya MS, Suseendran G, Pal S, Akila D (2021) Develop‑
ing mapping and allotment in volunteer cloud systems using reliability
profile algorithms in a virtual machine. In: 2021 2nd international
conference on computation, automation and knowledge management
(ICCAKM). IEEE, pp 97–101

	 78.	 Tang X (2021) Reliability-aware cost-efficient scientific workflows
scheduling strategy on multi-cloud systems. IEEE Transactions on Cloud
Computing

	 79.	 Li XY, Liu Y, Lin YH, Xiao LH, Zio E, Kang R (2021) A generalized petri
net-based modeling framework for service reliability evaluation and
management of cloud data centers. Reliab Eng Syst Saf 207:107381

	 80.	 Wang LC, Chen CC, Liu JL, Chu PC (2021) Framework and deployment
of a cloud-based advanced planning and scheduling system. Robot
Comput Integr Manuf 70:102088

	 81.	 Nanjappan M, Natesan G, Krishnadoss P (2021) An adaptive neuro-fuzzy
inference system and black widow optimization approach for optimal
resource utilization and task scheduling in a cloud environment. Wirel
Pers Commun 121(3):1891–1916

	 82.	 Lakhan A, Mastoi QUA, Elhoseny M, Memon MS, Mohammed MA (2021)
Deep neural network-based application partitioning and scheduling for
hospitals and medical enterprises using IoT assisted mobile fog cloud.
Enterprise Information Systems, pp 1–23

	 83.	 Kristiani E, Yang CT, Huang CY, Wang YT, Ko PC (2021) The implementa‑
tion of a cloud-edge computing architecture using OpenStack and
Kubernetes for air quality monitoring application. Mobile Networks
Appl 26(3):1070–1092

	 84.	 Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J et al
(2012) Monitoring with ganglia: tracking dynamic host and application
metrics at scale. O’Reilly Media, Inc.

	 85.	 Fatema K, Emeakaroha VC, Healy PD, Morrison JP, Lynn T (2014) A survey
of cloud monitoring tools: taxonomy, capabilities and objectives. J
Parallel Distributed Comput 74(10):2918–2933

	 86.	 Pippal SK, Kushwaha DS (2013) A simple, adaptable and efficient
heterogeneous multi-tenant database architecture for ad hoc cloud. J
Cloud Comput Adv Syst Appl 2(1):1–14

	 87.	 Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C. C., Khandelwal, A., Pu, Q.,
... and Patterson, D. A. (2019). Cloud programming simplified: A Berkeley
view on serverless computing. arXiv preprint arXiv:1902.03383

	 88.	 Kich, I, El Bachir Ameur, YT, and Benhfid, A (2020) Image steganography
by deep CNN auto-encoder networks. Int J 9:4707–16. https://​doi.​org/​
10.​30534/​ijatc​se/​2020/​75942​020

	 89.	 Wu P, Yang Y, Li X (2018) Stegnet: mega image steganography capacity
with deep convolutional network. Future Internet 10(6):54

	 90.	 Wang Z, Gao N, Wang X, Qu X, Li L (2018) SSteGAN: self-learning steg‑
anography based on generative adversarial networks. In: International
conference on neural information processing. Springer, Cham, pp
253–264

	 91.	 Yang ZL, Zhang SY, Hu YT, Hu ZW, Huang YF (2020) VAE-Stega: linguistic
steganography based on variational auto-encoder. IEEE Transact Inform
Forensics Secur 16:880–895

	 92.	 strix gl702 | ROG - Republic of Gamers Global. 2022. strix gl702 | ROG -
Republic of Gamers Global. Available at: https://​rog.​asus.​com/​tag/​strix-​
gl702/ Accessed 20 June 2021

	 93.	 Boinc.​berke​ley.​edu. 2022. Windows client 7.16.20 released. Available at:
https://​boinc.​berke​ley.​edu/​forum_​thread.​php?​id=​14437 Accessed 31
May 2021

	 94.	 Docs.​vmware.​com. 2022. VMware Workstation 15.5.2 Pro Release Notes.
Available at: https://​docs.​vmware.​com/​en/​VMware-​Works​tation-​Pro/​
15.5/​rn/​VMware-​Works​tation-​1552-​Pro-​Relea​se-​Notes.​html Accessed
15 Jul 2021

https://doi.org/10.1109/MCC.2015.71
https://doi.org/10.1109/MCC.2015.71
https://doi.org/10.30534/ijatcse/2020/75942020
https://doi.org/10.30534/ijatcse/2020/75942020
https://rog.asus.com/tag/strix-gl702/
https://rog.asus.com/tag/strix-gl702/
http://boinc.berkeley.edu
https://boinc.berkeley.edu/forum_thread.php?id=14437
http://docs.vmware.com
https://docs.vmware.com/en/VMware-Workstation-Pro/15.5/rn/VMware-Workstation-1552-Pro-Release-Notes.html
https://docs.vmware.com/en/VMware-Workstation-Pro/15.5/rn/VMware-Workstation-1552-Pro-Release-Notes.html

Page 36 of 36Mawgoud et al. Journal of Cloud Computing (2022) 11:97

	 95.	 Zhang Z (2018) Improved Adam optimizer for deep neural networks.
In: 2018 IEEE/ACM 26th international symposium on quality of service
(IWQoS). IEEE, pp 1–2

	 96.	 Yang K, Qinami K, Fei-Fei L, Deng J, Russakovsky O (2020) Towards fairer
datasets: filtering and balancing the distribution of the people subtree
in the imagenet hierarchy. In: Proceedings of the 2020 conference on
fairness, accountability, and transparency, pp 547–558

	 97.	 Hanif MA, Khalid F, Putra RVW, Rehman S, Shafique M (2018) Robust
machine learning systems: reliability and security for deep neural net‑
works. In: 2018 IEEE 24th international symposium on on-line testing
and robust system design (IOLTS). IEEE, pp 257–260

	 98.	 Mehdi H, Mureed H (2013) A survey of image stegano-graphy tech‑
niques. Int J Adv Sci Technol 54(3):113–124. https://​doi.​org/​10.​1109/​
CICT.​2016.​34

	 99.	 Goel S, Rana A, Kaur M (2013) A review of comparison techniques of
image steganography. Global. J Comput Sci Technol

	100.	 Agmon Ben-Yehuda O, Ben-Yehuda M, Schuster A, Tsafrir D (2013)
Deconstructing Amazon EC2 spot instance pricing. ACM Transactions
on Economics and Computation (TEAC) 1(3):1–20.

	101.	 index, B., 7, C. and Support, C., 2022. CentOS 7.2 linux-atm rpm i386
– CentOS. Forums.​centos.​org. Available at: https://​forums.​centos.​org/​
viewt​opic.​php?t=​57778 Accessed 12 March 2021

	102.	 Jang HU, Choi HY, Son J, Kim D, Hou JU, Choi S, Lee HK (2018) Cropping-
resilient 3D mesh watermarking based on consistent segmentation
and mesh steganalysis. Multimed Tools Appl 77(5):5685–5712

	103.	 Kim DH, Lee HY (2017) Deep learning-based steganalysis against spatial
domain steganography. In: 2017 European conference on electrical
engineering and computer science (EECS). IEEE, pp 1–4

	104.	 Ye J, Ni J, Yi Y (2017) Deep learning hierarchical representations forim‑
age steganalysis. IEEE Transactions on Information Forensics andSecu‑
rity 12(11):2545–2557.

	105.	 Wang, Chengyou, Yunpeng Zhang, and Xiao Zhou. 2018. "Robust
Image Watermarking Algorithm Based on ASIFT against Geometric
Attacks" Applied Sciences 8, no. 3: 410. https://doi.org/10.3390/
app8030410

	106.	 Mittal N, Sharma D, Joshi ML (2018) Image sentiment analysis using
deep learning. In: 2018 IEEE/WIC/ACM international conference on web
intelligence (WI). IEEE, pp 684–687

	107.	 Huang F, Li B, Huang J (2007) Attack LSB matching steganography by
counting alteration rate of the number of neighbourhood gray levels.
In: 2007 IEEE international conference on image processing, vol 1. IEEE,
pp I–401

	108.	 Tianze L, Muqing W, Min Z, Wenxing L (2017) An overhead-optimizing
task scheduling strategy for ad-hoc based mobile edge computing.
IEEE Access 5:5609–5622

	109.	 Johnson NF, Duric Z, Jajodia S (2001) Information hiding: steganogra‑
phy and watermarking-attacks and countermeasures: steganography
and watermarking: attacks and countermeasures, vol 1. Springer Sci‑
ence and Business Media

	110.	 Li S, Xue M, Zhao BZH, Zhu H, Zhang X (2020) Invisible backdoor attacks
on deep neural networks via steganography and regularization. IEEE
Transact Dependable Secure Comput 18(5):2088–2082

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1109/CICT.2016.34
https://doi.org/10.1109/CICT.2016.34
http://forums.centos.org
https://forums.centos.org/viewtopic.php?t=57778
https://forums.centos.org/viewtopic.php?t=57778

	A deep learning based steganography integration framework for ad-hoc cloud computing data security augmentation using the V-BOINC system
	Abstract
	Introduction
	The ad-hoc cloud computing paradigm
	Deep steganography
	Motivation
	Study contributions
	Paper organization

	Literature review
	Related work

	Problem statement
	Proposed model
	Ad-hoc cloud computing system architecture
	Ad-hoc cloud server
	Ad-hoc cloud client
	Client and server interaction in the ad-hoc cloud system
	Practical evaluation analysis of the (ad-hoc cloud system)
	V- BOINC submission system
	Ad-hoc cloud system GUI
	Job scheduler
	Availability
	Host hardware requirements
	Host resources
	Ad-hoc cloud host reliability evaluation
	Decision procedure
	Cloud job working mechanism

	Steganography based-deep learning approach

	Experiments
	Results discussion and performance analysis
	Virtual machine recovery process
	Cloud system performance evaluation
	The (ad-hoc cloud server) performance
	Data utilization charging method
	Deep steganography performance results
	Testing the deep steganography performance towards multiple attacks
	Study limitations

	Study conclusions
	Future works
	References

